Downloaded 12/06/23 to 58.194.168.130 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

MULTISCALE MODEL. SIMUL. @ 2023 Society for Industrial and Applied Mathematics
Vol. 21, No. 4, pp. 1690-1716

ANALYSIS AND SIMULATION OF OPTIMAL CONTROL
FOR A TWO-TIME-SCALE FRACTIONAL
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Abstract. We investigate an optimal control model with pointwise constraints governed by a
two-time-scale time-fractional advection-diffusion-reaction equation with space-time-dependent frac-
tional order and coefficients, which describes, e.g., the contaminant in groundwater under various
transport scales or miscible displacement of hydrocarbon by injected fluid through heterogeneous
porous media. To accommodate for the effects of complex fractional order and coefficients, an aux-
iliary equation method is proposed, along with the Fredholm alternative for compact operators, to
analyze the well-posedness of the state equation. Additionally, a bootstrapping argument is uti-
lized to progressively improve the solution regularity through a carefully designed pathway, leading
to the maximal regularity estimates. Subsequently, we analyze the adjoint equation derived from
the first-order optimality condition, which requires more subtle treatments due to the presence of
hidden-memory variable-order fractional operators. Based on these findings, we ultimately analyze
the well-posedness, first-order optimality conditions and maximal regularity estimates for the opti-
mal control problem, and we conduct numerical experiments to investigate its behavior in potential
applications.

Key words. two-time-scale time-fractional, optimal control, variable order, space-time depen-
dent, well-posedness, regularity

MSC codes. 35R11, 66M15, 65M60

DOI. 10.1137/23M1573537

1. Introduction.

1.1. Problem formulation. Optimal control problems are widely used in vari-
ous fields and, as a result, have been the subject of extensive research in the literature
(2, 3, 22, 25, 28, 30, 49]. In particular, optimal control problems governed by time-
fractional partial differential equations are attracting increasing attention since they
have been shown to provide competitive descriptions of challenging physical phenom-
ena such as anomalously diffusive transport [2, 14, 26, 33, 45, 46, 48, 50, 67]. Let u
be the concentration of the component of interest in the fluid mixture. In the context
of enhanced oil recovery, u represents the concentration of the injected fluid, which
consists of surfactant or other chemicals that are mixed with water and is injected
into the oil reservoir to formulate a fully miscible fluid phase aiming at displacing the
resident oil out of the oil reservoir [4, 20]. In the context of contaminant transport
and remediation, u represents the concentration of the contaminant solute that is
present in groundwater [8, 6, 45], and we aim at optimizing the pollution sources so
that the concentration of the contaminant solute reaches an ideal value at minimum
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cost. Let ¢ denote the control variable that adjusts the injection and extraction rate
of the injecting fluid from the admissible set

(1.1) Uga:={q€ L*(0,T; L*(Q)) : ¢, < q(z,t) < ¢* a.e. nQ x [0,7]}

for some g4, ¢* € R so that we can formulate the following optimal control problem:

. 1 2 T2
(1.2) pommn J(u,q) = 5”“ — Udllz200,7;02(0)) + §|‘q||L2(O,T;L2(Q))a
where ug is the prescribed target function and v > 0 is a fixed penalty parameter.
The optimization problem (1.2) is constrained by a two-time-scale time-fractional
advection-diffusion-reaction equation with space-time-dependent fractional order and
coeflicients

O+ k(@ )0 ™ u+ Lz, hu= f(@,) +q(@,1), (,1) €Qx(0,T],

(1.3)
u(z,0)=0, x€Q; wulx,t)=0, (x,t)cdx][0,T].

Here Q C RY (d = 1,2,3) is a convex polygonal domain, k(x,t) > 0 is the partition
coefficient, and L(x,t) denotes a second-order elliptic partial differential operator

(1.4) L(z,t)u:=—V - (A(z,t)Vu) + b(z,t) - Vu + c(z, t)u,

where V := (8/8x1,...,8/8xd)T, A(x,t) == (aij(m,t))ﬁjzl is the symmetric diffu-
sivity tensor, b(zx,t) := (b;(x,t))%; is the fluid velocity field, c¢(z,t) is the reaction
coefficient, f is the source and sink, and 0@ with 0 < a(,t) < o* < 1, is the

variable-order fractional differential operator defined by [41]

_ - t ds
1.5 aa(m,t) — Il a(m,t)a Il a(z,t) — / g(w, S) '
( ) t g t t9, t g 0 F(l—oz(:lz,t))(t—s)a(‘”’t)

1.2. Motivation and contribution. The optimal control model presented in
(1.2)—(1.3) faces mathematical challenges that are not typically encountered in tra-
ditional fractional optimal control problems. Specifically, the adjoint equation of
(1.3) produces a Riemann-Liouville time-fractional equation (6.1) with the so-called
hidden-memory variable order o« = a(x, s) for s € [0,¢] [41, 64]. This equation has more
complex properties than (1.5), which makes the analysis challenging. Moreover, due to
the space-time-dependent fractional orders and coefficients, existing research methods
for constant-order and even variable-order time-fractional problems and their optimal
control, such as analytical techniques [15, 50, 51|, spectral decomposition methods
[67, 65], and solution operator methods [38], are not applicable. Additionally, en-
ergy arguments used in, for example, [43, 44] cannot be directly performed, as the
variable-order fractional operators lose coercivity.

Motivated by recent works [31, 36, 61] in which the Fredholm alternative is ap-
plied to analyze the time-fractional problems with time-dependent coefficients, we
adopt this approach to analyze the optimal control problem (1.2), which is con-
strained by the two-time-scale time-fractional advection-diffusion-reaction transport
equation (1.3) with space-time-dependent fractional order, diffusivity coefficient, fluid
velocity field, and reaction coefficient. The approach of combining semigroup theory
with the Laplace transform in Banach space [38, 66] and the perturbation argument in
[34] to analyze problem (1.3), though not impossible, may be extremely complicated.
To apply the approach in [31, 36, 61], we need to properly define a compact operator
by the compact embedding H*(0,7) — H'~¢(0,T) for 0 <& < 1. This in turn forces
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the domain of the compact operator to be H'~¢(0,T) in time. However, the variable-
order fractional derivative 8f(m’t)u in the model (1.3) would require, e.g., u € H'(0,T)
in time and thus is not well-defined for u € H'=¢(0,T). To address this issue, we
introduce the auxiliary problem (3.1) with 6f(m’t)u in problem (1.3) replaced by a
weaker formulation that is well-defined for uw € H'=%(0,7) in time and subsequently
improve the solution regularity to recover and analyze the original problem (1.3). The
adjoint equation of (1.3) arising from the first-order optimality condition is then an-
alyzed with more complicated treatments due to the hidden-memory variable-order
operators. Furthermore, we combine maximal regularity estimates for classical par-
abolic equations [27] with the bootstrapping argument to progressively lift the regu-
larity of the solutions to state and adjoint equations via a carefully designed pathway
and finally prove the maximal regularity estimates for the optimal control problem.
The rest of the paper is organized as follows: In section 2, we present multiscale
effects of the proposed model to show its novelty. In section 3, we analyze the well-
posedness of an auxiliary problem. In section 4, we prove the well-posedness and
maximal regularity of the forward problem (1.3) based on that of the auxiliary prob-
lem, and we then prove those for the adjoint equation in section 5. In section 6, we
prove the well-posedness of the optimal control problem (1.2)—(1.3), derive its first
order optimality conditions, and then analyze the maximal regularity of solutions.
We then discretize the optimal control model and perform numerical experiments for
demonstration in section 7. We address concluding remarks in the last section.

1.3. Spaces and assumptions. Let C*(Z) with 0 < p < 1 be the space of
Holder continuous functions of index p on the interval Z, and let LP(€) with 1 <
p < oo be the Banach space of pth power Lebesgue integrable functions on €. For
a positive integer m, let C™ () and W™ P(Q) be the spaces of continuous functions
with continuous derivatives up to order m and the Sobolev space of LP functions
with mth weakly derivatives in LP(2), respectively. Let H™(Q2) = W™2(Q), and let
H§* () be the completion of C§°(€2), the space of infinitely differentiable functions
with compact support in €, in H™(Q2). For a noninteger s > 0, the fractional Sobolev
space H*(Q) is defined by interpolation [1]. For a Banach space X, let W™?(0,T; X)
be the space of functions in WP (0,T) with respect to || -||x. All spaces are equipped
with standard norms [1, 19].

For convenience, we may drop the subscript L? and the notation  in the inner
product and Sobolev spaces and norms, and write W™P?(X) for W™?(0,T; X) when
no confusion occurs, e.g., we write L?(L?) instead of L?(0,T; L*(Q)) for simplicity.
In subsequent sections, we use @@ and M to denote positive constants where () may
assume different values at different occurrences.

Throughout the paper, we make the following assumptions:

(a) a € WH(L>®) and 0 < a(x,t) < a* <1 on Q x [0,T].

(b) A is symmetric and positive definite uniformly on Q for each ¢ € [0,77], and

ai; € Whe(Whoo) ;€ Lo°(Who°) ce L®(L*>®) for 1 <i,j <d.

(c) ke WHeo(L>®) and f, uq € L*(L?).

(d) aij(=,-),bi(z,-),c(z,-)€eC*0,T] with g >1/2 for a.e. x€Q and 1<1¢,j <d.

2. Modeling issues. We present novelties of the proposed two-time-scale model
(1.3) from the viewpoints of the initial behavior and multiscale effects by means of
mean square displacements (MSDs). For simplicity we consider d = 1 with £(z,t) =
Ad?, i.e., the pure diffusion case, for model (1.3) throughout this section and compare
it with the following single-time-scale time-fractional diffusion equation (tFDE) [5, 54]

(2.1) Ofu—AAu=0, 0<a<l, A>0.
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F1G. 2.1. Solutions to the single-time-scale tFDE (2.1) (left) and the two-time-scale tF'DE (1.3)
(right).

This model has garnered much attention as it admits power-law decaying solutions and
is better suited than its integer-order analogue to model physical processes exhibiting
power-law memory properties such as anomalously diffusive transport through het-
erogeneous porous media [7, 9, 12, 13, 16, 17, 24, 32, 39, 45, 46, 59]. However, this
tFDE yields solutions with nonphysical initial singularities as it is derived as the dif-
fusion limit of a continuous time random walk when the number of particle jumps
tends to infinity and thus only holds for large time [45, 46]. The two-time-scale tFDE
(1.3) aims to resolve this issue. In this model, a k/(k+ 1) portion of total solute mass
gets absorbed into the aquifers and undergoes subdiffusive transport modeled by the
fractional derivative term, while the remaining portion of the solute mass in the bulk
fluid phase forms a mobile phase that undergoes a Brownian motion modeled by the
integer-order derivative term [38, 53].

To demonstrate the improvement of the two-time-scale model on the initial be-
havior, the solutions to the single-time-scale tFDE (2.1) and the two-time-scale tFDE
(1.3) with « = 0.1, A =0.01, kK = 100 (i.e., the fractional derivative is dominant),

u(x,0) = e 2.2 /(v/2n0) with o = 0.018 on a domain [—0.1,0.1] over a short time
period [0,0.01] are presented in Figure 2.1, which indicate the initial singularity and
the Fickian diffusion behavior of the solutions to (2.1) and (1.3), respectively. Later,
we will further elucidate this phenomenon from the viewpoint of MSDs.

Then we turn to exhibit the novelty of the two-time-scale model from its multiscale
effects. In the literature, [42] presents that the two-time-scale model bridges between
Fickian fluxes at early times and non-Gaussian behavior at late times. In this work
we demonstrate the multiscale effects by means of the MSDs (denoted by (X (t)?)),
where in general (X (t)2) ~ t? for some S representing the scale of diffusion. For
instance, (X (t)?) ~t for the Fickian diffusion described by the integer-order diffusion
equation and (X (t)?) ~ t“ for the subdiffusion modeled by the single-time-scale tFDE
(2.1) [45].

Let Q@ = [-10,10], T = 100, and we consider the integer-order and constant-
fractional-order cases of models (2.1) and (1.3) with k£ = 0.01, 1, and 100 in the left
plot of Figure 2.2 (the other data are the same as before). We have the following
observations: (i) The MSD of two-time-scale tFDE has almost the same behavior
as the integer-order diffusion equation for small k, while it has the same slope 0.1
as that of the single-time-scale tFDE for large k, which indicates that the two-time-
scale model provides a framework containing both integer-order and single-time-scale
models. (ii) For large k, i.e., the fractional derivative is dominant, the magnitude
of the MSD for the single-time-scale tFDE is much larger than that for the two-
time-scale tFDE, indicating the rapid initial spread, and hence the initial singularity
of the solutions to the single-time-scale tFDE due to mass conservation. This is
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F1G. 2.2. Log-log plots of MSDs. Left: the integer-order diffusion equation (curve 1), the single-
time-scale tFDE with a = 0.1 (curve 2), and the two-time-scale tFDE with o = 0.1 and k = 0.01
(curve 3), 1 (curve 4), 100 (curve 5). Right: the two-time-scale variable-order tFDE with a(0) =0.1,
a(T)=0.6 and k=0.01 (curve 1), 1 (curve 2), 100 (curve 3).

also consistent with the observations in Figure 2.1. (iii) The MSD for two-time-scale
tFDE with k£ = 1 switches smoothly from the initial Fickian diffusion behavior to
the long-term subdiffusive behavior (of order o = 0.1), which implies that the two-
time-scale tFDE provides a proper approximation for the single-time-scale tFDE for ¢
away from the initial time. Thus, in comparison with the single-time-scale tFDE, one
novelty of the two-time-scale tFDE lies in that it captures the long-term subdiffusion
behavior typical of the single-time-scale tFDE while eliminating its nonphysical initial
singularity, and thus provides a physically relevant extension of single-time-scale tFDE
to the entire time interval, including the initial time ¢t = 0.

Furthermore, in practical applications such as unconventional hydrocarbon or gas
recovery [21], the structure of porous materials may change over time while staying
heterogeneous in space, which results in a modification of the fractal dimension of
the porous material via the Hurst index [18, 45], leading to tFDEs with space-time-
dependent variable fractional order [31, 35, 57, 62, 63]. In addition, it is pointed out in
[55] that the variable order could efficiently quantify the transitions between different
diffusive states at various transport scales, which further demonstrates the advantages
of variable-order fractional models in characterizing multiscale behaviors.

To substantiate the advantages of variable order, in the right plot of Figure 2.2
we present MSDs for the two-time-scale tFDE with variable order

a(t) =a(T) + (a(0) — (7)) (1 — % — % sin (27T(1 — %))),
a smooth and monotonic function on [0, 7] with end values «(0) and «(T). The other
data follows as above. In addition to similar observations as before, we find that
the MSDs to the two-time-scale variable-order tFDE exhibit much richer structures
and behaviors, e.g., the change of slope and the convexity. This justifies the novelty
of the two-time-scale variable-order tFDE in modeling complex multiscale physical
phenomena.

3. Analysis of auxiliary problem. We analyze the following auxiliary
problem:

Opu + k(m,t)RD?(m’t)u + L(x,t)u= f(x,t) + q(x,t), (x,t)eQ x(0,7T],

(3.1)
u(z,0)=0, x=€Q; wu(x,t)=0, (x,t)€dQx]0,T],
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where we still denote the unknown solution by wu for the sake of simplicity. Here the
variable-order operator D}’ @8 i (3.1) is defined by [68]

R o(z, t) ; i EM S
(3.2) D T I(1—alx,t)) [dﬁ/o (f—S)a(m’t)dL—t'

We demonstrate the motivation of introducing this auxiliary problem by the fol-
lowing two lemmas, which indicate that the fractional derivative defined in (3.2)
requires less temporal regularity for g (i.e., g € H'"¢(L?)) than that in (1.5) (i.e.,
g € HY(L?)), which barely accounts for the low regularity of the solutions before it is
improved, and thus facilitate the analysis.

LEMMA 3.1 ([63, 68]). Let g€ H*(L?) with g(x,0)=0. Then
(3.3) Bta(m’t)g = RDf(m’t)g.
LEMMA 3.2. Let 0<e<1—a*. For any g€ H'=¢(L?) with g(z,0)=0
HRsz(m,t)gHL2(L2) < Q(T7 ()‘*75)”9”H1*5(L2)-

Proof. We follow [23, 60, 61] to conclude that there exists an h € L?(L?) such
that g = I} °h. We incorporate this with (3.2) to arrive at

(3.4)

Rpa(z,t) ; Il €h
Dy 9= (1 - a(x,t)) dﬁ/ E—3) O‘(mt }
1 s — Z,y )dy :l
— — ds
L(1=e)l'(1—a(x,t)) [d€ /0 /0 (f )”‘( ) =t

. 4 ‘ —€ —a(x,t
T -oT(1-a(z,1) d_g/ h(‘”=y)/ (s —y) (£ —5) )dsdy}

RETE )[;‘i/ (€1

= 1 —g) =@ (g, s)ds
_F(l—a(m,t)—a)/o(t ) Mz, s)ds.

We then utilize the relation
(3.5)  (t—s)= @D = (t —5)7F 7 (1 — 5)@ T@D) < max{1, T}t —s) "=

and (3.4) to obtain

e=t

E=t

t
’RD?(m’t)g| < Q/ |h(z, s)|(t — $)" "¢ds.
0

Use Young’s convolutional inequality and [|A||z2(z2) ~ ||glla1 =2y [23] to obtain

HRD?(E’t)gHH(H) < QHL‘ @ _EHLl(O T)||h||L2 12y, which concludes the proof. O

3.1. A uniqueness result. We prove a uniqueness result for future use.

LEMMA 3.3. The homogeneous problem

O + k(z, ) EDX ™Dy 4 Lz, =0, (z,t)€Q x (0,T),
v(x,0)=0, xx€Q; wv(x,t)=0, (x,t)edQx][0,T]

admits a unique trivial solution in H'(L*) N L?(H?).

(3.6)
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Proof. We introduce a time-dependent bilinear form
(3.7) Blu,v;t] := / Az, t)Vu- Vv +b(x,t) - Vuv + c(z, t)uv de
Q

for u,v € H}(Q) and a.e. t € [0,7], which is derived according to the operator (1.4).
By the assumption (b) and Poincaré’s inequality, we conclude that there exist some
constants S > 0 and v > 0 such that

(38) Bl o) < Blo.vstl +vlvlli2),  [Blu,vitl] < Qllull gy o vl ()
We employ the relation (from [19])
1 1
/ A(z,t)Vv-0,Vode = 5(’%/ Az, t)Vv - Vodz — 5/ O Az, t)Vu - Vode
Q Q Q
to reformulate Blv, 0yv;t] as

1
Blv,dy;t] = —(‘%/ A(z,t)Vu-Vodx + A,
2 Ja
(3.9) )
A= —5/ OrA(x,t)Vu - Vo + b(x,t) - Vudw + c(z, t)voyv de,
Q

and we bound A by the assumption (b) and arithmetic-geometric inequality
Q €
(3.10) Al < gllv(-,t)qug(m + §||8tv('at)||%2(sz)

for a sufficiently small € > 0. We now multiply (3.6) by 0;v and integrate the resulting
equation over £ to get

(3.11) |‘3tv(-7t)Hi2(Q) + Blv, 0v;t] = —/ k(:c,t)atv(w,t)RD?(m’t)v(w,t) de.
Q

To bound the right-hand side term of (3.11), we employ the relation (3.3) by v €
H'(L?) and v(x,0) =0, together with Cauchy’s inequality, Fubini’s theorem, and an
estimate similar to (3.5) to obtain, for 0 <e < 1,
/|k(ac,t)atv(:c,t)RDf‘(m’t)v(m,tﬂd:c
Q

:/ ’k(m,t)atv(w,t)(?f(m’t)v(w,t)‘dw
Q
(3.12) <0 /Q Doz, )| /0 (t = )= |0,0(@, )| dsda
t
:Q/O (t—S)_a*/Qlatv(:c,t)Hasv(@s)‘dmdg

€ 2 Q [t o 2
< EH(%U(.’t)HLQ(Q) + E/O (t—s)" Has’l}(-, S)HL2(Q)dS~
We invoke the aforementioned relations in (3.11) to obtain
(3.13)
2 1
Hatv(-,t)HLQ(Q) + §3t/QA(w,t)VU -Vudex

Q Q [* ot 2
Sg”v('at)H%rg(m+€H5tv('at)||%2(m+g ; (t=5)"" (050 (-, 8)|| 2 ) ds-
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Choose ¢ sufficiently small in (3.13) to cancel the like terms on both sides of the in-
equality, integrate the resulting inequality from 0 to ¢, and then incorporate Poincaré’s
inequality to obtain
o7+ o O
200 T)|| L2 oy 4T + 10 Dl 0
(314) 0 t t T
2 —a* 2 ’

<Q [ Wt gt +Q [ [ =i 10,00

Apply Gronwall’s inequality to (3.14) and use integration by parts to obtain
t
2
||U('=t)||§1g(g) +/O ||5TU('»T)||L2(sz)dT
t T
—a* 2
<@ [ [ =0 o) i
0o Jo

t t
=qQ [ |la,0(-,v)|%, — ) drd
(3.15) /0 ” y”( y)HL (Q)/y (T—vy) Tay

Q ! 1—a™ 2
T ; (t—T1) ||8Tv(-,7')HL2(de
Q ! —a* d T 2
T ), (t—7)t d_TUo Hayv(-,y)HLQ(mdy dr

t T
:Q/O (t_T)_a/O H(?yv(,y)H;(Q)dydT,

and we conclude from the weak singular Gronwall inequality (cf. [58]) that
t
2
(3.16) /0 10007 [2 iy dr =0, t€ (0,71,

which, together with v(x,0) = 0 and v(z,t) = fot Orv(x,7)dr, yields ||v|[z2r2) = 0.
Consequently, v = 0 for a.e. (x,t) € Q x [0,T] and thus ||v|[g1z2) = ||v| L2(m2) = 0,
which completes the proof of the lemma. ]

3.2. Well-posedness of (3.1). We prove the well-posedness of the auxiliary
problem (3.1).

THEOREM 3.4. If assumptions (a)—(c) hold, the auxiliary problem (3.1) admits a
unique solution u € HY(L?) N L?(H?) such that

(3.17) Null g2y + Jull 2 a2y < QIS + allL2(z2),
where Q) is independent of u, f, or q.
Proof. We prove this theorem in three steps.

Step 1: Analysis of a data-to-solution map K,. Define an operator K, that maps
v to w determined by

(3.18) dyw + Lz, )yw = —k(z, t) DX ™1y

over Q) x (0,7T], equipped with homogeneous initial and boundary conditions. By
Lemma 3.2 and k € L° (L), the right-hand-side term of (3.18) belongs to L*(L?)
for v € H'=¢(L?). Then the regularity results for classical parabolic equations [40,
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section 4.7.1, p. 243] ensure that (3.18) admits a unique solution w = K,v € H*(L?*)N
L?(H?) such that, according to Lemma 3.2,

ol ey + el zaqarz) < @Yk, t)* D0

(3.19) o

< QHRD?( 1 )UHL2(L2) < QH’UHHl—E(L?)a

which indicates that K, : H'=¢(L?) — H*(L?)NL*(H?) is a bounded linear operator.
We then show that K, : H' ¢(L?) — H' ¢(L?) is a compact operator. For a

bounded sequence {u, }3° ; C H'7¢(L?), the estimate (3.19) yields

(320) ||Kaun||H1(L2) + ||Kaun||L2(H2) S Q||unHH1—5(L2),

which implies that {K,u,}2°; is a bounded sequence in H*(L?)N L?(H?). By [40,
Theorem 16.2, Chapter 1], H'(L?) N L?(H?) is compactly embedded in H'~¢(L?),
which implies there exists a subsequence {Kaupn,}32, converging in H'~¢(L?). Thus
we conclude that K, : H'=¢(L?) — H'~¢(L?) is a compact operator.

Step 2: Well-posedness of an abstract equation u:=uy+ K,u. We intend to prove
that u:=us + K,u admits a unique solution in H'~¢(L?), where uy is determined by
the problem

(3.21) Owuy + Lz, t)uy = f(z,t) + q(x, 1)

over Q x (0,T] with homogeneous initial and boundary conditions. Similar to the
above, the assumption (c) and regularity results for classical parabolic equations [40,
section 4.7.1, p. 243] give the uniqueness of the solution uy € H'(L?) N L?(H?) and

(3.22) Nugllarzey + Nugllpe ey < QNf +qll2 -

By the Fredholm alternative of compact operators, u = uy + K,u admits a unique
solution in H'=¢(L?) as long as N(I — K,) = {0}, where N(I — K,) represents the
null set of I — K, [19]. Thus we remain to prove that (I — K,)v = 0 has only the
trivial solution in H'~=¢(L?).

We note from (3.18) that v = K,v is exactly (3.6), and k € L*°(L*°) and
Lemma 3.2 indicate that the fractional term of (3.6) belongs to L?(L?), provided
that v € H!=¢(L?), and thus the solution v € H*(L?)N L?(H?) could be proved in an
analogous manner to (3.19). Then we obtain from the uniqueness result in Lemma 3.3
that ||v[|g1(z2) = 0. By the Sobolev embedding |[v| g1 <(z2) < Q|lv||g1(z2) = 0, we
conclude that (I — K,)v = 0 has only the trivial solution in H'~¢(L?), which, to-
gether with the Fredholm alternative, indicates that there exists a unique solution of
u=Kyu+uys in H'7¢(L?). In addition, N(I — K,) = {0} implies that the operator
I — K, is one-to-one onto H'~¢(L?) by the Fredholm alternative [19], and we further
conclude that the operator (I — K,)~': H'=¢(L?) — H'~(L?) is a bounded linear
operator [52, Theorem 3.8]. Consequently, u = (I — K,) 'uy could be estimated
based on (3.22),

-1
(3.23) ”“HHI‘E(LQ) < H(I — Ka) HHlff(LQ)—>H1*E(L2)||ufHH1_5(L2)

<Qllugllarr2y) <QIf +dall2z2),
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which, together with (3.19), leads to the following regularity improvement:

(3.24)
llull g p2y + llullz a2y < ([ Kaull g2y + 1 Koull 22y + gl arney + gz a2

< Qlullgr-=z2y + QI f +allz2z2) S QIS + allz2(z2).-

Step 3: Analysis of model (3.1). By the definitions of uy and K,u, we have
up + L@, tyus = f(a,1) + q(a, 1), K ou+ k@, ) DIy 4 L(2, ) Kou=0

over Q x (0, 7], equipped with homogeneous initial and boundary conditions. We then
add these two equations and apply v =us + K,u to find that the resulting equation
is exactly model (3.1), that is, model (3.1) has a solution u € H*(L?)N L?(H?) with
the estimate (3.24). The uniqueness of the solutions to model (3.1) follows from that
for uw =us + K,u, which completes the proof of the theorem. a

4. Analysis of forward problem. We prove the well-posedness of the forward
problem (1.3) based on that of the auxiliary problem (3.1).

THEOREM 4.1. If assumptions (a)—(c) hold, the forward problem (1.3) admits a
unique solution uw € HY(L?) N L?(H?) such that

(4.1) Null L2y + Jull L2 a2y < QIS + allL2(z2),

where @ is independent of u, f, or q.

Proof. Theorem 3.4 proves that the solution u to the auxiliary problem (3.1)
belongs to H(L?) N L? gHQ), which together with u(2,0) =0 and Lemma 3.1 implies
that 8f(m’t)u = RD?(m’t u. Thus the auxiliary problem (3.1) is exactly the forward
problem (1.3) and the solution v € H'(L?) N L?(H?) to the auxiliary problem (3.1)
also solves (1.3) with the regularity estimate (4.1). The uniqueness of the solutions
to the forward problem (1.3) in H'(L?) N L?(H?) follows from that of the auxiliary
problem (3.1) by Lemma 3.1 and Theorem 3.4, which completes the proof. ]

We prove maximal regularity results for (1.3) based on Theorem 4.1.

THEOREM 4.2. Suppose that assumptions (a)—(d) hold and f,q € LP(L?) for 2 <
p <oo. Then the solution to (1.3) has the following regularity estimates:

(4.2) lullwre(zzy + [|Lul] L0y < QIS +dllLo(r2),

where Q) is independent of u, f, orq.

Proof. Based on Theorem 4.1, we reformulate problem (1.3) with u € H'(L?)N
L?(H?) as

(43) 8tu + ﬁ(cc,t)u = f = f(m,t) + q(:c,t) o k(m,t)&‘f(mt)u

Case 1: 0 <a* < 1/2. By (1.5) and Young’s convolution inequality [1], we find
1<s<2suchthat 1+1/p=1/s+1/2 and
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t
Hk(:c,t)af(z’t)uHLp(N) < QH/O (t—s)"% |0su(x,s)|ds

Lr(L?)
= QHt_a* * |Orul HLp(L?)

<@t

Ls(0,T) ||3tu||L2(L2)
< Ql0ull 122
<QIf +allz2z2),

where * represents the symbol of convolution and we used the fact that a*s < 2a* <1.
The estimate (4.4) implies that f € LP(L?) such that we combine (3.8), assumption
(d), and (4.4) with the maximal regularity estimates for the parabolic equation 9,v +
L(z,t)v = g over Q x (0,7] with homogeneous initial and boundary conditions [27,
Theorem 1.2]

(4.5) [vllwrrrey + [|1Lollr 2y < QUgllLr(z2), 7€ (1,00),
for (4.3) to conclude that
(4-6) ||uHW1’P(L2) + H‘CUHLP(L2) < QHfHLp(LZ) < Q||f+Q||LP(L2)-

Case 2: 1/2<a* < 1. Let 1 <sg<1/a* <2 and m € N7 satisfy

_1

p
1
S0

m < <m+1,

= o=

and we assume m > 1 without loss of generality. Then we accordingly define an
equidistant sequence {1/r;}7™, by
1 1 1 1 1 1 1 1

—=—>—>..->— > — with the equidistance ——=1—-—.
2 rg mn Tm D ri-1 Ty 50

We intend to combine the maximal regularity estimate (4.5) with the bootstrapping
argument and Young’s convolution inequality to progressively lift the temporal regu-
larity of the solution u to problem (4.3) via the pathway

HY LA =Whmo(L?) = Wh(L2) — - = WhT™ (L?) — WHP(L?).

By Young’s convolution inequality we have

Hk(m,t)@f“(m’t)u’

t
v < [ €0 0tz

L71(L2)

(4.7) < QU™ peo 0,1y 10l Lo 22y
< Q|0 Lro(r2)
< QI f +allLro(r2y,

where we used the estimate (4.1) and spo* < 1. Thus we obtain f € L™ (L?) and
apply the maximal regularity estimate (4.5) to find that

(4.8) lllwrs 2y + ([ Lull vy (2 S QI

LTl(L2)§Q||f+Q||Ln(L2).
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We repeat the above procedure m — 1 times with r;_1 replaced by r; and r; replaced
by 741 in (4.7)—(4.8) for 1 <i<m —1 to derive that

(4.9) lellwrorm 2y + {120 1, g2y < QU+l e )

Finally, we select s1 such that 1+1/p=1/s1 +1/ry. As r, <p, we have s; > 1 and
apply

1 1 1 1 1 1
L TGRS AL R O &
2 p S0/ Tm To 50
to find
1 1 1 1 1
14— =
51 S0 p T'm S0
1 1 1 1
(4.10) =1+——<——m<1——>>——
p To S0 S0
1 1 1
- 1(1——)—— 2 >0,
(m+1) w0 2+

that is, s;1 < sp and thus a*s; < a®sp < 1. We then apply Young’s convolution
inequality with r1, sp, and rg in (4.7) replaced by p, si, and r,,, respectively, to
obtain ||k($,t)6f(m"t)u||Lp(Lz) < QIf + qllzrm(r2). We then apply the maximal LP
regularity result (4.5) for problem (4.3) to obtain

(411) ||u||W1’P(L2) + ||‘Cu||LP(L2) < QHfHLP(Lz) < Q||f+Q||Lp(L2)a

which completes the proof for this case. O

5. Analysis of adjoint equation. We prove the well-posedness of the following
variable-order time-fractional PDE, which is indeed the forward-in-time analogue of
the adjoint equation (6.1):

Opz(x,t) + Rgf‘(m’t)(kz) + L(x,t)2(x,t) = F(a,t), (x,t)eQx(0,T);
2(x,0)=0, z€Q; 2z(x,t)=0, (x,t)€dQx][0,T].

(5.1)

Here 10" () is the forward-in-time analogue of (6.3),

¢
_ i —_ ds

59 Rga@t) . _ g Fl-a(@i) Fl-at), / g(x, s)

(5.2) t 900k 9 0% g o T(1—a(zx,s))(t — s)x@s)’

and the adjoint operator £(x,t) of £(x,t) is defined as
L(z,tyu:=—V - (A(z,t)Vu) — V- (b(z,t)u) + c(z, t)u.

LEMMA 5.1 ([66, Lemma 1]). Under assumption (a), the following estimate holds
for g€ HY(0,T) with g(0) =0,

(5.3) 700 g1 < / 10.9(s)|(t — )72 ds

for0<t<T. Here Q =Q(|la|lwr.,T, ™).
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LEMMA 5.2. Under assumptions (a) and (c), g € H'(L?) with g(x,0) =0 has the
estimate

(5.4) o™ (kg)| < Q / 10sg(, s)|(t — 5)~"ds

for 0<t<T and a.e. ©€Q. Here Q= Q(||llw1.00 (Lo, [|Ellwi.oo(roe), T, ™).

Proof. Since g € H'(L?) and k € W1*°(L>®), we have kg € H'(L?) with
(kg)(x,0) =0. Then (5.3) yields

2oy (kg)| < Q / 0,k (@ (¢ — )~ ds
<@ [ 1K) 0.a(e. o)l )~ s
(5.5) o 0,k (e 9)lg(e, (¢ — )" ds
s@/0t|asg<w,s)|<t—s>‘“*ds

t s
+Q / / 1B,g(, 7)|dr(t — 5)~ ds,

where the last term on the right-hand side of (5.5) could be further bounded by

//|8Tgw7' |(t—s) “deS—/|8Tg:L'T|/ (t—s)"* dsdr

(5.6) <Q / 1By, 5)|(t — 5)' " ds

<Q / 1059, 5)|(t — 5)~<" ds,

which together with the estimate (5.5) yields (5.4). 0

LEMMA 5.3. Let € > 0 be sufficiently small such that 1 —a* —e > 0. Then there
exists a positive constant Q = Q(||c|lyw1.00 (Lo, |kllwiec (o), T,a*,€) such that the
estimate

(5.7) 1270 (k)| 22y < @lgll = (z2)

holds for any g € H'=¢(L?) with g(x,0) =0.

Proof. By the assumptions on g, we follow [23] to conclude that there exists an
element h € L2(L?) such that g = I}~k and ||Al|z2(z2) < Q|gll i< (r2). We employ
(5.2) and then interchange the order of integration to arrive at

a{/;m )

=N e
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1 ¢ P k(x,s)(s —y) S (t —s) =)
65 =g ren [ FERE T

—; ! ! k(iE,S)(S—y)_E(t_S)—a(m,s)
T(1-¢) /o h(w,y)at/y T — a(w,5) dsdy,

where we have used the fact that

/t K@,s)(s —y) = (t—5) @D

(1 —az,s))

< Q/t(s —y) " (t— s)_a*ds.':Q(t — y)l_s_a* —0, asy—t".
Y

We use the variable substitution z = (s —y)/(t — y), which implies
(5.9) t—s=(t—-y)l—-2), s—y=(t—-yz ds=(t—-y)dz, s=zt+y(l—=z),
to reformulate the inner integral of (5.8) as

/t k(x,s)(s —y)~c(t — s)~ @) .
y F(l — Oz(:c,s))

1 _—¢ —a(x,zt+y(1—=2))
27¢(1—2) 1— —2))—
_ " a(z,zt+y(1-2)) x, 2t +y(1 — 2))dz.

/oI(l—Oé(w,zt—i-y(l—z)))( ), (@, 2t +y( 2))dz

Differentiate the above equation to get
N / B, )(s —y) (¢ —5) @)
v (1 —a(x,s))

1 - — —

1— a(z,zt+y(1—=2)) ,—¢

Z/ O [é 2) i (t— y)l_a(m72t+y(l—z))—£
0 (1 —a(z, 2zt +y(1 —2)))

(5.10)
x k(e 2t +y(1 - Z))] dz
1 (] )o@ ztty(1-2)) ,—¢
(1 z) a(z y 2 ot

= t— ,zt+y(1—=2)) K Nd

/o F(l—a(m,?ﬂf—i—y(l—z)))( v) (x,2,y,t)dz
with
(5.11)

K(x,z,y,t) =k(z, 2t + y(1 — 2)) [ — Opr(w, 2t + y(1 — 2)) In(1 — 2)

+1—a(az,zt—|—y(1—z))—

t—y
I'l—oafz, 2t +y(1l—z)))
+ T —a(@, 2t +5(1—2)) Oa(z,zt +y(1 — 2))| + Ok(z, 2t + y(1 — 2)).

< _ Oa(x, 2zt +y(1 — 2)) In(t — y)

We combine assumptions (a) and (c) to bound the leading terms in (5.11) as

’K:(:B,Z,y,t)‘ < Q' ln(l - Z)l + Q(t - y)_l + Q' ln(t - y)'

(5.12)
<QIn(l —2)[+Q(t —y)~".
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We then employ this with the estimate (3.5) as well as the definition of the Beta
function B(-,-) [50] to bound (5.10),

t bl s)(s )
o T e o
<Q/ 1 2)" 275t )" Q(Iln(1 — 2)| + (t —y)"V)d2
(5.13) <Qt -y —5/1 [In(1 — 2)] ds
0

(1 _ Z)O‘*ZE
1
S A
=Q(t— y)_a*_aB(l —af—e,1— 5) <Q(t— y)—a*—a,

and then incorporate the above estimate into (5.8) to obtain

(5.14) %07 ® D (k)| SQ/O |h(,y)|(t—y) "> dy.

The estimate (5.7) could thus be derived by taking the L?(L?) norm on both sides of
this equation and applying Young’s convolution inequality and the estimate || 2| £2(z2) <

Q||g||H1—E(L2)'

We then prove a uniqueness result.

LEMMA 5.4. The homogeneous problem

O + Loz, t)o = - (kv), (@,t) €Q x (0,7,
v(x,0)=0, x€Q; wv(x,t)=0, (x,t)€dNx][0,T]

(5.15)

has only a trivial solution in H'(L*) N L?(H?).

Proof. We introduce a time-dependent bilinear form Blu,v;t] derived from the
operator (6.3):

Blu,v;t] := / Az, t)Vu-Vu =V - (b(z,t)u)v + c(x, t)uv de
(5.16) o
:/ Az, t)Vu- Vo +b(zx,t) - Vou+ c(z, t)uvde
for u,v € H(Q) and a.e. t€[0,T]. As Blv,v;t] = Blv,v;1], (3.8) yields

(5.17)  Bllvllty @) < Blo.vstl +7l10l1Z20), | Bluvstl] < Qlulliy @) 19]l a3 0)-

Similar to the derivations of (3.9) we have

[v Oy t] = Bt/A:cth Vodz + A,
(5.18) A :——/8tA x,t)Vv- Vv —b(x,t) - Voo de

+ / =V bz, t)vdw + c(x, t)vdv de
Q
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with the estimate ‘.,[l‘ < %HUH%MQ) + §||6tv||%2(m for a sufficiently small € > 0. We
0
also follow an estimate similar to that of (3.12) to apply (5.4), obtaining for 0 <e < 1

~o(x, € 2 Q K —a* 2
/Q\awRag t>(kv)\dx§5\yatv(.,t)y\mm)+?/o (t =) [|0s0(,8)||} 2y d5-

We employ the above estimates and follow the proof of Lemma 3.3 to arrive at the
uniqueness result, the details of which are omitted due to similarity. ]

We then follow an argument similar to that in the proofs of Theorems 4.1 and 4.2
to obtain the well-posedness and regularity estimates of problem (5.1).

THEOREM 5.5. Suppose assumptions (a)—(c) hold and F € L?*(L?); then (5.1)
admits a unique solution z € H*(L?) N L?(H?) such that

(5.19) 2l 2y + 12l 22y < QUF |22y,

where Q is independent of z or F.

Proof. Based on Lemmas 5.3 and 5.4, the proof of this theorem follows from that
of Theorem 4.1 and is thus omitted. |

THEOREM 5.6. Suppose that assumptions (a)—(d) hold and F € LP(L?) for 2 <
p < 00; then the solution to (5.1) has the following regularity estimate:

(5.20) llzllwrr 2y + HﬁZHLp(Lz) <QIF||Lrz2)-

Here the positive constant @Q does not depend on z or F.

Proof. The proof could be carried out following that of Theorem 4.2 with the
assistance of Lemma 5.2 and (5.17), and is thus omitted. ad

The following corollary is a direct consequence of the above two theorems.

COROLLARY 5.7. Suppose assumptions (a)—(d) hold. If u, uq € L?>(L?), the ad-
joint problem (6.1) has a unique solution z € H'(L?) N L*(H?) and

(5.21) 2l 2y + 2l L2 a2y < Qllu — uall 2 (z2)-
If further u, ug € LP(L?) for 2 <p< oo, we have
(5.22) lzllwie(2y + HﬁZHLp(LQ) <Qllu — ual Lr(r2)-

Here the positive constant Q is independent of u, z, or ug.

6. Analysis of optimal control problem. We prove the well-posedness of the
optimal control problem (1.2)—(1.3) and derive its first-order optimality conditions,
as well as analyze the maximal regularity of solutions.

THEOREM 6.1. Suppose assumptions (a)—(c) hold. The optimal control problem
(1.2)~(1.3) admits a unique solution (u,q) such that uw € H'(L*)N L?(H?).

Proof. Since J(q) := J(u(q),q) > 0, the infimum J;,; = inf,ep,, J(q) exists.
Thus there exists a sequence {q(l)}fil C Ugq with Jipp < j(q(”l)) < j(q(”) such
that lim; .o J(¢®) = Jins [67, Theorem 3.3]. Let u(® be the solution to (1.3) with ¢
being replaced by ¢. By lim;_, oo j(q(l)) = Jiny we have ||q(l)||L2(L2) < Qg for some

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/06/23 to 58.194.168.130 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

1706 YIQUN LI, HONG WANG, AND XIANGCHENG ZHENG

Qo >0 and [ > 1. Then we apply this and the estimate (4.1) (that is, [|[u®| g1 (r2) +
||u(l)||L2(H2) < QU N2z + ||q(l)||L2(L2))) to obtain

6 s g + 10Ol agarny < QU202+ Q)

which further implies Hata(t)u(l)HLz(Lz) < Q(||f||Lz(L2) + QO) by Lemmas 3.1 and 3.2.
As a consequence, there exist weakly convergent subsequences {u(lﬂ')}z?';l C {ul}se,
and {q(l')}OO c {q" )}l 1 such that {u l')}ool — u, weakly in H'(L?) N L*(H?),
{Ba(m RN )}OO — (9 D, weakly in L?(L?), and {q )}OO 1 — g« weakly in L2(L?),
respectively. Since U,y is a closed convex set, U,y is weakly closed and thus
q* S Uad [56]

To prove that u, solves the state equation (1.3) associated with ¢*, we multiply
(1.3) associated with g, by any ¢ € C°(Q x [0,T]) with ¢(x,T) =0 for z € Q and
¢(x,t) = 0 for any (x,t) € 09 x [0,T], and we integrate the resulting equation by
parts to obtain

//f+q* d)d:cdt—hm/ / (f + ")) pdadt

- lim/ /(8t+k(a:,t)a;’(“””+£(m,t))u<lf>-¢>da:dt

j—oo

= lim / / — 0+ RO (k) + L(w, t)¢) davdt

j—o0
:/ /u*.(—at¢+Rz§?W>(k¢)+ﬁ(m,t)¢)dmdt
0 Q

T
:/ / (0 + k(z,t) 8?(m’t) + L(wm,t))u, - pdadt,
0o Ja

which implies that . solves the state equation (1.3) associated with g.. Here we use
the fact that £*™" defined by (6.3) is the adjoint operator of (™" [65]. By the
weakly lower semicontinuity of j(q), we have Ji, r > liminf; j(q(k)) > J(g«) > Jing-
Thus, (ux,¢«) is a solution to the optimal control problem (1.2)—(1.3). The uniqueness
of the solution follows from the strict convexity of J. ]

THEOREM 6.2. Suppose assumptions (a)—(c) hold; there exists an adjoint state z
such that (u,q, z) satisfies the state equation (1.3) and the adjoint equation

61) —0yz + BO®Y (k) + L, 1)z = ulm, t;q) — ug(z,t), (x,t) € Q x [0,T);
' 2(x,T)=0,xeQ; z(z,t)=0, (z,t) € IQ x [0,T]
with the variational inequality

T
(6.2) / / (vq¢+2)(v—q)dxdt >0 Vv € Ugg.

Here the backward vanable order Riemann—Liouville differential operator R(’?a(m R

the adjoint operator of 0} (@.¢) defined as
(6.3)

T
R Aa(x,t) rl—a(z,t) rl—a(x,t) g(wa S)
10) = =01, I = d
im0y 0, J 0 = [ e S
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In addition, suppose assumptions (a)—(d) hold and f,q,uq € LP(L?) for2 <p < oo;
then the optimal control problem (1.2)~(1.3) has a unique solution u € H*(L?)NL? (HQ)
and q € HY(L?), and the adjoint equation (6.1) has a unique solution z € H*(L?) N
L?(H?) such that

(6.4)
lull L2 a2y + l[ullwre ey + || Lul| ey < QUIS ez + llallLez2)),
(L?)
Izllz2cm2) + 2w 22y + | £2]] Ly oy < @Uluall o2y + 1F Loz + gl Loz2))
(L?)
lall 12y < Qlluall 22y + 1 fll2ce2) + lallz2z2y),

where the positive constant @Q is independent of f, q , u, ug, or z.

Proof. The proof of (6.1)—(6.2) could be carried out following a procedure similar
to that of [65, Theorem 2.1], and thus we will provide only a brief outline of the proof
here. For any q € Uyg and 0 < ¢ < 1, let g := v — ¢, and we have q + £0q € Uyq.
We note from (1.3) that d.u(q) := (u(g + £dq) — u(q)) /e satisfies the homogeneous
initial-boundary value problem of

(6.5) Opbeu+ k(x,t) 0P ™ Su+ Lz, t)oou = dq(z, 1), (z,t) € Q x (0,T),

which has e-independent coefficients and right-hand-side term. Hence, the solution
0csu = du is independent of £ by the uniqueness of the solution to problem (6.5) proved
in Theorem 4.1.

We write .J (q) = J(u(q), q), using u(q+28q) —u(q) = edu and the adjoint properties
of 6,50‘(“”’ nd Ra‘*(m 2 , L(z,t) and L(z,t) to obtain

0<0,J(q)dq = tim ' (J(g+=dq) — J(q))

/ / ) — ugq)ou dmdt—|—/ /’yqﬁq dxdt

T
:/ / (= 0z + BH®D (k) + L(z,t)z)du dzdt +/ / vqdq dedt
0o Ja o Ja

(6.6) T T
- / / 2(0p6u + k(a, ) 08D u + L(w, t)6u)dadt + / / ~qbq dzdt
0 Q 0 Q

_/OT/Q(qurz)éqdmdt
—/OT/Q(“qurz)(v—Q)dwdt,

which proves the first statement of this theorem.
Let Py,,(g) == max{q.,min{g,q*}} € H'(L?) be the pointwise projection onto
the admissible set U,q with the following estimate [37]:

(6.7) 1PV () re < llgllars Vge H?, 0<s<1.
Then inequality (6.2) implies that [26, 67]

(6.8) q(x,t) =Py, (— 2(2,1)/7).
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For regularity estimates, we use assumptions (a)—(c) and the fact ¢ € L?(L?) and
apply Theorem 4.1 to deduce u € H'(L?) N L?(H?). Then we apply Corollary 5.7 to
conclude that the adjoint equation (6.1) has a unique solution z € H'(L?) N L2(H?).
We combine (5.21)-(5.22) with (4.1) as well as the Sobolev embedding H'(L?) —
L”(L2) for 2 < p < oo and ||ﬁz||L2(L2) < Q||z|lL2(m2) to prove the second estimate

n (6.4) for z. We use estimates (4.1)—(4.2) and ||Lul[2(r2) < Ql|ul|L2(m2) to get the
estlmate of u in (6.4). With the above estimates, we ﬁnally combine (6 8) with (6.7)
and the estimate of z in (6.4) with p =2 to conclude that

6.9)  llalla e < Qllzlla ey < QUluallzcezy + I fllz2z2) + lallzzr2)).
which completes the proof of the theorem. O

7. Numerical simulation. We develop the numerical scheme for the state equa-
tion (1.3) and the adjoint state equation (6.1) and then perform numerical experiments
in one and two space dimensions to study the optimal control problem (1.2)—(1.3) and
its potential applications in, e.g., contaminant remediation. All the numerical exper-
iments are implemented using MATLAB R2018a on a Dell XPS 15 laptop with Intel
Core i7-8750H CPU Duo of 2.20G CPU and 16.0 GB RAM.

7.1. Discretization scheme. Partition [0,T] by t, := n7 for 7 := T/N and
0 <n < N. Define a quasi-uniform mesh on  and let S(€2) be the continuous and
piecewise-linear finite element space on Q@ with respect to the partition. Let k,, :=
k(x,t,), A, = A(x,t,), b, = b(x,t,), ¢, = c(x,tyn), fu:= f(x,tn), gn = q(x,t,),
Uy, :=u(x, ty), and z, := z(x,t,). Then we follow [65, 66] to discretize du, 8f(m’t)u,
—0¢z and 3?(m’t) (kz) at t, for 1 <n <N by

Up — Up—1

Opu(x,ty) = druy, = , Gf(m’t")u(:c,tn) A fe@tn)y,

(7.1) T X
—Oz(@,tn_1) R —0r2p, 6?(m’t)(kz)(w,tn_1) A 6@ tn=1) (k) _y,
where

n t ¢ 1(y(mtn)_t —t 1—a(x,ty)
5$(m’t”)unizzbn,k(uk—uk—l) bnk 1= ( k1) ( k)

['2-a(z,t,))r ’
) N
5g(m’t”71)(/€2)n—1 = bn,n(kz)n—l + Z (bk,n - bk,n-l—l)(kz)k—l
k=n+1

We employ them to get a fully discrete finite element scheme for optlmal control
following [65, 66]: find U = {U,})_, € S(Q) with Uy =0, Z = {Z,}) =} € S(Q) with
Zn =0 and Q ={Q,}Y=} such that for n=1,2,..., N and XES(Q)

(0:Up + k62U ) + (An VU, V) + (by - VU, X)
(723“) + (C naX) (fn +Qn—17X)a
(-6, Zy +60@ =) (1 Z),,_4, )+(A VZpn +bnZn, VX)
(7.2b) + (enZn, x) = (Un — ua(- tn), X),
(72(3) Qn—l(w):PUad(_ 71—1( )/fy)

In practical computations, we iteratively solve the discretized first-order optimality
condition starting from an initial guess of @, solving (7.2a), (7.2b), and (7.2¢) in
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order and then updating @ for the next round computation until the difference of
two contiguous ) under a certain norm is less than the tolerance. In this work
we adopt the discrete-in-time norms defined by |[[v]|ze(z2) = maxi<j<n [[v;]| and

N 1
V]l 22y = (7 20520 [l05117) * for v={v;}}L,.
7.2. One-dimensional example.

7.2.1. Convergence test. The data are as follows: ©Q = (0,1), [0,T] = [0,1],
k=1 A=001,b=01,¢=001, ¢g. =02, ¢" =03, v=1, f =1, ug(z,t
1—4(z — $)?, and a(z,t) =n(t)¢(z) with

(7.3)

o t 1 . t B sin(0.57x)
n(t) =a(T) + (a(0) — a(T)) (1 7~ 5 sin (271'(1 T)))’ p(r)=1+ —0
As the exact solution is not available, we use the numerical solution computed with
7y =1/720 and hy =1/360 as the reference solution.

We investigate the spatial convergence behavior of the numerical algorithm pro-
posed at the beginning of section 7 under the fine time step size 7¢, and similarly we
investigate the temporal convergence behavior under the fine spatial mesh size hy.
We present numerical results in Tables 7.1 and 7.2 and observe that the errors shrink
as either the temporal or spatial mesh becomes finer, which indicates the reliability
and efficiency of the numerical algorithm to the optimal control problem (1.2)—(1.3)
under different variable orders.

We then present solution curves at the terminal time step in Figure 7.1 by choos-
ing the same data as before, except for 7 = 1/720 and h = 1/32, a(0) = 0.3, and
a(T) =0.8. Numerical results show that the numerical solutions computed under the
coarse grid h = 1/32 provide an accurate approximation, which again demonstrates

TABLE 7.1
Accuracy of numerical method in section 7.2.1 with a(0) =0.9 and o(T) = 0.2.

T 1/8 1/16 1/32 1/64
llg — Q||ﬁoc(L2) 3.40E-02 1.81E-02 1.21E-02 8.02E-03
[Ju — U||L~OQ(L2) 1.68E-02 8.83E-03 5.97E-03 3.97E-03
|z — Z||LOQ(L2) 3.43E-02 1.83E-02 1.22E-02 8.09E-03
h 1/60 1/72 1/90 1/120
llg — Q||£OC(L2) 9.01E-04 5.96E-04 3.83E-04 2.04E-04
[Ju — U||L~OQ(L2) 1.49E-03 1.00E-03 6.34E-04 3.38E-04
|z — Z||E°<>(L2) 9.58E-04 6.59E-04 4.13E-04 2.21E-04
TABLE 7.2

Accuracy of numerical method in section 7.2.1 with a(0) =0.3 and o(T) =0.8.

T 1/8 1/16 1/32 1/64
llg = Qll foo (12 2.58E-02 1.26E-02 8.37E-03 5.49E-03
lu=Ullzoo (2 2.89E-02 1.50E-02 1.02E-02 6.82E-03
12 = Zll oo (12 2.96E-02 1.51E-02 1.01E-02 6.71E-03
h 1/60 1/72 1/90 1/120

llg = @Qll oo (12 1.27E-03 8.68E-04 5.44E-04 2.89E-04
lu—=Ullgoo (2 1.64E-03 1.10E-03 6.98E-04 3.72E-04
12 = Zll oo 129 1.27E-03 8.69E-04 5.44E-04 2.89E-04

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/06/23 to 58.194.168.130 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

1710 YIQUN LI, HONG WANG, AND XIANGCHENG ZHENG

0.8 0.8

0.6 [

0.4 -

0.2 -
i

01

021

-0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1G. 7.1. Plots of Un, Zo, and QN in section 7.2.1 with (g«,q*) = (0.2,0.3) (left) and (g«,q*)
=(0.3,0.4) (right).

TABLE 7.3
Performance of the optimal control problem (1.2)—(1.3) in subsection 7.2.2.

k ||U_ud||ﬁ2(L2) ”Q”ﬁ2(L2) J(U,Q)
0 3.83E-01 2.23E-01 2.03E-01
0.5 3.86E-01 2.45E-01 2.05E-01
5 5.77TE-01 2.68E-01 3.02E-01
25 6.91E-01 2.40E-01 3.57E-01

the effectiveness of the numerical method to the optimal control problem (1.2)—(1.3)
under different constraints.

7.2.2. Performance under different transport scales. We investigate the
performance of the optimal control problem (1.2)—(1.3) under different transport
scales, which is inherently characterized by the partition coefficient k& as discussed
in section 2. Specifically, as k tends to 0, the model (1.2)—(1.3) describes the optimal
control of, e.g., contaminant transport mainly under Fickian diffusion, while for large
k the transport process is mainly governed by the subdiffusion.

We present optimal control results under different k& in Table 7.3 with the same
data as those for Figure 7.1, except for (g.,q*) = (0.2,0.3) and v = 0.1. We observe
that the control variable has similar values under different k, while the difference
U — ug becomes larger from Fickian diffusion to subdiffusion, which indicates that
the contaminant remediation in heterogeneous media is more difficult than that in
homogeneous media. This phenomenon is probably caused by the fact that as k
grows, a larger amount of contaminant solute gets absorbed into the aquifers that
undergoes the subdiffusion, which is more difficult to be remediated than those in
the bulk fluid phase that undergoes a Brownian motion and may thus require more
expensive controls to reach the ideal distribution ug.

7.2.3. Performance under multiscale coefficients. We consider the optimal
control problem (1.2)—(1.3) with multiscale coefficients, which arises from, e.g., the lo-
cal effective dispersion tensor used to account for the relatively large particle motions;
cf. [11, section 1] and [29, 47]. We set © x [0,T] =10, 1] x [0,0.5] and

.01 2
Az, 2) = S — b(2,2) =05+ 02sin (2mz+ =),
€ 1+ 0.2sin (272 4 222) € €

(7.4)

0.4 1 2
c(w, E) = ——F(e +1) oS (27TSL’+ _77:5)
€ € €
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F1G. 7.2. Surfaces of the state variable U with k= 0.5 (left), k=5 (middle), and k =25 (right).
First row: multiscale coefficients. Second row: averaged coefficients.

TABLE 7.4
Performance of the optimal control problem (1.2)—(1.3) with multiscale coefficients in section 7.2.3.

k ||U—ud||p(L2) ||Q||L2(L2) J(U,Q)
0.5 3.77E-01 9.47E-02 2.36E-01
5 4.57E-01 7.36 E-02 2.65E-01
25 5.00E-01 7.07E-02 2.85E-01

with € =1/63, which have averaged values A=0.01, b=0.5, and ¢ =0 for comparison
as performed in [11]. We follow the same data as those for Figure 7.1 except for
g==0.1, ¢* =0.5, 7=1/2048, h = 1/256, and a = n(t) with 7(t) defined as in (7.3).
Numerical results are presented in Figure 7.2 and Table 7.4, from which we observe the
following: (i) The state variables under multiscale coefficients have similar amplitudes
to those under averaged coefficients, while they vary rapidly along the spatial direction
that coincides with the multiscale nature of the solutions. (ii) The state variable
approaches the ideal distribution ug more closely as the partition coefficient & gets
smaller, which indicates that the heterogeneity of the medium makes the contaminant
remediation more difficult, as we have found in section 7.2.2. These observations
indicate that the proposed model provides adequate descriptions for contaminant
transport through heterogeneous porous media with multiscale coefficients.

7.3. Two-dimensional example. Let Q x [0,7] = (0,1)? x [0,1], k=1, A =
diag(0.01,0.01), b=(0.1,0.1), ¢=0.01, v =1, ug = sin(7x) sin(ny), and
3+2t
oz, y,t) = _1|——0(1 —0.22%)(1 + 0.1sin(my)).

The source term f is a mollified point source of the form

e[t (12 e (1) | e (152) e (2]

with @ = 0.5, ¢ = 0.001, 2y = 0.4, and z; = 0.6. In Figures 7.3 and 7.4, we plot
the state variable U and the control variable @ at ¢ = T'/2 and ¢ = T, respectively.
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F1G. 7.3. Optimal control results att =T /2 in section 7.3. Left-hand panel: plots of U (left) and
Q (right) with (g«,q*) = (0.1,0.2). Right-hand panel: corresponding plots with (g«,q*)=(0.3,0.4).

08
"
o5
o5
" o¢
a2 s
0
oz
1
@ o1
05
] o0 z

Fi1G. 7.4. Optimal control results at t =T in section 7.3. Left-hand panel: plots of U (left) and
Q (right) with (g«,q*)=(0.1,0.2). Right-hand panel: corresponding plots with (g«,q*) = (0.3,0.4).

We observe that as time evolves, the state variable U gets closer to the ideal distribu-
tion ug4 (e.g., the hump in U becomes higher from ¢t =T/2 to t =T and approaches ug),
which indicates the applicability and effectiveness of the proposed model in modeling
challenging phenomena such as contaminant remediation in heterogeneous media.

8. Concluding remarks. This work investigates an optimal control model
governed by a two-time-scale fractional advection-diffusion-reaction equation with
space-time-dependent fractional order and coefficients. The well-posedness, first-order
optimality conditions, and maximal regularity of the optimal control problem are
proved, and numerical experiments are performed to investigate its potential applica-
tions.

A potential extension of the current work is to investigate the more complicated
optimal control of the miscible displacement system, in which the state equations
contain additional pressure and velocity equations. The optimal control governed by
the integer-order miscible displacement system was investigated in [10], where the
diffusion coefficient depends on the concentration. In general, one could combine the
techniques in [10] with the methods in the current work to analyze the two-time-scale
fractional miscible displacement system, while further studies need to be conducted
on how the coupling of the system may affect the analysis of the optimal control.

Another interesting topic is to prove high-order regularity estimates to support
the numerical analysis. In principle the developed compact mapping method could
be applied, while, due to the effects of the weakly singular kernel in (1.5), &?u could
be unbounded near the initial time ¢ = 0 [63] such that we should construct the
compact mapping between Sobolev spaces W2P(0,T) based on the derivative proper-
ties of variable-order fractional operators. We will investigate this topic in the near
future.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/06/23 to 58.194.168.130 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

OPTIMAL CONTROL OF TIME-FRACTIONAL PROBLEM 1713

As discussed in section 2, the MSD of the two-time-scale model with k = 1 approx-
imates that of the single-time-scale model away from the initial time, and for large k
the MSD of the two-time-scale model exhibits similar behavior to that of the single-
time-scale model on the entire time interval. Since the analysis of this work is valid for
any bounded k, the derived results hold true for the fractional-order dominant case
that approximates the single-time-scale model. Nevertheless, there remains a gap,
namely, analyzing the single-time-scale variable-order fractional advection-diffusion-
reaction model

8?(m’t)u + L(x, t)u= f(x,t).

Due to the impacts of the variable order, existing methods for its constant-order
counterpart such as analytical techniques [15, 50, 51] and spectral expansions [51] are
not applicable, while energy arguments in, e.g., [43, 44] cannot be directly performed
as the variable-order fractional operators lose the favorable coercivity. It is unclear
how the current analysis techniques could be applied to the above model and its
optimal control problem.
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