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Abstract— Data-driven machine learning techniques have been
advocated for signal detection in complex wireless environments.
However, when applied to wideband spectrum sensing scenar-
ios, they face practical challenges including very large data
dimensionality, insufficient training data, and implicit inter-band
dependencies. Current literature focuses on deep convolutional
models, whose inherent model structure is not well suited for
representing the diverse spectrum occupancy patterns of practical
wideband networks, causing inefficient performance-complexity
tradeoff and excessive sensing time. To address these issues, this
paper develops a novel Spectrum Transformer with multi-task
learning for wideband spectrum sensing at high sample efficiency.
Empowered by the multi-head self-attention mechanism, the
transformer architecture is designed to effectively learn both
the inner-band spectral features and the inter-band spectrum
occupancy correlations in the wideband regime. Simulations
show that the proposed Spectrum Transformer outperforms
the existing methods based on convolutional neural networks
especially in the small-data case, by achieving higher sensing
accuracy with an 89% reduction in model complexity.

Index Terms— Spectrum transformer, cognitive radio, wide-
band spectrum sensing, deep neural network, multi-head
self-attention mechanism.

I. INTRODUCTION

FOR spectrally-efficient wireless communications,
dynamic spectrum access has been advocated that

allows cognitive radio (CR) users to opportunistically access
some spectrum bands that are unoccupied by primary users
(PUs) at certain time and space. A key CR technology is
spectrum sensing, in which CRs quickly identify access
opportunities by detecting PUs’ dynamic occupancy over a
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targeted spectrum pool [2], [3]. Traditional spectrum detectors
are designed using signal processing techniques that hinge
on the knowledge of some physical models of the system,
such as that of the channels, noise, and transmitted signals.
These detectors, including energy detector, matched filter and
cyclic feature detector [4], [5], [6], achieve good sensing
performance under ideal conditions where the assumed
models of channels and signals are accurate and known
a priori. However, this assumption often does not hold in
practical CR systems, rendering these methods vulnerable to
detrimental model mismatch issues in the presence of channel
or noise uncertainty, and unknown signal types [7].

To overcome the limitations of traditional signal process-
ing techniques in complex wireless environments, data-driven
spectrum sensing methods using deep neural networks (DNNs)
have been developed recently [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17]. Capitalizing on the powerful represen-
tation capability of DNN models, these methods implicitly
learn the underlying complex physical models from training
data. Existing spectrum learning methods mostly adopt the
convolutional neural network (CNN) model structure [18].
Originated for image classification in computer vision, the con-
volutional filtering mechanism in CNN can efficiently learn the
geometric correlation of signal components that are adjacent
in either frequency or temporal domain within neurons’ small
receptive fields [19]. Hence, CNN-based detectors have been
used to capture the inner-band spectral features of PU signals
for narrowband detection [8], [9], [10], [11], [12], [13].

In order to seek as many spectrum opportunities as possible,
CR detectors are usually expected to monitor a large spectrum
pool, which leads to the wideband spectrum sensing problem.
Apart from a straightforward yet inefficient way of deploy-
ing multiple narrowband detectors in parallel, a few works
advocate to design CNN-based multi-band detection mod-
els [14], [15], [16], [17]. CNN-based classifiers for multi-band
occupancy pattern classification are developed [14], [15], but
they are not well suited to handle complicated occupancy
patterns in the presence of multiple PUs. A wideband CNN
framework called DeepSense is developed to process wide-
band I/Q samples in temporal domain [16], while YOLO,
a popular CNN architecture for object detection, is applied
on the received spectrograms to estimate the time-frequency
range of PU signals [17]. The CNN architecture, by virtue
of its built-in convolutional filters, can efficiently learn useful
spectral features embedded in small-scale spectral correlations,
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but may become inefficient for wideband spectrum sensing
scenarios featuring in long-range spectral correlations.

To elaborate on the limitations of CNNs for wideband
sensing, it is worth highlighting the very large dimensionality
of the wideband spectrum learning problem where sensing at
high frequency resolution is desired over a very large spectrum
pool of wide bandwidth. To process fine-grained spectrum
measurements of large dimensionality from all the frequency
bands of interest, the computational complexity is a major con-
sideration in deciding a suitable learning model. Meanwhile,
the spectrum patterns in modern wideband systems often
exhibit long-range, inter-band correlations among frequency
components that are non-adjacent or even far apart, e.g, due
to power leakage [20], non-contiguous channel allocation for
multimedia communications, and carrier aggregation in LTE-A
mobile networks [21]. Because of the inherent convolutional
filtering mechanism, CNN-based models can capture the cor-
relation among local input entries at each layer within a small
receptive field, but have to considerably increase the layer
depth and the number of neurons per layer in order to reach
adequate model capability for representing long-range corre-
lations. This issue is not conspicuous in narrowband sensing,
and thus overlooked in the literature [15], [16]. However,
for wideband sensing, CNN cannot rely on a compact model
to capture both inner-band and inter-band dependencies over
very wide bandwidth, which mandates the use of large and
deep CNN models for high-resolution sensing. Training such
large models not only incurs expensive computational cost,
but also requires a large volume of training data in order to
circumvent sensing performance degradation caused by the
overfitting issue. As such, existing work on wideband CNNs
mainly focus on the situations with relatively large training
datasets [14], [15], [16], [17]. However, practical CR devices
may operate under constrained resources in terms of energy,
computing power and training data availability, rendering the
CNN architecture inefficient for wideband spectrum sensing.
It is the convolutional filtering mechanism of CNNs that causes
the inefficiency in handling long-range dependencies.

The goal of this paper is to develop an effective deep
learning architecture for accurate wideband spectrum sensing
with high computational efficiency and sample efficiency.
The key is to identify a compact model structure with high
representation capacity that can efficiently capture both the
inner-band dependency within a narrow frequency range and
the inter-band long-range correlations among non-contiguous
channels, as featured in practical wideband PU networks.
We introduce the multi-head self-attention (MSA) mechanism
in the Transformer models to wideband spectrum sensing.
Originally developed for natural language processing, the
MSA-based transformer architecture offers well-appreciated
capability in capturing long-distance dependencies among dif-
ferent words in an sentence [22]. For wireless communication
applications, MSA also shows superior performance in solving
various problems, such as channel estimation in the presence
of Doppler frequency shifts experienced by highly dynamic
users [23], adaptive live streaming in wireless edge net-
works [24], and modulation classification based on time-series
input [25]. In these works, different Transformer architectures

are developed to capture temporal correlations of the target
signals. In contrast, we develop a new Spectrum Transformer
framework that is well suited to capture the various patterns
of spectral correlations for wideband spectrum occupancy
detection. Main contributions of this work are:

• To the best of our knowledge, this is the first work
that introduces the self-attention mechanism to wideband
spectrum sensing. The MSA mechanism can effectively
learn not only the inner-band spectral features of modu-
lated signals but also the inter-band dependencies across
non-contiguous bands in the wideband spectrum pool.

• A wideband Spectrum Transformer framework is devel-
oped through a full stack of judiciously designed
functional modules to facilitate spectrum occupancy
detection from wideband PSD data. For efficient imple-
mentation, the output layer design adopts a multi-task
learning approach to multi-band detection, which consid-
erably improves the sample efficiency in the wideband
regime and offers high resistance to the over-fitting issue.

• We evaluate the proposed Spectrum Transformer in terms
of sensing accuracy and model/computation complexity,
compared with existing CNN-based spectrum sensing
approaches. In view of the scarcity of available train-
ing data of wideband spectrum measurements, we also
present a data labeling approach to generate synthetic
wideband spectrum datasets for various modulation types
and channel conditions. Simulation results corroborate
that our Spectrum Transformer achieves high sensing
accuracy at reduced model complexity and computation
cost than the benchmarks.

The rest of this paper is organized as follows. The signal
model and overview of wideband spectrum sensing prob-
lem are presented in Section II. The design of Spectrum
Transformer architecture and our proposed wideband spectrum
detector are described in Section III. Numerical simulation
results are presented in Section IV, followed by conclusions
in Section V.

II. SIGNAL MODEL AND PROBLEM STATEMENT

This section describes the signal model for the wideband
spectrum sensing problem, and highlights some key technical
challenges to be addressed in data-driven spectrum learning.

A. Signal Model of Wideband Measurements

Consider a wideband spectrum pool that is uniformly
divided into Nf frequency bands, i.e., narrowband channels.
Spectrum occupancy by PUs on these bands is indicated by a
Boolean vector y = [y1, y2, . . . , yNf ] ∈ BNf , where yn takes
the binary value of either 1 (the n-th band is occupied by a PU)
or 0 (unoccupied). A CR detector monitors the entire wideband
spectrum, whose received signal is adequately sampled (at or
above the Nyquist rate) to form a time sequence as follows:

x =
∑Nf
n=1 ynhnxn + w, (1)

where xn denotes the modulated signal transmitted on band-n
if it is occupied by a certain PU (i.e., yn = 1), w denotes the
additive noise, and hn represents the channel gain formulated
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Fig. 1. (a) Power leakage and (b) channel aggregation.

as hn = (β (d0/dn)
α 10

−ψn
10 )0.5 [26], where β is a constant

related to the antenna characteristics and average attenuation,
α is the path-loss exponent, dn is the distance between the SU
and the PU on band-n, d0 is the reference distance, and ψn
is a Gaussian-distributed random variable with mean zero and
variance σ2

ψn
that measures the shadow fading of the channel

over band-n between PU and SU.
To delineate the spectral features of x, we calculate its

power spectral density (PSD):

s = FT(Corr(x)), (2)

where FT(.) denotes Fourier transform, and Corr(.) denotes
the autocorrelation of a signal.

For sensing at high spectral resolution, these PSD measure-
ments are collected at fine grain with Nw (≫ 1) frequency
samples per band, denoted by sn ∈ RNw for the n-th band,
∀n. Then, the wideband measurement s ∈ RNwNf can be
regarded as a concatenation of Nf band-wise PSD vectors:

s = [s1, . . . , sn, . . . , sNf ].

The task of wideband sensing is to estimate the spectrum
occupancy vector y from x in (1) or equivalently its PSD s.

B. Spectral Correlation Patterns in Wideband Scenarios

Domain knowledge on PUs’ spectrum utilization features
and correlation patterns can be useful in designing efficient
spectrum learning models. To this end, we note that the
received wideband PSD s exhibits both inner-band and inter-
band dependencies. The PU signal on each channel exhibits
inner-band spectrum features that reflects the distinct PSD
shape of the adopted modulation scheme. Further, frequency
samples across different bands can be correlated as well,
giving rise to inter-band dependencies.

Fig. 1 illustrates two main sources of inter-band correlations
in wideband scenarios. First, practical radio waveforms are not
band-limited, but contain PSD sidelobes and even harmonics
that spill the signal energy onto adjacent bands (c.f. Fig. 1(a).).
Due to such power leakage, PSD samples across adjacent
bands are correlated [20]. Second, in practical wireless systems
such as LTE-Advanced, non-contiguous channel allocation
and carrier aggregation are widely used for enhanced sys-
tem capacity [21], [27], where a PU may simultaneously
transmit waveforms of the same modulation format over
multiple non-contiguous bands, forming “aggregated bands”
(c.f., Fig. 1(b)). Thus, there are spectral correlations across
these non-contiguous channels occupied by the same PU, and
the inter-band dependency can even be long range.

As discussed in Section I, existing CNN-based spectrum
sensing methods are effective in leveraging the inner-band
spectral features [8], [11], but are not efficient in capturing
inter-band correlations through convolutional filtering over
small receptive fields. The long-range PSD correlations present
unique challenges to spectrum sensing in the wideband regime.

C. Basics of Learning-Based Spectrum Occupancy Detection

On a single band, spectrum occupancy detection is a binary
hypothesis testing problem with two states representing the
band being either occupied (H1) or vacant (H0). When a DNN
model is adopted for detection, the input layer takes in the
PSD samples, say sn ∈ RNw on the n-th band, and the output
layer only has one neuron that generates the decision statistic
fn(sn;Wn), where Wn are the DNN model parameters to be
trained to reach its optimum W∗

n. Given a prefixed decision
threshold λ, the binary detector for the n-th band is given by

fn(sn;W∗
n) ≷H1

H0
λ. (3)

Typically, fn(sn;Wn) ∈ [0, 1] and λ = 1/2.
For wideband sensing, a general DNN-based detector can be

expressed as ỹ = f(s;W), where the input layer has NfNw
neurons to take in s ∈ RNfNw , and the output layer has Nf
neurons to generate the decision statistic vector ỹ ∈ RNf for
the Nf channels in the spectrum pool. Given a properly chosen
loss function L(ỹ,y), the DNN model parameters W can be
trained on dataset D with labeled output y, as follows:

argmin
W

∑
{s,y}∈D

L(f(s;W),y). (4)

It is worth noting that y ∈ {0, 1}Nf , which results in
up to Np = 2Nf spectrum occupancy patterns over the Nf
bands. A standard classifer-based DNN design would match
each occupancy pattern as one of the 2Nf classes [14], [15],
which requires high model complexity and huge dataset for
training when Nf is large in the wideband regime. For training
efficiency and scalability, it is essential to avoid treating the
Nf -band spectrum detector problem naively as a 2Nf -class
learning problem with exponential complexity in Nf . Thus, the
learning task and loss function need to be designed properly.

III. SPECTRUM TRANSFORMER FOR WIDEBAND SENSING

To overcome the aforementioned challenges in existing
CNN-based wideband sensing methods, this section proposes
a novel multi-task Spectrum Transformer architecture. We first
introduce the overall design of the proposed Spectrum Trans-
former. Then, we elaborate on the MSA-based Transformer
encoder structure that is a key component of our method.

A. Architecture Design for Wideband Spectrum Transformer

The overall structure of our multi-task Spectrum Trans-
former is shown in Fig. 2, which is designed to enhance
the learning efficiency and scalability for wideband sensing.
Overall, wideband PSD data is pre-processed via embedding
and position encoding to produce the input to a properly
designed Transformer encoder. The encoder output is further
processed by a multi-task linear output layer to estimate the
multi-band spectrum occupancy at scalable computation.
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Fig. 2. Structure of Spectrum Transformer for wideband sensing.

1) Wideband PSD Data Embedding Module: The raw data
collected by a CR device is the temporal x in (1), which can
be processed to yield the cross-correlation data Corr(x) and
the high-resolution PSD data s in (2). Current Transformers
for wireless applications build on the time series x [23], [24],
[25], which are not well suited to capture spectral correlations.
Instead, our method explicitly works on the wideband PSD
data s, which contain the semantic information of both the
inner-band features of modulated signals and the inter-band
dependencies due to power leakage and/or cross-band chan-
nel aggregation by PUs. This semantic information can be
effectively captured by the MSA mechanism, which will be
described in Section III-B.

For ease of computation, we rearrange the input PSD vector
s ∈ RNfNw into a matrix S = [s1; . . . ; sNf ] ∈ RNf×Nw ,
where each row of S is the PSD segment sn on a single
band. To reduce the model complexity and computation cost,
we further apply a learnable linear embeddding matrix Wl ∈
RNw×N̄w , with N̄w < Nw, on all the single-band fine-grained
PSD segments, so as to compress them into S̄ ∈ RNf×N̄w :

S̄ = SWl (5)

The ensuing modules operates on the compressive S̄, which
reduces the computation cost and model complexity for MSA.

2) Position Encoding Module: Standard Transformer
encoders may not need to identify the positions of segments
in the input sequence [22]. However, the positions of input
PSD segments are essential in determining the locations of
the occupied spectrum in the multi-band spectrum sensing
problem of interest. Hence, we employ a learnable position-
encoding module, by adding a trainable matrix S̃p to the
compressed PSD S̄ in (5):

S̃ = S̄ + S̃p, (6)

where S̃p ∈ RNf×N̄w denotes the matrix for additive position-
encoding. After these pre-processing operations in (5) and (6),
the compressive position-cognizant matrix S̃ is fed into the
next MSA-based Transformer Encoder module to extract use-
ful inner-band and inter-band spectral correlation features.

3) Transformer Encoder Module: Based on MSA [22],
we customize the design of a Transformer encoder module to
fulfill the feature extraction for wideband spectrum occupancy
detection. The block diagram of our Transformer encoder is
shown in Fig. 2. The MSA block provides the key opera-
tions to linearly extract inner-band and inter-band features,

which will be discussed in Section III-B. To represent the
non-linearity of the spectrum occupancy state as a function
of the extracted spectral correlation features, the output of the
MSA block needs to be processed by a multi-layer perceptron
(MLP) unit [28], which acts as a feed-forward network with
one hidden layer plus a Gaussian-error linear unit activation
function [29]. Both the MSA and MLP units are processed
by a LayerNorm operation, to ensure stability of the model
training [30]. Also, residual connections [31] are employed
for both MSA and MLP to avoid losing the input information.
The output of the Transformer encoder is a matrix Z̃ =
[z̃1; . . . ; z̃Nf ] ∈ RNf×N̄w of the same size as that of the input
PSD matrix S̃, while each of the Nf rows of Z̃ captures rich
spectral features for occupancy detection of the corresponding
band.

4) Mulit-Task Output Module: The next module makes
multi-band spectrum occupancy decisions based on the
encoder output Z̃. As explained in Section II-C, in the
wideband regime with large Nf , it is essential to avoid
treating the Nf -band spectrum detector problem naively as
a 2Nf -class spectrum pattern classification problem. Existing
classifier-based multi-band CNN models incur such expo-
nential complexity in Nf [14], [15], because they treat the
Nf -band detection problem as a single task, but there are 2Nf
possible outcomes of this task to be examined by the detector.
To circumvent such high model complexity and computation
cost, we design a multi-task output module extended from
our previous work [32]. We treat the spectrum detection on
each band as a single task, resulting in Nf parallel tasks
to be fulfilled by jointly training the common MSA-based
transformer encoder.

Specifically, our multi-task output module is the last neural
layer of the overall network model. First, the encoder output
Z̃ is vectorized into z̃ = [z̃1, . . . , z̃Nf ] ∈ RNf N̄w . Then, affine
transformation is applied on z̃ with a learnable weight matrix
Wo ∈ RNf N̄w×Nf and bias bo ∈ RNf , yielding

ỹ′ = [ỹ′1, . . . , ỹ
′
Nf

] = z̃Wo + bo, (7)

Here, each ỹ′n is treated as the decision statistic for the binary
detection task on the n-th band, ∀n. Thus, multi-task learning
over Nf bands can be implemented through parallel nonlinear
activations on all the entries of ỹ′, using the sigmoid function
to map each ỹ′n into the spectrum occupancy estimate ỹn:

ỹn = Sigmoid(ỹ′n) ∈ (0, 1), for n = 1, . . . , Nf . (8)
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Given the labeled output y ∈ {0, 1}Nf in (1) for the true
spectrum occupancy states, all the Nf sigmoid estimators
are trained simultaneously, along with the common model
parameters in preceding modules. To this end, we specify the
training objective function in (4) by the total binary cross-
entropy (BCE) loss, defined as:

LBCE(ỹ,y) =
Nf∑
n=1

ỹn log yn + (1 − ỹn) log (1 − yn). (9)

In our multi-task design, the number of classes to be distin-
guished from data-driven learning is 2Nf for the Nf binary
states, which is greatly reduced from 2Nf in the conventional
single-task case [14], [15]. Accordingly, the model parameter
size is reduced, which alleviates the sample size requirements
and the overfitting issue. Meanwhile, all the tasks share
the same Transformer encoder, which allows to effectively
extract and utilize the inter-band dependencies in the wide-
band PSD data for enhanced sensing accuracy across all
bands.

B. The MSA Mechanism for Wideband Sensing
The core of our wideband Spectrum Transformer is the

adopted MSA mechanism in the encoder module. We now
delve into its working principle and explain how it efficiently
addresses the unique challenges imposed by long-range PSD
correlations in the wideband regime (c.f. Section II-B).

The canonical self-attention mechanism was developed
primarily for language understanding tasks [33], in which
each input word vector is partitioned into contiguous small
segments, and correlations of these segments are captured
and weighted to build global dependencies between inputs
and outputs [22]. In our formulation for wideband spectrum
sensing, an input “word” becomes a normalized version of
the position-embedded PSD matrix S̃ ∈ RNf×N̄w in (6). For
simplicity, we view each row of S̃ as a “word segment” of
length N̄w, while other segment partitioning strategy is allow-
able as well. For each segment, the self-attention mechanism
employs linear projections to extract three vectors, namely
“Query”, “Key” and “Value”. For row-i s̃i ∈ RN̄w , these three
vectors are denoted by qi ∈ Rdq ,ki ∈ Rdk , and vi ∈ Rdv ,
respectively, where dq , dk, and dv are pre-defined dimensional-
ities. Let the matrices Q ∈ RNf×dq ,K ∈ RNf×dk , and V ∈
RNf×dv store the “Queries”, “Keys” and “Values” of the
entire wideband PSD sequence, respectively, and let Wq ∈
RN̄w×dq ,Wk ∈ RN̄w×dk , and Wv ∈ RN̄w×dv denote the
corresponding linear projection matrices, respectively. It holds
that

Q = S̃Wq = [s̃1Wq; . . . ; s̃NfWq] = [q1; . . . ;qNf ],

K = S̃Wk = [s̃1Wk; . . . ; s̃NfWk] = [k1; . . . ;kNf ],

V = S̃Wv = [s̃1Wv; . . . ; s̃NfWv] = [v1; . . . ;vNf ]. (10)

In (10), the matrix Wv extracts the inner-band features of
each s̃i, which is stored in the form of the vector “Value” vi.
Given the extracted Nf vi’s as the rows of V, the self-attention
process works as a learnable fusion of such inner-band features
of all different segments. This process is implemented in the

form of a weighted summation of all “Values” by incorporating
the “Queries” Q and “Keys” K in (10) as well:

Z = Att(Wq,Wk,Wv, S̃)

= Softmax

(
S̃WqWT

k S̃T√
dk

)
S̃Wv

= Softmax
(

QKT

√
dk

)
V. (11)

Now, the output attention matrix Z ∈ RNf×dv contains the
learned inter-band dependencies in terms of the correlation
features across all Nf vi’s. In (11), the weights are calcu-
lated through the product of QKT . Specifically, to compute
the attention zi, “Query” qi multiplies with the “Keys” K
corresponding to all bands:

aji =
1√
dk

qikTj =
1√
dk

s̃iWqWT
k s̃Tj ,

ai = [a1
i , . . . , a

Nf
i ] =

1√
dk

qiKT , (12)

where aji indicates the correlation of s̃j to s̃i. In this way,
Wq and Wk can be trained to extract the co-existing features
between highly correlated bands. Afterward, for band-i, a soft-
max operation is conducted to calculate the weights as:

αji = Softmax(ai)j =
ea
j
i∑Nf

j′=1 e
aj

′
i

∈ (0, 1). (13)

The attention vector of band-i is calculated as:

zi =
Nf∑
j=1

αjivj . (14)

Intuitively, the input s̃j’s that are more relevant to s̃i lead to
larger weights αji ’s and vice versa. To capture the bidirectional
inter-band dependencies, the self-attention mechanism needs
to repeat the calculations of zi’s on all Nf rows of S̃ and
stack them altogether into Z ∈ RNf×dv as the self-attention
output given the wideband PSD input.

So far, self-attention is performed through one head, that
is, one set of trainable parameter matrices {Wq,Wk,Wv}.
To improve the performance in extracting diverse inner-band
features and handling complicated inter-band dependencies,
self-attention is extended to MSA which has multiple “Heads”
to boost learning capability [22]. The structure of MSA is illus-
trated in Fig. 3. By using H sets of distinct linear projection
matrices {Wh

q ,W
h
k ,W

h
v}Hh=1 and getting H parallel output

matrices {Z1, . . . ,ZH}, MSA is not only capable of extracting
the inner-band spectrum features from H subspaces spanned
by Wh

v ’s, but also good at learning the potential inter-band
correlations captured by different sets of {Wh

q ,W
h
k}’s. Then,

a learnable linear projection Wm ∈ RHdv×N̄w is applied to
merge the H outputs into matrix Z that contains the combined
wideband spectrum features:

Z = [Z1, . . . ,ZH ]Wm. (15)

Constructed based on the MSA mechanism, the Transformer
encoder has high capability in capturing inner-band features
and inter-band dependencies jointly, through a compact model.
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Fig. 3. Structure of MSA.

C. The Complexity of Spectrum Transformer

In this part, we analyze the parameter complexity of our
Spectrum Transformer. The trainable parameters of the linear
embedding module are saved in Wl, which has NwN̄w weight
values. The parameter volume of the position encoding module
is the same as the embedded wideband PSD S̃, which is
Nf N̄w. For the Transformer encoder module, the majority of
trainable parameters are saved in the MSA block and the MLP
unit. For each “head” of the MSA block, i.e., a single self-
attention structure, the trainable parameters are contained in
{Wq,Wk,Wv}, which makes up N̄w(dq + dk + dv) weight
values. For the H “heads” in the MSA block, the total number
of parameters is HN̄w(dq+dk+dv). The operation to project
the output attention vectors of H “heads” into Z, as defined
in (15), requires HdvN̄w weight values. The MLP unit in
the Transformer encoder is supposed to process each row of
Z, which is a single attention vector, into the corresponding
row in Z̃. Parameters of the MLP unit are contained in a
hidden layer and an output layer, which has weight values and
biases. Assuming that the hidden layer has Nh neurons, the
trainable parameter volumes of the hidden layer and the output
layer are (N̄wNh + Nh) and (N̄wNh + N̄w), respectively.
The operation of the multi-task output module is formulated
in (7), which involves (N̄wNfNf +Nf ) trainable parameters
in Wo and bo. In total, the Spectrum Transformer contains
N̄w[Nw+2Nh+Nf +N2

f +H(dq+dk+2dv)+1] parameters.
This indicates that, for a specific wideband sensing problem
with fixed Nw and Nf , the dimension of input embedding N̄w,
the size of the hidden layer in the MLP unit, the number of
“heads”, and the dimensions of {Q,K,V}.

IV. SIMULATION RESULTS

In this section, we testify the proposed Spectrum Trans-
former for wideband sensing,1 and compare its performance

1For implementation details, please refer to our online repository available
at https://github.com/FrancisZWS/SpectrumTransformerDraft.

with DeepSense, a CNN-based solution with demonstrated
superiority in the existing spectrum sensing literature [16].

A. Data Generation for Wideband Sensing

Considering the scarcity of wideband sensing datasets,
we first explain how to generate the synthetic datasets with
labels, which shall reflect not only the inner-band features of
single-band signals but also the different inter-band dependen-
cies caused by PUs’ spectrum occupancy patterns.

Per the signal model in (1), we generate the narrowband
transmitted signal xn on the n-band by modulating a random
message sequence through a predefined modulation scheme
used by the PU on this band. It results in the modulation-
specific inner-band features of the PSD samples.

To depict the power leakage issue, we suppose that the
signal on each band n is leaked into the two adjacent bands
only. That is, we compute the PSD of xn and retain its
mainlobe sample vector s′n,main ∈ RNw on the n-th band, and
two sidelobe vectors s′n,left ∈ RNw and s′n,right ∈ RNw that
are leaked to the (n− 1)-th band on the left and the (n+ 1)-
th band on the right, respectively. Per (1), the received PSD
samples sn on the n-th band is given by

sn = yn|hn|2s′n,main + yn−1|hn−1|2s′n−1,right

+ yn+1|hn+1|2s′n+1,left + w̃n, (16)

where w̃n ∈ RNw represents the noise PSD, and yn and
hn indicate the ground-truth occupancy condition and channel
gain on the n-th band, respectively. The wideband PSD s is the
concatenation of {sn}

Nf
n=1 over all Nf bands, with inter-band

correlations induced by power leakage.
To account for the channel aggregation effect, we let Bn

contain the indices of channels that aggregate with channel-n,
∀n. We set yn′ = yn for all n′ ∈ Bn, so that they share the
same occupancy state. Long-range inter-band correlations arise
when some aggregated channels are far apart in frequency.

B. Simulation Settings

1) CR Environments: Consider a general wideband sensing
scenario where a CR user monitors Nf = 10 bands. There
are Nw = 64 frequency points per band, which amounts to a
dimension of NwNf = 640 for the input PSD vector s. For
signals transmitted by PUs, a random message sequence is
modulated through a predefined modulation scheme used by
the PU over allocated bands. Then, the received PSD samples
on each band is given by (16). For 10 bands, we generate
Boolean vectors y = [y1, y2, . . . , y10] ∈ B10 and save them
as the library of all ground truth wideband occupancy labels,
where each has a matching wideband occupancy pattern.

Our Spectrum Transformer is evaluated in four different
cases. Case 1 considers power leakage only, Case 2 features
channel aggregation alone, Case 3 considers both power
leakage and channel aggregation effects, and Case 4 is a
highly dynamic scenario with random channel aggregation
patterns. To address the practical issue of limited training
data in wireless applications, the dataset of each case in
our simulations contains [6000, 8000] training samples, if not
particularly mentioned. To reflect the generalization capability
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TABLE I
MODULATION SCHEMES

TABLE II
CHANNEL AGGREGATION ASSIGNMENT

of our proposed Spectrum Transformer, we run simulations in
dynamic scenarios, where the patterns of spectrum occupancy
by PUs are different between training and testing stages.

For Case 1, there are NPU = 10 PUs, each of which is
assigned to one channel. The modulation scheme for each
band is shown in Table I. For each of the total 2NPU =
1024 occupancy patterns in this case, we generate 7 wideband
PSD samples s for training and the training dataset volume is
7168.

For Case 2, there are NPU = 6 PUs, and 4 of them
use channel aggregation over non-contiguous bands when
they occupy their assigned bands. Each PU uses the same
modulation scheme over the aggregated bands, as shown in
Table II. For each of the 2NPU = 64 occupancy patterns,
we generate 100 wideband PSDs for training, such that the
training dataset volume is 6400.

The settings for Case 3 are similar to that of Case 2. The
difference is that the per-band PSD {sn}’s are generated from
(16) to account for power leakage. Thus, the datasets for
Case 3 reflect the impact of inter-band dependencies caused
by both power leakage and channel aggregation.

For Case 4, we keep the same configuration of training
data volume and the modulation types of the 6 PUs as in
Case 3. Different from Cases 1-3, the training and testing
in Case 4 exhibit different patterns of channel aggregation.
Specifically, in the training phase, each of the 6 PUs is
allocated the same number of bands as in the previous cases.
However, these bands are randomly chosen from the spectrum
pool. Then, the testing of the trained model is conducted to
simulate a more dynamic scenario, where both the channel
aggregation pattern and the number of channels utilized by
each PU are both randomly varying.

2) Model Configuration: The learnable input embedding
module of the proposed Spectrum Transformer compresses the
dimension of per-band PSD from Nw = 64 to N̄w = 16. The
MSA module has H = 4 “heads”, while the dimensionalities
dq , dk, and dv are all set to 8. The hidden layer of the MLP
unit has 32 neruons.

The benchmark method of DeepSense CNN has two serial
building blocks before the output layer, each of which consists
of two convolutional layers followed by one maximal pooling
layer [16]. While the original DeepSense model has a prede-
fined model size, we also adjust its structure to implement a
compact version called “DeepSense Mini”, which has similar
model complexity as our Spectrum Transformer to facilitate
fair comparison. The detailed structures and model config-
urations of DeepSense and DeepSense Mini are specified

TABLE III
DEEPSENSE CNN ARCHITECTURE

TABLE IV
MODEL COMPARISON: PARAMETER SIZE AND COMPUTATIONAL COST

in the format of layer-wise output dimensions, as shown in
Table III. Correspondingly, these models entail different model
sizes and computational costs, which can be evaluated in
terms of the number of trainable parameters and the number
of multiply-accumulate operations (MACs) during testing,
respectively. As summarized in Table IV, the model size of
our Spectrum Transformer is only 11% of that of the full-
size DeepSense, while the computation is only about 1.5% of
it. Compared with DeepSense Mini, our Transformer has a
similar model size, at a reduced computational cost of 77%.

3) Model Training Method and Setting: The proposed Spec-
trum Transformer and the CNN baselines are implemented
and evaluated on Pytorch. For the scenarios with sufficient
training samples (say more than 100 training samples per
occupancy pattern), we select a training batch size of 500.
For the scenarios with fewer than 100 training samples per
occupancy pattern, we reduce the batch size to the number of
samples per occupancy pattern, which is set to be either 20 or
50 depending on the dataset. We train all deep models by
using Adam with β1 = 0.9, β2 = 0.999 and ϵ = 10−8 and the
base learning rate is commonly set to 5×10−4. Given the data
insufficiency in the most of our experimental configuration that
leads to the notorious overfitting issues, we apply 100 training
epochs for all models. For fair comparison among different
models, we retain the model parameters that have attained
the highest validation accuracy during the training stage. For
scenarios with less than 100 training samples per occupancy
pattern, we apply a small weight decay of 5×10−4 in training
for all models. In the Transformer encoder module, we apply
a dropout rate of 0.1 to the MLP unit and the embedding unit.

C. Simulation Results and Discussions
We conduct simulations for various system settings to

evaluate the spectrum sensing performance of the Spectrum
Transformer with reference to the benchmark models in wide-
band environments. Performance metrics include the average
probability of detection (PD) under a fixed average probability
of false alarm (PFA) of 5%, and the receiver operating
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Fig. 4. PD of different models in Case 1.

Fig. 5. ROC of different models in Case 1.

characteristic (ROC) in terms of PD versus PFA for various
signal to noise ratio (SNRs) over the entire wide bandwidth.

1) Case 1. Power Leakage: When inter-band correlation
arises among adjacent bands due to power leakage alone, the
sensing accuracy in terms of PD is tested for a range of SNRs
between [−10, 6] dB. As shown in Fig. 4, our Spectrum Trans-
former outperforms the other two CNN-based solutions at any
SNR values. Meanwhile, the full-size DeepSense offers better
sensing accuracy than DeepSense Mini. This demonstrates
that improvement in the learning capability of CNN-based
models comes at the cost of increased model complexity. The
superiority of the Spectrum Transformer over the others is also
corroborated by the comparative ROC performances depicted
in Fig. 5 for various SNRs.

2) Case 2. Channel Aggregation: Channel aggregation,
as shown in Table II, gives rise to long-range inter-band
correlations, which is evaluated in Case 2. Fig. 6 depicts the
PD performance, and Fig. 7 shows the ROC curves for various
SNR values. The proposed Spectrum Transformer achieves the
best performances among the three methods.

3) Case 3. Both Power Leakage and Channel Aggregation:
For this case of both inter-band correlation patterns, the
sensing accuracy of our Spectrum Transformer consistently
outperforms the other two CNN-based methods as well,
as shown in the comparative performance of PD in Fig. 8
and that of ROC in Fig. 9.

Fig. 6. PD of different models in Case 2.

Fig. 7. ROC of different models in Case 2.

Fig. 8. PD of different models in Case 3.

Our learning model design has been motivated by the
domain knowledge that long-range spectral correlations are
present in the wideband regime. To illustrate the importance of
this knowledge, we train the Spectrum Transformer model on
a dataset without channel aggregation and then test its sensing
performance in Case 3, which is labeled as “Transformer
Case 1” in Fig. 8. Apparently, this trained model does not
utilize the long-range correlation features, and thus yields
worse sensing performance than all the other models trained
in Case 3. Such performance gap indicates the usefulness of
the domain knowledge in improving the accuracy of wideband
spectrum occupancy detection, which is efficiently utilized by
our Spectrum Transformer model.

4) Case 4. Dynamic Channel Aggregation: In this case,
all deep models are tested under a dynamic channel aggre-
gation pattern in testing that is different from training. The
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Fig. 9. ROC of different models in Case 3.

Fig. 10. PD of different models in Case 4.

performance of different models are tested and compared in
terms of PD and ROC, as shown in Fig 10 and Fig 11,
respectively. We can see that our Spectrum Transformer still
outperforms other CNN-based methods for any given SNR.
These results demonstrate that our Spectrum Transformer
works effectively when applied to a diverse wireless scenario
that is different from the one used for training. Meanwhile,
we also observe that the performance is degraded a little
compared with Case 3, and the gap between our method and
the CNN models becomes smaller. This motivates us to further
enhance the transferability of our Spectrum Transformer in
future work.

In all cases above, the proposed Spectrum Transformer
delivers superior sensing performance, because its built-in
self-attention mechanism can efficiently capture inter-band
correlation features using a compact model given small
data. This capability is particularly beneficial to practical
CR systems, which require short sensing time over limited
training samples in order to respond to dynamic operating
environments.

5) Impact of Training Data Volume: While previous test
cases examine the small data scenario with 6400 or 7168
wideband training data samples, we now evaluate these learn-
ing models over a wide range of training data volumes in
Case 3, for a fixed SNR=−4dB. As we mentioned, there are
6 PUs over the 10 channels, resulting in 26 = 64 channel occu-
pancy patterns. The data volume is measured by the number

Fig. 11. ROC of different models in Case 4.

Fig. 12. Sensing accuracy of different models in Case 4 with SNR=-4dB.

of training samples per occupancy pattern, which is eval-
uated at {20, 50, 100, 200, 400, 800, 1600, 2400, 3200, 4000}.
The adopted metric for sensing accuracy is PD+(1−PFA)

2 , which
is an average of the PD and PFA performances.

As shown in Fig. 12, the Spectrum Transformer achieves
the highest sensing accuracy under various data volumes,
and finally reaches 77.3% for large datasets. When the data
volume is small with 20 per occupancy pattern, our method
is 1.1% more accurate than the full-size DeepSense CNN
and 4% more accurate than DeepSense Mini. As the data
volume reduces from 4000 to 100, the accuracy of our method
only drops by less than 0.86%, while that of DeepSense and
DeepSense Mini degrades by 1.2% and 0.9%, respectively.
The sensing performance by the full-size DeepSense model
becomes better as the data volume increases, but saturates at
a small performance gap from ours when the dataset is large.
The compact DeepSense Mini, on the other hand, reaches its
steady-state sensing performance much faster at lower data
volume than DeepSense, but the accuracy is not as good.
These phenomena reflects the inefficient bias-variance tradeoff
of CNN-based methods in the wideband regime. Essentially,
DeepSense adopts a large model size with deep layers for
small bias, but needs a large data volume to reduce the
variance caused by overfitting. The compact CNN, on the other
hand, circumvents the overfitting issue at small data volume,
but does not appear to have adequate model representation

Authorized licensed use limited to: George Mason University. Downloaded on September 13,2024 at 20:00:19 UTC from IEEE Xplore.  Restrictions apply. 



12352 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 9, SEPTEMBER 2024

Fig. 13. Runtime of different models per batch for variant batch size.

power, causing large bias. These experimental results, along
with the comparison of model complexity and computation
costs in Table IV, corroborate that our Spectrum Transformer,
can efficiently capture various spectral correlation patterns
through a moderate model size, by virtue of its self-attention
mechanism. Hence it offers an appealing model architecture
with efficient bias-variance tradeoff for the wideband spectrum
sensing problem of interest.

6) Runtime Evaluation: We also evaluate the computation
complexity of different methods by comparing their execution
time on our desktop computer with a Intel Core i9-12900KF
CPU, Nvidia RTX3090 GPU, and 128GB-RAM. Specifically,
we count the runtime per iteration to train each model on a
data batch whose volume ranges from 20 to 24000. As shown
in Fig. 13, under most batch sizes, the time consumption
to train our Spectrum Transformer is similar to that spent
for DeepSense Mini, which is nearly half of that to train
DeepSense. These results align with the model size compar-
ison presented in Table IV. Therefore, our proposed model
enjoys the low complexity, while achieving the desired sensing
accuracy as has been verified by the other figures of PD and
ROC curves.

V. CONCLUSION

This paper develops a novel learning model for wideband
sensing, called Spectrum Transformer, which is empowered by
the multi-head self-attention structure. The Spectrum Trans-
former captures the pairwise correlations of all spectrum
segments in a parallel manner, which allows it to effectively
leverage both the inner-band features and long-range inter-
band dependencies for high-resolution spectrum occupancy
detection in the wideband regime. Extensive simulations ver-
ify that the Spectrum Transformer model outperforms the
CNN architecture in the wideband regime, in terms of model
capacity, computation efficiency and resistance to over-fitting.
It is particularly attractive for wideband spectrum sensing with
small-volume datasets.
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