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Abstract. A time-fractional mean-field control (MFC) is developed for a prototype model of
accidental spill of a hazardous contaminant in subsurface porous media, which is a representative
and recurrent environmental threat to the public, to optimize the flow pattern so that the spilled
contaminant is remediated with the minimal cost required to ensure the clean water supply. A
strongly coupled nonlinear system of a multiple time-scale time-fractional transport equation and
a backward multiple time-scale time-fractional Hamilton--Jacobi equation is derived using the first-
order optimality condition. A sequentially decoupled time-stepping finite element method is derived
for the numerical simulation of the MFC. Numerical experiments are presented to investigate the
performance of the MFC, which show that the MFC determines an optimal flow pattern to ensure
clean groundwater supply during and beyond the time period of contaminant spill with minimal cost.

Key words. mean field control, time-fractional, subdiffusive advective transport, Hamilton--
Jacobi equation, decoupling algorithm
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1. Introduction. Mean-field controls (MFCs) model dynamical behaviors of
populations (e.g., particles/agents in physics/social systems), which have vast appli-
cations in robotics path planning, pandemic control, data science, conservation laws,
reaction-diffusion equations, and finance [12, 23, 25, 26, 27, 29, 30, 32, 33, 36, 44, 55].
The minimizer system of MFCs leads to a pair of partial differential equations (PDEs)
describing the optimal trajectory of the population dynamic.

The cost functional in most MFC research in the literature is constrained by
(integer-order) PDEs [25, 29]. In recent years time-fractional MFCs were developed
via stochastic analysis [7, 9, 50], and their well-posedness and regularity as well as
numerical approximations were carried out rigorously [8, 10, 16]. Motivated by the
successful developments and applications of the powerful MFCs, in this paper we de-
velop a multiple time-scale time-fractional MFC to describe a prototype modeling of
accidental spill of a hazardous contaminant in subsurface porous media, which is a
representative and recurrent environmental threat to the public. The goal is to opti-
mize the flow pattern so that the spilled contaminant is transported and remediated
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A TIME-FRACTIONAL MEAN-FIELD CONTROL B885

with the minimal cost required to ensure the clean water supply to the public during
the entire time period of the spill and beyond.

In section 2 we recall that the time-fractional transport PDE provides more accu-
rate description of the subdiffusive advective transport of contaminant through het-
erogeneous porous media than its integer-order counterpart does, which motivates the
choice of the time-fractional transport PDE as the constraining equation for the MFC.
Note that in the accidental spill of contaminant in subsurface formation, the transport
process is not affected significantly by individual particles of the contaminant but will
be determined by the aggregate behavior of particles, e.g., the concentration of the
solute and the velocity field of the fluid. These observations suggest the use of the
MFC (2.1), constrained by the time-fractional transport PDE (2.3) in order to ac-
curately describe subdiffusive advective transport of the spilled contaminant through
heterogeneous media.

In section 3 we address the solution procedure for the (time-fractional) MFC
(2.1) and (2.3), to which there are two general approaches in the literature: One min-
imizes the MFC (2.1) and (2.3) directly via, e.g., primal-dual hybrid gradient methods
[13, 30, 32], while the other utilizes the first-order optimality condition to derive a
system of PDEs as the stationary point of the MFC formulation. In this paper we
adopt the second approach by introducing a pseudopotential as a Lagrangian mul-
tiplier and applying the first-order optimality condition to derive a strongly coupled
nonlinear system (3.8) of a multiple time-scale time-fractional subdiffusive advective
transport PDE in terms of the concentration of the contaminant and a backward-in-
time multiple time-scale time-fractional Hamilton--Jacobi--Bellman PDE in terms of
the pseudopotential that governs the velocity field.

In section 4 we develop a sequentially decoupled time-stepping finite element
method to numerically simulate the coupled fractional PDE system (3.8) to obtain
its numerical solution. In section 5 we carry out numerical experiments to investigate
the performance of the MFC formulation: (i) We test the convergence of the nu-
merical model. (ii) With the numerically justified convergence we conduct numerical
experiments to examine the performance of the MFC in the context of control and
elimination of contaminant in groundwater supply zones after an accidental leakage
or spill of contaminant. Finally, section 6 contains concluding remarks. We sum-
marize the results and observations of the paper and outline possible future research
directions and obstacles in the context of subsurface flow and transport.

2. A multiple time-scale time-fractional MFC. Let \Omega \subset \BbbR d with 1\leq d\leq 3
be a bounded aquifer with the boundary \partial \Omega . Consider a representative scenario: A
hazardous contaminant is accidentally spilled in the subdomain \Omega s \subset \Omega , the goal is
to optimize the velocity field \bfitv so that the contaminant is transported and remedi-
ated with the minimal transportation cost, and the contaminant is eliminated in the
groundwater supply zone \Omega w \subset \Omega during the time period [0, T ] and beyond. Then an
MFC is formulated as follows [6, 21]: Find the concentration \rho : [0, T ]\rightarrow L2

+(\Omega ) and
the velocity field \bfitv : [0, T ]\rightarrow H0(div;\Omega ) to minimize the cost functional

inf
\rho ,\bfitv ,\rho T

\int T

0

\int 
\Omega 

1

2
\rho (\bfitx , t)| \bfitv (\bfitx , t)| 2d\bfitx dt+

\int 
\Omega 

G(\bfitx , \rho T (\bfitx ))d\bfitx .(2.1)

Here L2(\Omega ) is the space of square integrable functions on \Omega , L2
+(\Omega ) :=

\bigl\{ 
q \in L2(\Omega ) :

q \geq 0
\bigr\} 
, H0(div;\Omega ) :=

\bigl\{ 
\bfitu \in (L2(\Omega ))d : \nabla \cdot \bfitu \in L2(\Omega ), \bfitu \cdot \bfitn = 0on\partial \Omega 

\bigr\} 
with \bfitn being

the unit outward normal to \partial \Omega and \nabla being the gradient operator, \rho T (\bfitx ) := \rho (\bfitx , T )
is the terminal value, and the function G is convex with respect to \rho T .
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B886 X. ZHENG, Z. YANG, W. LI, AND H. WANG

Remark 2.1. The first term accounts for the total kinetic energy required to
transport the contaminant during the time period [0, T ]. The second term may reduce
to the weighted Lp norm with p\geq 1 for a properly chosen G that is supported on the
water supply zone \Omega w \subset \Omega (cf. section 5). The MFC (2.1) and (2.3) ensures that the
subdiffusive advective transport of the contaminant through the heterogeneous aquifer
\Omega governed by the time-fractional transport PDE (2.3) with the optimal velocity field
\bfitv minimizes (i.e., cleans up) the contaminant in the water supply zone \Omega w with
the minimal accumulated kinetic energy (to transport the contaminant to the right
location to be remediated).

Recall that the integer-order Fickian diffusive advective transport PDE was de-
rived under the assumptions that the underlying particle jumps have (i) a mean free
path, and (ii) a mean waiting time [38], which are valid for transport in homogeneous
media when solute plumes are observed to be Gaussian [4, 37, 38]. This justifies
why the PDE, which admits Gaussian fundamental solutions, can accurately describe
contaminant transport in homogeneous media. When extended to model transport
in heterogeneous media by adjusting the variable parameters that multiply the preset
integer-order differential operators to fit the training data, these PDEs tend to yield
less accurate predictions [5, 11, 14, 19, 37, 38]. The reason is that transport in
heterogeneous media exhibits highly skewed power-law decaying tails, which can
hardly be captured by integer-order diffusive advective transport PDEs, character-
ized by a combination of Gaussian fundamental solutions, over a wide parameter
range [5, 11, 14, 19, 37, 38].

Under the assumption that the mean waiting time has a power-law decaying tail
as observed in field tests, the time-fractional diffusion PDE

\partial \alpha t \rho  - \Delta \rho = 0, 0<\alpha < 1, \partial \alpha t g :=
1

\Gamma (1 - \alpha )

\int t

0

g\prime (s)ds

(t - s)\alpha 
,(2.2)

where \partial \alpha t represents the fractional derivative operator with \Gamma (\cdot ) being the Gamma
function [43] and \Delta is the Laplacian, was derived via continuous time random walk
(CTRW) and was shown to accurately describe transport in heterogeneous aquifers
[37, 38, 46, 47]. However, (2.2) admits solutions with singularity near the initial
time t = 0, which is not physically relevant [45, 48], because (2.2) was derived as
the diffusion limit of a CTRW in the phase plane and so holds only for large time
t > 0. This is why it fails to catch the Fickian diffusive behavior near the initial
time t= 0 [62], which will cause further complications to system (3.8) in the current
context. The two time-scale mobile-immobile time-fractional PDE with the partition
coefficient \kappa [46, 61],

\partial t\rho + \kappa \partial \alpha t \rho  - \Delta \rho = 0, \kappa > 0, 0<\alpha < 1,

in which a 1/(1 + \kappa ) portion of the contaminant stays in the mobile phase and un-
dergoes Fickian diffusive transport, while the rest gets absorbed to the aquifer and
undergoes subdiffusive transport [14, 39, 64], accurately describes Fickian diffusive
transport near the initial time and subdiffusive transport subsequently [46, 62].

We complete the MFC (2.1) by the two time-scale time-fractional PDE

\partial t\rho + \kappa \partial \alpha t \rho  - K\Delta \rho +\nabla \cdot (\rho \bfitv (\bfitx , t)) = f(\bfitx , \=\rho ) in\Omega \times (0, T ],

\rho (\bfitx ,0) = \rho 0(\bfitx ) on\Omega ,

\bfitv (\bfitx , t) \cdot \bfitn (\bfitx ) =\nabla \rho (\bfitx , t) \cdot \bfitn (\bfitx ) = 0 on\partial \Omega \times [0, T ].

(2.3)
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A TIME-FRACTIONAL MEAN-FIELD CONTROL B887

HereK > 0 is the diffusivity coefficient, \rho 0 \in L2
+(\Omega ) refers to the initial value, f(\bfitx , \=\rho )>

0 with \=\rho being the prescribed concentration of the contaminant at sources, f < 0 with
\=\rho = \rho being the concentration of the contaminant in the groundwater at sinks, and
f \equiv 0 elsewhere.

3. A time-fractional PDE system from the optimality condition. We
are now in the position to address the minimization of the MFC (2.1) and (2.3),
for which there are two general approaches to finding the minimizers. The first is
to minimize the MFC (2.1) and (2.3) directly via, e.g., primal-dual hybrid gradient
methods [13, 30, 32], while the other is to utilize the first-order optimality condition
to derive a system of PDEs as the stationary point of the optimization problem (2.1)
and (2.3). In this paper we adopt the second approach.

To facilitate the derivation, introduce the specific momentum

\bfitm (\bfitx , t) := \rho (\bfitx , t)\bfitv (\bfitx , t).(3.1)

Then the MFC (2.1) and (2.3) can be reformulated as

inf
\rho ,\bfitm ,\rho T

\int T

0

\int 
\Omega 

| \bfitm (\bfitx , t)| 2

2\rho (\bfitx , t)
d\bfitx dt+

\int 
\Omega 

G(\bfitx , \rho T (\bfitx ))d\bfitx ,(3.2)

which is subject to the constraint

\partial t\rho + \kappa \partial \alpha t \rho  - K\Delta \rho +\nabla \cdot \bfitm = f(\bfitx , \=\rho ) in\Omega \times (0, T ],

\rho (\bfitx ,0) = \rho 0(\bfitx ) on\Omega ,

\bfitm (\bfitx , t) \cdot \bfitn (\bfitx ) =\nabla \rho (\bfitx , t) \cdot \bfitn (\bfitx ) = 0 on\partial \Omega \times [0, T ].

(3.3)

Note from (3.1) that

lim
\rho \rightarrow 0+

| \bfitm | 2

\rho 
= 0,(3.4)

and hence the specific kinetic energy term in (3.2) vanishes whenever \rho (\bfitx , t) = 0.
Accordingly, if \rho (\bfitx , t) = 0 for \bfitx \in \partial \Omega , we enforce \bfitm (\bfitx , t) \cdot \bfitn (\bfitx ) = 0.

Let \phi (\bfitx , t) be a Lagrangian multiplier that is subject to the no-flux boundary
condition

\nabla \phi (\bfitx , t) \cdot \bfitn (\bfitx ) = 0 on \partial \Omega \times [0, T ],(3.5)

and let the cost functional be defined by

L(\rho ,\bfitm , \rho T , \phi ) :=

\int T

0

\int 
\Omega 

| \bfitm | 2

2\rho 
d\bfitx dt+

\int 
\Omega 

G(\bfitx , \rho T )d\bfitx 

 - 
\int T

0

\int 
\Omega 

\phi 
\bigl( 
\partial t\rho + \kappa \partial \alpha t \rho  - K\Delta \rho +\nabla \cdot \bfitm  - f(\bfitx , \=\rho )

\bigr) 
d\bfitx dt.

(3.6)

Apply the Karush--Kuhn--Tucker approach to reformulate the constrained optimiza-
tion problem (3.2)--(3.3) as an unconstrained optimization: Find a quadruple \rho , \bfitm ,
\rho T , and \phi to optimize the problem

inf
\rho ,\bfitm ,\rho T

sup
\phi 
L(\rho ,\bfitm , \rho T , \phi ).(3.7)

We utilize the optimality condition of problem (3.6)--(3.7) to compute the first varia-
tion of the generalized Lagrangian L(\rho ,\bfitm , \rho T , \phi ) with respect to all its arguments to
prove the following theorem.
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B888 X. ZHENG, Z. YANG, W. LI, AND H. WANG

Theorem 3.1. The optimization problem (3.6)--(3.7) can be characterized by the
following coupled nonlinear time-fractional PDE system, which consists of a forward
time-fractional PDE describing subdiffusive advective transport of the contaminant
and a backward time-fractional Hamilton--Jacobi PDE describing the subdiffusive ad-
vective transport of the pseudopotential \phi as the Lagrangian multiplier:

\partial t\rho + \kappa \partial \alpha t \rho  - K\Delta \rho  - \nabla \cdot (\rho \nabla \phi ) = f in\Omega \times (0, T ],

\partial t\phi  - \kappa \^\partial \alpha t \phi +K\Delta \phi  - | \nabla \phi | 2

2
+ (\partial \rho f)\phi = 0 in\Omega \times [0, T ),

\rho (\bfitx ,0) = \rho 0(\bfitx ), \phi (\bfitx , T ) = \partial \rho T
G(\bfitx , \rho T ) on\Omega ,

\nabla \rho (\bfitx , t) \cdot \bfitn (\bfitx ) =\nabla \phi (\bfitx , t) \cdot \bfitn (\bfitx ) = 0 on\partial \Omega \times [0, T ].

(3.8)

Here the backward Riemann--Liouville fractional integral operator t
\^I1 - \alpha 
T and differen-

tial operator \^\partial \alpha t are defined by [43]

\^\partial \alpha t g := - \partial t
\bigl( 
t
\^I1 - \alpha 
T g), t

\^I1 - \alpha 
T :=

1

\Gamma (1 - \alpha )

\int T

t

g(s)ds

(s - t)\alpha 
.(3.9)

Proof. Letting \delta \phi be an admissible function that is subject to the boundary
condition (3.5), we use (3.6) to compute the variation \delta \phi L(\rho ,\bfitm , \rho T , \phi ) with respect
to following \phi :

J\phi (\theta ) :=L(\rho ,\bfitm , \rho T , \phi + \theta \delta \phi )

=

\int T

0

\int 
\Omega 

| \bfitm | 2

2\rho 
d\bfitx dt+

\int 
\Omega 

G(\bfitx , \rho T )d\bfitx 

 - 
\int T

0

\int 
\Omega 

(\phi + \theta \delta \phi )
\bigl( 
\partial t\rho + \kappa \partial \alpha t \rho  - K\Delta \rho +\nabla \cdot \bfitm  - f(\bfitx , \=\rho )

\bigr) 
d\bfitx dt.

Differentiate J\phi (\theta ) with respect to \theta and then set \theta = 0 to obtain

\delta \phi L(\rho ,\bfitm , \rho T , \phi ) = J \prime 
\phi (0)

= - 
\int T

0

\int 
\Omega 

\delta \phi 
\bigl( 
\partial t\rho + \kappa \partial \alpha t \rho  - K\Delta \rho +\nabla \cdot \bfitm  - f(\bfitx , \=\rho )

\bigr) 
d\bfitx dt= 0.

Since \delta \phi is arbitrary, we obtain the following time-fractional PDE for the concentra-
tion \rho :

\partial t\rho (\bfitx , t) + \kappa \partial \alpha t \rho (\bfitx , t) - K\Delta \rho (\bfitx , t) +\nabla \cdot \bfitm (\bfitx , t) = f(\bfitx , \=\rho ) in\Omega \times (0, T ].(3.10)

To compute the variation \delta \rho L(\rho ,\bfitm , \rho T , \phi ) with respect to \rho , we use the forward
differential operator \partial \alpha t in (2.2) and the backward differential operator \^\partial \alpha t in (3.9) to
integrate the \phi \partial \alpha t \rho term in the last integral on the right-hand side of (3.6) to find
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A TIME-FRACTIONAL MEAN-FIELD CONTROL B889

\int 
\Omega 

\int T

0

\phi (\bfitx , t)\partial \alpha t \rho (\bfitx , t)dtd\bfitx 

=
1

\Gamma (1 - \alpha )

\int 
\Omega 

\biggl[ \int T

0

\phi (\bfitx , t)

\int t

0

\partial s\rho (\bfitx , s)ds

(t - s)\alpha 
dt

\biggr] 
d\bfitx 

=
1

\Gamma (1 - \alpha )

\int 
\Omega 

\int T

0

\biggl[ \int t

0

\phi (\bfitx , t)\partial s\rho (\bfitx , s)

(t - s)\alpha 
ds

\biggr] 
dtd\bfitx 

=
1

\Gamma (1 - \alpha )

\int 
\Omega 

\int T

0

\biggl[ \int T

s

\phi (\bfitx , t)\partial s\rho (\bfitx , s)

(t - s)\alpha 
dt

\biggr] 
dsd\bfitx 

=

\int 
\Omega 

\int T

0

\biggl[ 
\partial s\rho (\bfitx , s)

1

\Gamma (1 - \alpha )

\int T

s

\phi (\bfitx , t)

(t - s)\alpha 
dt

\biggr] 
dsd\bfitx 

=

\int 
\Omega 

\int T

0

\rho (\bfitx , s)\^\partial \alpha s \phi (\bfitx , \cdot )dsd\bfitx  - 
\int 
\Omega 

\rho 0(\bfitx )0 \^I
1 - \alpha 
T \phi (\bfitx , \cdot )d\bfitx .

(3.11)

Integrate the remaining terms in the last integral of (3.6) by parts and use (3.11)
and the space-time boundary conditions in (3.3) to find\int T

0

\int 
\Omega 

\phi 
\bigl( 
\partial t\rho + \kappa \partial \alpha t \rho  - K\Delta \rho +\nabla \cdot \bfitm  - f(\bfitx , \=\rho )

\bigr) 
d\bfitx dt

=

\int T

0

\int 
\Omega 

\rho 
\bigl( 
 - \partial t\phi + \kappa \^\partial \alpha t \phi  - K\Delta \phi 

\bigr) 
 - \bfitm \cdot \nabla \phi  - \phi f(\bfitx , \=\rho )d\bfitx dt

+

\int 
\Omega 

\rho T (\bfitx )\phi (\bfitx , T )d\bfitx  - 
\int 
\Omega 

\rho 0(\bfitx )
\Bigl[ 
\phi (\bfitx ,0) + \kappa 0

\^I1 - \alpha 
T \phi (\bfitx , \cdot )

\Bigr] 
d\bfitx .

(3.12)

Let \delta \rho be any admissible function satisfying the homogeneous boundary, initial, and
terminal conditions

\delta \rho (\bfitx ,0) = \delta \rho (\bfitx , T ) = 0 on \Omega , \nabla \delta \rho (\bfitx , t) \cdot \bfitn (\bfitx ) = 0 on \partial \Omega \times [0, T ].(3.13)

Combine (3.6) and (3.12) and utilize (3.13) to obtain

J\rho (\theta ):=L(\rho + \theta \delta \rho ,\bfitm , \rho T , \phi )

=

\int T

0

\int 
\Omega 

| \bfitm | 2

2(\rho + \theta \delta \rho )
d\bfitx dt+

\int 
\Omega 

G(\bfitx , \rho T )d\bfitx dt

 - 
\int T

0

\int 
\Omega 

\phi 
\bigl( 
\partial t\rho + \kappa \partial \alpha t \rho  - K\Delta \rho +\nabla \cdot \bfitm  - f(\bfitx , \=\rho )

\bigr) \bigm| \bigm| \bigm| 
\rho =\rho +\theta \delta \rho 

d\bfitx dt

=

\int T

0

\int 
\Omega 

| \bfitm | 2

2(\rho + \theta \delta \rho )
d\bfitx dt+

\int 
\Omega 

G(\bfitx , \rho T )d\bfitx dt

 - 
\int T

0

\int 
\Omega 

\Bigl[ 
(\rho + \theta \delta \rho )

\bigl( 
 - \partial t\phi + \kappa \^\partial \alpha t \phi  - K\Delta \phi 

\bigr) 
 - \bfitm \cdot \nabla \phi 

\Bigr] 
 - \phi (\bfitx , t)f(\bfitx , \=\rho )

\bigm| \bigm| \bigm| 
\rho =\rho +\theta \delta \rho 

d\bfitx dt - 
\int 
\Omega 

\rho T (\bfitx )\phi (\bfitx , T )d\bfitx 

+

\int 
\Omega 

\rho 0(\bfitx )
\Bigl[ 
\phi (\bfitx ,0) + \kappa 0

\^I1 - \alpha 
T \phi (\bfitx , \cdot )

\Bigr] 
d\bfitx .
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B890 X. ZHENG, Z. YANG, W. LI, AND H. WANG

Differentiating J\rho (\theta ) with respect to \theta yields

J \prime 
\rho (\theta ) =

\int T

0

\int 
\Omega 

 - | \bfitm | 2\delta \rho 
2(\rho + \theta \delta \rho )2

d\bfitx dt

 - 
\int T

0

\int 
\Omega 

\delta \rho 
\Bigl( 
 - \partial t\phi + \kappa \^\partial \alpha t \phi  - K\Delta \phi  - \phi \partial \rho f(\bfitx , \=\rho )

\bigm| \bigm| \bigm| 
\rho =\rho +\theta \delta \rho 

\Bigr) 
d\bfitx dt.

Then set \theta = 0 gives rise to

\delta \rho L(\rho ,\bfitm , \rho T , \phi ) = J \prime 
\rho (0)

=

\int T

0

\int 
\Omega 

\delta \rho 

\biggl[ 
\partial t\phi  - \kappa \^\partial \alpha t \phi +K\Delta \phi + \phi \partial \rho f  - | \bfitm | 2

2\rho 2

\biggr] 
d\bfitx dt= 0.

The arbitrary \delta \rho yields the backward time-fractional Hamilton--Jacobi PDE for \phi :

\partial t\phi  - \kappa \^\partial \alpha t \phi +K\Delta \phi + (\partial \rho f)\phi  - | \bfitm | 2

2\rho 2
= 0 in \Omega \times [0, T ].(3.14)

Similarly, let \delta \bfitm be any admissible function satisfying the no-flow boundary
condition in (3.3). Use (3.6), (3.12), and the boundary condition (3.3) for \delta \bfitm to
deduce

J\bfitm (\theta ) :=L(\rho ,\bfitm + \theta \delta \bfitm , \rho T , \phi )

=

\int T

0

\int 
\Omega 

| \bfitm + \theta \delta \bfitm | 2

2\rho 
d\bfitx dt+

\int 
\Omega 

G(\bfitx , \rho T )d\bfitx 

 - 
\int T

0

\int 
\Omega 

\phi 
\bigl( 
\partial t\rho + \kappa \partial \alpha t \rho  - K\Delta \rho  - f(\bfitx , \=\rho )

\bigr) 
 - (\bfitm + \theta \delta \bfitm ) \cdot \nabla \phi d\bfitx dt.

Differentiate J\bfitm (\theta ) with respect to \theta and then set \theta = 0 to obtain

\delta \bfitm L(\rho ,\bfitm , \rho T , \phi ) = J \prime 
\bfitm (0) =

\int T

0

\int 
\Omega 

\bfitm \cdot \delta \bfitm 
\rho 

+ \delta \bfitm \cdot \nabla \phi d\bfitx dt= 0.(3.15)

Since \delta \bfitm is arbitrary, we use (3.1) and (3.15) to derive

\bfitv =
\bfitm 

\rho 
= - \nabla \phi .(3.16)

Put \bfitm = \rho \bfitv = - \rho \nabla \phi in (3.10) and (3.14) to obtain the two time-fractional PDEs for
\rho and \phi and the no-flux boundary condition for \phi in (3.8).

Finally, let \delta \rho T be any admissible function. Use (3.6) and (3.12) to find

J\rho T
(\theta ) :=L(\rho ,\bfitm , \rho T + \theta \delta \rho T , \phi )

=

\int T

0

\int 
\Omega 

| \bfitm | 2

2\rho 
d\bfitx dt+

\int 
\Omega 

G(\bfitx , \rho T + \theta \delta \rho T )d\bfitx 

 - 
\int T

0

\int 
\Omega 

\rho 
\bigl( 
 - \partial t\phi + \kappa \^\partial \alpha s \phi  - K\Delta \phi 

\bigr) 
 - \bfitm \cdot \nabla \phi  - \phi f(\bfitx , \rho )d\bfitx dt

 - 
\int 
\Omega 

\bigl( 
\rho T (\bfitx ) + \theta \delta \rho T

\bigr) 
\phi (\bfitx , T )d\bfitx +

\int 
\Omega 

\rho 0(\bfitx )
\bigl( 
\phi (\bfitx ,0) + \kappa 0

\^I1 - \alpha 
T \phi (\bfitx , \cdot )

\bigr) 
d\bfitx .
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A TIME-FRACTIONAL MEAN-FIELD CONTROL B891

Differentiate J\rho T
(\theta ) with respect to \theta and then set \theta = 0 to obtain

\delta \rho T
L(\rho ,\bfitm , \rho T , \phi ) = J \prime 

\rho T
(0) =

\int 
\Omega 

\delta \rho T
\bigl( 
\partial \rho T

G - \phi (\bfitx , T )
\bigr) 
d\bfitx = 0.

We derive a terminal condition for \phi at the final time t= T :

\phi (\bfitx , T ) = \partial \rho T
G(\bfitx , \rho T ).(3.17)

We combine (3.17) with the initial conditions in (2.3) to obtain the initial condition
for \rho and the terminal condition for \phi in (3.8), thus proving the theorem.

4. A sequentially decoupled time-stepping finite element method. We
take advantage of the physical properties of the subdiffusive advective flow and trans-
port mechanism to develop a sequentially decoupled time-stepping finite element
method for the numerical simulation of system (3.8) to optimize the flow pattern
for the minimal transport cost.

4.1. A sequentially decoupling of system (3.8). The dependent variable of
primary interest is the concentration \rho of the contaminant, which is solved from the
forward time-fractional PDE in (3.8) that is determined by the velocity field \bfitv = - \nabla \phi .
This in turn relies on an accurate solution of \phi in the backward time-fractional PDE
in (3.8), which is coupled to the forward time-fractional PDE via \partial \rho f through \rho .

A sequentially decoupled backward Hamilton--Jacobi PDE. Define an initial guess
for \rho (0) and \rho 

(0)
T by

\rho (0)(\bfitx , t) := \rho 0(\bfitx ), \rho 
(0)
T (\bfitx ) := \rho 0(\bfitx ), \bfitx \in \Omega , t\in [0, T ].

For m = 1,2, . . . , a sequentially decoupled terminal-boundary value problem of the
backward time-fractional Hamilton--Jacobi PDE can be formulated for \phi (m)(\bfitx , t):

\partial t\phi 
(m)(\bfitx , t) - \kappa \^\partial \alpha t \phi 

(m)(\bfitx , t) +K\Delta \phi (m)(\bfitx , t)

 - 1

2
| \nabla \phi (m)(\bfitx , t)| 2 + \partial \rho f(\bfitx , \=\rho 

(m - 1)(\bfitx , t))\phi (m)(\bfitx , t) = 0 in \Omega \times [0, T ),

\phi (m)(\bfitx , T ) = \partial \rho T
G
\bigl( 
\bfitx , \rho 

(m - 1)
T (\bfitx )

\bigr) 
on \Omega ,

\nabla \phi (m)(\bfitx , t) \cdot \bfitn (\bfitx ) = 0 on \partial \Omega \times [0, T ].

(4.1)

Let H1(\Omega ) be the Sobolev space that consists of the Lebesgue square integrable func-
tions on \Omega with square integrable weak derivatives, equipped with the usual inner
product and norm [21]. A backward weak formulation for problem (4.1) can be ob-
tained by multiplying the fractional PDE in (4.1) by any test function \chi \in H1(\Omega ),
integrating the resulting equation on \Omega , and applying the divergence theorem:

\bigl( 
\partial t\phi 

(m)(\cdot , t) - \kappa \^\partial \alpha t \phi 
(m)(\cdot , t), \chi 

\bigr) 
 - 
\bigl( 
K\nabla \phi (m)(\cdot , t),\nabla \chi 

\bigr) 
 - 
\Bigl( 1
2

\bigm| \bigm| \nabla \phi (m)(\cdot , t)
\bigm| \bigm| 2, \chi \Bigr) 

+
\bigl( 
\partial \rho f(\cdot , \=\rho (m - 1)(\cdot , t))\phi (m)(\cdot , t), \chi 

\bigr) 
= 0, 0\leq t < T,\bigl( 

\phi (m)(\cdot , T ) - \partial \rho T
G
\bigl( 
\cdot , \rho (m - 1)

T (\cdot )
\bigr) 
, \chi 

\bigr) 
= 0,

(4.2)

with (\cdot , \cdot ) representing the L2 inner product over \Omega .
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B892 X. ZHENG, Z. YANG, W. LI, AND H. WANG

A sequentially decoupled transport PDE. Given \phi (m)(\bfitx , t), solve for \rho (m)(\bfitx , t):

\partial t\rho 
(m)(\bfitx , t) + \kappa \partial \alpha t \rho 

(m)(\bfitx , t) - \nabla \cdot (\rho (m)(\bfitx , t)\nabla \phi (m)(\bfitx , t))

 - K\Delta \rho (m)(\bfitx , t) = f(\bfitx , \=\rho (m)(\bfitx , t)) in\Omega \times (0, T ],
\rho (m)(\bfitx ,0) = \rho 0(\bfitx ) on\Omega ,

\nabla \rho (m)(\bfitx , t) \cdot \bfitn (\bfitx ) = 0 on\partial \Omega \times [0, T ].

(4.3)

By the discussions following (3.4), \=\rho (m) = \=\rho at sources and \=\rho (m) = \rho (m) at sinks, and

f \equiv 0 elsewhere. \rho 
(m)
T (\bfitx ) = \rho (m)(\bfitx , T ). A forward weak formulation for problem (4.1)

for any \chi \in H1(\Omega ) is:\bigl( 
\partial t\rho 

(m)(\cdot , t) + \kappa \partial \alpha t \rho 
(m)(\cdot , t), \chi 

\bigr) 
+
\bigl( 
K\nabla \rho (m)(\cdot , t),\nabla \chi 

\bigr) 
+
\bigl( 
\rho (m)(\cdot , t)\nabla \phi (m)(\cdot , t),\nabla \chi 

\bigr) 
=
\bigl( 
f(\cdot , \=\rho (m)(\cdot , t)), \chi 

\bigr) 
, 0< t\leq T,\bigl( 

\rho (m)(\cdot ,0) - \rho 0
\bigl( 
\cdot ), \chi 

\bigr) 
= 0.

(4.4)

4.2. A time-stepping finite element approximation to system (3.8).
Discretization of the sequentially decoupled time-fractional transport PDE (4.3).

Define a temporal partition of [0, T ] by

0 =: t0 < t1 < \cdot \cdot \cdot < tn < \cdot \cdot \cdot < tN := T, \tau n := tn  - tn - 1, n= 1,2, . . . ,N.(4.5)

Use the L1 discretization to approximate \partial t\rho 
(m)(\bfitx , tn) and \partial 

\alpha 
t \rho 

(m)(\bfitx , tn) in the weak
formulation (4.4) [34, 35, 49]. For 1\leq n\leq N

\partial t\rho (\bfitx , tn) \approx \delta \tau \rho (\bfitx , tn) :=
\rho (\bfitx , tn) - \rho (\bfitx , tn - 1)

\tau n
,

\partial \alpha t \rho (\bfitx , tn) =

n\sum 
k=1

\int tk

tk - 1

\partial s\rho (\bfitx , s)ds

\Gamma (1 - \alpha )(tn  - s)\alpha 
\approx 

n\sum 
k=1

\int tk

tk - 1

\delta \tau \rho (\bfitx , tk)ds

\Gamma (1 - \alpha )(tn  - s)\alpha 

= bn,n\rho (\bfitx , tn) +

n - 1\sum 
k=1

(bn,k  - bn,k+1)\rho (\bfitx , tk) - bn,1\rho 0(\bfitx ) =:\delta \alpha \tau \rho (\bfitx , tn),

bn,k :=
(tn  - tk - 1)

1 - \alpha  - (tn  - tk)
1 - \alpha 

\Gamma (2 - \alpha )\tau k
, 1\leq k\leq n.

(4.6)

Let Sh(\Omega ) \subset H1(\Omega ) be a piecewise-linear finite element space with respect to a
quasi-uniform partition of diameter h. Substituting \delta \tau \rho 

(m)(\cdot , tn) and \delta \alpha \tau \rho (m)(\cdot , tn) for
\partial t\rho 

(m)(\cdot , tn) and \partial \alpha t \rho 
(m)(\cdot , tn) in (4.4) yields a time-stepping finite element scheme:

For n= 1,2, . . . ,N , find the finite element solution \rho (m)(\bfitx , tn)\in Sh(\Omega ) such that\bigl( 
\delta \tau \rho 

(m)(\cdot , tn) + \kappa \delta \alpha \tau \rho 
(m)(\cdot , tn), \chi 

\bigr) 
+
\bigl( 
K\nabla \rho (m)(\cdot , tn),\nabla \chi 

\bigr) 
+
\bigl( 
\rho (m)(\cdot , tn)\nabla \phi (m)(\cdot , tn),\nabla \chi 

\bigr) 
=
\bigl( 
f(\cdot , \=\rho (m)(\cdot , tn)), \chi 

\bigr) 
\forall \chi \in Sh(\Omega ),\bigl( 

\rho (m)(\cdot ,0) - \rho 0
\bigl( 
\cdot ), \chi 

\bigr) 
= 0 \forall \chi \in Sh(\Omega ).

(4.7)

Discretization of the sequentially decoupled backward time-fractional Hamilton--
Jacobi PDE. Similarly discretize \partial t\phi 

(m)(\bfitx , t) and \^\partial \alpha t \phi 
(m)(\bfitx , t) backward in time on

the partition (4.5) for n=N,N  - 1, . . . ,1:
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A TIME-FRACTIONAL MEAN-FIELD CONTROL B893

\partial t\phi (\bfitx , tn - 1)\approx \delta \tau \phi (\bfitx , tn),

\^\partial \alpha t \phi (\bfitx , tn - 1) = - \partial t
\bigl( 
tn
\^I1 - \alpha 
T \phi 

\bigr) \bigm| \bigm| \bigm| 
t=tn - 1

\approx  - 1

\tau n

\biggl[ 
tn
\^I1 - \alpha 
T \phi  - tn - 1

\^I1 - \alpha 
T \phi 

\biggr] 
=

1

\tau n

1

\Gamma (1 - \alpha )

\Biggl[ 
N\sum 

k=n

\int tk

tk - 1

\phi (\bfitx , s)ds

(s - tn - 1)\alpha 
 - 

N - 1\sum 
k=n

\int tk+1

tk

\phi (\bfitx , s)ds

(s - tn)\alpha 

\Biggr] 

\approx 1

\tau n

1

\Gamma (1 - \alpha )

\Biggl[ 
N\sum 

k=n

\int tk

tk - 1

\phi (\bfitx , tk - 1)ds

(s - tn - 1)\alpha 
 - 

N - 1\sum 
k=n

\int tk+1

tk

\phi (\bfitx , tk)ds

(s - tn)\alpha 

\Biggr] 

= bn,n\phi (\bfitx , tn - 1) +

N\sum 
k=n+1

(bk,n  - bk,n+1)\phi (\bfitx , tk - 1) =:\^\delta \alpha \tau \phi (\bfitx , tn - 1),

bk,n :=
(tk  - tn - 1)

1 - \alpha  - (tk - 1  - tn - 1)
1 - \alpha 

\Gamma (2 - \alpha )\tau n
, n\leq k\leq N.

(4.8)

Here \delta \tau n\phi (\bfitx , tn) is defined in (4.6).
Substitute \delta \tau \phi 

(m)(\cdot , tn) and \^\delta \alpha \tau \phi 
(m)(\cdot , tn - 1) for \partial t\phi 

(m)(\cdot , tn - 1) and \^\partial \alpha t \phi 
(m)(\cdot , tn - 1)

in (4.2), respectively, to derive a backward time-stepping finite element scheme: For
n=N, N  - 1, . . . ,1, find the finite element solution \phi (m)(\bfitx , tn - 1)\in Sh(\Omega ) such that\bigl( 

\delta \tau \phi 
(m)(\cdot , tn) - \kappa \^\delta \alpha \tau \phi 

(m)(\cdot , tn - 1), \chi 
\bigr) 
 - 
\bigl( 
K\nabla \phi (m)(\cdot , tn - 1),\nabla \chi 

\bigr) 
 - 
\Bigl( 1
2

\bigm| \bigm| \nabla \phi (m)(\cdot , tn - 1)
\bigm| \bigm| 2, \chi \Bigr) +

\bigl( 
\partial \rho f(\cdot , \=\rho (m - 1)(\cdot , tn - 1))\phi 

(m)(\cdot , tn - 1), \chi 
\bigr) 
= 0,\bigl( 

\phi (m)(\cdot , T ) - \partial \rho T
G
\bigl( 
\cdot , \rho (m - 1)

T (\cdot )
\bigr) 
, \chi 

\bigr) 
= 0 \forall \chi \in Sh(\Omega ).

(4.9)

Implementation. Let \{ \chi i\} Nx
i=1 \subset Sh(\Omega ) be the nodal basis and write \phi (\cdot , tn - 1) as

\phi (\bfitx , tn - 1) =

Nx\sum 
j=1

\phi j\chi j(\bfitx ), \bfitx \in \Omega , \phi j := \phi (\bfitx j , tn - 1).

Evaluate the residual vector \bfitr (\phi ) = [r1(\phi ), . . . , rNx
(\phi )]\top ,

ri(\phi ) =
\bigl( 
\delta \tau \phi (\cdot , tn) - \kappa \^\delta \alpha \tau \phi (\cdot , tn - 1), \chi i

\bigr) 
 - 
\bigl( 
K\nabla \phi (\cdot , tn - 1),\nabla \chi i

\bigr) 
 - 
\Bigl( 1
2

\bigm| \bigm| \nabla \phi (\cdot , tn - 1)
\bigm| \bigm| 2, \chi i

\Bigr) 
+
\bigl( 
\partial \rho f(\cdot , \=\rho (\cdot , tn - 1))\phi (\cdot , tn - 1), \chi i

\bigr) 
,

and the Jacobian matrix \bfitJ (\phi ) = [Ji,j(\phi )]
Nx
i,j=1 by (4.8),

Ji,j(\phi ) = - \partial ri(\phi )
\partial \phi j

=
1

\tau n

\Bigl[ 
1 +

\kappa \tau 1 - \alpha 
n

\Gamma (2 - \alpha )

\Bigr] \bigl( 
\chi j , \chi i

\bigr) 
+
\bigl( 
K\nabla \chi j ,\nabla \chi i

\bigr) 
+
\bigl( 
\nabla \phi (\cdot , tn - 1) \cdot \nabla \chi j , \chi i

\bigr) 
 - 
\bigl( 
\partial \rho f(\cdot , \=\rho (m)(\cdot , tn - 1))\chi j , \chi i

\bigr) 
.

By the discussions following (2.3),  - \partial \rho f > 0 at sinks and vanishes elsewhere. The last
term is symmetric and positive semidefinite, and the first two terms are symmetric
and positive definite. The third term may be indefinite. Hence, the Jacobi matrix
\bfitJ is nonsingular if \tau n is sufficiently small such that the Newton's method converges
in the solution of the nonlinear system, as used in, e.g., optimal control of nonlinear
evolution equations [28, 41, 51].
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B894 X. ZHENG, Z. YANG, W. LI, AND H. WANG

5. Numerical investigation. We conduct numerical experiments to test the
convergence of the time-fractional MFC approximation (4.7) and (4.9). Then we
examine the performance of the MFC to assess the effect of control and elimination
of the contaminant in the groundwater supply zone in the context of a prototype
modeling of accidental spill of a hazardous contaminant in one- and two-dimensional
subsurface porous media.

5.1. Performance of the one-dimensional MFC. The problem setting is
as follows: The aquifer \Omega = (0,1), the contaminant spill zone \Omega s = (0,0.1), the
groundwater supply zone \Omega w = (0.9,1), and the diffusivity coefficient K = 0.001.

5.1.1. Numerical experiment 1(a). In this set of numerical experiments, the
source and sink term f is of the form

f(x, \=\rho ) =

\Biggl\{ 
\psi (x; 0,0.1) \=\rho , x\in [0,0.5],

 - \psi (x; 0.9,1) \rho , x\in [0.5,1],
(5.1)

where \psi (x;z1, z2) is a mollified point source of the form

\psi (x;z1, z2) := erf
\Bigl( x - z1

\sigma 

\Bigr) 
 - erf

\Bigl( x - z2
\sigma 

\Bigr) 
, x\in [0,1], \sigma = 0.001.(5.2)

f > 0 in the spill zone \Omega s with the prescribed amount of contaminant \=\rho = 1 injected
per unit volume per unit time. f < 0 represents the extraction/remediation of the
contaminant from the aquifer where \=\rho = \rho is the current concentration in the ground-
water. Initially, the groundwater is assumed clean, i.e., \rho 0 \equiv 0 in the aquifer \Omega . In
scheme (4.7) and (4.9), \partial \rho f = 0 on [0,0.5] and \partial \rho f(x, \=\rho ) =  - \psi (x; 0.9,1) on [0.5,1].
The observational time period T = 10. The potential field G(x,\rho T ) is chosen to be

G(x,\rho T ) = \rho 2T\psi (x; 0.9,1)/2.(5.3)

We first carry out numerical experiments to investigate the convergence of the
time-fractional MFC approximation to the concentration \rho of the contaminant for
different values of the fractional order \alpha in comparison with the MFC constrained
with the integer-order diffusive advective transport PDE. Since the analytical solution
is not available, we compute the reference solution with a fine time step size \tau ref =
1/2048 and a fine spatial mesh size href = 1/160 to measure the temporal and spatial
convergence rates rt and rs, respectively:

\| \rho T (\cdot ) - \rho h(\cdot , T )\| L2(\Omega ) \leq Q(\tau rt + hrs).

The numerical results are presented in Tables 5.1 and 5.2, which indicate the temporal
and spatial convergence of the approximation.

Table 5.1
The temporal convergence of the MFC approximation to \rho in section 5.1.

\alpha = 0.1 \alpha = 0.5 \alpha = 0.9

\tau \| \rho T  - \rho h\| rt \| \rho T  - \rho h\| rt \| \rho T  - \rho h\| rt

1/32 1.08E-02 8.42E-03 4.43E-03

1/64 5.39E-03 1.01 4.21E-03 1.00 2.29E-03 0.95
1/128 2.61E-03 1.04 2.06E-03 1.03 1.15E-03 0.98

1/256 1.22E-04 1.09 9.66E-04 1.09 5.59E-04 1.04
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Table 5.2
The spatial convergence of the MFC approximation to \rho in section 5.1.

\alpha = 0.1 \alpha = 0.5 \alpha = 0.9

h \| \rho T  - \rho h\| rs \| \rho T  - \rho h\| rs \| \rho T  - \rho h\| rs

1/4 4.46E-01 4.11E-01 3.85E-01

1/8 1.75E-01 1.35 1.66E-01 1.31 1.61E-01 1.26
1/16 7.22E-02 1.28 6.61E-02 1.33 7.14E-02 1.17

1/20 4.36E-02 2.25 4.49E-02 1.72 4.75E-02 1.82

With the numerically tested convergence of the MFC approximation, we then
conduct numerical experiments to assess the performance of the MFC for different
values of the fractional order \alpha in comparison with the MFC constrained with the
integer-order diffusive advective transport PDE. We use the spatial mesh size h= 1/32
and the time step size \tau = Th2 in the MFC simulation and present the plots of the
concentration \rho , the optimal velocity v (=  - \partial x\phi ), and the terminal concentration
\rho T in Figure 5.1. The first row is for the Fickian diffusive advective transport with
\kappa = 0 in (2.3), and the second through fourth rows are for the subdiffusive advective
transport with \kappa = 1 and \alpha = 0.3, 0.5, and 0.8, respectively. In all the scenarios,
the MFC is observed to successfully remediate all the contaminant and to ensure the
supply of clean water in the groundwater supply zone over the entire operational time
period.

5.1.2. Numerical experiment 1(b). The problem setting is set to be the same
as in section 5.1.1 except that the source and sink term of the contaminant leakage is
modified as follows:

f(x, \=\rho ) =

\left\{     
\psi (x; 0,0.1) \=\rho , (x, t)\in [0,0.5]\times [0,1],

 - \psi (x; 0.9,1) \rho , (x, t)\in [0.5,1]\times [0,10],

0 elsewhere.

(5.4)

That is, the contaminant leakage takes place during the time period [0,1], but the
objective of the MFC is to ensure that the contaminant can be eliminated in the
groundwater supply zone during a much longer time period [0,10]. Since the time
dependence of f on the time t is through \=\rho , the time dependence of f can be viewed
as \rho = 1 on [0,1] and 0 on (1,10].

Due to the similarity of the problem to the one in section 5.1.1, we only present
the concentration \rho of the contaminant, the optimal velocity v, and the terminal
concentration \rho T of the contaminant of the subdiffusive advective transport PDE
with \kappa = 1 and \alpha = 0.5 in (2.3) in comparison with those of the Fickian diffusive
advective transport PDE with \kappa = 0 in (2.3). We present the plots in Figure 5.2.
We observe that with the optimal velocity, the groundwater supply zone is remained
contaminant free during the long time period [0,10].

5.1.3. Numerical experiment 1(c). We only modify the source and sink term
in (5.1) as follows while keeping all the other parameters unchanged:

f(x, \=\rho ) =

\Biggl\{ 
\psi (x; 0,0.5) \=\rho , x\in [0,0.5],

 - \psi (x; 0.5,0.9) \rho , x\in [0.5,1]
(5.5)

with \=\rho = 1. We present the concentration \rho of the contaminant, the optimal velocity
v, and the terminal concentration \rho T of the contaminant of the subdiffusive advective

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 5.1. Performance of the one-dimensional MFC in section 5.1.1 with f given in (5.1). Left
column: the concentration \rho (x, t); middle column: the optimal velocity v(x, t); right column: the
terminal concentration \rho T (x, t). The first row: the Fickian diffusive advective transport with \kappa = 0
in (2.3); the second through fourth rows: the subdiffusive advective transport with \kappa = 1 and \alpha = 0.3,
0.5, and 0.8, respectively, in (2.3).

transport PDE with \kappa = 1 and \alpha = 0.5 in (2.3) in comparison with those of the
Fickian diffusive advective transport PDE with \kappa = 0 in (2.3). We present the plots
in Figure 5.3.
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Fig. 5.2. Performance of the one-dimensional MFC in section 5.1.2 with f given in (5.4). The
first row from left to right: Plots of the concentration \rho , the optimal velocity v, and the terminal
concentration \rho T of the Fickian diffusive advective transport PDE with \kappa = 0 in (2.3). The plots
in the second row correspond to those of the subdiffusive advective transport PDE with \kappa = 1 and
\alpha = 0.5 in (2.3).
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Fig. 5.3. Performance of the one-dimensional MFC in section 5.1.3 with f given in (5.5). The
first row from left to right: Plots of the concentration \rho , the optimal velocity v, and the terminal
concentration \rho T of the Fickian diffusive advective transport PDE with \kappa = 0 in (2.3). The plots
in the second row correspond to those of the subdiffusive advective transport PDE with \kappa = 1 and
\alpha = 0.5 in (2.3).
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Fig. 5.4. Performance of the one-dimensional MFC in section 5.1.4 with f given in (5.6). The
first row from left to right: Plots of the concentration \rho , the optimal velocity v, and the terminal
concentration \rho T of the Fickian diffusive advective transport PDE with \kappa = 0 in (2.3). The plots
in the second row correspond to those of the subdiffusive advective transport PDE with \kappa = 1 and
\alpha = 0.5 in (2.3).

5.1.4. Numerical experiment 1(d). In this set of experiments we only mod-
ify the source and sink term in section 5.1.3 as follows while keeping all the other
parameters unchanged:

f(x, \=\rho ) =

\Biggl\{ 
\psi (x; 0,0.5) \=\rho , x\in [0,0.5],

 - \psi (x; 0.5,0.9) \rho , x\in [0.5,1]
(5.6)

with \=\rho = 2. We present the concentration \rho of the contaminant, the optimal velocity
v, and the terminal concentration \rho T of the contaminant of the subdiffusive advective
transport PDE with \kappa = 1 and \alpha = 0.5 in (2.3) in comparison with those of the Fickian
diffusive advective transport PDE with \kappa = 0 in (2.3) in Figure 5.4.

5.2. Performance of the two-dimensional MFC. The problem setting is as
follows: The aquifer \Omega = (0,1)2, the spill zone \Omega s = (0,0.1)2, and the groundwater
supply zone \Omega w = (0.9,1)2.

5.2.1. Numerical experiment 2(a). The source and sink term f is an exten-
sion of (5.1) and is of the form

f(x, y, \=\rho ) =

\left\{     
\psi (x; 0,0.1)\psi (y; 0,0.1) \=\rho , (x, y)\in (0,0.5)2,

 - \psi (x; 0.9,1)\psi (y; 0.9,1) \rho , (x, y)\in (0.5,1)2,

0 elsewhere

(5.7)

with \=\rho = 1 and \psi (\cdot ;z1, z2) given in (5.2). G(x, y, \rho T ) is a two-dimensional extension
of (5.3):

G(x, y, \rho T ) = \rho 2T\psi (x; 0.9,1)\psi (y; 0.9,1)/2, (x, y)\in \Omega .(5.8)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A TIME-FRACTIONAL MEAN-FIELD CONTROL B899

All other parameters are chosen to be the same as in section 5.1.1. In Figure 5.5 we
present the plots of \rho T (x, y), and the x component vx(x, y,T ) (=  - \partial x\phi (x, y,T )) and
the y component vy(x, y,T ) (= - \partial y\phi (x, y,T )) of the velocity field \bfitv = (vx, vy) for the
Fickian diffusive advective transport and the subdiffusive advective transport with
different values of the fractional order \alpha = 0.3, 0.5, and 0.8, respectively.

Fig. 5.5. Performance of the two-dimensional MFC in section 5.2.1 with f given in (5.7).
Left column: The terminal concentration \rho T (x, y); middle (resp., right) column: the x-component
vx(x, y,T ) (resp., the y-component vy(x, y,T )) of the optimal terminal velocity \bfitv . The first row:
The Fickian diffusive advective transport with \kappa = 0 in (2.3); the second through fourth rows: the
subdiffusive advective transport with \kappa = 1 and \alpha = 0.3, 0.5, and 0.8, respectively, in (2.3).
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Fig. 5.6. Performance of the two-dimensional MFC in section 5.2.2 with f given in (5.9). The
first row from left to right: Plots of the terminal concentration \rho T , the x-component vx(x, y,T ) of the
optimal terminal velocity \bfitv , and the y-component vy(x, y,T ) of the terminal velocity of the Fickian
diffusive advective transport PDE with \kappa = 0 in (2.3); the plots in the second row correspond to those
of the subdiffusive advective transport PDE with \kappa = 1 and \alpha = 0.5 in (2.3).

5.2.2. Numerical experiment 2(b). In this set of numerical experiments we
modify the source and sink term in (5.7) as follows while keeping all the other param-
eters unchanged:

f(x, y, \=\rho ) =

\left\{     
\psi (x; 0,0.3)\psi (y; 0,0.3) \=\rho , (x, y)\in (0,0.5)2,

 - \psi (x; 0.6,0.9)\psi (y; 0.6,0.9) \rho , (x, y)\in (0.5,1)2,

0 elsewhere

(5.9)

with \=\rho = 1. In Figure 5.6 we present the terminal concentration \rho T , the x-component
vx(x, y,T ), and the y-component vy(x, y,T ) of the optimal terminal velocity \bfitv of the
subdiffusive advective transport PDE with \kappa = 1 and \alpha = 0.5 in (2.3) in comparison
with those of the Fickian diffusive advective transport PDE with \kappa = 0 in (2.3).

5.2.3. Numerical experiment 2(c). The problem setting is the same as in
section 5.2 except that the source and sink term of the contaminant leakage is as
follows:

f(x, y, \=\rho ) =

\left\{     
\psi (x; 0,0.3)\psi (y; 0,0.3) \=\rho , (x, y, t)\in (0,0.5)2 \times [0,1],

 - \psi (x; 0.6,0.9)\psi (y; 0.6,0.9) \rho , (x, y, t)\in (0.5,1)2 \times [0,10],

0 elsewhere

(5.10)

with \=\rho = 1. In Figure 5.7 we present the terminal concentration \rho T , the x-component
vx(x, y,T ), and the y-component vy(x, y,T ) of the optimal terminal velocity \bfitv of the
subdiffusive advective transport PDE with \kappa = 1 and \alpha = 0.5 in (2.3) in comparison
with those of the Fickian diffusive advective transport PDE with \kappa = 0 in (2.3).

In summary, in this section we carry out one- and two-dimensional numerical
experiments to investigate the performance of the time-fractional MFC, which show
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A TIME-FRACTIONAL MEAN-FIELD CONTROL B901

Fig. 5.7. Performance of the two-dimensional MFC in section 5.2.3 with f given in (5.10).
The first row from left to right: Plots of the terminal concentration \rho T , the x-component vx(x, y,T )
of the optimal terminal velocity \bfitv , and the y-component vy(x, y,T ) of the terminal velocity of the
Fickian diffusive advective transport PDE with \kappa = 0 in (2.3); the plots in the second row correspond
to those of the subdiffusive advective transport PDE with \kappa = 1 and \alpha = 0.5 in (2.3).

that the MFC can optimize and remediate the transport of the contaminant to ensure
the safe supply of the groundwater to the public during the entire time period of the
spill and beyond for different scenarios. Furthermore, these experiments suggest that
the time-fractional MFC formulation does not seem to be sensitive to the variation of
the parameters in the optimization problem.

6. Concluding remarks. In this paper we develop a multiple time-scale time-
fractional MFC to model the accidental spill of a hazardous contaminant, which is a
representative and recurrent environmental threat to the public. We use the first-order
optimality condition to the MFC and introduce a Lagrangian multiplier to reformulate
the optimization problem to a strongly coupled nonlinear time-fractional system (3.8)
that consists of a multiple time-scale time-fractional subdiffusive advective transport
PDE in terms of the concentration \rho of the contaminant and a backward multiple time-
scale time-fractional Hamilton--Jacobi PDE in terms of the pseudopotential \phi , which
gives the optimal velocity field \bfitv that governs the transport of the contaminant. We
derive a sequentially decoupled time-stepping finite element method (4.7) and (4.9)
for the numerical simulation of the system. We then carry out numerical experiments
to investigate the performance of the MFC. Preliminary test runs indicate that the
MFC can transport and remediate the contaminant to ensure the safe supply of the
groundwater to the public during the entire time period of the spill and beyond.

Although the results in this paper indicate strong potential of the MFC in subsur-
face flow and transport applications, significant effort and further study on the MFC
are required for realistic applications, such as groundwater contaminant transport
and remediation [4, 24], CO2 sequestration [40], and hydrocarbon recovery [3, 22].
We briefly outline possible future directions we may pursue:
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(i) In this paper we developed the MFC (2.1) and (2.3) for the simplest spill
scenario, which takes place in the fully saturated zone below the water table
and the contaminant is fully miscible with the groundwater [4]. In reality the
velocity \bfitv in the transport PDE (2.3) may be constrained both by the Darcy's
law with the proportionality parameter given by the intrinsic permeability of
the geological formation and by the mass conservation of the fluid mixture
[4]. In the closely related enhanced hydrocarbon recovery, the proportionality
parameter may also be inversely proportional to the \rho -dependent viscosity of
the fluid mixture [3, 22, 52].
In a slanted two-dimensional or full three-dimensional aquifer, the Darcy's
law will be augmented by an additional term accounting for the contribution
of the gravitational influence. One of the future directions is to develop an
MFC that fully takes into account this information.

(ii) If the contaminant happens to be a nonaqueous phase liquid (NAPL) that is
immiscible with the groundwater, then the balance PDE will be formulated for
each of the water and NAPL phases with strongly nonlinear and degenerate
relative permeability and Buckley--Leverett type of S-shaped fractional flow
functions [24, 31]. A similar scenario happens if the spill takes place in the
unsaturated zone above the water table or in secondary hydrocarbon recovery
[3, 22, 24, 31, 40].
In realistic three space dimensions, the influence of gravity could significantly
alter the shape of the fractional flow function and further complicate the flow
pattern.

(iii) If the spill involves multiple components with significantly different molecular
weights, then the mass of each phase or of each component in each phase is
not conserved. Instead, the total mass of each component in all the phases is
conserved, and in particular phase change could happen as the temperature
or pressure changes. The same scenario also happens in hydrocarbon recovery
process [3, 24, 54].
Both multiphase and multiphase multicomponent models in (ii) and (iii) will
significantly complicate the MFC framework, which is not so clear at this
moment and requires significant effort to investigate.

(iv) Subsurface geological formation is often highly heterogeneous. Its information
is usually available only near the injection and production (or monitoring)
wells and so is very limited. Consequently, this often introduces significant
noise and uncertainty to the models outlined above and further complicates
the problems [2, 17, 53, 57, 60, 63].

(v) Fractional PDEs have been widely used in different applications includ-
ing anomalously diffusive transport in subsurface porous media (e.g.,
[1, 18, 20, 42, 56, 58, 59]). In this paper, we extend the works to develop
a time-fractional MFC to model accidental spill of hazardous contaminant in
subsurface porous medium and its remediation to ensure a safe water supply
to the public.
It remains to conduct rigorous mathematical analysis on the well-posedness
and regularity of the MFC and the corresponding numerical analysis of the
numerical method, which could in turn ensure the convergence of the New-
ton's method in the optimization of the problems. These issues could be
investigated, e.g., via the analytical approach in [7, 14, 15, 50].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/0

7/
23

 to
 1

29
.2

52
.3

3.
20

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A TIME-FRACTIONAL MEAN-FIELD CONTROL B903

Acknowledgment. The authors would like to express their sincere thanks to
the referees for their very helpful comments and suggestions, which greatly improved
the quality of this paper.

REFERENCES

[1] H. Antil, E. Ot\'arola, and A. J. Salgado, A space-time fractional optimal control prob-
lem: Analysis and discretization, SIAM J. Control Optim., 54 (2016), pp. 1295--1328,
https://doi.org/10.1137/15M1014991.

[2] I. Babu\v ska, R. Tempone, and G. E. Zouraris, Galerkin finite element approximations of
stochastic elliptic differential equations, SIAM J. Numer. Anal., 42 (2004), pp. 800--825,
https://doi.org/10.1137/S0036142902418680.

[3] M. Balhoff, An Introduction to Multiphase, Multicomponent Reservoir Simulation, Develop-
ments in Petroleum Science 75, Elsevier, 2022.

[4] J. Bear, Dynamics of Fluids in Porous Media, Elsevier, New York, 1972.
[5] D. Benson, R. Schumer, M. Meerschaert, and S. Wheatcraft, Fractional dispersion, L\'evy

motions, and the MADE tracer tests, Transp. Porous Media, 42 (2001), pp. 211--240.
[6] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput.

Math. 15, Springer-Verlag, New York, 1991.
[7] F. Camilli and R. De Maio, A time-fractional mean field game, Adv. Differential Equations,

24 (2019), pp. 531--554.
[8] F. Camilli and S. Duisembay, Approximation of Hamilton-Jacobi equations with the Caputo

time-fractional derivative, Minimax Theory Appl., 5 (2020), pp. 199--220.
[9] F. Camilli, S. Duisembay, and Q. Tang, Approximation of an optimal control problem for

the time-fractional Fokker-Planck equation, J. Dyn. Games, 8 (2021), pp. 381--402.
[10] F. Camili and A. Goffi, Existence and regularity results for viscous Hamilton-Jacobi equations

with Caputo time-fractional derivative, NoDEA Nonlinear Differential Equations Appl., 27
(2020), 22.

[11] L. Cao and R. He, Gas diffusion in fractal porous media, Combust. Sci. Technol., 182 (2010),
pp. 822--841.

[12] R. Carmona and M. Lauri\`ere, Convergence analysis of machine learning algorithms for the
numerical solution of mean field control and games I: The ergodic case, SIAM J. Numer.
Anal., 59 (2021), pp. 1455--1485, https://doi.org/10.1137/19M1274377.

[13] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with
applications to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120--145.

[14] O. Chepizhko and F. Peruani, Diffusion, subdiffusion, and trapping of active particles in
heterogeneous media, Phys. Rev. Lett., 111 (2013), pp. 1--5.

[15] I. Chowdhury, O. Ersland, and E. R. Jakobsen, On numerical approximations of frac-
tional and nonlocal mean field games, Found. Comput. Math., 23 (2023), pp. 1381--1431,
https://doi.org/10.1007/s10208-022-09572-w.

[16] M. Cirant and A. Goffi, On the existence and uniqueness of solutions to time-
dependent and fractional MFG, SIAM J. Math. Anal., 51 (2019), pp. 913--954,
https://doi.org/10.1137/18M1216420.

[17] G. Dagan, Flow and Transport in Porous Formations, Springer, New York, 1989.
[18] Z. Deng, J. de Lima, M. de Lima, and V. Singh, A fractional dispersion model for overland

solute transport , Water Resour. Res., 42 (2006), W03416.
[19] M. Dentz, A. Cortis, H. Scher, and B. Berkowitz, Time behavior of solute transport

in heterogeneous media: Transition from anomalous to normal transport , Adv. Water
Resour., 27 (2004), pp. 155--173.

[20] M. D'Elia, Q. Du, C. Glusa, M. Gunzburger, X. Tian, and Z. Zhou, Numerical methods
for nonlocal and fractional models, Acta Numer., 29 (2020), pp. 1--124.

[21] L. Evans, Partial Differential Equations, 2nd ed., Grad. Stud. Math. 19, American Mathemat-
ical Society, Providence, RI, 2010.

[22] R. E. Ewing, ed., The Mathematics of Reservoir Simulation, Frontiers Appl. Math. 1, SIAM,
Philadelphia, 1983, https://doi.org/10.1137/1.9781611971071.

[23] D. A. Gomes and E. Pimentel, Time-dependent mean-field games with logarithmic nonlinear-
ities, SIAM J. Math. Anal., 47 (2015), pp. 3798--3812, https://doi.org/10.1137/140984622.

[24] R. Helmig, Multiphase Flow and Transport Processes in the Subsurface, Springer-Verlag,
Berlin, 1997.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/0

7/
23

 to
 1

29
.2

52
.3

3.
20

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/15M1014991
https://doi.org/10.1137/15M1014991
https://doi.org/10.1137/S0036142902418680
https://doi.org/10.1137/S0036142902418680
https://doi.org/10.1137/19M1274377
https://doi.org/10.1007/s10208-022-09572-w
https://doi.org/10.1137/18M1216420
https://doi.org/10.1137/18M1216420
https://doi.org/10.1137/1.9781611971071
https://doi.org/10.1137/140984622


B904 X. ZHENG, Z. YANG, W. LI, AND H. WANG

[25] M. Huang, R. P. Malham\'e, and P. E. Caines, Large population stochastic dynamic games:
Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Com-
mun. Inf. Syst., 6 (2006), pp. 221--252.

[26] Y. Kang, S. Liu, H. Zhang, W. Li, Z. Han, S. Osher, and V. Poor, Joint sensing task
assignment and collision-free trajectory optimization for mobile vehicle networks using
mean-field games, IEEE Internet Things J., 8 (2021), pp. 8488--8503.

[27] Z. Kobeissi, On classical solutions to the mean field game system of controls, Comm. Partial.
Differential Equations, 51 (2019), pp. 913--954.

[28] A. Kr\"oner, K. Kunisch, and B. Vexler, Semismooth Newton methods for optimal con-
trol of the wave equation with control constraints, SIAM J. Control Optim., 49 (2011),
pp. 830--858, https://doi.org/10.1137/090766541.

[29] J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), pp. 229--260.
[30] W. Lee, S. Liu, H. Tembine, W. Li, and S. Osher, Controlling propagation of

epidemics via mean-field control , SIAM J. Appl. Math., 81 (2021), pp. 190--207,
https://doi.org/10.1137/20M1342690.

[31] R. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts Appl. Math.,
Cambridge University Press, Cambridge, 2002.

[32] W. Li, W. Lee, and S. Osher, Computational mean-field information dynamics associated
with reaction-diffusion equations, J. Comput. Phys., 466 (2022), 111409.

[33] A. Lin, S. Fung, W. Li, L. Nurbekyan, and S. Osher, Alternating the population and control
neural networks to solve high-dimensional stochastic mean field games, Proc. Natl. Acad.
Sci. USA, 118 (2021), e2024713118.

[34] Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion
equation, J. Comput. Phys., 225 (2007), pp. 1552--1553.

[35] F. Liu, S. Shen, V. Anh, and I. Turner, Analysis of a discrete non-Markovian random
walk approximation for the time fractional diffusion equation, ANZIAM, 46 (2004/05),
pp. C488--C504.

[36] S. Liu, M. Jacobs, W. Li, L. Nurbekyan, and S. J. Osher, Computational methods for
first-order nonlocal mean field games with applications, SIAM J. Numer. Anal., 59 (2021),
pp. 2639--2668, https://doi.org/10.1137/20M1334668.

[37] M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus, De Gruyter
Stud. Math. 43, Walter de Gruyter, Berlin, 2012.

[38] R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional
dynamics approach, Phys. Rep., 339 (2000).

[39] J. Moore, J. Palmer, Y. Liu, T. Roussel, J. Brennan, and K. Gubbins, Adsorption and
diffusion of argon confined in ordered and disordered microporous carbons, Appl. Surf.
Sci., 256 (2010), pp. 5131--5136.

[40] J. Nordbotten and M. Celia, Geological Storage of CO2: Modeling Approaches for Large-
Scale Simulation, Wiley, Hoboken, NJ, 2012.

[41] H. Nosratipour, F. Sarani, O. Fard, and A. Borzabadi, An adaptive nonmonotone trun-
cated Newton method for optimal control of a class of parabolic distributed parameter
systems, Engrg. Comput., 36 (2020), pp. 689--702.

[42] R. Pauloo, G. Fogg, Z. Guo, and C. Henri, Mean flow direction modulates non-Fickian
transport in a heterogeneous alluvial aquifer-aquitard system, Water Resour. Res., 57
(2021), e2020WR028655.

[43] I. Podlubny, Fractional Differential Equations, Academic Press, 1999.
[44] L. Ruthotto, S. Osher, W. Li, L. Nurbekyan, and S. Fung, A machine learning framework

for solving high-dimensional mean field game and mean field control problems, Proc. Natl.
Acad. Sci. USA, 117 (2020), pp. 9183--9193.

[45] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional
diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl.,
382 (2011), pp. 426--447.

[46] R. Schumer, D. Benson, M. Meerschaert, and B. Baeumer, Fractal mobile/immobile solute
transport , Water Resour. Res., 39 (2003), 1296.

[47] R. Schumer, D. Benson, M. Meerschaert, and S. Wheatcraft, Eulerian derivation of the
fractional advection-dispersion equation, J. Contam. Hydrol., 48 (2001), pp. 69--88.

[48] M. Stynes, E. O'Riordan, and J. L. Gracia, Error analysis of a finite difference method on
graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017),
pp. 1057--1079, https://doi.org/10.1137/16M1082329.

[49] Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl.
Numer. Math., 56 (2006), pp. 193--209.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/0

7/
23

 to
 1

29
.2

52
.3

3.
20

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/090766541
https://doi.org/10.1137/20M1342690
https://doi.org/10.1137/20M1342690
https://doi.org/10.1137/20M1334668
https://doi.org/10.1137/16M1082329


A TIME-FRACTIONAL MEAN-FIELD CONTROL B905

[50] Q. Tang and F. Camilli, Variational time-fractional mean field games, Dyn. Games Appl.,
10 (2020), pp. 573--588.

[51] F. Tr\"oltzsch, On the Lagrange--Newton--SQP method for the optimal control of semi-
linear parabolic equations, SIAM J. Control Optim., 38 (1999), pp. 294--312,
https://doi.org/10.1137/S0363012998341423.

[52] H. Wang, D. Liang, R. E. Ewing, S. L. Lyons, and G. Qin, An approximation to miscible
fluid flows in porous media with point sources and sinks by an Eulerian--Lagrangian local-
ized adjoint method and mixed finite element methods, SIAM J. Sci. Comput., 22 (2000),
pp. 561--581, https://doi.org/10.1137/S1064827598349215.

[53] H. Wang, Y. Ren, J. Jia, and M. Celia, A probabilistic collocation Eulerian-Lagrangian
localized adjoint method on sparse grids for assessing CO2 leakage through wells in ran-
domly heterogeneous porous media, Comput. Methods Appl. Mech. Engrg., 292 (2015), pp.
35--53.

[54] H. Wang, W. Zhao, M. S. Espedal, and A. S. Telyakovskiy, A component-based
Eulerian--Lagrangian formulation for multicomponent multiphase compositional flow
and transport in porous media, SIAM J. Sci. Comput., 35 (2013), pp. B462--B486,
https://doi.org/10.1137/120885681.

[55] Y. Wang and W. Li, Accelerated information gradient flow , J. Sci. Comput., 90 (2022), 11.
[56] Y. Xia, Y. Zhang, C. Green, and G. Fogg, Time-fractional flow equations (t-FFEs) to

upscale transient groundwater flow characterized by temporally non-Darcian flow due to
medium heterogeneity, Water Resour. Res., 57 (2021), e2020WR029554.

[57] D. Xiu and G. Karniadakis, Modeling uncertainty in flow simulations via generalized poly-
nomial chaos, J. Comput. Phys., 187 (2003), pp. 137--167.

[58] Y. Yu, P. Perdikaris, and G. Karniadakis, Fractional modeling of viscoelasticity in 3D
cerebral arteries and aneurysms, J. Comput. Phys., 323 (2016), pp. 219--242.

[59] F. Zeng, Z. Zhang, and G. Karniadakis, Second-order numerical methods for multi-term
fractional differential equations: Smooth and non-smooth solutions, Comput. Methods
Appl. Mech. Engrg., 327 (2017), pp. 478--502.

[60] D. Zhang, Stochastic Methods for Flow in Porous Media, Coping with Uncertainties, Academic
Press, New York, 2002.

[61] Y. Zhang, C. Green, and B. Baeumer, Linking aquifer spatial properties and non-Fickian
transport in mobile-immobile like alluvial settings, J. Hydrology, 512 (2014), pp. 315--331.

[62] X. Zheng and H. Wang, Optimal-order error estimates of finite element approximations to
variable-order time-fractional diffusion equations without regularity assumptions of the
solutions, IMA J. Numer. Anal., 41 (2021), pp. 1522--1545.

[63] X. Zheng and H. Wang, An error estimate of a modified method of characteristics model-
ing advective-diffusive transport in randomly heterogeneous porous media, CSIAM Trans.
Appl. Math., 3 (2022), pp. 172--190.

[64] A. Zhokh and P. Strizhak, Non-Fickian diffusion of methanol in mesoporous media: Geo-
metrical restrictions or adsorption-induced? , J. Chem. Phys., 146 (2017), 124704.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/0

7/
23

 to
 1

29
.2

52
.3

3.
20

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/S0363012998341423
https://doi.org/10.1137/S0363012998341423
https://doi.org/10.1137/S1064827598349215
https://doi.org/10.1137/120885681
https://doi.org/10.1137/120885681

	Introduction
	A multiple time-scale time-fractional MFC
	A time-fractional PDE system from the optimality condition
	A sequentially decoupled time-stepping finite element method
	A sequentially decoupling of system (<0:xref 0:ref-type="disp-formula" 0:rid="disp11" >3.8</0:xref>)
	A time-stepping finite element approximation to system (<0:xref 0:ref-type="disp-formula" 0:rid="disp11" >3.8</0:xref>)

	Numerical investigation
	Performance of the one-dimensional MFC
	Numerical experiment 1(a)
	Numerical experiment 1(b)
	Numerical experiment 1(c)
	Numerical experiment 1(d)

	Performance of the two-dimensional MFC
	Numerical experiment 2(a)
	Numerical experiment 2(b)
	Numerical experiment 2(c)


	Concluding remarks
	Acknowledgment
	References

