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Boki is a new serverless runtime that exports a shared log API to serverless functions. Boki shared logs enable stateful
serverless applications to manage their state with durability, consistency, and fault tolerance. Boki shared logs achieve
high throughput and low latency. The key enabler is the metalog, a novel mechanism that allows Boki to address ordering,
consistency and fault tolerance independently. The metalog orders shared log records with high throughput and it provides
read consistency while allowing service providers to optimize the write and read path of the shared log in different ways.
To demonstrate the value of shared logs for stateful serverless applications, we build Boki support libraries that implement
fault-tolerant workflows, durable object storage, and message queues. Our evaluation shows that shared logs-¢an speed up
important serverless workloads by up to 4.2x.
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1 Introduction

Serverless computing has become increasingly popular for building scalable cloud applications. Its function-as-a-
service (FaaS) paradigm empowers diverse applications including video processing [23, 34], data analytics [42, 51],
machine learning [29, 56], distributed compilation [33], transactional workflows [61], and interactive microser-
vices [41].

One key challenge in the current serverless paradigm is the mismatch between the stateless nature of serverless
functions and the stateful applications built with.them [38, 52, 57, 64]. Serverless applications are often composed
of multiple functions, where application state i§ shared. However, managing shared state using current options,
e.g., cloud databases or object stores, struggles to achieve strong consistency and fault tolerance while maintaining
high performance and scalability[54, 61].

The shared log [25, 32, 60] is a popular approach for building storage systems that can simultaneously achieve
scalability, strong consisténcy, and fault tolerance [7, 24, 26, 28, 37, 45, 59, 60]. A shared log offers a simple
abstraction: a totally orderedilog that can be accessed and appended concurrently. While simple, a shared log
can efficiently support state machine replication [53], the well-understood approach for building fault-tolerant
stateful services [26, 60]. The shared log API also frees distributed applications from the burden of managing
the details of fault-tolerant consensus, because the consensus protocol is hidden behind the API [24]. Providing
shared logs to serverless functions can address the dual challenges of consistency and fault tolerance (§ 2.1).
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We present Boki (meaning bookkeeping in Japanese), a FaaS runtime that exports the shared log API to
functions for storing shared state. Boki realizes the shared log API with a LogBook abstraction, where each
function invocation is associated with a LogBook (§ 3). For a Boki application, its functions share a LogBook,
allowing them to share and coordinate updates to state. In Boki, LogBooks enable stateful serverless applications
to manage their state with durability, consistency, and fault tolerance.

The shared log API is simple to use and applicable to diverse applications [24, 26, 27, 60], so the challenge of
Boki is to achieve high performance and strong consistency while conforming to the serverless environment
(§ 2.2). Data locality is one challenge for serverless storage, because disaggregated storage is strongly preferred
in the serverless environment [38, 52, 57]. Boki separates the read and write path so that read locality can be
achieved at the same time as high-throughput writes. Boki optimizes read locality with a cache onfunction nodes.
It scatters writes over a variable numbers of shards while providing consistency and fault tolerance (§ 4.4). In
Boki, high write throughput, read consistency and fault tolerance are achieved by a single log-based mechanism,
the metalog.

The metalog defines a total order of Boki’s internal state that applications can use to énforce consistency when
they need it. For example, monotonic reads are enforced by tracking metalog positionssThe metalog contains
metadata that totally orders a log’s data records, meaning the durability and consistency of.the metalog are vital.
The data format is compact, so a single machine can handle the metalog’s throughput. To achieve fault-tolerant
consensus, Boki stores and updates metalogs using a simple primary-driven design.

Boki handles machine failures by reconfiguration, similar to previous shared log systems [24, 32, 60]. Because
the metalog controls Boki’s internal state transitions, sealing the metalog (making it no longer writable) pauses
state transitions. Therefore, Boki implements reconfiguration/ by.sealing the metalog, changing the system
configuration, and starting a new metalog.

Boki’s metalog allows easy adoption of state-of-the-art techniques from previous shared log designs because it
makes log ordering, consistency, and fault tolerancednto independent modules (§ 4.1). Boki adapts ordering from
Scalog [32] and fault tolerance from Delos’s [24] sealing protocol. Another benefit of the metalog is it decouples
read consistency from data placement, enabling indices and caches for log records to be co-located with functions
(Table 2). Without interfering with read consistency, cloud providers can build simple caches which optimize
data locality when scheduling functions on nodes where their data is likely to be cached.

We implement Boki’s shared log designs on top of Nightcore [41], a FaaS runtime optimized for microservices.
Nightcore has no specialized méchanism for state management, Boki provides it; while Nightcore’s design for
I/O efficiency benefits Boki. Boki achieves append throughput of 1.2M Ops/s within a single LogBook, while
maintaining a p99 latency of 6.3ms. With LogBook engines co-located with functions, Boki achieves a read latency
of 86us for best-case LogBook reads.

To make writing Boki applications easier, we build support libraries on top of the LogBook API aimed at three
different serverless use cases: fault-tolerant workflows, durable object storage, and serverless message queues.
Boki supportlibraries leverage techniques from Beldi [61], Tango [26], and vCorfu [60], while adapting them for
the LogBook API. Boki and its support libraries are open source on GitHub ut-osa/boki.

This paper makes the following contributions.

e Boki is afFaaS runtime that exports a LogBook API for stateful serverless applications to manage their state
with durability, consistency, and fault tolerance.

e Boki proposes a unified mechanism, the metalog, to address log ordering, read consistency, and fault tolerance.
The metalog decouples the read and write path of LogBooks, letting Boki achieve high throughput and low
latency.

e We build Boki support libraries that use the LogBook API to demonstrate the value of shared logs for stateful
serverless applications. The libraries implement fault-tolerant workflows (BokiFlow), durable object storage
(BokiStore), and serverless message queues (BokiQueue).
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e Our evaluation shows: BokiFlow executes workflows 3.8—4.2x faster than Beldi [61]; BokiStore achieves
1.20-1.28% higher throughput than MongoDB, while executing transactions 2.0-2.5X faster; BokiQueue achieves
2.16x higher throughput and up to 17X lower latency than Amazon SQS [2], while achieving 1.26X higher
throughput and up to 1.6x lower latency than Apache Pulsar [3].

2 Background and Motivation

Serverless functions, or function as a service (FaaS) [4, 6], allow developers to upload simple functions to the cloud
provider which are invoked on demand. The cloud provider manages the execution environment of serverless
functions.

State management remains a major challenge in the current FaaS paradigm [38, 52, 57, 64]. Because of the
stateless nature of serverless functions, current serverless applications rely on cloud storage services (e.g., Amazon
S3 and DynamoDB) to manage their state. However, current cloud storage cannot simultaneously provide low
latency, low cost, and high throughput [46, 51]. For example, storing 1KB payloads takes,108ms for Amazon
S3, and 11ms for DynamoDB [38]. Most function executions are short (for example, one large-scale study finds
on average half of executed functions run for less than 1 second [55]), so these storageé overheads represent a
significant portion of execution time.

Even if we can improve cloud storage performance, data consistencyfemains challenging for stateful ap-
plications. One notable example is stateful workflows [61], as functions in a workflow can fail in the middle
which leaves behind inconsistent workflow state. To provide exactly-once semantics for workflows, Beldi [61]
uses a database for its state management—not a key-value store/A key-value store is insufficient because Beldi
requires that its storage system, “[provides] strong consistency, tolerates faults, supports atomic updates on
some atomicity scope (e.g., row, partition), and has a scan operatiomywith the ability to filter results and create
projections.” [61]

Boki provides sequential consistency, fault tolerance, andratomic log append, which is sufficient to run the
same workflow workloads as Beldi which.model movie reviews and travel reservations. Beldi requires four logs
for each stateful serverless function maintained within.aidatabase, and its performance suffers accordingly. Boki
provides a more efficient solution for state management with exactly-once semantics as we quantify in Section 7.2.

2.1 Shared Log Approach forStateful Serverless

In the current FaaS paradigm; stateful applications struggle to achieve fault tolerance and strong consistency of
their critical state. For example, consider a travel reservation app built with serverless functions. This app has
a function for booking hotels and another function for booking flights. When processing a travel reservation
request, both functions are invoked, but both functions can fail during execution, leaving inconsistent state. Using
current approaches for state management such as cloud object stores or even cloud databases, it is difficult to
ensure the consistency of the reservation state given the failure model [61]. This consistency challenge is due to
the current serverless programming model, where there is no mechanism for state updates that are transactional
across function boundaries.

The success of log-based approaches for data consistency and fault tolerance motivates the use of shared
logs for stateful FaaS. For example, Olive [54] proposes a client library interacting with cloud storage, where a
write-ahead redo log is used to achieve exactly-once semantics in face of failures. Beldi [61] extends Olive’s log-
based techniques for transactional serverless workflows. State machine replication (SMR) [53] is another general
approach for fault tolerance, where application state is replicated across servers by a command log. The command
log is traditionally backed by consensus algorithms [49, 50, 58]. But recent studies demonstrate a shared log can
provide efficient abstraction to support SMR-based data structures [26, 60] and protocols [24, 27]. Boki provides
shared logs to serverless functions. Boki shared logs are totally ordered and can be shared among serverless
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functions. Boki’s runtime guarantees sequential consistency for reading and appending the shared log, both
within one function and across function boundaries. Therefore, Boki’s applications can leverage well-understood
log-based mechanisms to efficiently achieve data consistency and fault tolerance.

By examining demands in serverless computing, we identify three important cases where shared logs provide
a solution. Boki provides support libraries for these use cases (§ 5).

Fault-tolerant workflows. Workflows orchestrating stateful functions create new challenges for fault tolerance
and transactional state updates. Beldi [61] addresses these challenges via logging workflow steps. Beldi builds an
atomic logging layer on top of DynamoDB. We adapt Beldi’s techniques to the LogBook API without building an
extra logging layer.

Durable object storage. Previous studies like Tango [26] and vCorfu [60] demonstrate that shared logs
can support high-level data structures (i.e., objects), that are consistent, durable, and scalable. Motivated by
Cloudflare’s Durable Objects [18], we build a library for stateful functions to create durable JSON objects. Our
object library is more powerful than Cloudflare’s because it supports transactions across objects, using techniques
from Tango [26].

Serverless message queues. One constraint in the current FaaS paradigmis that functions cannot directly
communicate with each other via traditional approaches [33], e.g., network sockets: Shared logs can naturally
be used to build message queues [32] that offer indirect communication and coordination among functions. We
build a queue library that provides shared queues among serverlessifunctions.

2.2 Technical Challenges for Serverless Shared Logs

While prior shared log designs [24, 25, 32, 60] provide inspiration, the serverless environment creates new
challenges.

Elasticity and data locality. Serverless computing strongly benefits from disaggregation [22, 36], which
offers elasticity. However, current serverlessiplatforms’choose physical disaggregation, which reduces data
locality [38, 57]. Boki achieves both elasticity and data locality, by decoupling the read and the write paths for
log data and co-locating read components with functions.

Resource efficiency. Boki aims to support a high density of LogBooks efficiently, so it multiplexes many
LogBooks on a single physical log. Multiplexing LogBooks can address performance problems that arise from a
skewed distribution of LogBook sizes«But this approach creates a challenge for LogBook reads: how to locate the
records of a LogBook. Boki-proposes a log index to address this issue, with the metalog providing the mechanism
for read consistency (§.4.4).

The ephemeral nature of FaaS. Shared logs are used for building high-level data structures via state machine
replication (SMR) [26560]. To allow fast reads, clients keep in-memory copies of the state machines, e.g., Tango [26]
has local views for its SMR-based objects. However, serverless functions are ephemeral - their in-memory state is
not guaranteed/to be preserved between invocations. This limitation forces functions to replay the full log when
accessing a SMR-based object. Boki introduces auxiliary data (§ 3) to enable optimizations like local views in
Tango (§ 5.4). Auxiliary data are designed as cache storage on a per-log-record basis, while their relaxed durability
and consistency guarantees allow a simple and efficient mechanism to manage their storage (§ 4.4).

3 Boki’s LogBook API

Boki provides a LogBook abstraction for serverless functions to access shared logs. Boki maintains many
independent LogBooks used by different serverless applications. In Boki, each function invocation is associated
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struct LogRecord {
uint64_t seqnum; string data;
vector<tag_t> tags; string auxdata;
+;

// Append a new log record.
status_t logAppend(vector<tag t> tags, string data, uint64_t* seqnum);

// Read the next/previous record whose segnum >= “min_seqnum™, or <= “max_seqnum’ .
// Log reads guarantee "monotonic reads" and "read-your-writes" semantics.
status_t logReadNext(uint64_t min_seqnum, tag_t tag, LogRecordx record);

status_t logReadPrev(uint64_t max_seqnum, tag_t tag, LogRecord* record);

// Alias of logReadPrev(kMaxSegNum, tag, record).
status_t logCheckTail(tag_t tag, LogRecord* record);

// Trim the LogBook until “trim_seqnum™, i.e., delete all log records
// whose segnum < ~trim_seqnum”.
status_t logTrim(uint64_t trim_seqnum);

// Set auxiliary data for the record of ~seqnum-.
status_t logSetAuxData(uint64_t seqnum, string auxdata);

Fig. 1. Boki’s LogBook API (§ 3).

with one LogBook, whose book_id is specified when inveking the function. A LogBook can be shared with
multiple function invocations, so that applications can share state among their function instances.

Like previous shared log systems [24, 25, 32, 60], Boki exposes append, read, and trim APIs for writing, reading,
and deleting log records. Figure 1 lists Boki’s LogBook APL

Read consistency. LogBook guarantees monotonicireads and read-your-writes when reading records. These
guarantees imply a function has a monotonicallysincreasing view of the log tail, but different functions may
have different views. Moreover, when a parent function invokes a child function, the child function inherits its
parent’s current view of the log tail, which ensures the child can read log records already seen by the parent.
This property is important for serverless applications that compose multiple functions (§ 4.4).

Sequence numbers (seqnum). The YogAppend API returns a unique seqnum for the newly appended log record.
The seqnums determine thetelative order of records within a LogBook. They are monotonically increasing but
not guaranteed to be consecutive. Boki’s LlogReadNext and logReadPrev APIs enable bidirectional log traversals,
by providing lewer and upper bounds for seqnums (§ 4.2).

Log tags. Every logirecord has a set of tags, that is specified in LogAppend. Log tags enable selective reads, where
only records with the given tag are considered (see the tag parameter in logReadNext and logReadPrev APIs).
Records with same tags form abstract streams within a single LogBook. Having sub-streams in a shared log for
selective reads is important for reducing log replay overheads, that is used in Tango [26] and vCorfu [60] (§ 4.4).

Auxiliary data. LogBook’s auxiliary data is designed as per-log-record cache storage, which is set by the
logSetAuxData APL Log reads may return auxiliary data along with normal data if found. Auxiliary data can
cache object views in a shared-log-based object storage. These object views can significantly reduce log replay
overheads (§ 5.4).

As auxiliary data is designed to be used only as a cache, Boki does not guarantee its durability, but provides best
effort support. Moreover, Boki does not maintain the consistency of auxiliary data, i.e., Boki trusts applications to

ACM Trans. Comput. Syst.



6 « Z.Jiaand E. Witchel

provide consistent auxiliary data for the same log record. Relaxing durability and consistency allows Boki to
have a simple yet efficient backend for storing auxiliary data (§ 4.4).

Usage pattern of LogBook API. There are two different LogBook usage patterns that address the consistency
and fault tolerance challenges for serverless applications.

The first usage pattern is write-ahead logging (WAL). Though serverless functions are supposed to be stateless,
they often perform operations having external visible effects (e.g., writing to a database). If the function logs every
write operations using a LogBook, when the function fails, the re-executed function can use the write-ahead log
to recover its progress. One of Boki’s support libraries, BokiFlow (§ 5.1), is an example of using LogBooks for
WAL.

The second usage pattern is state machine replication (SMR). For a Boki application, its different functions
can use a shared LogBook to store state machine commands. The total order provided by the LogBook enables
functions to replay the state machine correctly. Though different functions are not guaranteed to see the same
log tail, Boki allows client code to linearize state machine commands. Section 5.1.1 providesithe details as part of
explaining BokiFlow’s lock design. In this usage pattern, auxiliary data stores materialized state machines. Log
tags enable selective replay (like in Tango [26]) and composable state machinereplication (like in vCorfu [60]).
Two Boki support libraries, BokiStore (§ 5.2) and BokiQueue (§ 5.3), use LogBooks for SMR.

4 Boki Design

Boki’s design combines a Faa$S system with shared log storage. Bokiiinternally stores multiple independent, totally
ordered logs. User-facing LogBooks are multiplexed onto internal physical logs for better resource efficiency
(§ 2.2). A Boki physical log has an associated metalog, playing the central role in ordering, consistency, and fault
tolerance.

4.1 Metalog is “the Answer to Everything” in Boki

Every shared log system must answer three questions:because they store log records across a group of machines.
The first is how to determine the global total order of log records. The second is how to ensure read consistency
as the data are physically distributed. The third is how to tolerate machine failures. Table 1 shows different
mechanisms used by previous shared log systems to address these three issues, whereas in Boki, the metalog
provides the single solution to all of them.

In Boki, every physicaldog has a single associated metalog, to record its internal state transitions. Boki
sequencers append to the metalog, while all other components subscribe to it (Figure 2 and § 4.3). In particular,
appending, readinggand sealing the metalog provide mechanisms for log ordering, read consistency, and fault
tolerance:

o Logrordering. The primary sequencer appends metalog entries to decide the total order for new records,
using Scalog [32]’s high-throughput ordering protocol. (§ 4.3)

e Read consistency. Different LogBook engines update their log indices independently, however, read consis-
tency is enforced by comparing metalog positions. (§ 4.4)

e Fault tolerance. Boki is reconfigured by sealing metalogs, because a sealed metalog pauses state transitions
for the associated log. When all current metalogs are sealed, a new configuration can be safely installed. (§ 4.5)

Metalog: economy of mechanism. Table 1 shows how the metalog is a single mechanism that plays the role
of different mechanisms from previous distributed, fault-tolerant logs. All of the listed systems provide a log for
applications, but Boki is the only system that also uses a log for its own metadata management. By using a log
to manage its own metadata, Boki accrues the benefits available to its clients—problems of fault-tolerance and
consistency are handled by the log.
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Table 1. Comparison between vCorfu [60], Scalog [32], and Boki. Boki’s metalog provides a unified approach for log ordering,
read consistency, and fault tolerance (§ 4.1).

Ordering Read Failure
log records consistency handling
vCorfu A dedicated Stream replicas Hole-filling
sequencer protocol
Paxos and . .
Scalog aggregators Sharding policy Paxos
. Appending Tracking Sealing
Boki . o
metalog entries | metalog positions | the metalog

rauests = | storage nodes | isequencer no des! | Control pane. |
requests ateway H orage nodes ,Sequencer nodes, | Control plane

Replicate ' Store records 1 store and update

1
! |
1 1
1 1
- | log record D : of physical logs : 1 metalogs : : 1
- Function node | : ! Report ! ! i | Zookeeper |!
Container 1*| Record store :p rogress @ ' Seque:cer { Append | |
. . n ~
En code Function engine / : : (gg°ondarig metalog 3 : Controller :
A 1 1 ! !
i LogBook engine : Sequencer i '
Runtime 9 g QE/T Record store : C (cShicnd N Tt
------ Log Record | [ ! \ !
more function i , ! { Invoking functions
( ? Sl index cache \_:_ Record store : | Seq_uencer { —— g
containers) — 1 1 I Primary) 1 —>  LogBook API calls
I [ e e .
L Propagate metalog @ O Appending logs

Fig. 2. Architecture of Boki (§ 4.2), where red arrows show the workflow of log appends (§ 4.3). Function nodes, storage
nodes, sequencer nodes, and control plane run on different physical hosts or VMs.

Boki still requires the same building blocks as previous systems—for example, it needs sequencer nodes that
impose a global total order on log appends. But instead of using a custom API to the sequencer to order its
own metadata, Boki puts all metadata in the metalog, whose entries are ordered by the sequencer nodes. Fault
tolerance of the metalog is achieved by a simple primary-driven protocol, but consensus algorithms like Paxos or
Raft can be used as well. The metalog design lets Boki achieve an economy of mechanism in the management of
its own metadata, simplifying the system. Additionally, future improvements to fault-tolerant logs can also apply
to metalogs thus benefit Boki’s metadata management.

4.2  Architecture

Figure 2 depicts Boki’s architecture, which is based on Nightcore [41], a state-of-the-art FaaS system for mi-
croservices. In Nightcore’s design, there is a gateway for receiving function requests and multiple function nodes
for running serverless functions. On each function node, an engine process communicates with the Nightcore
runtime within function containers via low-latency message channels.

Boki extends Nightcore’s architecture by adding components for storing, ordering, and reading logs. As shown
in Figure 2, Boki extends Nightcore’s function engines to support the LogBook API Boki adds storage nodes
which manage persistent log records, and sequencer nodes which order log records. Boki also has a control plane
for storing configuration metadata and handling component failures.
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Table 2. Boki includes LogBook engines running on function nodes. LogBook engines augment Nightcore’s function runtime
to efficiently support LogBook operations for serverless functions.

Goal Mechanism

Fast dispatch of LogBook API calls | User’s function code is linked with LogBook library.

Low-latency reads of log records LogBook engines cache log records using unique se-
quence numbers as keys and LRU for replacement.

Selective log reads using tags (§ 3) | LogBook engines maintain log indices (§ 4.4).

Efficient index updates LogBook engines subscribe to the metalog, which
drives incremental index updates and supports read
consistency from unsynchronized index replicas.

Storage nodes. Boki stores log records on dedicated storage nodes. Boki’s physical logsdare sharded. Each
function node has a log shard, i.e., the sharding is based on which function node produces the record because
that maximizes locality.

Sharding configuration, i.e., mapping between log shards and storage nodes, is flexible in Boki. Individual
storage nodes contain different shards from the same log, and/or shards from different logs. Log shards must be
replicated for fault-tolerance. They are replicated on ng,, different storage nodes (nqata equals 3 in the prototype).

Sequencer nodes. Fault-tolerant distributed logs suppert high threughput log appends while maintaining a
total order for appended records. A collection of sequencer nodesiexecute a fault-tolerant protocol for ordering
log records.

Boki sequencers generate ordering information in the form of progress vectors, similar to Scalog [32]’s protocol
(§ 4.3). Boki stores these vectors, as well as'log trimcommands (§ 4.4) in the metalog. The total order of the
metalog defines the global order of Boki’s distributed log. Scalog’s protocol orders log records in batches with
progress vectors, so that high throughput logordering can be achieved with low append rate to the metalog (e.g.,
a few thousands appends per second to the metalog can order more than one million records per second). The
low append rate and the small size of metadata ordering information (tens of bytes per entry) means that a single
node is fully capable of maintaining the metalog.

To achieve fault tolerance, every metalog is replicated on npet, sequencer nodes (which is 3 in the prototype).
One of the ny,eta sequencersis configured as primary, and only the primary sequencer can append the metalog. To
append a new metalog entry;the primary sequencer sends the entry to all secondary sequencers for replication.
Once acknowledged by a quorum, the new metalog entry is successfully appended. The primary sequencer
always waits for the previous entry to be acknowledged by a quorum before issuing the next one. Sequencers
propagate appended metalog entries to other Boki components that subscribe to the metalog.

Configuration of sequencer nodes in Boki is flexible, just as storage node configuration is flexible. For example,
sequencer nodes can be dedicated to different metalogs; sequencers can execute on dedicated nodes or they can
be colocated with storage nodes.

LogBook engines. Boki’s persistence model is that all serverless functions use LogBooks for persisting data.
Therefore, it must be efficient for Boki to service LogBook API calls from functions. In Nightcore, the engine
processes running on function nodes are responsible for dispatching function requests. Boki extends Nightcore’s
engine functionality by adding a new component serving LogBook calls. We refer to the new part as the LogBook
engine to distinguish it from the part of engine process that serves function requests.
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Fig. 3. An example showing how the metalog determines the total order of records across shards. Each metalog entry is
a vector, whose elements correspond to shards. In the figure, log records between two red lines form a delta set, which is
defined by two consecutive vectors in the metalog (§ 4.3).

Table 2 summarizes how the LogBook engine uses different mechanisms to achieve high performance for log
operations. Co-locating LogBook engines with functions means that, in the best case, LogBook reads can be
served without leaving the function node.

Control plane. Boki’s control plane uses ZooKeeper [39] for storing its configuration. Boki’s configuration
includes (1) addresses of gateway, function, storage, and sequencer nodes; (2) the set of storage and sequencer
nodes backing each physical log; (3) the sharding and index configuration of each physical log; (4) parameters of
consistent hashing [43] used for the mapping between LogBooks and physical logs. Every Boki node maintains a
ZooKeeper session to keep synchronized with the current configuration. ZooKeeper sessions are also used to
detect failures of Boki nodes.

Boki’s controller (see the control plane in Figure 2) is responsible for global reconfiguration. Reconfiguration
happens when node failures are detected, or when instructed by the administrator to scale the system, e.g., by
changing the number of physical logs (see §7.1 for reconfiguration latency measurements). We define the duration
between consecutive reconfigurations as-a term. Terms have a monotonically increasing term_id.

4.3  Workflow of Log Appends

When appending a LogBook (shown by the red arrows in Figure 2), the new record is appended to the associated
physical log. For simplicity, in this section, the term log always refers to physical logs.

Records in a Boki log are sharded, and each shard is replicated on ng,, storage nodes. Within a Boki log, each
function node corresponds to a shard; i.e. the number of shards simply equals to the number of function nodes.
For a function node, its LogBook engine maintains a counter for numbering records from its own shard. On
receiving a logAppend call, the LogBook engine assigns the counter’s current value as the local_id of the new
record.

The LogBook engine replicates a new record to all storage nodes backing its shard (@ in Figure 2). Storage
nodes then need to update the sequencers with the information of what records they have stored. The monotonic
nature of local_id enables a compact progress vector, v. Suppose the log has M shards. We use a vector v of length
M to represent a set of log records. The set consists of, for all shards j, records with local_id < /. If shard j is not
assigned to this node, we set the j-th element of its progress vector as co. Every storage node maintains their
progress vectors, and periodically communicates them to the primary sequencer (2) in Figure 2).

By taking the element-wise minimum of progress vectors from all storage nodes, the primary sequencer
computes the global progress vector. Based on the definition of progress vectors, we can see the global progress
vector represents the set of log records that are fully replicated. Finally, the primary sequencer periodically
appends the latest global progress vector to the metalog (3 in Figure 2), which effectively orders log records
across shards.
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Fig. 4. Workflow of LogBook reads (§ 4.4): D Locate a LogBook engine stores the index for the physical log backing book_id
= 3; Q Query the index row (book_id, tag) = (3, 2) to find the metadata of the result record (seqnum =9 in this case); 3
Check if the record is cached; @ If not cached, read it from storage nodes.

We now explain how the total order is determined by the metalog. Consider a newly appended global progress
vector, denoted by v;. By comparing it with the previous vector in the metalog (denoted by v;_;), we can define
the delta set of log records between these two vectors: for all shards j, records satisfying U{;l < local_id < v{ .
This delta set exactly covers log records that are added to the total order by the new metalog entry v;. Records
within a delta set are ordered by (shard, local_id). Figure 3 shows an example of metalog and its corresponding
total order. In this figure, between two consecutive red lines is a delta set.

The LogBook engine initiating the append operation learns about its completion by its subscription to the
metalog (@) in Figure 2). The metalog allows the LogBook engine to compute the final position of the new record
in the log, used to construct the sequence number returned by logAppend.

4.4  From Physical Logs to LogBooks

Boki virtualizes LogBooks by multiplexing them on physical logs. LogBooks have unique identifiers, book_id.
Recall that in Boki, each function invocation is associated with a LogBook (book_id is specified when invoking
the function), while multiple function invocations can share a book_id (§ 3). Current design of Boki allows each
function to only associate with exactly one LogBook, so that all LogBook API calls operate on only one LogBook.

Structure of sequence numbers (seqnum). As shown in the LogBook APIs (Figure 1), every log record has a
unique seqnum. The seqnum, from higher to lower bits, is (term_id, log_id, pos). term_id identifies the current
configuration. log_id identifies the physical log and pos is the record’s position in the physical log. Seqnums in
this structure determine a total order within a LogBook, which is in accordance with the chronological order of
terms and the total order of the underlying physical log. But note that this structure cannot guarantee seqnums
within a LogBook to be consecutive, whose records can be physically interspersed with other LogBooks.

Building indices for LogBooks. Multiplexing LogBooks on physical logs creates one challenge for efficient
reads — how to avoid consulting every log shard to find the desired log record. Previous systems [60] have used
fixed sharding, where a LogBook maps to some fixed log shard. The fixed-sharding approach limits a LogBook’s
read and write throughput to a single log shard’s throughput. For performance and operational advantages, Boki
does not place records from a LogBook using a fixed policy. Boki will store LogBook records in any shard, so that
a LogBook can achieve the full read and write throughput of the underlying physical log if needed. Boki builds a
log index for locating records when reading LogBooks.

Boki’s log index is compact, only including necessary metadata of log records (i.e., seqnum and tags, but not
data), so that a single machine can store the entire index. Log indices are stored and maintained by LogBook
engines, leading to locality benefits because LogBook engines reside on function nodes. Every physical log has
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Fig. 5. Consistency checks by comparing metalog positions (§ 4.4). For a function, if reading from a log index whose progress
is behind its metalog position, it could see stale states. For example, function h have already seen record X, so that it cannot
perform future log reads through index A.

multiple copies of the log index maintained by different LogBook engines, for higher read throughput and better
read locality.

The structure of the log index is designed to fit the semantic of LogBook read APIs. First, the log index groups
records by their book_id, because a read can only target a single LogBook. The API semantics for LogReadNext
and logReadPrev (see Figure 1) allow selective reads by log tags (tags are specified by users in logAppend). Both
APIs seek for records sequentially by providing bounds for seqnums, e.g., logReadNext finds the first record
whose seqnum > min_seqnum. Putting them together, Boki’s log index groups records by (book_id,tag). For each
(book_id,tag), it builds an index row as an array of records, sorted by their seqnums. Figure 4 depicts the workflow
of LogBook reads using the index.

Log indices are built incrementally by subscribing to the metalog. When a new progress vector is appended to
the metalog, it means a new batch of records is appended to the physical log (§ 4.3). Individual index replicas
update their data structures to include the new record batch. Metadata of log records (i.e., log tags) are read
directly from storage nodes to update log indices. Different index replicas will not synchronize with each other,
but data consistency is achieved by different replicas comparing their positions in the metalog (explained in the
next section).

Read consistency. The consistency of Boki’s log reads are determined by the log index. The log index is used to
find the seqnum of the result record. The seqnum uniquely identifies a log record, while both data and metadata
(i.e., tags) of a log record are immutable after they are appended.

The challenge of enforcing read consistency comes from multiple copies of the log index, which are maintained
by different LogBook engines. Keeping these copies consistent makes the system vulnerable to “slowdown
cascades” [21, 48], i.e., the slowdown of a single node can prevent the whole system from making progress.

Boki uses observable consistency [30, 48], where consistency checks are delayed to the time of data reads. The
metalog position defines the version of the log index a function reads. A log index whose version is determined
by metalog position [ means the log index includes all records ordered by the [-prefix of the metalog.

When a user function reads a LogBook at an index with metalog position [, it can never read an index at < [,
because that would violate monotonic reads. Similarly, if a function appends a log record that is ordered by the
I-th metalog entry, subsequent reads from the same function cannot be served by an index whose position < [ or
read-your-writes could be violated.

Therefore, Boki maintains a metalog position for each function and that position provides consistent LogBook
reads. LogBook engines subscribe to the metalog to periodically update their indices. Consistency checks are
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performed by comparing a function’s metalog position with the index version. Figure 5 depicts the mechanism.
If a consistency check fails, the read is suspended by the engine until its index has caught up. Successful reads
and appends from a function update the function’s metalog position, ensuring the consistency of future reads. A
child function inherits the metalog position from its parent function, so that consistency guarantees hold across
function boundaries.

Trim operations. Because the log index plays an important role in read consistency, trimming records in
log indices effectively makes trim operations observable. Storage space for trimmed records can be reclaimed
independently in the background by storage nodes. Therefore, Boki implements logTrim API calls by simply
appending a trim command to the metalog. For a trim command in the metalog, the LogBook engine executes it
by trimming related index rows in their log indices, while storage nodes gradually reclaim space for trimmed
records.

Auxiliary data. Described in the LogBook API (§ 3), the auxiliary data of log records have relaxed requirements
of durability and consistency. This allows a very simple store of auxiliary data that reuses the'record cache
within LogBook engines. The relaxed consistency of auxiliary data does not even requireBoki to exchange them
between nodes. Therefore, for logSetAuxData calls, Boki simply caches the provided auxiliary data on the same
function node. To serve reads from the user function Boki checks if there is.auxiliary data in the local cache. If
found, it is returned along with the result record.

4.5 Reconfiguration Protocol

Boki’s controller can initiate a reconfiguration if node failures'(including failures of primary sequencers) are
detected or when instructed by a system administrator.

The main part of Boki’s reconfiguration protocol is.to seal all current metalogs. A sealed metalog cannot have
any more entries appended, so the corresponding/physicallogis sealed as well. Boki employs Delos [24]’s log
sealing protocol, that is surprisingly simple but fault-toletant. To seal a metalog, the controller sends the seal
command to all relevant sequencers. On receiving theseal command, the primary sequencer stops issuing new
metalog entries, while secondary sequencers committo reject future metalog entries from the primary sequencer.
The sealing is completed when a quorum of sequencers have acknowledged the seal command (see the Delos
paper [24] for details).

After all metalogs are successfully sealed, Boki can install a new configuration to start the next term. In the
new term, all physical logssstart with new, empty metalogs. To ensure read consistency across terms, we include
the term_id in the consistencyscheck, which is compared before metalog positions. If the number of physical logs
changes, the consistént hashing parameters are updated accordingly.

To tolerate failures of the«controller, Boki runs a group of controller processes. The reconfiguration protocol is
executed by a leader, elected via ZooKeeper.

4.6 Takeaways for Future Shared Log Systems

Serverless has'been very successful for (mostly) stateless computing, but struggles to accommodate stateful
programs [52]. Boki enables stateful serverless programs by adding a shared log to address consistency and fault
tolerance. Independent of that goal, we believe that two of Boki’s design choices, the metalog and log index, will
also benefit other shared log designs.

As explained in Section 4.1, the metalog plays a central role in Boki’s design. The metalog simultaneously
provides log ordering (Figure 3), read consistency (Figure 5), and fault tolerance (§ 4.5). The metalog incorporates
Delos’ [24] VirtualLog design with Scalog [32]’s high-throughput log ordering protocol, but in Boki, the metalog
does more than a simple mixture of these two existing techniques. The metalog maintains a replicated state
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machine for Boki’s meta state. Thanks to Scalog’s ordering protocol, the append rate to the metalog is relatively
low, allowing all Boki components running on different nodes to subscribe to the metalog and replay the meta
state machine. With proper design (like in Boki’s log index), different nodes can even replay the meta state
machine without synchronization, but still maintain the required consistency property (monotonic reads and
read-my-writes).

The log index is the key mechanism in Boki to support LogBook multiplexing and log tags within a LogBook.
The log index design fully decouples two properties of a shared log: (1) how the log is logically partitioned (log
tags in Boki); and (2) where log records are physically stored (log shards in Boki). In previous shared log designs
such as vCorfu [60], logical partitioning of the log directly determines storing locations. When logical partitioning
is associated with physical sharding, the append throughput to a particular log partition is constrained by the
number of nodes backing corresponding shards. Boki’s design fully overcomes this constraint. Boki’s log index
design also provides maximum flexibility regarding how the log is logically partitioned. Therge are two levels of
logical partitioning in a Boki shared log: the first level is different LogBooks, and the second level is log tags
within a LogBook. A log record can have multiple log tags also results from the flexibility of Boki’s log index
design.

5 Boki Support Libraries

In this section, we present Boki support libraries, designed for three different stateful FaaS paradigms that benefit
from the LogBook API: fault-tolerant workflows (§ 5.1), durable object storage (§ 5.2), and queues for message
passing (§ 5.3).

5.1 BokiFlow: Fault-Tolerant Workflows

We build a support library called BokiFlow for fault-telerant workflows. BokiFlow adapts Beldi [61]’s techniques
to ensure exactly-once semantics and support transactions for'serverless workflows. BokiFlow provides the same
user-facing APIs as Beldi.

Beldi’s techniques for exactly-once semanties closely resemble write-ahead logging in storage systems. In
a Beldi workflow, every operation that has externally visible effects (e.g., a database write) is logged with
monotonically increasing step numbers. To assign step numbers, Beldi maintains a STEP variable within each
workflow (Figure 6), which@alsoimeans Beldi requires workflow steps to have a deterministic order. When a
workflow fails, Beldi re-executes.it using the workflow log. To ensure the exactly-once semantic, Beldi recovers
the internal state of the failed workflow step-by-step, while skipping operations with externally visible effects.
Beldi builds a logging abstraction on top of DynamoDB, a cloud database from AWS. Beldi applications store user
data in the same DynamoDB database with workflow logs.

In Beldi, the.workflow log is the source of truth which ensures exactly-once workflow execution. Boki’s
LogBook API caninaturally provide this logging layer due to its being totally ordered. Our evaluation shows
Boki’s LogBook is more performant than Beldi’s logging abstraction (§ 7.2). Note that BokiFlow only stores
workflow logs in\LogBooks. Application data tables are still stored in DynamoDB, allowing BokiFlow to achieve
feature parity with Beldi.

5.1.1  Distinctions between BokiFlow and Beldi. Because the LogBook API is very different from a cloud database
API, BokiFlow needs new techniques to address issues caused by these differences. There are three ways BokiFlow
distinguishes itself from Beldi.

Atomic “test-and-append”. Beldi requires an atomic operation to check if the current step is previously logged
and it logs the step only if the check fails. Beldi relies on conditional updates provided by a cloud database for
this operation. Unfortunately, the LogBook API does not support conditional log appends. Shown in Figure 6,
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1 def write(table, key, val):

2 # Append write-ahead log for this DB update

3 tag = hashLogTag([ID, STEP])

4 logAppend(tags: [tag], data: [table, key, val])

5 # Always consider the first log record for this step,

6 # so that during workflow re-execution the original log record is used

7 record = logReadNext(tag: tag, minSegnum: 0)

8 # The write-ahead log also determines a total order for DB writes, where
9 # sequence numbers of log records are used as "version numbers"

10 rawDBWrite(table, key,

11 cond: "Version < {record.seqnum}",

12 update: "Value = {val}; Version = {record.seqnum}")

13 STEP = STEP + 1

14 def invoke(callee, input):

15 # Generate UUID for child function and store it in pre-invoke log frecaosd
16 tagPre = hashlLogTag([ID, STEP, "pre"])

17 logAppend(tags: [tagPre], data: {"calleeId": UUID()})

18 # Read calleelId from log record for child function,

19 # so that during workflow re-execution we use the origimal “UBID
20 record = logReadNext(tag: tagPre, minSeqnum: 0)

21 calleeIld = record.data["calleeId"]

22 # Invoke child function with the given input

23 retVal = rawInvoke(callee, [calleeld, input])

24 # Post-invoke log record stores return value of chitd function
25 tagPost = hashLogTag([ID, STEP, "post‘“d])

26 logAppend(tags: [tagPost], data: {"retval": retVal})

27 record = logReadNext(tag: tagPost, minSeqgnum: 0)

28 STEP = STEP + 1

29 return record.data["retVal"]

Fig. 6. Pseudocode demonstrating BekiFlow’s write and invoke functions (§ 5.1.3). hashLogTag computes a hashing-based
log tag for the provided tuple. Variable ID stores the unique ID of the current workflow. Variable STEP stores the step number,
which is increased by 1 for each operation within the workflow.

BokiFlow uses a different mechanism based on log tags provided by LogBooks. The pseudocode shows how
BokiFlow uses log tags to distinguish the log records of workflow steps. BokiFlow always reads log records
immediately after appends, and only honors the first record of a step (line 7, 20, and 26). This allows BokiFlow to
recognize completed steps during workflow re-execution, by checking if the appended record is the first one
(§ 5.1.3 explains in more details).

Idempotent database update. For a workflow step that updates the database, Beldi requires the database
update and logging of this step to be a single atomic operation. Because Beldi stores its logs along with user data
in the same database, it can use the atomic scope provided by the database (e.g., a row in DynamoDB) for this
requirement. However, BokiFlow’s LogBook is not in the same atomic scope as user data, so no mechanism exists
to update both in a single atomic operation. Instead, BokiFlow makes data updates idempotent. Pseudocode in
Figure 6 demonstrates the approach, where the rawDBWrite statement uses the sequence number of the step
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log as the “version” of the database update (line 10). During workflow re-execution, re-executing this database
update will fail the update condition.

Locks. Beldi provides locks for mutual exclusion; locks also serve as building blocks for Beldi’s transactions
(§ 5.1.2). Implementing locks requires an atomic “test-and-set” operation, where Beldi uses conditional updates
provided by the database. BokiFlow implements locks as registers backed by replicated state machines using
the LogBook API. For a BokiFlow lock, its register stores the lock holder (unique identifiers such as UUID), or a
special EMPTY value. The most natural way to “test” a lock is to execute a predicate on the current state machine.
The most natural “set” is to append an update. When we try to combine these operations into a “test-and-set”,
the LogBook API cannot linearize the result because other BokiFlow clients may also append updates to the same
state machine. BokiFlow’s solution is to include the log position of the current state machine in the log record of
the proposed update. On log replay, choose only the first of any updates that were concurrentlypropesed. In this
way, the total order provided by the LogBook API becomes a mechanism for linearizability.

Pseudocode in Figure 7a demonstrates BokiFlow locks. The lock uses the prev field to'store the log position,
as shown in Figure 7b. The “prev” pointers form a linearizable chain of state machine updates. This technique
provides a general approach for building linearizable replicated state machines with the LogBook API

5.1.2 Transactions in BokiFlow. Same as Beldi, BokiFlow supports transactions that.can span across function
boundaries with a workflow. Transactions provide stronger guarantees than the workflow’s exactly-once semantic:
(1) transactions guarantee isolation so that they will not observe data writes from other concurrently running
workflows; (2) transactions can be aborted and data writes made within an aborted transaction will never be
observed by another workflow.

When initiating a transaction, BokiFlow assigns a unique txn_id foritand creates a log for recording operations
made within this transaction. Records of transactionlegs'are appended to the same LogBook used by workflow
logs, but use txn_id as log tags. These transaction identifiersiare passed between functions if the transaction
spans across function boundaries.

On committing a transaction, BokiFlow follows the'transaction log to commit data writes to DynamoDB.
Similar to Beldi, BokiFlow uses locks to guarantee consistency and isolation. BokiFlow maintains per-key locks
for tables in DynamoDB. Within a transaction, locks are acquired for database read and write operations. To
prevent deadlock, acquiring @lock is a non-blocking operation.

5.1.3  Walk-through of BokiFlow operations. BokiFlow inherits Beldi’s log-based techniques for exactly-once
execution semantics [54, 61]J¢Im§ 5.1.1, we discussed the distinctions between Beldi and BokiFlow. To make it
easier to understand BokiFlow’s techniques without prior knowledge of Beldi, we will walk through BokiFlow’s
write and invoke operations'in detail, based on pseudocode in Figure 6.

We first explain the write operation. write(table, key, val) updates a key-value pair in a DynamoDB table. Same
as in Beldi, database writes are logged before execution for fault tolerance. Line 4 in Figure 6 shows the write-ahead
logging, where the log record is tagged by the workflow ID and the current step number. The log tag allows
BokiFlow to uniquely distinguish this write operation. When failure happens and the workflow is re-executed,
logAppend (line 4) will be executed again, appending a new and different log record. But the next logReadNext
(line 7) will read the original record because it looks for the smallest sequence number. This append-then-read
approach can even guarantee consistency under an extreme condition where concurrent instances of the same
workflow are executing, caused by, e.g., unreliable detections of workflow failures. Finally, rawDBWrite (line 10)
performs the real DynamoDB write. We previously explain BokiFlow uses sequence numbers to version writes,
making them idempotent. Because sequence numbers are critical for achieving idempotence, during workflow
re-execution the same log record must be used for each write operation.
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1 def checkLockState(key):

2 tail = None # Tail of the "linearizable chain"

3 nextSeqnum = 0

4 while True:

5 record = logReadNext(tag: key, minSegnum: nextSeqnum)

6 if record == None:

7 break # No more log record for this lock

8 if tail == None or record.data["prev"] == tail.seqnum:

9 tail = record # This record is part of the linearizable chain
10 nextSeqnum = record.seqgnum + 1

11 return tail

12 def tryLock(key, holderId):

13 record = checkLockState(key)

14 if record.data["holder"] == EMPTY:

15 # Presume the lock is not held, and append log record to acquire
16 logAppend(tags: [key], data: {"holder": holderId,

17 "prev": record.seqnum})

18 record = checkLockState(key)

19 if record.data["holder"] == holderId:

20 # Lock succeeded, and the acquire record will be used for unlock
21 return record

22 return None # Lock failed

23 def unlock(key, acquireRecord):
24 logAppend(tags: [key], data: {"holder": EMPTY,
25 "prev": acquireRecord.seqnum})

(a) Pseudocode of BokiFlow’s lock operations.

seqprum 0 1 2 3 4 5 6 7 8 9 10 11
holder | E|a|b|E|c|d|e|E|f|lg|E]|Ah
prev ofof1|of3 |3 |5|7|7|8]|7

the linearizable chain

(b) An example log behind a BokiFlow lock. Holders {a,d, f} acquire the lock. prev pointers in the log form an implicit
linearizable chain, which alternates successful acquire and release attempts. Holders share the same prev pointers, e.g.,
holders {a, b, c}, mean they try to acquire the lock concurrently. Also note holder ¢’s tryLock record is after holder a’s lock
release record, which is a valid outcome from interleaving.

Fig. 7. Locks in BokiFlow (§ 5.1).

We then look at the invoke operation that calls child functions in a workflow. Unlike the write operation, the
invoke operation needs two log records: one before invoking the child function, and the other after invoking. Same
as Beldi, BokiFlow generates a unique ID for each function within a workflow, and function IDs must be preserved
during workflow re-executions to ensure deterministic recovery. The pre-invoke log record (line 17 in Figure 6)
stores the unique ID for the child function, so that the previous function ID can be retrieved during workflow
re-execution (line 21). The post-invoke log record (line 26) stores the return value of the child function call.
Pseudocode in Figure 6 shows that invoke always calls into the child function even during workflow re-execution,
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# Get the object with name "x"

x = getObject("x")

# Suppose object x is {"a":{}, "b":"foo"}
print(x.Get("b")) # => "foo"

x.Set("a.c", "bar")

# x => {"a":{"c":"bar"},"b":"fo0"}
x.MakeArray("a.d"); x.PushArray("a.d", 1)

# x => {"a":{"c":"bar", "d":[1]1}, "b":"foo"}
txn = createTransaction(readonly: False)

alice = txn.GetObject("alice")

bob = txn.GetObject("bob")

if alice.Get("balance") >= 10:
alice.Inc("balance", -10)
bob.Inc("balance", 10)

txn.Commit ()

Fig. 8. Demonstration of BokiStore API (§ 5.2).

which can be redundant. BokiFlow’s implementation optimizes this redundancy by checking the post-invoke log
record before calling into the child function. If the post-invoke log record exists, we can immediately return with
the retVal in the log record.

5.2 BokiStore: Durable Object Storage

The second support library we built is BokiStore, providing durablefobject storage for stateful functions. BokiStore
employs Tango’s [26] techniques for building replicated data structures over a shared log. BokiStore’s objects are
represented as JSON objects. Objects are identified by unique string names. Figure 8 shows the BokiStore APIs
for reading and modifying fields of JSON ebjects. BokiStore stores all object updates within a LogBook. Reading
object fields requires replaying the log to re-construct the object’s state. Log records containing object updates
are tagged with object names, so that objects can be re-constructed by reading only relevant records.

Transactions. BokiStore suppotts transactions for reading and modifying multiple objects. BokiStore’s log-based
transaction protocol largely follows Tango. To start a transaction, BokiStore first appends a txn_start record with
its txn_id. For all subsequént object reads within the transaction, BokiStore replays the log only up to the position
of its txn_start record. This'essentially takes a snapshot of the entire object storage at the txn_start position,
which achieves snapshot isolation.

When committing the transaction, BokiStore appends a txn_commit record, including its txn_id and all object
writes made within the transaction. The txn_commit record is speculative — by itself, it does not indicate the
success of this transaction. To determine the commit outcome of a transaction, BokiStore replays the log up to
the txn_commit record. A transaction succeeds in committing if and only if there is no conflicting write made
between its txf_start and txn_commit records (i.e., within the conflict window). Figure 9 depicts a transaction log.
In this example, TxnB is a failed transaction and it is ignored when determining the commit outcome of TxnC.
BokiStore transactions require frequent log replays, but auxiliary data (§ 5.4) reduces the log replay overhead.

Transactions in BokiStore can be marked as read-only when they are created (see Figure 8). This feature makes
read-only transactions simpler to implement: they do not need to append actual txn_start and txn_commit records,
because there is no need for conflict detection. To achieve isolation, when starting the transaction, BokiStore
simply caches the current tail position of the log, instead of appending a real txn_start record. For object reads
within the transaction, BokiStore replays log records only until the cached position.
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conflict window of TxnB

TxnA | normal | TxnB | TxnA | TxnC | TxnB TxnC
start write start | commit | start | commit | commit

write set {2} {X,Y} .2y {X,Z}

log

Fig. 9. Transactions in BokiStore (§ 5.2). TxnB fails due to conflict with TxnA. For TxnC, despite its write set overlaps with
TxnB’s, TxnC still succeeds due to the failure of TxnB.

(D Read backward until cached view exists

og | [ [ [ T[T [TT]T]]

auxiliary data |:| I:I | | > (Q Replay the log, and fill missing cached views

Fig. 10. Use auxiliary data to cache object views in BokiStore, which can avoid a full log replay (§ 5.4).

5.3 BokiQueue: Message Queues

Queues are the most common data structure for message passing. The final support library we build is BokiQueue
which provides serverless queues. BokiQueue provides a push and pop API for sending and receiving messages.
Like BokiStore, BokiQueue uses the log to store all writes, i.e., push and pop operations. The outcome of a pop
is determined by replaying the log. To improve the scalability of BokiQueue, we use vCorfu [60]’s composable
state machine replication (CSMR) technique, that divides a single queue into multiple SMR-backed queue shards.
Each queue shard is consumed by a single consumer, which reduces contention. A queue producer can choose an
arbitrary queue shard to push. In our implementation, we simply use round-robin.

5.4 Optimizing Log Replay with Auxiliary Data

Reads in BokiStore are served by replaying the log to re-construct object state. This naive approach makes read
latency proportional to the number of relevant log records, i.e., the number of object writes. Tango optimizes log
replay by caching local object views, such that only new records from the shared log are replayed. However, in
the Faa$S setting, in-memory state is not guaranteed to be preserved between invocations, so a simple memory
cache for objects is not a viable solution.

Boki’s auxiliary data (§ 3) is motivated by the need to provide per-log-record cache storage. In BokiStore, for
every object write that generates a log record, the auxiliary data of the record stores a snapshot view of the object.
When reading an object, BokiStore seeks from the log tail to find the first relevant record having a cached object
view in its auxiliary data. Then BokiStore replays the log from this position to re-construct the target object state.
During replay; for records missing cached object views, their auxiliary data are filled with object views. Figure 10
demonstrates this accelerated replay process.

One important special case for accelerating log replay is commit records. For txn_commit records, their auxiliary
data stores the decided commit outcome and if the commit succeeds, the auxiliary data also caches a view of
modified objects.

In BokiFlow’s log-based locks (shown in Figure 7a), auxiliary data of a record is used for caching the current
tail of the linearizable chain. This allows the checkLockState function to optimize its log replay as illustrated in
Figure 10.
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5.5 Garbage Collector Functions

The Faa$S paradigm simplifies garbage collection (GC) in shared-log-based storage systems. Boki support libraries
use garbage collector functions to trim useless log records, in order to prevent unlimited growth of LogBooks.
These functions are periodically invoked and they reclaim space via LogBook’s logTrim API (Figure 1). The
logTrim API trims a prefix of the log: it takes a single parameter trim_seqnum and deletes all log records with
sequence numbers less than trim_seqnum. Given the API semantic, garbage collector functions have to efficiently
figure out the safe trim position. We then describe specific mechanisms used by different Boki support libraries.

BokiFlow. BokiFlow follows Beldi’s GC strategy [61]: the garbage collector function scans for completed
workflows whose completion timestamp is old enough, and marks these workflows as recyclable. When a prefix
of the log contains only records from recyclable workflows, logTrim can be called to reclaim space.

BokiStore. In BokiStore, the log stores a history of writes for individual objects. The garbage collector. function
periodically materializes object states in the log, so that log records corresponding to the old:history can be safely
deleted.

To scale this strategy with more objects, BokiStore uses multiple GC functionsfor materializing object states
in parallel. Each GC function is responsible for a shard of objects, and the shard numbers are determined by
hashing object names.

One of the GC functions is designated as master, who is responsiblexfor actually calling logTrim. Other GC
functions periodically store safe trim positions for their shards in the log (with some special tag), so that the
master can determine the global trim position. The master GC function also takes extra care to ensure the trim
position is not within any ongoing transactions.

BokiQueue. In BokiQueue, each queue shard is consumed in FIFO order, where log records of popped elements
become useless. For each queue shard, its consumer can determine the safe trim position, and periodically stores
the position in the log with some special tag. A dedicated GC function reads trim positions from all shards, and
calls logTrim accordingly.

6 Implementation

The Boki prototype is based on Nightcore [17], where we add 13,133 lines of code, mostly in C++. Boki’s support
libraries are implemented in Go, consisting of 3,569 lines of code. One of the support libraries, BokiFlow, derives
from the Beldi codebase [14]. The LogBook API makes Beldi’s techniques easier to implement, so that BokiFlow
shrinks the Beldi library from.1,823 lines to 1,137 lines, or a 38% reduction.

Boki uses 64-bit integers as the tag type for LogBook records. In Boki support libraries, when we need other
types (e.g., strings) as the log.tag, we use their hash values instead and store the original string in the record data.
Boki employs Dynamo [31]’s variant of consistent hashing (strategy 3 in their paper) to uniformly map between
LogBooks and physical logs.

In the currentimplementation, metalogs are replicated in the DRAM of sequencer nodes. This is viable in our
failure assumption that requires a quorum of sequencers for a metalog to always be alive.

6.1 Storage Backend

Boki provides two different options as its storage backend for log records.

The first option is to use a third-party key-value store (KVS) library. LogBook records are stored with their
unique sequence numbers (seqnum) as keys, and log data and other metadata are serialized as values. The current
implementation supports RocksDB [13] and Tkrzw [15]’s TreeDBM. RocksDB is a key-value store based on a
log-structured merge-tree (LSM), and Tkrzw is based on a B-tree.
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The second option is Boki’s JournalStore, which implements an on-disk journal for storing log records. Boki’s
journal is implemented by append-only files. Every I/O thread ! has its own private journal file to which it
appends data records. Having private journal files for individual I/O threads means no locking is required when
appending to the journal.

Although records within one journal file are implicitly ordered by their offset within the file, Boki records are
explicitly ordered by the sequencer, which assigns unique sequence numbers to individual log records. These two
orders may not match due to multiple journal files. To read a log record by its seqnum, Boki maintains a separate
hash table to locate log records within journal files.

To facilitate log trims (record deletes), for each journal file, Boki maintains a bitmap indicating trimmed log
records. Boki gradually reads trim commands stored in the metalog and updates the trimmed Tecord bitmap of
the relevant journal files. Boki removes a journal file when its bitmap is fully set, indicating that all of its data
has been trimmed, the journal file can be deleted, and its space reclaimed. Note that the bitmap is only used for
determining when a journal file can be deleted. To bound the size of bitmaps and journal files, Boki imposes two
size limits: one limits the maximum number of records in a file, and the other limits the file byte size. When an
I/O thread’s current journal file reaches either limits, it closes the old file and creates amew one. The current
implementation sets the record limit to 1,048,576 (2%°), and the file size limit to 256MB.

When using the JournalStore, Boki persists data records earlier in the workflow than when it uses a third-party
KVS. In Figure 2, when Boki uses JournalStore to append to the log, it flushes new log records to their journal
files before storage nodes report progress to sequencers ((2)). In contrast, when using a third-party KVS as a
storage backend, log records are only written to the KVS after thé metalog is propagated (@ in Figure 2). Boki
must wait until @ because the KVS backend uses sequence numbers as keys, which are only available after (@.

Boki also provides the option to use its on-disk journal along with a third-party KVS. In this setup, the on-disk
journal acts as a write-ahead log, which can combine the benefits of earlier persistency with the flexibility of
using third-party KVS libraries. Our evaluation (Table 4) shows using KVS with Boki’s journal has moderate
performance penalty.

JournalStore provides some performanceadvantages over a third-party KVS. Our microbenchmark (Table 4)
shows JournalStore achieves 4.7-9.8x lower p99 tail latency (under similar throughput) than using KVS backends.
We attribute the latency improvement to JournalStore’s tight integration with Boki’s design. Boki has to pay some
integration overheads when using third-party KVS libraries. For example, RocksDB creates extra background
threads to flush its internal memtables, and Tkrzw’s B-tree implementation shards the data structure and uses
mutexes to protect each shard. In contrast, JournalStore does not need extra threads for background work, and
has no lock contention on the journal’append path.

In our previous presentation of Boki [40], only the first option (using a key-value store library) is described
and evaluated. Boki’'s en-disk journal is a new storage option added in this work.

6.2 Validating Correctness

We have used software engineering best practices to validate the prototype’s correctness regarding the consistency
semantics of the shared log abstraction, the durability of log record data, and fault tolerance.

o Invariant checks. Throughout the Boki code base there are many checks for basic invariants, in particular
invariants related to metalogs. The serialized metalog entry not only includes its own cut vector, but also the cut
vector from its predecessor entry. Such redundancy allows checking invariants when replaying the metalog.

e Data integrity. To validate that Boki’s storage layer persists the user’s payload data in log records, we imple-
ment checksums for log payloads. The checksum mode is disabled for some evaluations due to its performance

Boki inherits Nightcore [41]’s /O design, where I/O threads handle socket and file I/O with event-driven syscalls. I/O threads also execute
callback functions for incoming messages from other Boki nodes.
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penalty. There is also a testing mode to validate the correctness of the cache layer (recall that Boki has a record
cache on its read path, depicted in Figure 4). The testing mode always reads from storage nodes even when cache
hits, and log record data read from the cache is compared against the storage node to check that they are equal.

o Unit testing with Boki support libraries. We have unit tests to validate Boki support libraries which also
validate the properties of Boki’s shared logs. Some examples of tests we have implemented: (1) We test BokiStore
transactions with counters which are concurrently updated;(2) We test the FIFO property of BokiQueue; (3) We
test if BokiFlow’s locks properly linearize lock commands. All these tests validate LogBook’s total order property,
and the correctness of log-based protocols used in Boki support libraries.

e Relying on production-grade third-party libraries. For some parts of the prototype, we use existing libraries
such as ZooKeeper, RocksDB, and Tkrzw. We rely on these production-grade libraries to provide important
properties including durability and fault tolerance.

7 Evaluation

In this section, we first evaluate Boki with microbenchmarks to explore its performance characteristics (§ 7.1).
We then evaluate Boki’s support libraries using realistic workloads (§ 7.2, § 7:3, and § 7:4). Finally, we analyze
how Boki’s techniques benefit its use cases (§ 7.5).

Experimental setup. We conduct all our experiments on Amazon EC2 instances in the us-east-2 region. Boki’s
function, storage, and sequencer nodes use c5d.2xlarge instances, each‘of which has 8 vCPUs, 16GiB of DRAM,
and 1 X 200GiB NVMe SSD. Boki’s gateway and control plane use.c5d:4xlarge instances. Experimental VMs run
Ubuntu 20.04 with Linux kernel 5.10.17, with hyper-threading/enabled. We measure that the round trip time
between VMs is 107us +15us, and the network bandwidth is9,681 Mbps!

Unless otherwise noted, the following Boki settings are fixed in our experiments: (1) the ZooKeeper cluster in
the control plane has 3 nodes; (2) the replication factorsiof both physical logs (ngata) and metalogs (nmeta) is three;
(3) one single physical log configured for all LogBooks; (4) for each physical log, there are 4 LogBook engines that
store its index (though functions can readitheir LogBooks via remote engines); (5) the record cache per LogBook
engine is 1GB (for both record data and auxiliary data §3).

Table 3. Boki’s throughput in append-only microbenchmark. Boki is configured to use JournalStore backend for storing
LogBook records (§ 7.1).

Concurrent functions / Storage (S) nodes

320/4S 640/8S 1280/16S  2560/32S
Nmeta =3 156.1 314.5 654.8 1142.7
Mmeta =5  155.9 323.1 639.4 1153.8

(a) Append throughput (in KOp/s) of a single LogBook, where nmeta denotes the replication factor of Boki’s
metalog. Boki can scale append throughput of a totally ordered log to 1.2M Ops/s.

1PhyLog 2PhyLogs 4 PhyLogs

100 LogBooks 161.8 324.5 696.9
100K LogBooks 162.8 310.3 665.9

(b) Aggregate throughput (in KOp/s) when using multiple physical logs (PhyLogs) to virtualize LogBooks. Boki
scales with more physical logs, and can efficiently virtualize 100K LogBooks.
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Table 4. Comparison of Boki’s different storage backends, using append-only microbenchmark (§ 7.1). Using Boki’s on-disk
journal provides quicker persistency 6.1, though results in slightly lower throughput. Also note JournalStore achieves the
lowest tail latency among all options.

Throughput Latency (ms)
(KOp/s) median 99% tail
RocksDB (LSM) 764.2 1.39 53.2
Tkrzw (B-tree) 651.1 1.58 25.7
Storage options using on-disk journal
JournalStore 654.8 1.66 5.42
RocksDB with journal 655.4 1.47 79.3
Tkrzw with journal 448.6 1.98 45.6

Table 5. Boki’s read latencies under different scenarios (§ 7.1).

Local LogBook (LB) engine = Remote

cache hit cache miss LB engine
median 0.09ms 0.29ms 0.43ms
99% tail 0.40ms 0.75ms 0.99ms

7.1 Microbenchmarks

We start the evaluation of Boki using microbenchmarks, where we answer the following questions.

o What is the append throughput of a single LogBook? We use an append-only workload to measure the
throughput, and how the throughput scales with more resources. In this workload, each function is a loop of
appending 1KB log records. Boki is configured to.use JournalStore (the second option mentioned in § 6) as the
storage backend. Results are shown in Table3a. From the table, we see that when Boki is configured with 64
nodes, the append throughput scales to 1.2M Ops/s under 2,560 concurrent appending functions. At this point, the
median latency is 1.94ms, and the p99 tail latency is 6.33ms. We also increase the replication factor of metalogs
(Nmeta) to 5, that provides higher durability for a metalog but potentially affects the metalog’s append latency.
However, it demonstrates similar LogBook throughput and scalability as nmeta = 3.

e Can Boki efficiently wirtualize LogBooks? We use the same append-only workload, but log appends are
uniformly distributed over many LogBooks. We use 1, 2, and 4 physical logs to virtualize 100 and 100K LogBooks.
Boki is configured with 4 function and 4 storage nodes when using one physical log, and resources are added
linearly with more physical logs. Table 3b shows the results. From the table, we can see Boki is capable of
virtualizing LogBooks with high density.

o How do Boki’s log storage options compare to each other? As described in § 6.1, Boki supports multiple options
for storing logrecords. We use the append-only workload to compare throughput and latencies of different options.
In the evaluation, Boki is configured with 16 storage nodes, and we use 1,280 concurrent appending functions.
Table 4 shows the result. From the result, we see using Boki’s on-disk journal provides better persistency property
but with the cost of slightly lower append throughput and higher p50 latency. Notably, Boki’s JournalStore can
achieve very low 99% tail latency (5.42ms) compared with other options, because its tight integration with Boki
design 6.1.

e How fast can Boki functions read LogBook records? We use an append-and-read workload to measure read
latencies, where each function loops a procedure that first appends a log record, then reads the appended record 4
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Fig. 11. Log append latencies during reconfiguration. The x-axis shows the timeline (in seconds). The reconfiguration starts
att=0.

times. We configure Boki with 8 function and 8 storage nodes. Table 5 shows the results.when using JournalStore
for log storage. For other storage options, we observe similar latency numbers. For remote engine case, we enforce
Boki to use remote LogBook engines for log reads. Cache hits take 86s and neverdeave the local LogBook engine,
retrieving the result from the record cache (§ 4.4).

o What is the impact of reconfiguration? We use the append-only workloadito evaluate the impact of recon-
figuration. In the experiment, Boki is reconfigured to a new set of sequencer nodes. New sequencer nodes are
provisioned before the reconfiguration, to factor out provisioning delays from the experiment. Figure 11 shows
the results. We see that Boki recovers to normal append latency/afterreconfiguration within 100ms. The actual
reconfiguration protocol, executed by the controller, takes 15.7ms'and 18.1ms; in experiments of npet, = 3 and
Nmeta = 5, respectively.

7.2  BokiFlow: Fault-Tolerant Workflows

We evaluate BokiFlow by comparing it with.Beldi [61]. We'use Beldi’s workflow workloads, which model movie
reviews and travel reservations. Both of them are.adapted from DeathStarBench (8, 35] microservices. For a fair
comparison, we port Beldi and its workloads to0 Nightcore, the underlying FaaS runtime of Boki. Both BokiFlow
and Beldi store user data in DynamoDB [1]. BokiFlow stores workflow logs in a LogBook, while Beldi uses its
linked DAAL technique to storedogs in DynamoDB. For both systems, they are configured with 8 function nodes
and Boki is configured with 3'storage nodes. Boki uses JournalStore as the storage backend.

Figure 12 shows the results. In both workloads, BokiFlow achieves much lower latencies than Beldi for all
throughput values. In the movie workload, when running at 200 requests per second (RPS), BokiFlow’s median
latency is 28.7ms, 4.2% lower than Beldi (121ms). In the travel workload, BokiFlow’s median latency is 20.5ms at
500 RPS, 3.8 lower than Beldi (78ms). In this experiment, we also run a baseline without Beldi’s techniques,
where it cannot guarantee exactly-once semantics or support transactions for workflows. When comparing
BokiFlow with this baseline, we see that exactly-once semantics and transactions increase median latency by
3.3 in the movie workload, and by 1.8X in the travel workload.

We then run'the microbenchmark that evaluates Beldi’s primitive operations (Figure 13 in the Beldi paper [61]).
Results are shown in Figure 13. The Invoke operation shows the largest differences among the three implementa-
tions and Invoke operations are very frequent in microservice-based workflows. In the baseline without workflow
logs, the Invoke operation is very fast (well below 1ms). The underlying FaaS runtime, Nightcore, is heavily
optimized to reduce invocation latencies. In BokiFlow, the Invoke operation needs needs 5 LogBook appends,
thus it has a median latency of 4.0ms. Two of the five log appends are demonstrated in Figure 6 and the other
three appends are made within the child function. For comparison, Invoke operation in Beldi also need 5 log
appends, but has a median latency of 19ms, because of multiple DynamoDB updates for each log append. These
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Fig. 12. Comparison of BokiFlow with Beldi [61]. BokiFlow takes advantage of the LogBook'APL.“Unsafe baseline” refers to
running workflows without Beldi’s techniques, where it cannot guarantee exactly-onece semantiesior support transactions

(§7.2).
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Fig. 13. Microbenchmarks of Beldi primitive operations.(§ 7.2). Main bars show median latencies, while error bars show 99%
latencies.

results justify the value of shared logs for the serverless environment, where building logging layers using a
cloud database is difficult tosmake performant.

7.3 BokiStore: Durable®Object Storage

Retwis workload. To evaluate BokiStore, we build a transaction workload inspired by Retwis, a simplified
Twitter'clone [16]. The Retwis workload has been used as a transaction benchmark in previous work [62, 63].
We re-implement the Retwis workload in Go, requiring 1,458 lines of code. Our implementation uses BokiStore
objects to store users, tweets, and timelines. For comparison, we also implement a version that uses MongoDB [14]
to store objects, because MongoDB also employs a JSON-derived data model.

The evaluation workload first initializes 10,000 users, and then runs a mixture of four functions: UserLogin
(15%), UserProfile (30%), GetTimeline (50%), and NewTweet (5%). UserLogin are UserProfile are normal single
object reads. GetTimeline is a read-only transaction that reads the timeline and multiple tweets. NewTweet is a
transaction that writes multiple user, tweet, and timeline objects.

In the experiment, we configure Boki with 8 function nodes and 3 storage nodes using JournalStore. MongoDB
is configured with 3 replicas. To ensure snapshot isolation in MongoDB transactions, we use a write concern
of “majority” [20] and a read concern of “snapshot” [12]. For BokiStore, we configure LogBook engines on all
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UserLogin (non-txn read) 0.86 1.41 3.32 547
UserProfile (non-txn read) 0.86 0.99 3.57 493
GetTimeline (read-only txn) 7.57 3.24 25.01 10.09
NewTweet (read-write txn) 7.72 5.42 21.39 10.56

Request types

(b) Latencies (in ms) under 192 clients. Although non-transactional reads in BokiStore are slower than
MongoDB, transactions in BokiStore are up to 2.5% faster. Best performing result is in bold.

Fig. 14. Evaluating BokiStore on Retwis workload (§ 7.3). Boki uses JournalStore as storage backend.

8 function nodes to have log index for the target LogBook, which achieves best data locality. We analyze the
performance impact of using remote LogBook engines in § 7.5.

Figure 14 shows the results. From the figure, we see BokiStore achieves 1.20-1.28X higher throughput than
MongoDB. When breaking down latency details by request types, we see BokiStore has considerable advantages
over MongoDB in transactions (up to 2.5X faster). On the other hand, BokiStore is slower than MongoDB for
non-transactional reads. This is caused by the log-structure nature of BokiStore, where log replay incurs overheads
for data reads.

Comparison with Cloudburst. Cloudburst [57] is a recently proposed stateful FaaS runtime, which exports a
put/get interface (i.e., key-value store) for functions to store state. BokiStore can also be used as a key-value store, by
using keys as object names and storing values in the corresponding BokiStore object. However, BokiStore provides
stronger consistency guarantees (sequential) than Cloudburst (causal). BokiStore also supports transactions
reading and modifying multiple keys, which are not supported by Cloudburst.

We use a microbenchmark to compare Cloudburst’s performance with BokiStore. Both systems use 8 storage
nodes and 8 function nodes in the experiment. Figure 15 shows the result. BokiStore can achieve up to 2.16X
higher throughput than Cloudburst on get operations. For put operations, BokiStore achieves 1.33x higher
throughput when the concurrency is high. BokiStore provides higher throughput and lower median latency at
192 clients than Cloudburst, but it does have higher tail latency.

7.4 BokiQueue: Message Queues

We evaluate BokiQueue by comparing it with Amazon Simple Queue Service (SQS) [2] and Apache Pulsar [3].
Amazon SQS is a fully managed message queue service from AWS, while Pulsar is a popular open source distributed
message queue. Similar to BokiQueue, both SQS and Pulsar use sharding to improve the data throughput of
their message queues. In the experiment, we configure Boki with 8 function nodes and 3 storage nodes. Boki
is configured with Tkrzw as storage backend for best performance. For Pulsar, we run its broker services on
function nodes for better locality, and use the 3 storage nodes for queue data.
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Fig. 15. Comparison of BokiStore with Cloudburst [57]. We measure the latencies and throughput for put and get operations,
using different numbers of concurrent clients. In the latency charts, solid lines show medianlatencies, and dashed lines show

99% tail latencies. BokiStore not only provides stronger consistency guarantees, but alse achieves higher performance than
Cloudburst (§ 7.3).

Table 6. Comparison of BokiQueue with Amazon SQS [2] and Pulsar [3] (§7.4). Boki.is configured with Tkrzw as storage
backend, which achieves best performance for BokiQueue. Throughput isineasured in 10° message/s. Delivery latency is the
duration that a message stays in the queue. Latencies are shown'in the formief “median (99% tail)”. For each row in the table,
best performing result is in bold.

Producer/ Throughput Delivery latency (ms)
Consumer | SQOS  PulsaryBoki SQS Pulsar Boki
16P/64C | 225  5.054° 521 | 6.27(52.5) 4.01(123) 2.97 (5.05)
32P/128C | 4.03  9.67. 104 | 6.01(51.3) 6.70 (12.8) 3.18 (6.12)
64P/256C 762 141" 155 | 6.08(56.5) 7.39(13.7) 4.67 (14.8)
64P/16@> | 2034 4871  7.92 | 33.9(228) 6.20 (12.7) 5.10 (14.9)
128P/32C.+»5.35" 14.6  14.1 | 53.9(370) 7.38(14.0) 5.48 (19.2)
256P/64C |19.77 191  21.1 | 99.8 (764) 7.81(33.7) 5.75(20.2)
64P/64C" | 637 100 10.5 | 7.22(76.0) 6.77 (12.9) 3.15 (6.64)
128P/128C | 10.1  17.8  21.0 | 7.24(79.6) 7.74(21.4) 3.81(9.53)
256P/256C | 185  25.0 315 | 12.1(84.5) 8.21(39.5) 5.64 (17.5)

We use a fixed number of producer and consumer functions for the evaluation, where each producer keeps
pushing 1KB messages to the queue. We experiment with three ratios of producers to consumers (P:C ratio),
which are 1:4, 4:1, and 1:1. In the evaluation, we measure the message throughput of the queue, and the median
and p99 latency of message deliveries.

Table 6 shows the results. When the P:C ratio is 1:4, the queue is lightly loaded. We see both BokiQueue and
Pulsar achieve double the throughput of Amazon SQS. BokiQueue achieves up to 1.6X lower latencies than Pulsar.
When the P:C ratio is 4:1, the queue is saturated. Amazon SQS suffers significant queueing delays, limiting its

ACM Trans. Comput. Syst.



Boki: Towards Data Consistency and Fault Tolerance with Shared Logs in Stateful Serverless Computing « 27

Table 7. The importance of log replay optimization using auxiliary data (§ 7.5). The table shows Retwis throughput (in Op/s).

Workload duration 1min 3min 10min 30min
Optimization disabled 1,565 939 - -
AuxData w/ Redis 11,014 10,046 9,548 9,344
AuxData w/ Boki 11,388 11,078 10,923 10,891

throughput. BokiQueue and Pulsar have very similar throughput, while BokiQueue achieves 1.36x lower latency
than Pulsar in the case of 256 producers. Finally, when the P:C ratio is 1:1, the queue is balanced. BokiQueue
consistently achieves higher throughput and lower latency than both Amazon SQS and Pulsar.

Combining these three cases, BokiQueue achieves 1.70-2.16x higher throughput than Amazon SQS,and up to
17x lower latency. Compared with Pulsar, BokiQueue achieves 1.10-1.26X higher throughput, andup to 1.6x
lower latency.

7.5 Analysis

The importance of auxiliary data. We describe in § 5.4 the log replay optimizationusing LogBook’s auxiliary
data. We use Retwis workload to demonstrate its importance for BokiStore. We run an experiment that disables
this optimization. Furthermore, to demonstrate the efficiency of Boki’s'storage mechanism for auxiliary data, we
modify Boki to store auxiliary data in a dedicated Redis instance.

Table 7 shows the results. From the table, we see that the log replay.optimization is crucial for BokiStore to
achieve an acceptable performance. The results also show the optimization is robust even for long executions,
where more object writes are logged. Compared to the Redis-backed implementation, Boki achieves 1.17X higher
throughput. Boki’s approach is more efficient because it maintains data locality by reusing the record cache
within LogBook engines.

Locality impact from LogBook engines. In theprevious evaluation of BokiStore, we configure Boki so all
LogBook reads are served by local LogBook engines. In a large-scale deployment, having all LogBook engines
maintain an index for a particulamphysical log is not viable. Boki relies on the function scheduler to optimize for
the locality of LogBook engines.

To experiment with thedmpact from using remote LogBook engines we limit the ratio of log reads that are
locally processed, with the remainder processed remotely. Table 8 shows the results. We see even under a poor
locality of LogBookdengines, the performance drop is moderate (e.g., 77% of maximum throughput at 25% local
reads).

Read Jocality also comes from the record cache included in LogBook engines. The cache stores both record
data and auxiliary data for LogBook records. We experiment with different cache sizes to analyze its impact on
BokiStore performance. Results are shown in Table 9. We observe a sharp dorp in throughput when the cache
size is decreased to 16MB. The cause of this drop is insufficient cache storage for auxiliary data. Auxiliary data
is important for BokiStore performance, and a small record cache decreases the effectiveness of the log replay
optimization. We modify Boki to backup auxiliary data on storage nodes, so that under a cache miss, storage
nodes can also return auxiliary data. With this mechanism, small cache sizes no longer cause a sharp dorp in
performance.

Log index versus fixed sharding. In § 4.4, we motivate the log index design because it allows records from a
LogBook to be placed in arbitrary log shards. An alternative approach is fixed sharding used in previous systems
such as vCorfu [60]. We use the append-only microbenchmark to demonstrate the advantage of Boki’s approach.
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Table 8. Locality impact from LogBook engines (§ 7.5). The table shows Retwis throughput (in Op/s), when adjusting the
percentage of reads processed by local LogBook engines.

Local reads 25% 50% 75% 100%

Throughput 8,548 9,319 10,262 11,078
Normalized tput ~ 0.77x 0.84x 0.93x 1.00x

Table 9. LogBook engines maintain local cache for log records, and the cache size has performance impact for Boki’s
applications (§ 7.5). The table shows Retwis throughput (in Op/s).

LRU cache size 16MB 32MB 64MB 1GB

Auxiliary data only stored on function nodes
Throughput 3,561 10,476 11,263 11,245

Auxiliary data also backed up on storage nodes
Throughput 11,358 11,852 12,032 12,075

Table 10. Append throughput (in KOp/s) when log appends are distributed over. 128 LogBooks under a uniform or Zipf
distribution.

Uniform /Zipf (s =3)¢ Zipf (s =5)

Fixed sharding 242.7 1640 129.6
Log index (Boki) 250.6 2534 278.6

Table 11. Scaling read-only transactions with'LogBookengines (§ 7.5). The experiment runs Retwis workload under a fixed
write rate.

Concurrent functions / LogBook engines
100/8E  200/16E 300/24E 400/32E  600/48E

T-put (txn/s) 6,548 12,749 18,618 23,662 30,286
Normalized 1.00x 1.95x 2.84x 3.61x 4.63x

For comparison, we modify Boki to use a fixed sharding approach, where a hashing function maps each LogBook
to alog shard. Results are shown in Table 10. When log appends are uniformly distributed over LogBooks, the two
approaches show no difference. However, when the distribution is skewed, fixed sharding suffers from uneven
loads between log shards, while Boki’s log index approach is unaffected.

Scaling LogBook engines. We then demonstrate the scalability of LogBook engines, by running read-only
transactions in the Retwis workload. The workload is a mixture of read-only transactions (GetTimeline) and
read-write transactions (NewTweet). In the experiment, we add more function nodes to scale LogBook engines,
while always using 3 storage nodes. Every LogBook engine maintains a log index for the target LogBook. We fix
the rate of NewTweet to 700 requests per second. Results are shown in Table 11. The results demonstrate Boki
can scale from 8 LogBook engines to 48, thereby providing 4.63x higher read throughput.
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Fig. 16. Demonstration of garbage collection (GC) in BokiStore and BokiQueue (§ 7.5). All figures show the state of one
storage node: the upper chart shows CPU time; and the lower chart shows disk utilization and write throughput. One
storage node has 4 CPU cores. ForBokiStore experiments, we show a duration of 120 seconds in the middle of running. For
BokiQueue experiments, we show a duration of 50 seconds.

Garbage collection (GC). As discussed in § 5.5, Boki provides the logTrim API for its support libraries to
reclaim space from old and useless log records. We demonstrate the effectiveness of Boki’s GC mechanism
in BokiStore and BokiQueue. For BokiStore, we run a workload where 96 concurrent functions modify 1,000
BokiStore objects. For BokiQueue, we run a workload with 200 producer and 200 consumer functions. Boki is
configured to use JournalStore as the storage backend. Figure 16 shows the state of one storage node. From the
figure, we can'see GC effectively controls disk utilization, while not affecting write throughput.

For comparison, we also run the same BokiStore and BokiQueue workloads without garbage collection. In
both workloads, we found GC has no influence on the throughput. However, enabling GC in BokiQueue can
reduce the tail latency of message delivery from 29.5ms to 8.90ms. For the BokiStore workload, we observe no
difference in request latencies.

To quantify CPU overhead, we compute the average CPU utilization over the time span shown in Figure 16. In
BokiStore experiments with GC disabled, the average system and user utilization is 162% and 79% (241% total).
For comparison, enabling GC increases CPU utilization by 13%: system and user utilization rise to 178% and 95%
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Fig. 17. Sensitivity study of LogBook latencies to reconfiguration frequency (§ 7.5). Reconfigurations have little impact on
log read latencies, but can significantly affect tail latencies of log appends when they are frequent. In all tested frequencies,
throughput of log reads and appends is not affected (same as “no reconfiguration”). Data are collected over a 5-minute

period.

(273% total). In BokiQueue experiments with GC disabled, the average systemand user utilization is 208% and
88% (296% total). Enabling GC decreases system utilization to 159% and increases user utilization to 105% (264%
total). GC raises CPU utilization by 13% in BokiStore, but lowers it by 12% in BokiQueue.

Sensitivity study of reconfigurations. We finally study how reconfiguration frequency affects Boki’s perfor-
mance. In the experiment, Boki is configured with a single physical log using ngeta = 3. To allow reconfigurations
without frequently allocating new nodes, we provision redundant nodes for Boki. In the experiment, 8 sequencer
nodes are provisioned, while only 3 of them are active at one time bécause nyeta = 3. Reconfigurations are
manually triggered periodically with a fixed frequency, from every 1 second to every 30 seconds. For each
reconfiguration, 3 sequencer nodes are randomly chesen to store the metalog in the new term. We run a workload
of log appends and reads (check tail), where the ratio between appends and reads is 1:4. 320 concurrent functions
are executed over 8 function nodes. Results are showniin Figure 17. For read operations, we see that even frequent
reconfigurations have little impact on their latencies. But for append operations, when reconfigurations become
very frequent, their tail latencies increase significantly.

Correctness test of BokiStore transactions. As mentioned in § 6.2, we use unit tests to validate Boki support
libraries and the underlying Boki shared log implementation. We describe the results of one representative test
which validates the correctness of BokiStore’s transaction protocol (Figure 9). In this test, we create 32 BokiStore
objects, each of which is usediasia counter. Then we write a function to repeatedly choose k counters at random
(k = 2,3,5 are tested); and add them to random values in a transaction. We run 48 concurrent instances of this
function for 30.seconds: Within each function instance, it accumulates local deltas for each counter given the
outcome of transactions. Local deltas of all counters are returned by every function instance. The test checks
if all counters’ final values match the sum of the local deltas. When 3 objects are updated in each transaction,
48 function instances create 148,216 transactions during the 30-second period, and 52,165 transactions commit
successfully without conflicts.

8 Related Work

Stateful serverless computing. State management remains a key challenge in the current serverless environ-
ment [38, 52]. To meet the increasing demand for stateful serverless, there are recent attempts from industry, e.g.,
Cloudflare’s Durable Objects [18] and Azure’s Entity Functions [9]. These systems are still in their early stages
and have seen limited adoption.
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There are also proposals from academia, e.g., Pocket [46], Cloudburst [57], Faasm [56], and Jiffy [44]. These
projects have different focus, e.g., heterogeneous storage technology [46], lightweight isolation [56], auto-
scaling [57], and supporting far memory [44]. These systems all export put-get interfaces (i.e., a key-value store)
for functions to manage state (Jifty [44] also supports file and FIFO queue interfaces). Boki is the first to study a
different interface for serverless state management, the shared log APIL Boki’s shared log approach is motivated
by the fault-tolerance and consistency challenges encountered by stateful serverless applications, which the
put-get interface cannot easily address.

A recent article [52] argues future serverless abstractions will be general-purpose, where cloud providers
expose a few basic building blocks, e.g., cloud functions (FaaS) for computation and serverless storage for state
management. The shared log and key-value store are both promising storage building blocks;which can work
together to enable new serverless applications.

Distributed shared logs. Recent studies on distributed shared logs [24-27, 32, 47, 60] heavily inspire the design
of Boki. A shared log is a powerful primitive for achieving strong data consistency inthepresence/of failures,
because it can be used for state machine replication (SMR) [53], the canonical approach for building fault-tolerant
services.

Boki leverages Scalog [32]’s high-throughput ordering protocol. Virtual consénsus in Delos [24] inspires Boki’s
design of metalogs. Materialized streams in vCorfu [60] inspire the design of log tags.in the LogBook API, and
LogBook’s virtualization. However, Boki’s metalog design distinguishes it from these prior works. The logical
decoupling provided by the metalog allows existing techniques tosbe adopted smoothly, while enabling new
techniques, e.g., the log index for read efficiency. For applications, Tango [26]’s techniques enable serverless
durable objects [18] backed by shared logs.

Fault-tolerant workflows. Orchestrating serverless functions as workflows is an important serverless paradigm,
provided by all major cloud providers [5, 10, 19]. Workflows,aim‘at providing exactly-once execution semantics,
but stateful serverless functions (SSF) complicate this goal.

Beldi [61] proposes solutions for curréntserverless platforms. Beldi’s mechanism is inspired by Olive [54]’s
log-based fault tolerance protocol. In a Beldi workflow, during execution of SSF operations, the actions are logged.
Beldi periodically re-executes SSFs that encounter failures. The operation log is used to prevent duplicated
execution of operation, so that at-most-once execution semantics are guaranteed. On the other hand, re-execution
for failed SSFs ensures at-least-once execution semantics.

Beldi’s log-based fault-tolerant.mechanism motivates Boki’s shared log approach for stateful serverless com-
puting. However, their techniques would need to be adapted for use with shared logs (§ 5.1), mostly because the
workflow log is not co-located with user data in the same database.

9 Conclusion

State management has become a major challenge in serverless computing. Boki is the first system that allows
stateful serverless functions to manage state using distributed shared logs. Boki’s shared log abstraction (i.e.,
LogBooks) can support diverse serverless use cases, including fault-tolerant workflows, durable object storage,
and message queues. Boki’s shared logs achieve elasticity, data locality, and resource efficiency, enabled by a
novel metalog design. The metalog is a unified solution to the problems of log ordering, consistency, and fault
tolerance in Boki. Evaluations of Boki and its support libraries demonstrate the performance advantages (up to
4.2x) of the shared-log-based approach for serverless state management.
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