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Abstract

Phenolic compounds can be oxidized by manganese oxides in the subsurface or during
passive treatment of stormwater runoff and wastewater effluent. Contaminated waters may contain
a complex mixture of phenolic compounds and these mixtures may have additive, synergistic, or
antagonistic toxicological effects. However, the effects of such mixtures on the rates and
mechanisms of phenol oxidation by manganese oxides are not well understood. This study
addresses this knowledge gap by determining pseudo-first-order oxidation rates and oxidation
mechanisms for four phenols reacted with 6-MnQO; in varying mixtures. Oxidation rates of electron
transfer-limited phenols (i.e., triclosan, resorcinol, bisphenol A) are inhibited in mixtures. This
inhibition, as well as the observed decrease in sorption, is consistent with competition between
phenols occurring near the Mn surface. In contrast, the oxidation rate and extent of sorption for
sorption-limited 4,4’-biphenol is enhanced in mixtures. The rate enhancement is partially driven
by indirect oxidation through radical-mediated reactions, likely from phenoxy radicals produced
when electron transfer-limited phenols react with 8-MnQO,. These findings demonstrate that
mixtures have a large impact on phenol oxidation by manganese oxides as the electron transfer-
limited phenols are inhibited due to competition interactions and the sorption-limited phenol has

increased oxidation rates due to indirect oxidation by radicals and enhanced sorption.
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Synopsis

This study investigates how phenol mixtures influence their reaction with manganese oxides,

which is important for predicting reactivity in this water treatment system.
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Introduction

Phenolic compounds are abundant in surface waters and encompass a variety of
contaminant classes, including antimicrobial agents (e.g., triclosan), antioxidants (4,4’-biphenol),
industrial chemicals (e.g., bisphenol A; BPA), and pharmaceuticals (e.g., resorcinol; Table 1).!
These compounds may be released to surface waters in wastewater effluent, runoff, landfill
leachates, and other waste streams.’!? In these systems, phenolic contaminants may impact
ecological and human health through multiple toxicological effects, including endocrine disruption
and bioaccumulation.> ''"!7 Contaminants are frequently present as mixtures in aquatic systems,
which influences both their removal efficiency in water treatment processes and their toxicity. For
example, toxicological effects (e.g., estrogen production or inhibition) of phenolic contaminants
depend on both contaminant concentration and competition between multiple phenols. '3 16-13

Manganese (Mn) oxides, are ubiquitous, redox active minerals, that oxidize phenolic
contaminants in natural and engineered systems. Manganese oxides are formed naturally,
generated as byproducts of engineered systems (e.g., drinking water treatment or acid mine
drainage remediation), or synthesized for water treatment applications. These reactive minerals
can therefore oxidize phenolic compounds in environmentally relevant systems (e.g., in soils or at
the sediment-water interface)! '°-23 or be applied in passive in situ treatment systems.? 3 68 10, 24-
26 §-MnQ,, a synthetic proxy for biogenic birnessite,”’ readily oxidizes many phenolic
contaminants of interest including estrogens, bisphenol A, and other endocrine disruptors with
demonstrated toxicological effects.!: % % 2!- 2833 The oxidation of phenols by Mn oxides occurs
through two stepwise single electron transfer reactions that form phenoxy radicals as intermediates

and may be rate-limited by either sorption of the contaminant to the Mn surface or the first single

electron transfer.!-2 323435 The rate limiting step of oxidation depends on both phenolic compound
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structure and Mn oxide characteristics in isolated batch reactions,? but the influence of competing
phenolic contaminants on the mechanism and rate of oxidation by Mn oxides is unknown.

Understanding the interaction of multiple phenols with Mn oxides is critical for applying
these minerals to oxidize contaminants in environmentally relevant waters for several reasons.
First, phenols are typically present in mixtures in stormwater or in wastewater, yet nearly all
studies on phenol reactivity with Mn oxides focus on individual compounds.! A single study on
bisphenol A and diuron reactivity in a birnessite-coated sand column focused on optimizing design
parameters as a function of background water chemistry,® while a study on multiple contaminants
in a biochar-manganese oxide flow through system found sorption and biodegradation, rather than
oxidation by Mn oxides, to be the dominant removal processes under the study conditions.” We
are unaware of previous studies that consider the impact of mechanistic changes or compound-
specific effects in phenol mixtures reacted with Mn oxides. Second, the oxidation of phenols by
Mn oxides typically generates phenolic oxidation products;'# 2% 36-3 competition between parent
compounds and their products may partially explain changes in oxidation rates or sorption as the
reaction proceeds.?® Finally, model compound studies may provide insight into the reactivity of
dissolved organic matter (DOM) with Mn oxides because this complex mixture contains numerous
phenolic moieties.*> ! High-resolution mass spectrometry analysis of DOM demonstrates that
lignin-like molecules, which are typically electron rich and likely phenolic in nature, are
selectively oxidized by Mn oxides.** 43

This study investigates the effect of mixtures on the initial kinetics and rate limiting steps
of phenol oxidation by 6-MnO». Four phenols with differing functional groups, toxicological

effects, and mechanisms of oxidation by Mn oxides? are used in this study. Both single compounds

and mixtures are examined to determine how the rate limiting step and phenol structure alter the
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oxidation process in the presence of other compounds. Additionally, to determine the role of
indirect oxidation by potential phenoxy radical products, selected experiments are conducted in
the presence of a non-specific radical quencher, tert-butanol. The mechanistic results presented in
this study have important implications for predicting the efficacy of manganese oxide-based

treatment systems for degradation of contaminant mixtures.

Materials and Methods

Materials. Commercial chemicals were used as received. Ultrapure water was supplied by
a Milli-Q water purification system maintained at 18.2 MQ-cm. Bisphenol A, triclosan, resorcinol
and 4,4’-biphenol stock solutions (5 mM) were prepared in methanol and stored at 4 °C. Further
details are provided in Supporting Information (Section S1).

0-MnQ: synthesis and characterization. 5-MnQO; was synthesized by a modified Murray
method by adding Mn(NO3), dropwise (1 mL min™') into a mixture of KMnO4 and NaOH at a
molar ratio of 3:2:4 Mn':MnV!":OH".% 334 The slurry was stirred for 20 hours and solids underwent
three rounds of centrifuge washing at 2500 rpm for 15 minutes in Milli-Q water, followed by two
centrifuge washings in pH 5.5 10 mM sodium acetate buffer. Reactions were started using this
slurry within two days of 6-MnO> synthesis to minimize effects of mineral aging.

The average manganese oxidation number (AMON) of the §-MnQO; starting material was
determined by oxalate titration to be 3.92 + 0.05.% 446 A similar AMON of 3.86 + 0.04 was
determined by X-ray absorption near edge structure (XANES) spectroscopy (Mn K edge; 6532
eV).*7 Specific surface area was determined by Brunauer-Emmett-Teller measurements
(Quantachrome Autosorb-1, nitrogen adsorbate; 30 °C) and was 169 m?/g for the starting material

(Table S1). Aqueous manganese concentration, as well as solid-phase sodium content, were
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quantified by inductively coupled plasma-optical emission spectrometry (ICP-OES; Perkin Elmer
4300). Additional details on manganese oxide synthesis and characterization methods are
presented in Section S2.

Kinetic studies. Resorcinol, bisphenol A, triclosan, and 4,4’-biphenol were reacted with
0-MnO; (15 mg-Mn/L) in triplicate batch reactors. These compounds were selected based on their
rate limiting step and expected differences in reactivity,? as well as their environmental relevance.
Reactions of single compounds with 8-MnO; were performed using phenol concentrations of 10,
20, or 40 uM (<0.1% MeOH in the final solution) to investigate concentration effects and to serve
as controls for mixture reactions. The four phenols were also reacted with 8-MnO- in each possible
paired combination (10 uM each, 20 uM total phenol) and in a mixture of all four phenols (10 uM
each, 40 uM total phenol). All reactions were conducted in 10 mM sodium acetate buffer at pH
5.5 (total solution volume = 55 mL). This buffer was selected because it does not reduce or
complex 8-MnO,,2{Balgooyen, 2019 #5878} in contrast with Good’s buffers and
phosphate.{Balgooyen, 2019 #5878} {Klausen, 1997 #2559} {Yao, 1996 #3445} {Rubert, 2006
#2705} {Ouvrard, 2002 #6515} pH 5.5 was selected to enable comparison with previous work?
and because it is below the acid dissociation constants (pKa) of all considered phenols (Table 2).
Solution pH changed less than 0.5 units during reactions. Rates of phenol oxidation by manganese
oxides are pH dependent; 2% 48 these four compounds react with 3-MnQO; at pH 5.5 on a timescale
of hours to days. Reactors were continuously stirred for up to 7 days in the dark.

Two aliquots were collected at each timepoint from triplicate reactors. One aliquot was
filtered (1 mL; 0.2 uM PTFE syringe filters) and one aliquot was quenched (30 pL; 5:1 ascorbic
acid:Mn molar ratio) to quantify aqueous and total phenol concentrations, respectively. Phenol

concentrations were quantified by high performance liquid chromatography (Section S3).
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Ascorbic acid-quenched aliquots, in which 6-MnO> is dissolved to release sorbed organic
compounds, were used to calculate initial pseudo-first-order rate constants. A pseudo-first-order
fit was used because manganese is in excess and because linear pseudo-first-order kinetics were
typically observed over the initial reaction period (i.e., <100 min for triclosan, bisphenol A, and
resorcinol; <1,400 min for 4,4’-biphenol; Figure S2). Phenol concentrations in filtered aliquots
were subtracted from quenched aliquots to determine the fraction of each compound sorbed to the
Mn surface at each timepoint. Phenols with observed maximum sorption <10% or with error
greater than the average measured sorption were designated sorption-limited, as validated
previously.? Compounds with a maximum observed percent sorption >10% were classified as
electron transfer-limited.

The 10 uM isolated reactions, paired reactions, and mixture of all four phenols with -
MnO, were repeated in the presence of 2 mM fert-butanol, a non-specific radical quencher,*->3 to
determine the effect of product phenoxy radicals on oxidation rates and mechanisms. The presence
of tert-butanol and the acetate buffer did not alter initial 5-MnO; characteristics (i.e., AMON and

surface area; Section S2).

Results and Discussion

The oxidation rates of four phenolic contaminants (resorcinol, 4,4’-biphenol, bisphenol A,
and triclosan) by 6-MnO; are quantified alone, in pairs, and in mixtures of all four phenols. This
allows us to determine if the mixture of phenolic compounds leads to enhancement or inhibition
of reaction rates. Resorcinol, triclosan, and bisphenol A are electron transfer-limited and 4,4’-
biphenol is sorption-limited with 3-MnO> based on previous research using the same Mn oxide

under similar reaction conditions (Table 1).2 Since the extent of sorption plays a large role in
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determining the rate and mechanism of phenol oxidation,? we hypothesize that all four phenols
will have slower pseudo-first-order oxidation rates and less sorption due to competition effects in
mixtures. Furthermore, we hypothesize that these competition effects will impact the oxidation of
slower reacting and sorption-limited phenols (e.g., 4,4’-biphenol) to a greater extent than the more
reactive, electron transfer-limited phenols (e.g., resorcinol).

Reactivity of individual phenols. Overall, the pseudo-first-order phenol oxidation rates
follow the order of resorcinol > bisphenol A > triclosan >> 4,4’-biphenol in isolated reactions with
0-MnO; (Figures 1a and 2a). Resorcinol, bisphenol A, and triclosan sorb strongly (average
sorption for the three compounds and three concentrations = 82.7 + 20.9%; Figure 1b) due to
rapid formation of precursor complexes with the Mn surface and are therefore electron transfer-
limited with 8-MnO>.? The oxidation of 4,4’-biphenol is sorption-limited and reacts at a rate that
is several orders of magnitude lower than the other three phenols (¢;> = 223.6 hours for 4,4’-
biphenol vs. #12 average = 0.09 = 0.03 hours for the other phenols at an initial concentration of 10
uM).

The observed reactivity trends are not well explained by parameters frequently used in
quantitative structure-activity relationships (QSARs) to relate phenol reactivity with Mn oxides
(Table 2). For example, energy of the highest occupied molecular orbital (Enomo) and oxidation
potential (Eox) describe the susceptibility of a compound to oxidation. Electron loss from a
molecule with a higher Enomo is more favorable and thus is expected to have higher oxidation
rates. Conversely, higher Eox values indicate the molecule takes more energy to oxidize and thus
is expected to have lower oxidation rates. Similarly, the presence of electron-withdrawing
substituents, corresponding to higher Hammett constants or lower pK, values, should result in

lower oxidation rates. These trends are corroborated by surveys of these reactivity constants versus
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phenol oxidation rates and mechanisms by Mn oxides.> > 3> While it is not valid to develop
QSARs for four compounds, the available data result in trends that are opposite the expected
QSAR relationships. For example, 4,4’-biphenol (i.e., the slowest reacting compound) has the
highest Enomo value, second lowest Eox value, and second lowest pK, (Table 2); these parameters
indicate that the compound should be highly reactive. However, QSARs are most accurate for
simple phenols with meta- and para-substituents and large deviations are observed for phenols
with ortho-substituents (e.g., resorcinol) and for more complex phenols (e.g., triclosan, bisphenol
A, and 4,4’-biphenol).? Therefore, it is unsurprising to see variable trends among these four
specific compounds.

In addition to 10 uM isolated reactions of each phenol with 6-MnO,, we analyze the extent
of sorption and oxidation rate for initial concentrations of 20 and 40 uM of each individual
compound with 3-MnQO,. These concentrations correspond to the total initial phenol concentration
in isolated reactions, paired mixtures, and a combination of all four phenols in solution,
respectively. Therefore, evaluating the impact of initial phenol concentration on its reactivity
allows us to confirm that changes in pseudo-first-order rate constants and sorption in experiments
containing multiple phenols are the result of mixture effects rather than differences in the total
phenol concentration.

Initial concentration does not impact the rate constant or mechanism of oxidation for
resorcinol, bisphenol A, or triclosan, which are electron transfer-limited compounds that react
rapidly with 8-MnO: (Figure 1). However, initial concentration significantly influences the
reactivity of 4,4’-biphenol with 6-MnO> (p-value = 0.039). Sorption of 4,4’-biphenol increases
from 28 £ 29% to 56 + 32% as the initial phenol concentration increases from 10 to 40 uM. The

increase in extent of sorption indicates a mechanism change from sorption-limited at initial
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concentrations of 10 and 20 uM (i.e., due to the large error and observed kinetic behavior) to
electron transfer-limited at 40 uM. This shift in the rate limiting step of reaction is accompanied
by an increase in 4,4’-biphenol oxidation rate from 3.1 x 10~ hr'! to 7.2 x 10 hr'!. Despite the
increase in oxidation rates between 10 and 40 uM of 4,4’-biphenol (Figure 1), the differences in
oxidation rate and extent of sorption are much less than those observed in the contaminant mixtures
described below. Therefore, these results indicate that changes in pseudo-first-order oxidation
rates, sorption, and reaction mechanism are primarily attributable to effects stemming from the
mixtures, rather than simply the change in overall phenol concentration.

Impacts of mixtures on electron transfer-limited phenols. Reacting the three electron-
transfer limited phenols (i.e., triclosan, bisphenol A, and resorcinol) with 3-MnQO; in the presence
of a second phenol or in a mixture of all four phenols results in consistent decreases in both
oxidation rates and sorption. Because the oxidation rate of these compounds is independent of
initial phenol concentration in single-phenol experiments (Figure 1a), the observed changes in
reactivity are attributable to effects of the other phenols. Triclosan is oxidized at rates of 4.8, 6.7,
and 2.7 times slower with bisphenol A, 4,4’-biphenol, and resorcinol, respectively, compared to
the 10 uM isolated triclosan control, with decreases in triclosan sorption up to 47% in these
mixtures (Figure 2). Triclosan is electron transfer-limited in all reactions and the decreases in rate
and sorption suggest competitive interactions between compounds for Mn surface sites.

As observed with triclosan, the decreases in apparent oxidation rates and extent of sorption
of bisphenol A and resorcinol are consistent with competition in these mixture solutions (Figure
2). Bisphenol A oxidation is 2 — 4 times slower in solution with triclosan and 4,4’-biphenol and
8.4 times slower in solution with all four phenols, while bisphenol A sorption in these reactions

decreases by up to 25%. The oxidation rate of resorcinol also decreases in all mixtures compared

11



232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

to the 10 uM control (Figure 2). Triclosan, 4,4’-biphenol, and mixtures of all four phenols together
result in 10 — 50 times lower oxidation rates and 2 — 3 times lower sorption of resorcinol. Although
the extent of sorption decreases, bisphenol A and resorcinol remain electron-transfer limited in the
presence of triclosan or 4,4’-biphenol.

Interestingly, the combination of bisphenol A and resorcinol results in much slower
oxidation rates and a mechanism change for both compounds. This mixture results in large
decreases in sorption for both bisphenol A (8% versus 100%) and resorcinol (7% versus 49%;
Figure 2b), indicating that the oxidation mechanism of both compounds becomes sorption-limited
when these phenols are combined. This change in mechanism is accompanied by dramatically
slower apparent oxidation rates (i.e., 56 times lower for bisphenol A and three orders of magnitude
lower for resorcinol; Figure 2a).

The simultaneous decrease in both resorcinol and bisphenol A reactivity indicates that
resorcinol does not outcompete bisphenol A, which might be expected based on the faster isolated
kinetics of resorcinol (Figure 1). Instead, these data demonstrate that oxidation of both phenols is
inhibited when together in solution with 6-MnO,. The simultaneous shift to a sorption-limited
reaction mechanism for both compounds indicates that resorcinol and bisphenol A are competing
for reactive sites and that they react rapidly upon sorption to the 3-MnQO; surface. The extent of
sorption is low for both phenols (15% combined) compared to isolated reactions or other mixtures
analyzed. Therefore, it is likely that physical blocking of unfilled reactive sites prevents sorption
of these contaminants as 6-MnQO; has enough surface sites to support 100% sorption of compounds
in reactions with the same initial phenol concentration (Figure 1).

These results suggest that apparent oxidation rates of phenolic contaminants which are

electron transfer-limited with -MnQO: are inhibited because competition for reactive surface sites
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decreases sorption to the Mn surface. The extent of inhibition is not predicted by either extent of
sorption or pseudo-first-order oxidation rates in isolated studies as bisphenol A has the greatest
percent sorption to -MnO> and resorcinol has the highest pseudo-first-order rate constant in
isolated systems (Figure 1). Oxidation rates of bisphenol A and resorcinol are inhibited by
mixtures with one another to the extent that they both become sorption-limited, while triclosan,
which has neither the greatest sorption nor fastest oxidation, remains electron transfer-limited in
all mixtures.

Since oxidation rates in these reactions depend on both precursor complex formation and
reactivity with 8-MnQO,, predicting the outcome of these competitive interactions is complicated
and depends on charge, oxidation potential, and partitioning behavior among other factors. The
differential reactivity of the bisphenol A/resorcinol pair observed here cannot be solely explained
by a single factor or physicochemical parameter. For example, similar inhibitory behavior of 4,4’-
biphenol with resorcinol and bisphenol A would be expected if competitive electrostatic
interactions contribute to decreased reaction rates since these compounds have nearly identical pK,
values and are therefore neutral at pH 5.5 (Table 2). Similarly, favorable partitioning to organic
phases (e.g., a relatively hydrophobic, organic-loaded Mn surface) can be ruled out given the wide
range of Kow values and differential behavior of resorcinol, triclosan, and bisphenol A. While the
three, electron transfer-limited phenols studied here each had varying physiochemical constants
and reactivity in isolated solutions, it is important to note that all three are inhibited to some extent
in all tested mixture combinations. Thus, these results are likely relevant for other phenolic
contaminants which are electron transfer-limited under these conditions, such as chlorophenols, 4-
nonylphenol, estrone, and 17B-estradiol.? Inhibition of sorption demonstrated for binary phenol

mixtures and a range of sorbents has been attributed to hydrogen bonding, electrostatics, and
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overlapping pi orbital interactions.’® 7 Our results suggest that such intermolecular competitive
effects occur for the three, electron transfer-limited phenols in reactions with 5-MnOx.

Impacts of mixtures on a sorption-limited phenol. Unlike the other three phenols, the
rate of 4,4’-biphenol oxidation by 8-MnQO: increases significantly in the presence of the other three
phenolic contaminants (p = 6.66 x 107; Figure 2). For example, the 4,4 -biphenol oxidation rate
increases by a factor of 42 in the presence of triclosan, a factor of 55 in the presence of bisphenol
A, and a factor 152 in the presence of resorcinol (total phenol concentration = 20 uM). The largest
increase in 4,4’-biphenol oxidation rate is observed in the solution containing all four phenols
(total phenol concentration = 40 M) in which the oxidation rate is 268 times higher compared to
the rate observed when 10 uM 4,4’-biphenol reacts with 3-MnO, in the absence of other phenols.
The large increase in 4,4’-biphenol oxidation rate is contrary to our hypothesis that sorption-
limited phenols would undergo the largest decrease in oxidation in the presence of other phenols.
Thus, these results indicate that competition does not inhibit 4,4’-biphenol oxidation as observed
in the case of electron transfer-limited phenols, but instead suggest that another mechanism (e.g.,
enhanced sorption or radical-mediated reactions) increases the rate of 4,4’-biphenol oxidation in
these mixtures.

Sorption of 4,4’-biphenol is 2 — 4 times greater in paired mixtures than in isolated reactions,
resulting in its oxidation becoming electron transfer-limited rather than sorption-limited. A similar
increase in sorption (i.e., a factor of 2) and shift in mechanism is observed in control experiments
when the initial 4,4’-biphenol concentration increases from 10 to 40 uM (Figure 1), suggesting
that the shift from sorption-limited to electron transfer-limited oxidation of 4,4-biphenol in these
mixtures results from greater organic loading. However, this shift in mechanism does not fully

explain the large increase in 4,4’-biphenol oxidation rate observed in phenol mixtures because the

14



301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

rate only increases by a factor of 2 in the 40 uM 4,4’-biphenol control in contrast with the >200
times increase observed when all four phenols are present as a mixture (total phenol concentration
=40 uM).

Because enhanced sorption is not the sole mechanism of increased 4,4’-biphenol oxidation
rate, we evaluate the role of indirect oxidation by phenoxy radicals. As phenols are oxidized by 6-
MnO,, they form a phenoxy radical as the product of the first electron transfer. While phenoxy
radicals are transient and difficult to observe,*® thermodynamic and kinetic calculations show that
the radical is a key intermediate in single electron oxidation reactions such as those involving Mn
oxide mineral surfaces and phenolic compounds.®® This radical may remain sorbed to the Mn
surface and undergo a second electron transfer or diffuse from the surface and react in solution.!
221,32 For example, phenoxy radicals generated by the reaction of phenols with Mn oxides can
undergo radical coupling to form polymeric hydroquinone-like products.! % 32 Polymeric product
formation from bisphenol A oxidation is not dependent on initial concentration despite changes in
bisphenol A oxidation rate and 6-MnO> reduction, suggesting that single-electron transfer
reactions are linked to radical coupled polymeric products.?® Similarly, studies of triclosan and
chlorophene oxidation by manganese oxides link fast, electron transfer-limited reaction
mechanisms with the formation of radical coupled dimer products identified by mass
spectrometry.*® Given these findings, resorcinol, bisphenol A, and triclosan are all likely to
undergo a one electron transfer reaction at the Mn surface to form a phenoxy radical.®> Thus, we
investigate whether the phenoxy radicals produced as initial products of resorcinol, bisphenol A,
and triclosan oxidation by 6-MnO> can react with 4,4’-biphenol, resulting in enhanced 4,4’-

biphenol oxidation.
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To test for oxidation by radical production in mixtures of the other three phenolic
contaminants and 4,4-biphenol, we examined individual phenols, paired mixtures, and
combinations of all four phenols in the presence of tert-butanol, a non-specific radical quencher
that is not likely to react directly with Mn oxides*->* and does not alter the mineral surface (Table
S1). Little change in oxidation rate is observed with tert-butanol in solution with triclosan,
resorcinol, and bisphenol A both in isolation or in mixtures (Section S7). This suggests that
secondary reactions of phenoxy radicals with these phenols are not responsible for oxidation of
the parent compounds, confirming the assumption that direct electron transfer from 5-MnO:x is the
dominant oxidation mechanism for these three phenols. Similarly, the oxidation rate of 4,4’-
biphenol by 6-MnO; in control experiments with and without fer#-butanol is nearly identical (3.7
x 107 hr'! and 3.1 x 107 hr'!, respectively; Figure 3a), indicating that the presence of the radical
quencher does not impact the direct oxidation of 4,4’-biphenol by 6-MnOQO.

The addition of tert-butanol to solutions containing mixtures of 4,4’-biphenol and other
phenols consistently results in decreased 4,4’-biphenol oxidation rates compared to unquenched
reactions (Figure 3a). The 4,4’-biphenol oxidation rate decreases by a factor of 1.3 when tert-
butanol is added in the mixtures containing bisphenol A and a factor of 5.9 when the quencher is
added to a solution containing all four phenols. The largest difference between quenched and
unquenched reactions is observed when resorcinol is present (i.e., either the resorcinol and 4,4’-
biphenol pair or the combination of four phenols), indicating that resorcinol-derived phenoxy
radicals may be most reactive with 4,4’-biphenol. The decrease in 4,4’-biphenol oxidation rates in
the presence of a non-specific radical quencher provides evidence for indirect oxidation of 4,4’-

biphenol by phenoxy radicals generated by the other three phenols.
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The relative change in 4,4’-biphenol oxidation rate in the presence and absence of the
quencher varies among the different phenol combinations. However, it is noteworthy that the
absolute 4,4’-biphenol oxidation rate in the presence of the radical quencher and other phenols is
nearly identical (i.e., average for all 4,4’-biphenol competition experiments with fert-butanol =
0.11 £ 0.04 hr'!; Figure 3a). Thus, the radical quencher decreases the 4,4’-biphenol oxidation rate
to a consistent value regardless of the phenol mixture. However, the average radical quenched rate
is still 30 times higher than the 4,4’-biphenol oxidation rate observed in the absence of other
phenols, indicating that phenoxy radical-mediated reactions are not solely responsible for the
enhanced 4,4’-biphenol oxidation rate observed in mixtures.

An examination of the amount of 4,4’-biphenol sorbed to the 5-MnO> surface reveals that
the presence of 2 mM tert-butanol leads to enhanced sorption (Figure 3b). For example, sorption
of 4,4’-biphenol to the 5-MnO; surface increases from 29 + 28% to 81 + 6% in unquenched and
quenched 10 uM controls, respectively. Similarly, 4,4’-biphenol sorption in phenol mixtures
increases from 46% to 76% (average of all mixture combinations) in the absence and presence of
tert-butanol. Thus, this data suggests that the presence of tert-butanol alone influences 4,4’-
biphenol sorption to a greater extent than the presence of other phenols. While fert-butanol does
not react directly with Mn oxides or change the Mn oxide oxidation state or surface area (Table
S2), it is possible that the high tert-butanol concentration results in favorable interactions between
4,4’-biphenol and a more organic-rich oxide surface. Therefore, the enhanced sorption of 4,4’-
biphenol to the 6-MnO, surface due to fert-butanol partially counterbalances the effect of the
radical quencher, emphasizing the importance of carefully interpreting results in heterogenous

systems.
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We conclude that there are two mechanisms contributing to the enhanced oxidation of the
sorption-limited phenol (i.e., 4,4’-biphenol) by 8-MnQO; in the presence of other highly reactive
phenols. First, the data clearly indicate that the presence of additional organic compounds increases
the extent of 4,4’-biphenol sorption to the mineral surface, likely through enhanced partitioning to
an organic-rich surface. This is observed for 4,4’-biphenol in individual reactions (Figure 1b), in
binary mixtures (Figure 2b), and in the presence of 2 mM fert-butanol (Figure 3b). While we
focus our analysis on maximum sorption in order to identify shifts in mechanism, the presence of
other organics may also influence the rate of sorption and partially contribute to enhanced 4,4’-
biphenol oxidation rates. However, the fact that the 4,4’-biphenol oxidation rate only increases
modestly in individual reactions (40 uM vs. 10 uM; Figure 1a) and is unchanged in the presence
of 2 mM tert-butanol (Figure 3a) demonstrates that enhanced sorption does not fully explain the
large increase in 4,4’-biphenol oxidation rate in the presence of other phenols. The ability of a non-
specific radical quencher to decrease 4,4’-biphenol oxidation rates in mixtures indicates that
radicals generated during the one electron oxidation of resorcinol, bisphenol A, and triclosan are
involved, thus demonstrating the presence of a novel indirect mechanism of 4,4’-biphenol
oxidation in this complex system.

Conclusion. Phenolic contaminants are frequently present as mixtures in the environment,
which influences both their toxicity and their removal efficiency in water treatment processes.
Studying the fate of mixtures is complicated due to the large number of possible contaminants. As
a result, little is known about how contaminants interact in water treatment processes, including
processes that use manganese oxides to oxidize phenols.

Depending on the phenolic contaminant of interest, oxidation by Mn oxides may be either

enhanced or inhibited by mixture effects. In general, the studied electron transfer-limited
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contaminants, including resorcinol, BPA, and triclosan, have inhibited oxidation in mixtures due
to competitive interactions with other compounds. In contrast, the sorption-limited phenol (i.e.,
4,4’-biphenol) is oxidized more quickly in mixtures. Our evidence suggests the increase in 4,4’-
biphenol pseudo-first-order oxidation rates results from a modest contribution of enhanced
sorption to the mineral surface and, importantly, indirect oxidation by phenoxy radical products of
other phenols in solution. This pathway is supported by observed product dependency on oxidation

mechanisms in previous studies,? 48

as well as decreases in 4,4’-biphenol oxidation rates in the
presence of tert-butanol here. Although product identification is necessary to further confirm this
radical-mediated oxidation enhancement pathway, this study provides evidence of indirect
oxidation in mixtures of phenolic contaminants by 6-MnO,, highlighting the importance of
mechanistic and kinetic studies of study complex mixtures.

These results are especially relevant for stormwater, wastewater, and landfill leachate
which contain a wide array of phenolic contaminants and are primary candidates for treatment by

4,5, 8, 60-63

manganese oxides. Electron transfer-limited contaminants, which generally have higher

oxidation rates with manganese oxides compared to sorption-limited contaminants,? 34

will likely
undergo less sorption and slower oxidation than observed in isolated solutions. In contrast, some
slow reacting sorption-limited contaminants may have increased oxidative degradation in mixtures
treated with manganese oxides.

While this study provides mechanistic insights into the complex interactions of individual
phenols with manganese oxides, further research is needed on the role of dissolved organic matter
in this complex system in order to assess efficacy and mechanism in treatment systems. The

existing literature is contradictory and varying effects of DOM on organic compound

transformation rates by manganese oxides have been reported. For example, DOM can decrease,®
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64 increase,% or have no effect® % on the oxidation rate of bisphenol A by manganese oxides. DOM

contains phenols as redox active moieties**-4% 67

and it is likely that variable DOM composition
(e.g., total phenolic content and reactivity of individual phenolic moieties) contributes to differing
effects observed in previous studies. This study demonstrates that individual model phenols result

in different trends (i.e., competition or enhancement) and thus provides insight into the variable

behavior observed when DOM (i.e., a complex mixture rich in phenolic moieties) is present.
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Tables and Figures

Table 1. Chemical structure, contaminant class, and rate limiting step of oxidation by 3-MnO, of
each phenolic contaminant.

HO

I OH

Phenol Structure Contaminant class | Rate limiting step
triclosan OH Cl antimicrobial agent | electron transfer-
Cl Cl
bisphenol A HO OH | plastics production; | electron transfer-
endocrine disruptor limited
resorcinol HO OH pharmaceutical electron transfer-
\©/ limited
4,4’-biphenol antioxidant sorption-limited

Table 2. Structure-activity and partitioning constants for resorcinol, bisphenol A, triclosan, and
4,4’-biphenol. Constants include the acid dissociation constant (pK,), energy of the highest
occupied molecular orbital (Enomo), oxidation potential (Eox), log of the octanol:water partitioning
coefficient (log Kow), and the pH adjusted value (log Dow). Sources for each constant are given in
subscript following the column heading.

pKa48 Enomo Eox lOg I(ow48 lOg ])ow48
(eV)? (V vs. SHE)?
resorcinol 9.26 -7.77 1.83 0.93 1.37
bisphenol A 9.78 -7.49 2.22 3.32 4.05
triclosan 7.68 -7.78 2.07 4.76 4.98
4,4°- 9.64 -7.23 1.82 2.80 3.01
biphenol
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Figure 1. (a) Pseudo-first-order oxidation rates and (b) maximum percent sorption versus initial
concentration of resorcinol, bisphenol A, triclosan, and 4,4’-biphenol reacted with 6-MnO, at pH

5.5. Error bars are + 1 standard deviation of triplicate reactors. This data is tabulated in Tables S3
and S6.
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Figure 2. (a) Pseudo-first-order oxidation rates and (b) maximum percent sorption of resorcinol,
bisphenol A, triclosan, and 4,4’-biphenol reacted with 5-MnQO; at pH 5.5 in isolation or in mixture
solutions with other phenolic contaminants. Error bars are + 1 standard deviation of triplicate
reactors. This data is tabulated in Tables S4 and S7.
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Figure 3. (a) Pseudo-first-order oxidation rates and (b) maximum percent sorption of 4,4’-
biphenol reacted with 6-MnQO; with and without 2 mM tert-butanol in solution. Bars correspond
to 4,4’-biphenol without other phenols ([phenolfwwm = 10 uM), 4,4’-biphenol with 10 pM
resorcinol, bisphenol A, or triclosan ([phenoljiww = 20 uM), and 4,4’-biphenol with all other
phenols ([phenol]ioal = 40 uM). Error bars are +1 standard deviation of triplicate reactors. This
data is tabulated in Tables S5 and S8.
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