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if it misses a degenerate solution. Hence, it is important that all degenerate solutions are identified by the fitting40

algorithms used to analyze microlensing data.41

There are multiple examples of degenerate solutions being initially overlooked in past research. Section 3.1 of42

(Bachelet et al. 2018) contains a review of several cases in which the standard grid-search procedure missed relevant43

solutions. More recently, Yang et al. (2022) identified another degeneracy that is easily missed in grid searches, that44

they dubbed the “central-resonant” caustic degeneracy. Improving the performance of grid searches identifying the45

“central-resonant” degeneracy was the primary motivation for this work.46

Both microlensing events analyzed in Yang et al. (2022) were found to suffer from the “central-resonant” caustic47

degeneracy, in which it could not be determined whether the caustic that caused the magnification pattern was a central48

or a resonant caustic. This results in multiple potential values for s, as well as other parameters. This degeneracy49

was not identified in the initial grid search for solutions, and required a denser grid search to be uncovered. A similar50

situation occurred in the analysis of two events by Ryu et al. (2022). All four events are drawn from a single year51

(2021), and Yang et al. (2022) notes that this relatively high frequency of occurrence indicates that the degeneracy52

may have been missed in previous events as well. In fact, once this degeneracy was recognized, re-analysis of OGLE-53

2016-BLG-1195 led to the discovery of new, previously–un-probed, solutions (Gould et al. 2023). Making grid searches54

more robust to the “central-resonant” degeneracy is the primary motivation for this work.55

Current grid search algorithms most often sample evenly in (log(s), log(q)) space. However, the local minima of56

microlensing event parameter spaces often follow a v-shaped pattern symmetrical about log(s) ≃ 0. This pattern57

roughly aligns with the boundaries in log(s) and log(q) separating different types of caustics. It might be more efficient58

to sample a higher density of test points within such a distribution instead of sampling evenly in log(s) and log(q).59

Sampling within this distribution might identify local minima that would otherwise require a higher-resolution grid60

search to unearth.61

To construct a new grid that samples more densely from the region of interest, we found two new parameters related62

to s and q such that, when evenly spaced points in the space of these two new parameters are mapped to (log(s),63

log(q)) space, they follow a similar distribution pattern as the χ2 distribution seen in many microlensing events. In64

Section 2, we describe how we defined these parameters, why we expect them to be an improvement, and how we used65

them to construct a grid in log(s) and log(q) space. Then, in Section 3, we describe the tests we conducted to assess66

the efficacy of the new grid in practice. Finally, we conclude in Section 4.67

2. NEW PARAMETERS68

2.1. Defining k and h69

We defined the new parameters based on characteristics of the caustics associated with given values of s and q,70

because these caustics change as s and q change. Our goal was to find a caustic characteristic that changes rapidly in71

the region of interest (near log(s)=0 on either side). This characteristic would serve as the first parameter, k, and the72

distance along the contour lines of this parameter would serve as the second, h, so that points evenly spaced in these73

parameters will bunch up and become over-dense in that region when mapped back to log(s) and log(q).74

We evaluated different caustic characteristics by plotting points in (log(s), log(q)) space with colors corresponding75

to the value of the caustic characteristic. The morphology of a given microlensing event is set by the magnification76

pattern on the source plane and that pattern can be summarized by the caustic(s). Therefore, it would be logical77

for some property of the caustic (or derivative) to be a more effective search variable, in part because it should78

capture correlations between s and q. Then, if such a property could be identified, it might be possible to map it79

to some underlying mathematics. However, the goal of this work is primarily to identify a set of parameters that80

work empirically for the “central-resonant” degeneracy, regardless of whether or not their theoretical origins can be81

identified.82

Ultimately, we determined that the logarithm of the horizontal width of the central caustic, ∆ξc, behaves in the83

desired manner (Chung et al. 2005):84

∆ξc =
4q

(s− s−1)2
(1)85

In some ways, this is surprising because Equation 1 was calculated in the limit that q ≪ 1 and only for central caustics.86

Nevertheless, we are applying this equation over all of (s, q) space because it matches the desired behavior even if it87

does not necessarily describe the caustic accurately over the whole space.88
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Previously, Dong et al. (2009) used a similar parameter, ∆ηc (the extent of the central caustic in the y-direction), to89

conduct a grid search for solutions to MOA-2007-BLG-400. They argued that this parameter would be useful in cases90

for which it could be estimated directly from the light curve. Here, we use the measurement along the x-axis, which91

has a simpler analytic form. Similar to the observation by Dong et al. (2009) about ∆ηc, ∆ξc is linear with log s in92

many regimes1.93

As shown in Figure 1, contour lines of log10(∆ξc) in (log(s), log(q)) space become denser in the target region of94

(log(s), log(q)) space (i.e., as log s approaches the resonant caustic regime) as desired. However, as can be seen from95

Equation 1, the contours also asymptote as they approach log(s)=0, which would result in infinitely dense contours96

as log(s) approaches 0. Thus, to ensure that k is defined at all values of log(s), we defined both k and h as piece-wise97

functions with different definitions near log(s)=0. We define a transition point at log(sref) = 0.03. This value was98

chosen empirically to ensure that a grid search with a similar number of points as in Yang et al. (2022) would have99

multiple grid points covering the resonant caustic minima.100

So, for | log(s)| ≥ log(sref):101

k(s, q) ≡ log10(∆ξc) = log

(

4q

(s− s−1)2

)

. (2)102

For | log(s)| < log(sref), we hold k constant over changing log(s):103

k(s, q) = log

(

4q

(sref − s−1

ref
)2

)

= log(q) + 2.3; (3)104

i.e., for each point (log(si), log(qi)) within this range, we set k equal to the value of log(∆ξc) at the point105

(± log(sref), log(qi)).106

For the parameter h, we want a definition that generally reflects a distance from log(s) = 0. For | log(s)| ≫ 0, the k107

contours become approximately straight lines in (log(s), log(q)) space so they may be described as a simple magnitude108

equation, but this breaks down as | log(s)| → 0 because the slope of k changes dramatically. Of course, this slope109

change is the behavior that gets us the higher density of contours for | log s| → 0. So, for | log(s)| < log(sref), we define110

h to maintain the density of points just outside this region.111

Hence, for log(s) ≥ log(sref):112

h =
√

[log(s)− log(sref)]2 + [log(q)− log(qref)]2 + C. (4)113

The value of qref is defined as follows: for a given point (s, q), the value of k can be determined from Equation 2.114

Then, qref is the value of q that satisfies Equation 2 for that value of k and s = sref .115

For − log(sref) < log(s) < log(sref) :116

h = m log(s). (5)117

Finally, for log(s) ≤ − log(sref):118

h = −
√

[log(s)− log(sref)]2 + [log(q)− log(qref)]2 − C, (6)119

where C ≡ m log(sref) such that the contours match up at log(sref). We choose m = 35 because it maintains the120

approximate h spacing near the transition point.121

A grid of points in (k, h) space, color-coded by values of log(q), can be found in Figure 1.122

2.2. Evaluating the New Grid123

Yang et al. (2022) ultimately needed to perform three grid searches of increasing densities and increasingly narrow124

parameter ranges in order to uncover all 4 degenerate solutions for KMT-2021-BLG-0171 and all 6 degenerate solutions125

for KMT-2021-BLG-1689, because their initial grid was not dense enough in the regions where the solutions were located126

to find all solutions. Therefore, to estimate the efficacy of the new grid, we compared the new grid to the initial (log(s),127

log(q)) grid employed by Yang et al. (2022) in their analysis of events KMT-2021-BLG-0171 and KMT-2021-BLG-1689.128

Figures 2 and 3 show both the new grid points and the initial grid search points used by Yang et al. (2022) overlaid129

on the χ2 distributions found by the densest grid searches performed by Yang et al. (2022) for events KMT-2021-BLG-130

0171 (for which two degenerate pairs of solutions were found) and KMT-2021-BLG-1689 (for which three degenerate131

1 In fact, ∆ηc ∝ ∆ξc (see Eq. 11 and 12 of Chung et al. 2005).
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pairs of solutions were found). Each of the grids have approximately the same number of total points covering the132

range between -1.5 < log(s) < 1.5 and -6 < log(q) < 1 (the new grid has slightly fewer). In principle, solutions with133

log q > 0 are symmetric with those for log q < 0, but in order to ensure continuity in parameter searches (e.g. if k and134

h were free parameters), we calculate the grid including log q up to 1. As can be seen from these plots, the new grid135

contains many more points within the local minima than the initial grid from Yang et al. (2022), which suggests that136

the new grid might be better at identifying these minima.137

We also investigated the efficacy of the new parameters by calculating (k, h) values for the points in the grid searches138

conducted by Yang et al. (2022) and re-plotting the χ2 distribution in (k, h) space. These plots can be found in Figure139

4. As can be seen in this figure, the different minima are well-separated in (k, h) space, suggesting that a reasonably140

dense grid of points evenly spaced in k and h would be able to resolve all of the minima.141

Ideally, this grid would be effective at finding solutions for a variety of microlensing events, not just planetary142

microlensing events. Thus, to test whether binary star system solutions would be resolvable in (k, h) space, we repeated143

this interpolation process for the χ2 distributions found using a (log(s), log(q)) grid for four additional events, all with144

binary-star-system lens solutions. These events are KMT-2016-BLG-0020, KMT-2016-BLG-0157, KMT-2016-BLG-145

0199, KMT-2016-BLG-2542. They were chosen from events modeled in the AnomalyFinder (Zang et al. 2021) search146

for planets in the 2016 prime fields (Shin et al. 2023) and selected for having a variety of morphologies for the χ2
147

surface in (log(s), log(q))-space.148

The (log(s), log(q)) grids as well as their transforms into (k, h)-space can be found in Figures 5 and 6. As can be149

seen in these figures, all of the minima resolvable in (log(s), log(q)) space are also resolvable in (k, h) space. Thus,150

the (k, h) grid should also be effective at analyzing non-planetary events.151

For the present work, we will focus verifying that k and h are better parameters for resolving minima for the152

central-resonant degeneracy in a few specific cases.153

3. TESTS154

In order to prove the efficacy of the new grid, we conducted a grid search/MCMC analysis of three different previously-155

analyzed microlensing events as case tests: KMT-2021-BLG-0171 and KMT-2021-BLG-1689 (Yang et al. 2022) and156

MOA-2007-BLG-192 (Bennett et al. 2008). These events each suffer from multiple degeneracies.157

For each search, we used VBBL (Bozza et al. 2018) with MulensModel (Poleski & Yee 2019) to generate the light158

curves and emcee (Foreman-Mackey et al. 2013) to refine the parameters, keeping s and q fixed. We allowed the source159

size, ρ, to be a free parameter, but to simplify the calculations did not include limb-darkening in our models. The160

version of MulensModel we used (v2.11) does not allow for q > 1, so we exclude any (k, h) values that produce q > 1161

from our grid search. Prior to the search, we also renormalized the error bars of each dataset by a constant factor so162

that the χ2/d.o.f. = 1 relative to a point lens model.163

The following section will describe each event in more detail and present the results of our analysis.164

3.1. KMT-2021-BLG-0171165

The solutions previously found for this event are listed in Table 1. This event suffers from a degeneracy between166

the (1, 2) and (3, 4) solutions. Both 1 and 2 predict the same values for source size ρ and q, and both 3 and 4 predict167

the same values for ρ and q, but the values predicted by (1, 2) and (3, 4) differ from each other for both parameters.168

Additionally, (1, 2) predict a larger absolute value for log(s) than (3, 4) (known as the “central-resonant” degeneracy).169

Within each pair, the “close-wide” degeneracy is also present. This is a common microlensing degeneracy where two170

solutions exist that are identical except that the value for s has approximately undergone a s ←→ s−1 transformation.171

See Griest & Safizadeh (1998) and Dominik (1999) for further discussion of this degeneracy, and see Yang et al. (2022)172

for more information on this event and its solutions.173

The (k, h) grid was successful in identifying all four solutions identified by Yang et al. (2022) in a single grid search,174

in contrast to the three grid searches required in Yang et al. (2022). See Figure 4 for a plot of the χ2 distribution from175

our grid search and Table 1 for a comparison of the solutions found by the (k, h) grid and the solutions found by Yang176

et al. (2022).177

3.2. KMT-2021-BLG-1689178

This event suffers from a degeneracy between the (1, 2) and (3, 4) solutions. The two pairs predict different values179

for ρ and q. This event also suffers from the central-resonant degeneracy between solution pairs (1, 2) and (3, 4), and180
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solution pairs (1, 2), (3, 4), and (5, 6) each suffer from the close-wide degeneracy. See Table 2 and Yang et al. (2022)181

for more information on this event and its solutions.182

The (k, h) grid was successful in finding solutions 1 through 5 in a single grid search, compared to the three grid183

searches used by Yang et al. (2022). It did not find a minimum near the location of solution 6. However, that solution184

has the secondary as the center of magnification, i.e., the source passes by the “planetary” caustic rather than the185

central caustic. Hence, finding that solution would generally require changing the origin of the coordinate system to186

the secondary or searching for solutions with q > 1. See Figure 4 for a plot of the χ2 distribution from this grid search187

and Table 2 for a comparison of the solutions found by the (k, h) grid and the solutions found by Yang et al. (2022).188

The (k, h) grid also appeared to have three new minima, not previously identified by Yang et al. (2022), two of189

which represent a potential new solution suffering from the close-wide degeneracy. The parameters of these minima190

from the grid search, as well as their ∆χ2 relative to the best-fit solution from our grid search are given in Table 2. In191

addition, we ran a refined MCMC analysis on one of these minima and found the set of parameters with the best χ2
192

value listed in Table 2, with the corresponding light curve shown in Figure 7. This results in a ∆χ2 = 61.4 relative193

to the best-fit solutions in Yang et al. (2022). So, these minima were investigated as potential new solutions but were194

ultimately rejected due to their high ∆χ2 values (∆χ2 > 50). However, they are a better fit to the data than the195

binary solutions (5, 6) investigated in Yang et al. (2022). Thus, the fact that they were discovered by the (k, h) grid196

suggests that this grid has the potential to uncover solutions that would be missed by the traditional (log(s), log(q))197

grid.198

3.3. MOA-2007-BLG-192199

This event is challenging to analyze in part due to the lack of data coverage of the event. In addition, two four-200

fold degeneracies contribute to the 16 solutions reported for this event by Bennett et al. (2008). The most relevant201

degeneracies for this work are those which produce variation in log(s) and log(q) amongst the solutions; one such202

degeneracy is due to an undersampling of data which led to an inability to distinguish whether a caustic crossing vs.203

cusp approaching model is superior, and the other is the close-wide degeneracy. We list a few of these solutions in204

Table 3. These solutions reflect the four basic morphologies of the solutions reported in Table 3 of Bennett et al.205

(2008). See Bennett et al. (2008) for more information on this event and its solutions.206

Figure 8 shows a plot of the χ2 distribution from this grid search and Table 3 for a comparison of the solutions207

found by the (k, h) grid and the solutions found by Bennett et al. (2008). The (k, h) grid was successful in finding208

equivalents to all 4 solutions from Bennett et al. (2008) given in Table 3. We were also able to find equivalents to the209

other three minima that can be identified from Figure 7 of Bennett et al. (2008), but whose solutions are not reported210

in their table.211

In addition, our k, h grid shows significant structure for |h| . 1. In this region, we identified three families of212

solutions comprising six solutions, with each pair connected by the close-wide degeneracy. Figure 9 compares the light213

curves and source trajectories of the best solution in each pair with our best-fit solution. The main difference in the214

solutions is the location of the “dip” in the light curve with respect to the final MOA observation from the night of215

HJD′ = 4245. In the primary solution, the “dip” occurs after the final MOA observation. However, in solutions N1/N2216

and N5/N6, the “dip” occurs between the final and penultimate points. In N3/N4, the final point occurs at the exact217

minimum of the “dip”.218

Understanding the exact relationship between these various minima, e.g., by optimizing the individual minima, is219

beyond the scope of this work.2 However, it is clear that the transformation from (s, q)- to (k, h)- space will facilitate220

such investigations.221

4. SUMMARY222

Our goal in this work was to increase the analytic sensitivity of gravitational microlensing parameter searches223

by creating a grid search method more sensitive to the degenerate solutions observed in Yang et al. (2022). We224

accomplished this goal by sampling points to be tested as solutions in a new parameter space that requires a lower225

density of points to be able to identify solutions compared to parameter spaces more commonly used. We defined226

these parameters by looking for caustic characteristics that change rapidly in the regions of (log(s), log(q)) space where227

degenerate solutions where more likely to be located, so that grid points sampled evenly in these parameters would be228

2 Among other things, a recent paper (Terry et al. 2024) has shown that the MOA data from the original paper, which we used in our
analysis, have systematics that affect the modeling.
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more likely to pick up on solutions. We ultimately defined these parameters based on the width of the central caustic229

of a given event.230

We tested a grid sampled evenly in these new parameters, which we name k and h, on three events with degenerate231

solutions and found that the new grid could more efficiently identify most if not all of the solutions identified by232

previous analyses. In addition, for two of the events, we identified new potential solutions. We thus present the k and233

h parameters as a potential tool to be used in the analysis of gravitational microlensing events in the future. Given234

that this tool is more sensitive to the central-resonant degeneracy, it provides the opportunity for increased automation235

and efficiency in the analysis of gravitational microlensing events. This will be especially important for microlensing236

searches with the Roman Space Telescope.237

The authors would like to thank the anonymous referee who made a number of useful comments that improved the

paper. J.C.Y. and I.-G.S. acknowledge support from U.S. NSF Grant No. AST-2108414. This research has made
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SSO in Australia. Data transfer from the host site to KASI was supported by the Korea Research Environment

Open NETwork (KREONET). The computations in this paper were conducted on the Smithsonian High Performance
Cluster (SI/HPC), Smithsonian Institution. https://doi.org/10.25572/SIHPC. This research has made use of the

NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National

Aeronautics and Space Administration under the Exoplanet Exploration Program.
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Table 1. KMT-2021-BLG-0171 Solutions

Grid Solution t0 (HJD) u0 tE (d) ρ (10−3) α (deg) s q (10−5)

Yang+22 1 2459326.2338 0.00564 41.57 1.50 237.6 0.813 4.28

± 0.0003 ± 0.00005 ± 0.32 ± 0.015 ± 0.7 ± 0.032 ± 0.80

k, h 2459326.2336 0.00568 41.42 1.71 236.9 0.841 3.79

Yang+22 2 2459326.2338 0.00564 41.56 1.51 237.7 1.232 4.17

± 0.0003 ± 0.00005 ± 0.32 ± 0.015 ± 0.7 ± 0.051 ± 0.82

k, h 2459326.2331 0.00567 41.42 1.76 236.7 1.190 3.84

Yang+22 3 2459326.2338 0.00565 41.57 1.62 239.1 0.9905 2.19

± 0.0003 ± 0.00005 ± 0.32 ± 0.007 ± 0.4 ± 0.0009 ± 0.14

k, h 2459326.2333 0.00568 41.45 1.81 237.3 0.984 2.13

Yang+22 4 2459326.2338 0.00565 41.55 1.62 239.2 1.0161 2.22

± 0.0003 ± 0.00005 ± 0.31 ± 0.007 ± 0.4 ± 0.0009 ± 0.15

k, h 2459326.2335 0.00575 40.97 1.85 238.1 1.016 2.93

Note—For each solution, values from Yang et al. (2022) are listed first, then uncertainty values from Yang et al. (2022), then values
found using the (k, h) grid. Solutions from Yang et al. (2022) were refined using an MCMC algorithm allowing s, q, and ρ to be free
parameters, while the (k, h) grid solutions were unrefined. This and the lack of limb-darkening may account for some of the
discrepancy between the solutions from Yang et al. (2022) and the (k, h) grid solutions.
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Table 2. KMT-2021-BLG-1689 Solutions

Grid Solution t0 (HJD) u0 tE (d) ρ (10−3) α (deg) s q (10−4)

Solutions Reported in Yang+22:

Yang+22 1 2459409.2510 0.00600 22.56 1.44 242.3 0.870 2.10

± 0.0011 ± 0.00028 ± 0.84 ± 0.08 ± 0.6 ± 0.025 ± 0.39

k, h 2459409.2529 0.00618 22.34 1.43 242.2 0.841 2.53

Yang+22 2 2459409.2509 0.00601 22.51 1.44 242.3 1.157 2.09

± 0.0011 ± 0.00026 ± 0.79 ± 0.08 ± 0.6 ± 0.032 ± 0.37

k, h 2459409.2525 0.00593 22.76 1.31 241.7 1.163 1.93

Yang+22 3 2459409.2509 0.00590 22.61 0.70 242.1 0.944 1.62

± 0.0012 ± 0.00027 ± 0.85 ± 0.08 ± 0.6 ± 0.004 ± 0.17

k, h 2459409.2527 0.00613 22.16 0.74 242.3 0.937 2.04

Yang+22 4 2459409.2510 0.00587 22.78 0.68 242.2 1.067 1.62

± 0.0011 ± 0.00027 ± 0.81 ± 0.08 ± 0.5 ± 0.005 ± 0.18

k, h 2459409.2526 0.00603 22.33 0.64 241.5 1.059 1.43

Yang+22 5 2459409.2403 0.00663 22.92 < 1.2 340.9 0.092 5079

± 0.0012 ± 0.00032 ± 0.88 – ± 1.0 ± 0.006 ± 2232

k, h 2459409.2522 0.00752 21.45 0.18 151.2 0.139 1436.59

Yang+22 6 2459409.2394 0.00327 46.14 < 0.8 160.8 19.97 3186

± 0.0009 ± 0.00060 ± 8.48 – ± 0.5 ± 1.25 ± 1979

k, h Not Found

Additional Minima from k, h search:

∆χ2

54.6 N1 2459409.2509 0.00689 22.43 1.92 100.9 0.960 3.69

Optimized 2459409.2493 0.00694 23.04 1.91 104.1 0.951 4.57

±0.0015 ±0.00035 ±0.84 ±0.09 ±0.021 ±0.2 ±0.36

58.1 N2 2459409.2511 0.00654 23.60 1.86 100.6 1.042 3.69

74.5 N3 2459409.2486 0.00669 22.73 0.52 246.4 0.123 1359.44

Note—As in Table 1 for event KMT-2021-BLG-1689. The ∆χ2 of the new solutions are given relative to the best-fit from the k, h grid
search.
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Table 3. MOA-2007-BLG-192 Solutions

Grid Solution t0 (HJD) u0 tE (d) ρ (10−4) α (deg) s q (10−4)

Solutions Reported in Table 3 of Bennett+08:

Bennett+08 1 2454245.453 -0.00364 75.0 8.93 113.6 0.881 1.5

k, h 2454245.448 -0.00375 72.4 7.69 294.4 0.878 1.4

Bennett+08 2 2454245.453 -0.00360 74.5 8.59 115.8 1.120 1.2

k, h 2454245.448 -0.00398 70.4 8.85 293.2 1.121 1.5

Bennett+08 3 2454245.462 -0.00433 75.1 15.6 101.1 0.985 2.1

k, h 2454245.441 -0.00384 96.1 12.22 269.9 0.984 2.7

Bennett+08 4 2454245.458 -0.00420 74.9 15.2 103.8 1.007 1.6

k, h 2454245.431 -0.00464 85.1 13.95 265.0 1.016 3.7

k, h Equivalents to Additional Minima from Figure 7 of Bennett+08:

2454245.443 -0.00401 69.9 12.67 293.4 1.000 0.6

2454245.415 -0.00522 74.1 7.84 260.0 0.740 10.8

2454245.388 -0.00669 69.6 6.77 255.6 1.416 14.5

Additional Minima from k, h search:

∆χ2

5.1 N1 2454245.440 -0.00348 71.6 3.26 305.7 0.945 0.16

6.5 N2 2454245.438 -0.00344 72.3 1.93 306.5 1.042 0.11

7.6 N3 2454245.442 -0.00314 83.8 10.21 298.0 1.008 0.29

8.1 N4 2454245.440 -0.00374 72.4 11.71 296.7 0.992 0.29

12.1 N5 2454245.438 -0.00335 75.2 4.10 305.8 1.008 0.06

20.8 N6 2454245.435 -0.00418 62.5 4.64 304.6 0.992 0.06

Note— As in Table 2 for event MOA-2007-BLG-192. In addition, due to a difference in the choice of coordinate system, there is
a 180 degree offset between α from Bennett et al. (2008) and our values.
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