

1 *Enhancement and inhibition of oxidation in phenolic*

2 *compound mixtures with manganese oxides*

3 *Emma Leverich Trainer,¹ Matthew Ginder-Vogel,^{1,2}† and Christina K. Remucal^{1,2}**

4

5 ¹Environmental Chemistry and Technology

6 University of Wisconsin - Madison

7 Madison, Wisconsin

8 **Civil and Environmental Engineering**

9 University of Wisconsin - Madison

10 Madison, Wisconsin

11
12
13 † Corresponding author address: 660 N. Park St., Madison, WI 53706;
14 e-mail: mgindervogel@wisc.edu; telephone: (608) 262-0768; fax: (608) 262-0454;
15 Twitter: @profmattgv.

* Corresponding author address: 660 N. Park St., Madison, WI 53706;
e-mail: remucal@wisc.edu; telephone: (608) 262-1820; fax: (608) 262-0454; Twitter: @remucal

20 **Abstract**

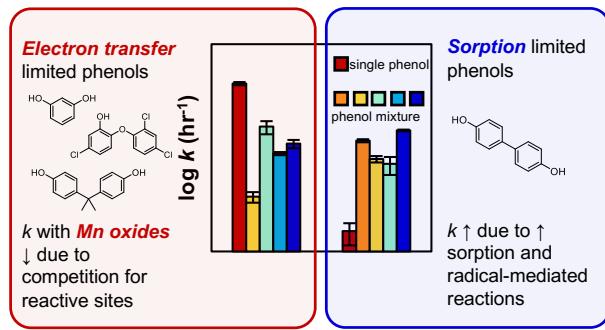
21 Phenolic compounds can be oxidized by manganese oxides in the subsurface or during
22 passive treatment of stormwater runoff and wastewater effluent. Contaminated waters may contain
23 a complex mixture of phenolic compounds and these mixtures may have additive, synergistic, or
24 antagonistic toxicological effects. However, the effects of such mixtures on the rates and
25 mechanisms of phenol oxidation by manganese oxides are not well understood. This study
26 addresses this knowledge gap by determining pseudo-first-order oxidation rates and oxidation
27 mechanisms for four phenols reacted with δ -MnO₂ in varying mixtures. Oxidation rates of electron
28 transfer-limited phenols (i.e., triclosan, resorcinol, bisphenol A) are inhibited in mixtures. This
29 inhibition, as well as the observed decrease in sorption, is consistent with competition between
30 phenols occurring near the Mn surface. In contrast, the oxidation rate and extent of sorption for
31 sorption-limited 4,4'-biphenol is enhanced in mixtures. The rate enhancement is partially driven
32 by indirect oxidation through radical-mediated reactions, likely from phenoxy radicals produced
33 when electron transfer-limited phenols react with δ -MnO₂. These findings demonstrate that
34 mixtures have a large impact on phenol oxidation by manganese oxides as the electron transfer-
35 limited phenols are inhibited due to competition interactions and the sorption-limited phenol has
36 increased oxidation rates due to indirect oxidation by radicals and enhanced sorption.

37

38

39

40 **Keywords**


41 Manganese oxides, phenolic contaminants, water treatment, kinetics.

42

43 **Synopsis**

44 This study investigates how phenol mixtures influence their reaction with manganese oxides,
45 which is important for predicting reactivity in this water treatment system.

46 **TOC Art**

47

48 **Introduction**

49 Phenolic compounds are abundant in surface waters and encompass a variety of
50 contaminant classes, including antimicrobial agents (e.g., triclosan), antioxidants (4,4'-biphenol),
51 industrial chemicals (e.g., bisphenol A; BPA), and pharmaceuticals (e.g., resorcinol; **Table 1**).¹⁻⁴
52 These compounds may be released to surface waters in wastewater effluent, runoff, landfill
53 leachates, and other waste streams.³⁻¹² In these systems, phenolic contaminants may impact
54 ecological and human health through multiple toxicological effects, including endocrine disruption
55 and bioaccumulation.^{5, 11-17} Contaminants are frequently present as mixtures in aquatic systems,
56 which influences both their removal efficiency in water treatment processes and their toxicity. For
57 example, toxicological effects (e.g., estrogen production or inhibition) of phenolic contaminants
58 depend on both contaminant concentration and competition between multiple phenols.^{13, 16-18}

59 Manganese (Mn) oxides, are ubiquitous, redox active minerals, that oxidize phenolic
60 contaminants in natural and engineered systems. Manganese oxides are formed naturally,
61 generated as byproducts of engineered systems (e.g., drinking water treatment or acid mine
62 drainage remediation), or synthesized for water treatment applications. These reactive minerals
63 can therefore oxidize phenolic compounds in environmentally relevant systems (e.g., in soils or at
64 the sediment-water interface)^{1, 19-23} or be applied in passive *in situ* treatment systems.^{2, 3, 6, 8, 10, 24-}
65 ²⁶ δ -MnO₂, a synthetic proxy for biogenic birnessite,²⁷ readily oxidizes many phenolic
66 contaminants of interest including estrogens, bisphenol A, and other endocrine disruptors with
67 demonstrated toxicological effects.^{1, 2, 9, 21, 28-33} The oxidation of phenols by Mn oxides occurs
68 through two stepwise single electron transfer reactions that form phenoxy radicals as intermediates
69 and may be rate-limited by either sorption of the contaminant to the Mn surface or the first single
70 electron transfer.^{1, 2, 32, 34, 35} The rate limiting step of oxidation depends on both phenolic compound

71 structure and Mn oxide characteristics in isolated batch reactions,² but the influence of competing
72 phenolic contaminants on the mechanism and rate of oxidation by Mn oxides is unknown.

73 Understanding the interaction of multiple phenols with Mn oxides is critical for applying
74 these minerals to oxidize contaminants in environmentally relevant waters for several reasons.
75 First, phenols are typically present in mixtures in stormwater or in wastewater, yet nearly all
76 studies on phenol reactivity with Mn oxides focus on individual compounds.¹ A single study on
77 bisphenol A and diuron reactivity in a birnessite-coated sand column focused on optimizing design
78 parameters as a function of background water chemistry,⁶ while a study on multiple contaminants
79 in a biochar-manganese oxide flow through system found sorption and biodegradation, rather than
80 oxidation by Mn oxides, to be the dominant removal processes under the study conditions.⁷ We
81 are unaware of previous studies that consider the impact of mechanistic changes or compound-
82 specific effects in phenol mixtures reacted with Mn oxides. Second, the oxidation of phenols by
83 Mn oxides typically generates phenolic oxidation products;^{14, 28, 36-39} competition between parent
84 compounds and their products may partially explain changes in oxidation rates or sorption as the
85 reaction proceeds.²⁸ Finally, model compound studies may provide insight into the reactivity of
86 dissolved organic matter (DOM) with Mn oxides because this complex mixture contains numerous
87 phenolic moieties.^{40, 41} High-resolution mass spectrometry analysis of DOM demonstrates that
88 lignin-like molecules, which are typically electron rich and likely phenolic in nature, are
89 selectively oxidized by Mn oxides.^{42, 43}

90 This study investigates the effect of mixtures on the initial kinetics and rate limiting steps
91 of phenol oxidation by δ -MnO₂. Four phenols with differing functional groups, toxicological
92 effects, and mechanisms of oxidation by Mn oxides² are used in this study. Both single compounds
93 and mixtures are examined to determine how the rate limiting step and phenol structure alter the

94 oxidation process in the presence of other compounds. Additionally, to determine the role of
95 indirect oxidation by potential phenoxy radical products, selected experiments are conducted in
96 the presence of a non-specific radical quencher, *tert*-butanol. The mechanistic results presented in
97 this study have important implications for predicting the efficacy of manganese oxide-based
98 treatment systems for degradation of contaminant mixtures.

99

100 **Materials and Methods**

101 **Materials.** Commercial chemicals were used as received. Ultrapure water was supplied by
102 a Milli-Q water purification system maintained at 18.2 MΩ·cm. Bisphenol A, triclosan, resorcinol
103 and 4,4'-biphenol stock solutions (5 mM) were prepared in methanol and stored at 4 °C. Further
104 details are provided in Supporting Information (**Section S1**).

105 **δ-MnO₂ synthesis and characterization.** δ-MnO₂ was synthesized by a modified Murray
106 method by adding Mn(NO₃)₂ dropwise (1 mL min⁻¹) into a mixture of KMnO₄ and NaOH at a
107 molar ratio of 3:2:4 Mn^{II}:Mn^{VII}:OH⁻.^{2,33,44} The slurry was stirred for 20 hours and solids underwent
108 three rounds of centrifuge washing at 2500 rpm for 15 minutes in Milli-Q water, followed by two
109 centrifuge washings in pH 5.5 10 mM sodium acetate buffer. Reactions were started using this
110 slurry within two days of δ-MnO₂ synthesis to minimize effects of mineral aging.

111 The average manganese oxidation number (AMON) of the δ-MnO₂ starting material was
112 determined by oxalate titration to be 3.92 ± 0.05.^{2, 45, 46} A similar AMON of 3.86 ± 0.04 was
113 determined by X-ray absorption near edge structure (XANES) spectroscopy (Mn K edge; 6532
114 eV).⁴⁷ Specific surface area was determined by Brunauer–Emmett–Teller measurements
115 (Quantachrome Autosorb-1, nitrogen adsorbate; 30 °C) and was 169 m²/g for the starting material
116 (**Table S1**). Aqueous manganese concentration, as well as solid-phase sodium content, were

117 quantified by inductively coupled plasma-optical emission spectrometry (ICP-OES; Perkin Elmer
118 4300). Additional details on manganese oxide synthesis and characterization methods are
119 presented in **Section S2**.

120 **Kinetic studies.** Resorcinol, bisphenol A, triclosan, and 4,4'-biphenol were reacted with
121 δ -MnO₂ (15 mg-Mn/L) in triplicate batch reactors. These compounds were selected based on their
122 rate limiting step and expected differences in reactivity,² as well as their environmental relevance.
123 Reactions of single compounds with δ -MnO₂ were performed using phenol concentrations of 10,
124 20, or 40 μ M (<0.1% MeOH in the final solution) to investigate concentration effects and to serve
125 as controls for mixture reactions. The four phenols were also reacted with δ -MnO₂ in each possible
126 paired combination (10 μ M each, 20 μ M total phenol) and in a mixture of all four phenols (10 μ M
127 each, 40 μ M total phenol). All reactions were conducted in 10 mM sodium acetate buffer at pH
128 5.5 (total solution volume = 55 mL). This buffer was selected because it does not reduce or
129 complex δ -MnO₂,² {Balgooyen, 2019 #5878} in contrast with Good's buffers and
130 phosphate. {Balgooyen, 2019 #5878} {Klausen, 1997 #2559} {Yao, 1996 #3445} {Rubert, 2006
131 #2705} {Ouvrard, 2002 #6515} pH 5.5 was selected to enable comparison with previous work²
132 and because it is below the acid dissociation constants (pK_a) of all considered phenols (**Table 2**).
133 Solution pH changed less than 0.5 units during reactions. Rates of phenol oxidation by manganese
134 oxides are pH dependent;^{1,20,48} these four compounds react with δ -MnO₂ at pH 5.5 on a timescale
135 of hours to days. Reactors were continuously stirred for up to 7 days in the dark.

136 Two aliquots were collected at each timepoint from triplicate reactors. One aliquot was
137 filtered (1 mL; 0.2 μ M PTFE syringe filters) and one aliquot was quenched (30 μ L; 5:1 ascorbic
138 acid:Mn molar ratio) to quantify aqueous and total phenol concentrations, respectively. Phenol
139 concentrations were quantified by high performance liquid chromatography (**Section S3**).

140 Ascorbic acid-quenched aliquots, in which δ -MnO₂ is dissolved to release sorbed organic
141 compounds, were used to calculate initial pseudo-first-order rate constants. A pseudo-first-order
142 fit was used because manganese is in excess and because linear pseudo-first-order kinetics were
143 typically observed over the initial reaction period (i.e., <100 min for triclosan, bisphenol A, and
144 resorcinol; <1,400 min for 4,4'-biphenol; **Figure S2**). Phenol concentrations in filtered aliquots
145 were subtracted from quenched aliquots to determine the fraction of each compound sorbed to the
146 Mn surface at each timepoint. Phenols with observed maximum sorption <10% or with error
147 greater than the average measured sorption were designated sorption-limited, as validated
148 previously.² Compounds with a maximum observed percent sorption >10% were classified as
149 electron transfer-limited.

150 The 10 μ M isolated reactions, paired reactions, and mixture of all four phenols with δ -
151 MnO₂ were repeated in the presence of 2 mM *tert*-butanol, a non-specific radical quencher,⁴⁹⁻⁵³ to
152 determine the effect of product phenoxy radicals on oxidation rates and mechanisms. The presence
153 of *tert*-butanol and the acetate buffer did not alter initial δ -MnO₂ characteristics (i.e., AMON and
154 surface area; **Section S2**).

155

156 **Results and Discussion**

157 The oxidation rates of four phenolic contaminants (resorcinol, 4,4'-biphenol, bisphenol A,
158 and triclosan) by δ -MnO₂ are quantified alone, in pairs, and in mixtures of all four phenols. This
159 allows us to determine if the mixture of phenolic compounds leads to enhancement or inhibition
160 of reaction rates. Resorcinol, triclosan, and bisphenol A are electron transfer-limited and 4,4'-
161 biphenol is sorption-limited with δ -MnO₂ based on previous research using the same Mn oxide
162 under similar reaction conditions (**Table 1**).² Since the extent of sorption plays a large role in

163 determining the rate and mechanism of phenol oxidation,² we hypothesize that all four phenols
164 will have slower pseudo-first-order oxidation rates and less sorption due to competition effects in
165 mixtures. Furthermore, we hypothesize that these competition effects will impact the oxidation of
166 slower reacting and sorption-limited phenols (e.g., 4,4'-biphenol) to a greater extent than the more
167 reactive, electron transfer-limited phenols (e.g., resorcinol).

168 **Reactivity of individual phenols.** Overall, the pseudo-first-order phenol oxidation rates
169 follow the order of resorcinol > bisphenol A > triclosan >> 4,4'-biphenol in isolated reactions with
170 δ -MnO₂ (**Figures 1a** and **2a**). Resorcinol, bisphenol A, and triclosan sorb strongly (average
171 sorption for the three compounds and three concentrations = $82.7 \pm 20.9\%$; **Figure 1b**) due to
172 rapid formation of precursor complexes with the Mn surface and are therefore electron transfer-
173 limited with δ -MnO₂.² The oxidation of 4,4'-biphenol is sorption-limited and reacts at a rate that
174 is several orders of magnitude lower than the other three phenols ($t_{1/2} = 223.6$ hours for 4,4'-
175 biphenol vs. $t_{1/2,average} = 0.09 \pm 0.03$ hours for the other phenols at an initial concentration of 10
176 μM).

177 The observed reactivity trends are not well explained by parameters frequently used in
178 quantitative structure-activity relationships (QSARs) to relate phenol reactivity with Mn oxides
179 (**Table 2**). For example, energy of the highest occupied molecular orbital (E_{HOMO}) and oxidation
180 potential (E_{ox}) describe the susceptibility of a compound to oxidation. Electron loss from a
181 molecule with a higher E_{HOMO} is more favorable and thus is expected to have higher oxidation
182 rates. Conversely, higher E_{ox} values indicate the molecule takes more energy to oxidize and thus
183 is expected to have lower oxidation rates. Similarly, the presence of electron-withdrawing
184 substituents, corresponding to higher Hammett constants or lower pK_a values, should result in
185 lower oxidation rates. These trends are corroborated by surveys of these reactivity constants versus

186 phenol oxidation rates and mechanisms by Mn oxides.^{2, 54, 55} While it is not valid to develop
187 QSARs for four compounds, the available data result in trends that are opposite the expected
188 QSAR relationships. For example, 4,4'-biphenol (i.e., the slowest reacting compound) has the
189 highest E_{HOMO} value, second lowest E_{ox} value, and second lowest pK_a (**Table 2**); these parameters
190 indicate that the compound should be highly reactive. However, QSARs are most accurate for
191 simple phenols with *meta*- and *para*-substituents and large deviations are observed for phenols
192 with *ortho*-substituents (e.g., resorcinol) and for more complex phenols (e.g., triclosan, bisphenol
193 A, and 4,4'-biphenol).² Therefore, it is unsurprising to see variable trends among these four
194 specific compounds.

195 In addition to 10 μM isolated reactions of each phenol with $\delta\text{-MnO}_2$, we analyze the extent
196 of sorption and oxidation rate for initial concentrations of 20 and 40 μM of each individual
197 compound with $\delta\text{-MnO}_2$. These concentrations correspond to the total initial phenol concentration
198 in isolated reactions, paired mixtures, and a combination of all four phenols in solution,
199 respectively. Therefore, evaluating the impact of initial phenol concentration on its reactivity
200 allows us to confirm that changes in pseudo-first-order rate constants and sorption in experiments
201 containing multiple phenols are the result of mixture effects rather than differences in the total
202 phenol concentration.

203 Initial concentration does not impact the rate constant or mechanism of oxidation for
204 resorcinol, bisphenol A, or triclosan, which are electron transfer-limited compounds that react
205 rapidly with $\delta\text{-MnO}_2$ (**Figure 1**). However, initial concentration significantly influences the
206 reactivity of 4,4'-biphenol with $\delta\text{-MnO}_2$ (p -value = 0.039). Sorption of 4,4'-biphenol increases
207 from $28 \pm 29\%$ to $56 \pm 32\%$ as the initial phenol concentration increases from 10 to 40 μM . The
208 increase in extent of sorption indicates a mechanism change from sorption-limited at initial

209 concentrations of 10 and 20 μM (i.e., due to the large error and observed kinetic behavior) to
210 electron transfer-limited at 40 μM . This shift in the rate limiting step of reaction is accompanied
211 by an increase in 4,4'-biphenol oxidation rate from $3.1 \times 10^{-3} \text{ hr}^{-1}$ to $7.2 \times 10^{-3} \text{ hr}^{-1}$. Despite the
212 increase in oxidation rates between 10 and 40 μM of 4,4'-biphenol (**Figure 1**), the differences in
213 oxidation rate and extent of sorption are much less than those observed in the contaminant mixtures
214 described below. Therefore, these results indicate that changes in pseudo-first-order oxidation
215 rates, sorption, and reaction mechanism are primarily attributable to effects stemming from the
216 mixtures, rather than simply the change in overall phenol concentration.

217 **Impacts of mixtures on electron transfer-limited phenols.** Reacting the three electron-
218 transfer limited phenols (i.e., triclosan, bisphenol A, and resorcinol) with $\delta\text{-MnO}_2$ in the presence
219 of a second phenol or in a mixture of all four phenols results in consistent decreases in both
220 oxidation rates and sorption. Because the oxidation rate of these compounds is independent of
221 initial phenol concentration in single-phenol experiments (**Figure 1a**), the observed changes in
222 reactivity are attributable to effects of the other phenols. Triclosan is oxidized at rates of 4.8, 6.7,
223 and 2.7 times slower with bisphenol A, 4,4'-biphenol, and resorcinol, respectively, compared to
224 the 10 μM isolated triclosan control, with decreases in triclosan sorption up to 47% in these
225 mixtures (**Figure 2**). Triclosan is electron transfer-limited in all reactions and the decreases in rate
226 and sorption suggest competitive interactions between compounds for Mn surface sites.

227 As observed with triclosan, the decreases in apparent oxidation rates and extent of sorption
228 of bisphenol A and resorcinol are consistent with competition in these mixture solutions (**Figure**
229 **2**). Bisphenol A oxidation is 2 – 4 times slower in solution with triclosan and 4,4'-biphenol and
230 8.4 times slower in solution with all four phenols, while bisphenol A sorption in these reactions
231 decreases by up to 25%. The oxidation rate of resorcinol also decreases in all mixtures compared

232 to the 10 μ M control (**Figure 2**). Triclosan, 4,4'-biphenol, and mixtures of all four phenols together
233 result in 10 – 50 times lower oxidation rates and 2 – 3 times lower sorption of resorcinol. Although
234 the extent of sorption decreases, bisphenol A and resorcinol remain electron-transfer limited in the
235 presence of triclosan or 4,4'-biphenol.

236 Interestingly, the combination of bisphenol A and resorcinol results in much slower
237 oxidation rates and a mechanism change for both compounds. This mixture results in large
238 decreases in sorption for both bisphenol A (8% versus 100%) and resorcinol (7% versus 49%;
239 **Figure 2b**), indicating that the oxidation mechanism of both compounds becomes sorption-limited
240 when these phenols are combined. This change in mechanism is accompanied by dramatically
241 slower apparent oxidation rates (i.e., 56 times lower for bisphenol A and three orders of magnitude
242 lower for resorcinol; **Figure 2a**).

243 The simultaneous decrease in both resorcinol and bisphenol A reactivity indicates that
244 resorcinol does not outcompete bisphenol A, which might be expected based on the faster isolated
245 kinetics of resorcinol (**Figure 1**). Instead, these data demonstrate that oxidation of both phenols is
246 inhibited when together in solution with δ -MnO₂. The simultaneous shift to a sorption-limited
247 reaction mechanism for both compounds indicates that resorcinol and bisphenol A are competing
248 for reactive sites and that they react rapidly upon sorption to the δ -MnO₂ surface. The extent of
249 sorption is low for both phenols (15% combined) compared to isolated reactions or other mixtures
250 analyzed. Therefore, it is likely that physical blocking of unfilled reactive sites prevents sorption
251 of these contaminants as δ -MnO₂ has enough surface sites to support 100% sorption of compounds
252 in reactions with the same initial phenol concentration (**Figure 1**).

253 These results suggest that apparent oxidation rates of phenolic contaminants which are
254 electron transfer-limited with δ -MnO₂ are inhibited because competition for reactive surface sites

255 decreases sorption to the Mn surface. The extent of inhibition is not predicted by either extent of
256 sorption or pseudo-first-order oxidation rates in isolated studies as bisphenol A has the greatest
257 percent sorption to δ -MnO₂ and resorcinol has the highest pseudo-first-order rate constant in
258 isolated systems (**Figure 1**). Oxidation rates of bisphenol A and resorcinol are inhibited by
259 mixtures with one another to the extent that they both become sorption-limited, while triclosan,
260 which has neither the greatest sorption nor fastest oxidation, remains electron transfer-limited in
261 all mixtures.

262 Since oxidation rates in these reactions depend on both precursor complex formation and
263 reactivity with δ -MnO₂, predicting the outcome of these competitive interactions is complicated
264 and depends on charge, oxidation potential, and partitioning behavior among other factors. The
265 differential reactivity of the bisphenol A/resorcinol pair observed here cannot be solely explained
266 by a single factor or physicochemical parameter. For example, similar inhibitory behavior of 4,4'-
267 biphenol with resorcinol and bisphenol A would be expected if competitive electrostatic
268 interactions contribute to decreased reaction rates since these compounds have nearly identical pK_a
269 values and are therefore neutral at pH 5.5 (**Table 2**). Similarly, favorable partitioning to organic
270 phases (e.g., a relatively hydrophobic, organic-loaded Mn surface) can be ruled out given the wide
271 range of K_{ow} values and differential behavior of resorcinol, triclosan, and bisphenol A. While the
272 three, electron transfer-limited phenols studied here each had varying physiochemical constants
273 and reactivity in isolated solutions, it is important to note that all three are inhibited to some extent
274 in all tested mixture combinations. Thus, these results are likely relevant for other phenolic
275 contaminants which are electron transfer-limited under these conditions, such as chlorophenols, 4-
276 nonylphenol, estrone, and 17 β -estradiol.² Inhibition of sorption demonstrated for binary phenol
277 mixtures and a range of sorbents has been attributed to hydrogen bonding, electrostatics, and

278 overlapping pi orbital interactions.^{56, 57} Our results suggest that such intermolecular competitive
279 effects occur for the three, electron transfer-limited phenols in reactions with δ -MnO₂.

280 **Impacts of mixtures on a sorption-limited phenol.** Unlike the other three phenols, the
281 rate of 4,4'-biphenol oxidation by δ -MnO₂ increases significantly in the presence of the other three
282 phenolic contaminants ($p = 6.66 \times 10^{-5}$; **Figure 2**). For example, the 4,4'-biphenol oxidation rate
283 increases by a factor of 42 in the presence of triclosan, a factor of 55 in the presence of bisphenol
284 A, and a factor 152 in the presence of resorcinol (total phenol concentration = 20 μ M). The largest
285 increase in 4,4'-biphenol oxidation rate is observed in the solution containing all four phenols
286 (total phenol concentration = 40 μ M) in which the oxidation rate is 268 times higher compared to
287 the rate observed when 10 μ M 4,4'-biphenol reacts with δ -MnO₂ in the absence of other phenols.
288 The large increase in 4,4'-biphenol oxidation rate is contrary to our hypothesis that sorption-
289 limited phenols would undergo the largest decrease in oxidation in the presence of other phenols.
290 Thus, these results indicate that competition does not inhibit 4,4'-biphenol oxidation as observed
291 in the case of electron transfer-limited phenols, but instead suggest that another mechanism (e.g.,
292 enhanced sorption or radical-mediated reactions) increases the rate of 4,4'-biphenol oxidation in
293 these mixtures.

294 Sorption of 4,4'-biphenol is 2 – 4 times greater in paired mixtures than in isolated reactions,
295 resulting in its oxidation becoming electron transfer-limited rather than sorption-limited. A similar
296 increase in sorption (i.e., a factor of 2) and shift in mechanism is observed in control experiments
297 when the initial 4,4'-biphenol concentration increases from 10 to 40 μ M (**Figure 1**), suggesting
298 that the shift from sorption-limited to electron transfer-limited oxidation of 4,4'-biphenol in these
299 mixtures results from greater organic loading. However, this shift in mechanism does not fully
300 explain the large increase in 4,4'-biphenol oxidation rate observed in phenol mixtures because the

301 rate only increases by a factor of 2 in the 40 μM 4,4'-biphenol control in contrast with the >200
302 times increase observed when all four phenols are present as a mixture (total phenol concentration
303 = 40 μM).

304 Because enhanced sorption is not the sole mechanism of increased 4,4'-biphenol oxidation
305 rate, we evaluate the role of indirect oxidation by phenoxy radicals. As phenols are oxidized by δ -
306 MnO_2 , they form a phenoxy radical as the product of the first electron transfer. While phenoxy
307 radicals are transient and difficult to observe,⁵⁸ thermodynamic and kinetic calculations show that
308 the radical is a key intermediate in single electron oxidation reactions such as those involving Mn
309 oxide mineral surfaces and phenolic compounds.⁵⁹ This radical may remain sorbed to the Mn
310 surface and undergo a second electron transfer or diffuse from the surface and react in solution.¹,
311 ^{2, 21, 32} For example, phenoxy radicals generated by the reaction of phenols with Mn oxides can
312 undergo radical coupling to form polymeric hydroquinone-like products.^{1, 2, 32} Polymeric product
313 formation from bisphenol A oxidation is not dependent on initial concentration despite changes in
314 bisphenol A oxidation rate and $\delta\text{-MnO}_2$ reduction, suggesting that single-electron transfer
315 reactions are linked to radical coupled polymeric products.²⁸ Similarly, studies of triclosan and
316 chlorophene oxidation by manganese oxides link fast, electron transfer-limited reaction
317 mechanisms with the formation of radical coupled dimer products identified by mass
318 spectrometry.⁴⁸ Given these findings, resorcinol, bisphenol A, and triclosan are all likely to
319 undergo a one electron transfer reaction at the Mn surface to form a phenoxy radical.³⁵ Thus, we
320 investigate whether the phenoxy radicals produced as initial products of resorcinol, bisphenol A,
321 and triclosan oxidation by $\delta\text{-MnO}_2$ can react with 4,4'-biphenol, resulting in enhanced 4,4'-
322 biphenol oxidation.

323 To test for oxidation by radical production in mixtures of the other three phenolic
324 contaminants and 4,4-biphenol, we examined individual phenols, paired mixtures, and
325 combinations of all four phenols in the presence of *tert*-butanol, a non-specific radical quencher
326 that is not likely to react directly with Mn oxides⁴⁹⁻⁵³ and does not alter the mineral surface (**Table**
327 **S1**). Little change in oxidation rate is observed with *tert*-butanol in solution with triclosan,
328 resorcinol, and bisphenol A both in isolation or in mixtures (**Section S7**). This suggests that
329 secondary reactions of phenoxy radicals with these phenols are not responsible for oxidation of
330 the parent compounds, confirming the assumption that direct electron transfer from δ -MnO₂ is the
331 dominant oxidation mechanism for these three phenols. Similarly, the oxidation rate of 4,4'-
332 biphenol by δ -MnO₂ in control experiments with and without *tert*-butanol is nearly identical (3.7
333 $\times 10^{-3}$ hr⁻¹ and 3.1×10^{-3} hr⁻¹, respectively; **Figure 3a**), indicating that the presence of the radical
334 quencher does not impact the direct oxidation of 4,4'-biphenol by δ -MnO₂.

335 The addition of *tert*-butanol to solutions containing mixtures of 4,4'-biphenol and other
336 phenols consistently results in decreased 4,4'-biphenol oxidation rates compared to unquenched
337 reactions (**Figure 3a**). The 4,4'-biphenol oxidation rate decreases by a factor of 1.3 when *tert*-
338 butanol is added in the mixtures containing bisphenol A and a factor of 5.9 when the quencher is
339 added to a solution containing all four phenols. The largest difference between quenched and
340 unquenched reactions is observed when resorcinol is present (i.e., either the resorcinol and 4,4'-
341 biphenol pair or the combination of four phenols), indicating that resorcinol-derived phenoxy
342 radicals may be most reactive with 4,4'-biphenol. The decrease in 4,4'-biphenol oxidation rates in
343 the presence of a non-specific radical quencher provides evidence for indirect oxidation of 4,4'-
344 biphenol by phenoxy radicals generated by the other three phenols.

345 The relative change in 4,4'-biphenol oxidation rate in the presence and absence of the
346 quencher varies among the different phenol combinations. However, it is noteworthy that the
347 absolute 4,4'-biphenol oxidation rate in the presence of the radical quencher and other phenols is
348 nearly identical (i.e., average for all 4,4'-biphenol competition experiments with *tert*-butanol =
349 $0.11 \pm 0.04 \text{ hr}^{-1}$; **Figure 3a**). Thus, the radical quencher decreases the 4,4'-biphenol oxidation rate
350 to a consistent value regardless of the phenol mixture. However, the average radical quenched rate
351 is still 30 times higher than the 4,4'-biphenol oxidation rate observed in the absence of other
352 phenols, indicating that phenoxy radical-mediated reactions are not solely responsible for the
353 enhanced 4,4'-biphenol oxidation rate observed in mixtures.

354 An examination of the amount of 4,4'-biphenol sorbed to the δ -MnO₂ surface reveals that
355 the presence of 2 mM *tert*-butanol leads to enhanced sorption (**Figure 3b**). For example, sorption
356 of 4,4'-biphenol to the δ -MnO₂ surface increases from $29 \pm 28\%$ to $81 \pm 6\%$ in unquenched and
357 quenched 10 μM controls, respectively. Similarly, 4,4'-biphenol sorption in phenol mixtures
358 increases from 46% to 76% (average of all mixture combinations) in the absence and presence of
359 *tert*-butanol. Thus, this data suggests that the presence of *tert*-butanol alone influences 4,4'-
360 biphenol sorption to a greater extent than the presence of other phenols. While *tert*-butanol does
361 not react directly with Mn oxides or change the Mn oxide oxidation state or surface area (**Table**
362 **S2**), it is possible that the high *tert*-butanol concentration results in favorable interactions between
363 4,4'-biphenol and a more organic-rich oxide surface. Therefore, the enhanced sorption of 4,4'-
364 biphenol to the δ -MnO₂ surface due to *tert*-butanol partially counterbalances the effect of the
365 radical quencher, emphasizing the importance of carefully interpreting results in heterogenous
366 systems.

367 We conclude that there are two mechanisms contributing to the enhanced oxidation of the
368 sorption-limited phenol (i.e., 4,4'-biphenol) by δ -MnO₂ in the presence of other highly reactive
369 phenols. First, the data clearly indicate that the presence of additional organic compounds increases
370 the extent of 4,4'-biphenol sorption to the mineral surface, likely through enhanced partitioning to
371 an organic-rich surface. This is observed for 4,4'-biphenol in individual reactions (**Figure 1b**), in
372 binary mixtures (**Figure 2b**), and in the presence of 2 mM *tert*-butanol (**Figure 3b**). While we
373 focus our analysis on maximum sorption in order to identify shifts in mechanism, the presence of
374 other organics may also influence the rate of sorption and partially contribute to enhanced 4,4'-
375 biphenol oxidation rates. However, the fact that the 4,4'-biphenol oxidation rate only increases
376 modestly in individual reactions (40 μ M vs. 10 μ M; **Figure 1a**) and is unchanged in the presence
377 of 2 mM *tert*-butanol (**Figure 3a**) demonstrates that enhanced sorption does not fully explain the
378 large increase in 4,4'-biphenol oxidation rate in the presence of other phenols. The ability of a non-
379 specific radical quencher to decrease 4,4'-biphenol oxidation rates in mixtures indicates that
380 radicals generated during the one electron oxidation of resorcinol, bisphenol A, and triclosan are
381 involved, thus demonstrating the presence of a novel indirect mechanism of 4,4'-biphenol
382 oxidation in this complex system.

383 **Conclusion.** Phenolic contaminants are frequently present as mixtures in the environment,
384 which influences both their toxicity and their removal efficiency in water treatment processes.
385 Studying the fate of mixtures is complicated due to the large number of possible contaminants. As
386 a result, little is known about how contaminants interact in water treatment processes, including
387 processes that use manganese oxides to oxidize phenols.

388 Depending on the phenolic contaminant of interest, oxidation by Mn oxides may be either
389 enhanced or inhibited by mixture effects. In general, the studied electron transfer-limited

390 contaminants, including resorcinol, BPA, and triclosan, have inhibited oxidation in mixtures due
391 to competitive interactions with other compounds. In contrast, the sorption-limited phenol (i.e.,
392 4,4'-biphenol) is oxidized more quickly in mixtures. Our evidence suggests the increase in 4,4'-
393 biphenol pseudo-first-order oxidation rates results from a modest contribution of enhanced
394 sorption to the mineral surface and, importantly, indirect oxidation by phenoxy radical products of
395 other phenols in solution. This pathway is supported by observed product dependency on oxidation
396 mechanisms in previous studies,^{28, 48} as well as decreases in 4,4'-biphenol oxidation rates in the
397 presence of *tert*-butanol here. Although product identification is necessary to further confirm this
398 radical-mediated oxidation enhancement pathway, this study provides evidence of indirect
399 oxidation in mixtures of phenolic contaminants by δ -MnO₂, highlighting the importance of
400 mechanistic and kinetic studies of study complex mixtures.

401 These results are especially relevant for stormwater, wastewater, and landfill leachate
402 which contain a wide array of phenolic contaminants and are primary candidates for treatment by
403 manganese oxides.^{4, 5, 8, 60-63} Electron transfer-limited contaminants, which generally have higher
404 oxidation rates with manganese oxides compared to sorption-limited contaminants,^{2, 34} will likely
405 undergo less sorption and slower oxidation than observed in isolated solutions. In contrast, some
406 slow reacting sorption-limited contaminants may have increased oxidative degradation in mixtures
407 treated with manganese oxides.

408 While this study provides mechanistic insights into the complex interactions of individual
409 phenols with manganese oxides, further research is needed on the role of dissolved organic matter
410 in this complex system in order to assess efficacy and mechanism in treatment systems. The
411 existing literature is contradictory and varying effects of DOM on organic compound
412 transformation rates by manganese oxides have been reported. For example, DOM can decrease,⁶

413 ⁶⁴ increase,⁶⁵ or have no effect^{6, 66} on the oxidation rate of bisphenol A by manganese oxides. DOM
414 contains phenols as redox active moieties^{40-42, 67} and it is likely that variable DOM composition
415 (e.g., total phenolic content and reactivity of individual phenolic moieties) contributes to differing
416 effects observed in previous studies. This study demonstrates that individual model phenols result
417 in different trends (i.e., competition or enhancement) and thus provides insight into the variable
418 behavior observed when DOM (i.e., a complex mixture rich in phenolic moieties) is present.

419

420 **Acknowledgements**

421 Funding was provided by the National Science Foundation (CBET 1509879 and CBET
422 1944464). Any opinions, findings, and conclusions or recommendations expressed in this material
423 are those of the authors and do not necessarily reflect the views of the National Science
424 Foundation. X-ray absorption spectroscopy was conducted at Sector 10 of the Advanced Photon
425 Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE
426 Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
427 MRCAT operations are supported by the Department of Energy and MRCAT member institutions.

428

429 **Supporting Information Available**

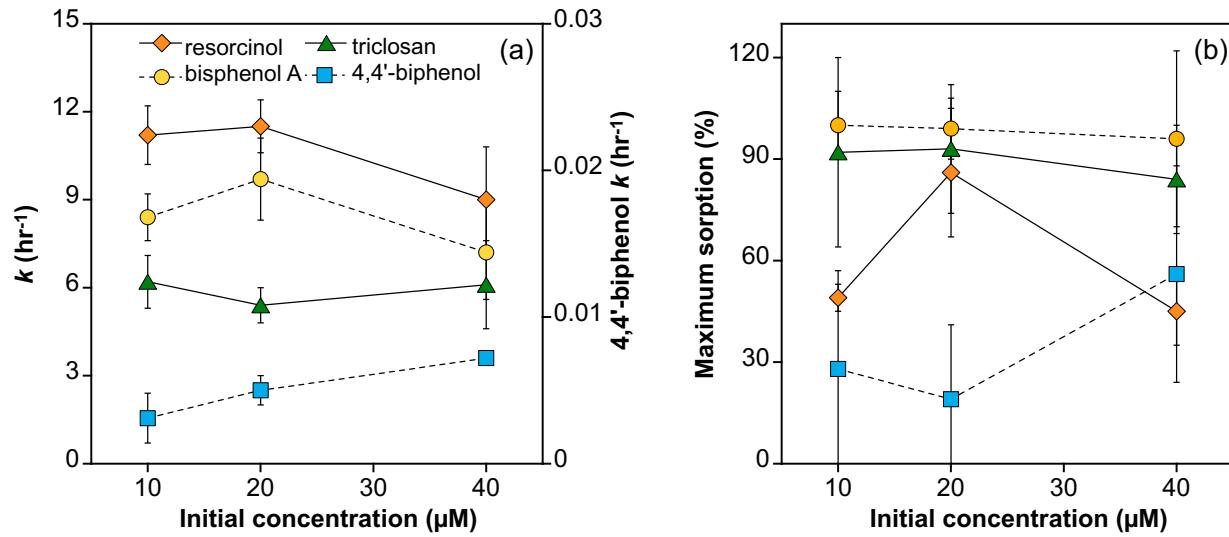
430 Additional experimental details, manganese oxide synthesis methods, raw kinetic data,
431 tabulated kinetic and sorption data, Figures S1-S3, and Tables S1-S11 are included in the
432 Supporting Information.

433 **Tables and Figures**434 **Table 1.** Chemical structure, contaminant class, and rate limiting step of oxidation by δ -MnO₂ of
435 each phenolic contaminant.

Phenol	Structure	Contaminant class	Rate limiting step
triclosan		antimicrobial agent	electron transfer-limited
bisphenol A		plastics production; endocrine disruptor	electron transfer-limited
resorcinol		pharmaceutical	electron transfer-limited
4,4'-biphenol		antioxidant	sorption-limited

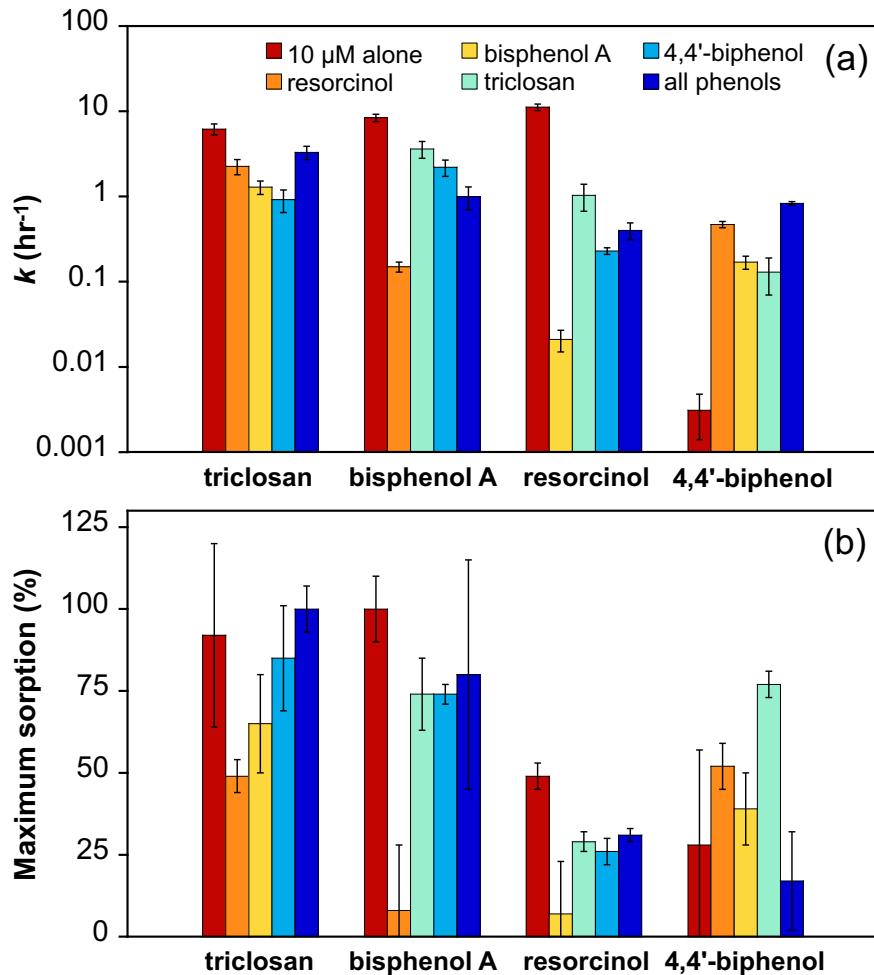
436

437

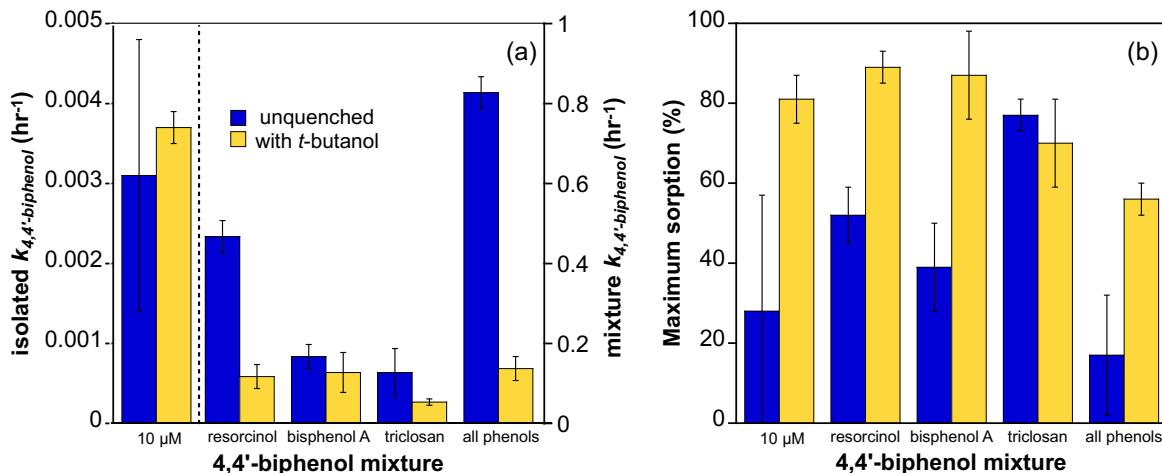

438

439 **Table 2.** Structure-activity and partitioning constants for resorcinol, bisphenol A, triclosan, and
440 4,4'-biphenol. Constants include the acid dissociation constant (pK_a), energy of the highest
441 occupied molecular orbital (E_{HOMO}), oxidation potential (E_{ox}), log of the octanol:water partitioning
442 coefficient ($\log K_{ow}$), and the pH adjusted value ($\log D_{ow}$). Sources for each constant are given in
443 subscript following the column heading.

	pK_a^{48}	E_{HOMO} (eV) ²	E_{ox} (V vs. SHE) ²	$\log K_{ow}^{48}$	$\log D_{ow}^{48}$
resorcinol	9.26	-7.77	1.83	0.93	1.37
bisphenol A	9.78	-7.49	2.22	3.32	4.05
triclosan	7.68	-7.78	2.07	4.76	4.98
4,4'-biphenol	9.64	-7.23	1.82	2.80	3.01


444

445


447
448 **Figure 1.** (a) Pseudo-first-order oxidation rates and (b) maximum percent sorption versus initial
449 concentration of resorcinol, bisphenol A, triclosan, and 4,4'-biphenol reacted with $\delta\text{-MnO}_2$ at pH
450 5.5. Error bars are ± 1 standard deviation of triplicate reactors. This data is tabulated in **Tables S3**
451 and **S6**.

452
453
454
455
456
457
458
459

460
461
462
463
464
465
466
467
468
469

Figure 2. (a) Pseudo-first-order oxidation rates and (b) maximum percent sorption of resorcinol, bisphenol A, triclosan, and 4,4'-biphenol reacted with $\delta\text{-MnO}_2$ at pH 5.5 in isolation or in mixture solutions with other phenolic contaminants. Error bars are ± 1 standard deviation of triplicate reactors. This data is tabulated in **Tables S4 and S7**.

470
471 **Figure 3.** (a) Pseudo-first-order oxidation rates and (b) maximum percent sorption of 4,4'-
472 biphenol reacted with $\delta\text{-MnO}_2$ with and without 2 mM *tert*-butanol in solution. Bars correspond
473 to 4,4'-biphenol without other phenols ($[\text{phenol}]_{\text{total}} = 10 \mu\text{M}$), 4,4'-biphenol with 10 μM
474 resorcinol, bisphenol A, or triclosan ($[\text{phenol}]_{\text{total}} = 20 \mu\text{M}$), and 4,4'-biphenol with all other
475 phenols ($[\text{phenol}]_{\text{total}} = 40 \mu\text{M}$). Error bars are ± 1 standard deviation of triplicate reactors. This
476 data is tabulated in **Tables S5 and S8**.
477

478 **References**

479

480 1. Remucal, C. K.; Ginder-Vogel, M., A critical review of the reactivity of manganese oxides
481 with organic contaminants. *Environ. Sci. Processes Impacts* **2014**, *16*, (6), 1247.

482 2. Trainer, E. L.; Ginder-Vogel, M.; Remucal, C. K., Organic structure and solid
483 characteristics determine reactivity of phenolic compounds with synthetic and reclaimed
484 manganese oxides. *Environ. Sci. Water Res. Tech.* **2020**, *6*, (3), 540-553.

485 3. Charbonnet, J. A.; Duan, Y.; van Genuchten, C. M.; Sedlak, D. L., Chemical regeneration
486 of manganese oxide-coated sand for oxidation of organic stormwater contaminants.
487 *Environ. Sci. Technol.* **2018**, *52*, (18), 10728-10736.

488 4. Yang, Y.; Ok, Y. S.; Kim, K. H.; Kwon, E. E.; Tsang, Y. F., Occurrences and removal of
489 pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage
490 treatment plants: A review. *Sci Total Environ* **2017**, *596-597*, 303-320.

491 5. Wu, Q.; Lam, J. C. W.; Kwok, K. Y.; Tsui, M. M. P.; Lam, P. K. S., Occurrence and fate
492 of endogenous steroid hormones, alkylphenol ethoxylates, bisphenol A and phthalates in
493 municipal sewage treatment systems. *J. Environ. Sci.* **2017**, *61*, 49-58.

494 6. Grebel, J. E.; Charbonnet, J. A.; Sedlak, D. L., Oxidation of organic contaminants by
495 manganese oxide geomedia for passive urban stormwater treatment systems. *Water Res.*
496 **2016**, *88*, 481-491.

497 7. Luthy, R. G.; Sedlak, D. L. Enhanced removal of nutrients and trace organic contaminants
498 in pilot-scale stormwater treatment systems; Water Research Foundation Final Report
499 Project # 4567; **2017**.

500 8. Okaikue-Woodi, F. E. K.; Cherukumilli, K.; Ray, J. R., A critical review of contaminant
501 removal by conventional and emerging media for urban stormwater treatment in the United
502 States. *Water Res.* **2020**, *187*, 116434.

503 9. Zhang, H.; Chen, W.-R.; Huang, C.-H., Kinetic modeling of oxidation of antibacterial
504 agents by manganese oxide. *Environ. Sci. Technol.* **2008**, *42*, (15), 5548-5554.

505 10. Zhang, Y.; Zhu, H.; Szewzyk, U.; Lübbecke, S.; Uwe Geissen, S., Removal of emerging
506 organic contaminants with a pilot-scale biofilter packed with natural manganese oxides.
507 *Chem. Eng. J.* **2017**, *317*, 454-460.

508 11. Bexfield, L. M.; Toccalino, P. L.; Belitz, K.; Foreman, W. T.; Furlong, E. T., Hormones
509 and pharmaceuticals in groundwater used as a source of drinking water across the United
510 States. *Environ. Sci. Technol.* **2019**, *53*, (6), 2950-2960.

511 12. Bulloch, D. N.; Nelson, E. D.; Carr, S. A.; Wissman, C. R.; Armstrong, J. L.; Schlenk, D.;
512 Larive, C. K., Occurrence of halogenated transformation products of selected
513 pharmaceuticals and personal care products in secondary and tertiary treated wastewaters
514 from Southern California. *Environ. Sci. Technol.* **2015**, *49*, (4), 2044-2051.

515 13. Bonefeld-Jorgensen, E. C.; Long, M.; Hofmeister, M. V.; Vinggaard, A. M., Endocrine-
516 disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-
517 n-octylphenol in vitro: New data and a brief review. *Environ. Health. Perspect.* **2007**, *115*
518 *Suppl 1*, 69-76.

519 14. Covaci, A.; Voorspoels, S.; Abdallah, M. A.; Geens, T.; Harrad, S.; Law, R. J., Analytical
520 and environmental aspects of the flame retardant tetrabromobisphenol-A and its
521 derivatives. *J. Chromatogr. A* **2009**, *1216*, (3), 346-63.

522 15. Feng, Y.; Zhang, P.; Zhang, Z.; Shi, J.; Jiao, Z.; Shao, B., Endocrine disrupting effects of
523 triclosan on the placenta in pregnant rats. *PLoS One* **2016**, *11*, (5), e0154758.

524 16. Pollock, T.; Mantella, L.; Reali, V.; deCatanzaro, D., Influence of tetrabromobisphenol A,
525 with or without concurrent triclosan, upon bisphenol A and estradiol concentrations in
526 mice. *Environ. Health Perspect.* **2017**, *125*, (8), 087014.

527 17. Pollock, T.; Weaver, R. E.; Ghasemi, R.; deCatanzaro, D., A mixture of five endocrine-
528 disrupting chemicals modulates concentrations of bisphenol A and estradiol in mice.
529 *Chemosphere* **2018**, *193*, 321-328.

530 18. Li, Z.; Zhang, H.; Gibson, M.; Li, J., An evaluation on combination effects of phenolic
531 endocrine disruptors by estrogen receptor binding assay. *Toxicol. In Vitro* **2012**, *26*, (6),
532 769-74.

533 19. Pizzigallo, M.; Ruggiero, P.; Crecchio, C.; Mininni, R., Manganese and iron oxides as
534 reactants for oxidation of chlorophenols. *Soil Sci. Soc. Am. J.* **1995**, *59*, (2), 444-452.

535 20. Stone, A. T., Reductive dissolution of manganese(III/IV) oxides by substituted phenols.
536 *Environ. Sci. Technol.* **1987**, *21*, (10), 979-988.

537 21. Ulrich, H. J.; Stone, A. T., The oxidation of chlorophenols adsorbed to manganese oxide
538 surfaces. *Environ. Sci. Technol.* **1989**, *23*, (4), 421-428.

539 22. Borch, T.; Kretzschmar, R.; Kappler, A.; Cappellen, P. V.; Ginder-Vogel, M.; Voegelin,
540 A.; Campbell, K., Biogeochemical redox processes and their impact on contaminant
541 dynamics. *Environ. Sci. Technol.* **2010**, *44*, (1), 15-23.

542 23. Yang, Y.; Ali, A.; Su, J.; Chang, Q.; Xu, L.; Su, L.; Qi, Z., Phenol and 17beta-estradiol
543 removal by *Zoogloea* sp. MFQ7 and in-situ generated biogenic manganese oxides:
544 Performance, kinetics and mechanism. *J. Hazard. Mater.* **2022**, *429*, 128281.

545 24. Skousen, J.; Zipper, C. E.; Rose, A.; Ziemkiewicz, P. F.; Nairn, R.; McDonald, L. M.;
546 Kleinmann, R. L., Review of passive systems for acid mine drainage treatment. *Mine Water
547 Environ.* **2016**, *36*, (1), 133-153.

548 25. Liu, W.; Langenhoff, A. A. M.; Sutton, N. B.; Rijnarts, H. H. M., Biological regeneration
549 of manganese (IV) and iron (III) for anaerobic metal oxide-mediated removal of
550 pharmaceuticals from water. *Chemosphere* **2018**, *208*, 122-130.

551 26. Grebel, J. E.; Mohanty, S. K.; Torkelson, A. A.; Boehm, A. B.; Higgins, C. P.; Maxwell,
552 R. M.; Nelson, K. L.; Sedlak, D. L., Engineered infiltration systems for urban stormwater
553 reclamation. *Env. Eng. Sci.* **2013**, *30*, (8), 437-454.

554 27. Post, J. E., Manganese oxide minerals: Crystal structures and economic and environmental
555 significance. *Proc. Nat. Acad. Sci.* **1999**, *96*, (7), 3447-3454.

556 28. Balgooyen, S.; Campagnola, G.; Remucal, C. K.; Ginder-Vogel, M., Impact of bisphenol
557 A influent concentration and reaction time on MnO₂ transformation in a stirred flow
558 reactor. *Environ. Sci. Processes Impacts* **2019**, *21*, 19-27.

559 29. Park, J.-W.; Dec, J.; Kim, J.-E.; Bollag, J.-M., Effect of humic constituents on the
560 transformation of chlorinated phenols and anilines in the presence of oxidoreductive
561 enzymes or birnessite. *Environ. Sci. Technol.* **1999**, *33*, (12), 2028-2034.

562 30. Zhao, L.; Yu, Z.; Peng, P. a. a.; Huang, W.; Dong, Y., Oxidative transformation of
563 tetrachlorophenols and trichlorophenols by manganese dioxide. *Environ. Toxicol. Chem.*
564 **2009**, *28*, (6), 1120-1129.

565 31. Shaikh, N.; Taujale, S.; Zhang, H.; Artyushkova, K.; Ali, A.-M. S.; Cerrato, J. M.,
566 Spectroscopic investigation of interfacial interaction of manganese oxide with triclosan,
567 aniline, and phenol. *Environ. Sci. Technol.* **2016**, *50*, (20), 10978-10987.

568 32. Stone, A. T.; Morgan, J. J., Reduction and dissolution of manganese (III) and manganese
569 (IV) oxides by organics: 2. Survey of the reactivity of organics. *Environ. Sci. Technol.*
570 **1984**, *18*, (8), 617-624.

571 33. Balgooyen, S.; Alaimo, P. J.; Remucal, C. K.; Ginder-Vogel, M., Structural transformation
572 of MnO₂ during the oxidation of bisphenol A. *Environ. Sci. Technol.* **2017**, *51*, (11), 6053-
573 6062.

574 34. Shaikh, N.; Zhang, H.; Rasamani, K.; Artyushkova, K.; Ali, A. S.; Cerrato, J. M., Reaction
575 of bisphenol A with synthetic and commercial MnO_{x(s)}: Spectroscopic and kinetic study.
576 *Environ. Sci. Processes Impacts* **2018**, *20*, (7), 1046-1055.

577 35. Luther, G. W., Manganese(II) oxidation and Mn(IV) reduction in the environment: Two
578 one-electron transfer steps versus a single two-electron step. *Geomicrobiol. J.* **2005**, *22*,
579 (3-4), 195-203.

580 36. Jiang, L.; Gu, Y.; Guo, H.; Liu, L.; Chen, J., Efficient removal of 17 α -ethinylestradiol
581 (EE2) from water using freshly formed Fe-Mn binary oxide. *RSC Advances* **2017**, *7*, (38),
582 23802-23811.

583 37. Im, J.; Prevatte, C. W.; Campagna, S. R.; Loffler, F. E., Identification of 4-hydroxycumyl
584 alcohol as the major MnO₂-mediated bisphenol A transformation product and evaluation
585 of its environmental fate. *Environ. Sci. Technol.* **2015**, *49*, (10), 6214-21.

586 38. Liu, A.; Shi, J.; Qu, G.; Hu, L.; Ma, Q.; Song, M.; Jing, C.; Jiang, G., Identification of
587 emerging brominated chemicals as the transformation products of tetrabromobisphenol A
588 (TBBPA) derivatives in soil. *Environ. Sci. Technol.* **2017**, *51*, (10), 5434-5444.

589 39. Ding, J.; Su, M.; Wu, C.; Lin, K., Transformation of triclosan to 2,8-dichlorodibenzo-*p*-
590 dioxin by iron and manganese oxides under near dry conditions. *Chemosphere* **2015**, *133*,
591 41-6.

592 40. Aeschbacher, M.; Graf, C.; Schwarzenbach, R. P.; Sander, M., Antioxidant properties of
593 humic substances. *Environ. Sci. Technol.* **2012**, *46*, (9), 4916-4925.

594 41. Walpen, N.; Getzinger, G. J.; Schroth, M. H.; Sander, M., Electron-donating phenolic and
595 electron-accepting quinone moieties in peat dissolved organic matter: Quantities and redox
596 transformations in the context of peat biogeochemistry. *Environ. Sci. Technol.* **2018**, *52*,
597 (9), 5236-5245.

598 42. Trainer, E. L.; Ginder-Vogel, M.; Remucal, C. K., Selective reactivity and oxidation of
599 dissolved organic matter by manganese oxides. *Environ. Sci. Technol.* **2021**, *55*, (17),
600 12084-12094.

601 43. Ding, Z.; Ding, Y.; Liu, F.; Yang, J.; Li, R.; Dang, Z.; Shi, Z., Coupled sorption and
602 oxidation of soil dissolved organic matter on manganese oxides: Nano/sub-nanoscale
603 distribution and molecular transformation. *Environ. Sci. Technol.* **2022**, *56*, (4), 2783-2793.

604 44. Murray, J. W., The surface chemistry of hydrous manganese dioxide. *J. Colloid Interface
605 Sci.* **1974**, *46*, (3), 357-371.

606 45. Fowler, R. F.; Bright, H. A., Standardization of permanganate solutions with sodium
607 oxalate. U.S. Department of Commerce; National Bureau of Standards: **1935**; Vol. 15, pp
608 493-501.

609 46. Ohlweiler, O. A.; Schneider, A. M. H., Standardization of potassium permanganate by
610 titration of sodium oxalate in presence of perchloric acid and manganese(II) sulfate. *Anal.
611 Chim. Acta* **1972**, *58*, (477-480).

612 47. Manceau, A.; Marcus, M. A.; Grangeon, S., Determination of Mn valence states in mixed-
613 valent manganates by XANES spectroscopy. *Am. Mineral.* **2012**, *97*, (5-6), 816-827.

614 48. Zhang, H.; Huang, C.-H., Oxidative transformation of triclosan and chlorophene by
615 manganese oxides. *Environ. Sci. Technol.* **2003**, *37*, (11), 2421-2430.

616 49. Gao, J.; Duan, X.; O'Shea, K.; Dionysiou, D. D., Degradation and transformation of
617 bisphenol A in UV/Sodium percarbonate: Dual role of carbonate radical anion. *Water Res.*
618 **2020**, *171*, 115394.

619 50. Liu, J.; An, F.; Li, M.; Yang, L.; Wan, J.; Zhang, S., Efficient degradation of 2,4-
620 dichlorophenol on activation of peroxyomonosulfate mediated by MnO₂. *Bull. Environ.*
621 *Contam. Toxicol.* **2021**, *107*, (2), 255-262.

622 51. Shahamat, Y. D.; Farzadikia, M.; Nasseri, S.; Mahvi, A. H.; Gholmani, M.; Esrafili, A.,
623 Magnetic heterogeneous catalytic ozonation: A new removal method for phenol in
624 industrial wastewater. *J. Environ. Health Sci. Eng.* **2014**, *12*, 50.

625 52. Huang, J.; Dai, Y.; Singewald, K.; Liu, C.-C.; Saxena, S.; Zhang, H., Effects of MnO₂ of
626 different structures on activation of peroxyomonosulfate for bisphenol A degradation under
627 acidic conditions. *Chem. Eng. J.* **2019**, *370*, 906-915.

628 53. Zhang, P.; Zhang, G.; Dong, J.; Fan, M.; Zeng, G., Bisphenol A oxidative removal by
629 ferrate (Fe(VI)) under a weak acidic condition. *Sep. Purif. Technol.* **2012**, *84*, 46-51.

630 54. Pavitt, A. S.; Bylaska, E. J.; Tratnyek, P. G., Oxidation potentials of phenols and anilines:
631 Correlation analysis of electrochemical and theoretical values. *Environ. Sci. Processes
632 Impacts* **2017**, *19*, (3), 339-349.

633 55. Arnold, W. A.; Oueis, Y.; O'Connor, M.; Rinaman, J. E.; Taggart, M. G.; McCarthy, R.
634 E.; Foster, K. A.; Latch, D. E., QSARs for phenols and phenolates: Oxidation potential as
635 a predictor of reaction rate constants with photochemically produced oxidants. *Environ.
636 Sci. Processes Impacts* **2017**, *19*, 314-338.

637 56. Zhou, K.; Zhang, J.; Xiao, Y.; Zhao, Z.; Zhang, M.; Wang, L.; Zhang, X.; Zhou, C., High-
638 efficiency adsorption of and competition between phenol and hydroquinone in aqueous
639 solution on highly cationic amino-poly(vinylamine)-functionalized GO-(o-MWCNTs)
640 magnetic nanohybrids. *Chem. Eng. J.* **2020**, *389*.

641 57. Jiang, L.; Yu, Z.; Liu, Y.; Xian, M.; Xu, C., Mechanisms associated with the separation of
642 phenols from complex coexisting systems. *J. Environ. Chem. Eng.* **2022**, *10*, (3).

643 58. Waters, W. A., Comments on the mechanism of one-electron oxidation of phenols: A fresh
644 interpretation of oxidative coupling reactions of plant phenols. *J. Chem. Soc. B* **1971**, 2026-
645 2029.

646 59. Bailey, S. I.; Ritchie, I. M.; Hewgill, F. R., The construction and use of potential-pH
647 diagrams in organic oxidation-reduction reactions. *J. Chem. Soc. Perk. Trans. 2* **1983**, (5),
648 645-652.

649 60. Wolfand, J. M.; Seller, C.; Bell, C. D.; Cho, Y. M.; Oetjen, K.; Hogue, T. S.; Luthy, R. G.,
650 Occurrence of urban-use pesticides and management with enhanced stormwater control
651 measures at the watershed scale. *Environ. Sci. Technol.* **2019**, *53*, (7), 3634-3644.

652 61. Montes-Grajales, D.; Fennix-Agudelo, M.; Miranda-Castro, W., Occurrence of personal
653 care products as emerging chemicals of concern in water resources: A review. *Sci. Total
654 Environ.* **2017**, *595*, 601-614.

655 62. Oulton, R. L.; Kohn, T.; Cwiertny, D. M., Pharmaceuticals and personal care products in
656 effluent matrices: A survey of transformation and removal during wastewater treatment
657 and implications for wastewater management. *J. Environ. Monit.* **2010**, *12*, (11), 1956-78.

658 63. Thomaidis, N. S.; Gago-Ferrero, P.; Ort, C.; Maragou, N. C.; Alygizakis, N. A.; Borova,
659 V. L.; Dasenaki, M. E., Reflection of socioeconomic changes in wastewater: Licit and illicit
660 drug use patterns. *Environ. Sci. Technol.* **2016**, *50*, (18), 10065-10072.

661 64. Zhang, T.; Zhang, X.; Yan, X.; Ng, J.; Wang, Y.; Sun, D. D., Removal of bisphenol A via
662 a hybrid process combining oxidation on β -MnO₂ nanowires with microfiltration. *Coll.*
663 *Surf. A Phys. Eng. Asp.* **2011**, *392*, (1), 198-204.

664 65. Lin, K.; Peng, Y.; Huang, X.; Ding, J., Transformation of bisphenol A by manganese oxide-
665 coated sand. *Environ. Sci. Poll. Res.* **2012**, *20*, (3), 1461-1467.

666 66. Lin, K.; Liu, W.; Gan, J., Oxidative removal of bisphenol A by manganese dioxide:
667 Efficacy, products, and pathways. *Environ. Sci. Technol.* **2009**, *43*, (10), 3860-3864.

668 67. Remucal, C. K.; Salhi, E.; Walpen, N.; von Gunten, U., Molecular-level transformation of
669 dissolved organic matter during oxidation by ozone and hydroxyl radical. *Environ. Sci.*
670 *Technol.* **2020**, *54*, 10351-10360.

671 68. U.S. Environmental Protection Agency, *Estimation Programs Interface SuiteTM for*
672 *Microsoft® Windows*, Washington DC, **2012**.

673