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Abstract

The Alaska-Aleutian subduction zone represents an ideal location to study dynamics
within a mantle wedge. The subduction system spans several thousand kilometers, is
characterized by a slab edge, and has ample seismicity. Additionally, the majority of islands
along the arc house broadband seismic instruments. We examine shear wave splitting of local-S
phases originating along the length of the subduction zone. We have dense measurement spacing
in two regions, the central Aleutians and beneath Alaska. Beneath Alaska, we observe a rotation
in fast splitting directions near the edge of the subducting slab. Fast directions change from
roughly trench perpendicular away from the slab edge to trench parallel near the boundary. This
is indicative of toroidal flow around the edge of the subducting Alaska slab. In the central
Aleutians, local-S splitting is primarily oriented parallel to, or oblique to, the strike of the trench.
The local-S measurements, however, exhibit a depth dependence where deeper events show
more consistently trench parallel directions indicating prevalent trench parallel mantle flow. Our
local-S shear wave splitting results suggest trench parallel orientation are likely present along
much of the subduction zone excited by the slab edge, but that additional complexities exist

along strike.

1. Introduction

The Alaska-Aleutians subduction zone (AASZ) spans ~3500 kilometers and includes
along strike variations in several subduction parameters, such as changes in slab dip [Lallemand
et al., 2005], plate age [Heuret and Lallemand, 2005], plate motion [DeMets et al., 2010], paleo-
spreading direction [Maus et al., 2009], and earthquake behavior [Davies et al., 1981; Fournier
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and Freymueller, 2007; Shillington et al., 2015]. Most notably, the AASZ is characterized by the
edge of the subducting Pacific Plate located beneath Alaska [Eberhart-Phillips et al., 2006; Ferris
et al., 2003; Martin-Short et al., 2018]. Several studies have examined the dynamics associated
with such a slab edge and have suggested they excite more complex patterns of flow within the
subduction system [e.g. Honda, 2009; Jadamec and Billen, 2010, 2012; Kincaid and Griftiths,
2003; Piromallo et al., 2006; Stegman et al., 2006]. In most cases, a free slab edge excites
toroidal flow around the structure leading to trench parallel mantle flow [Jadamec and Billen,
2010, 2012; Piromallo et al., 2006; Stegman et al., 2006]. Toroidal flow has been suggested in
many subduction settings globally to account for trench parallel observations of anisotropy [e.g.
Civello and Margheriti, 2004; Peyton et al., 2001; Song et al., 2021] including in the AASZ
[Christensen and Abers, 2010; Hanna and Long, 2012; McPherson et al., 2020; Venereau et al.,
2019; Yang et al., 2021].

Observations of seismic anisotropy can offer direct evidence of deformation and flow
within the mantle wedge [e.g. see reviews by Savage, 1999 and Long and Silver, 2009]. As the
mantle deforms, olivine grains tend to rotate relative to the orientation of maximum extensional
strain, acting as a proxy for the direction of flow [e.g. Karato et al., 2008]. Shear wave splitting is
one of the most direct measurements of the orientation and strength of anisotropy [see review by
Long and Silver, 2009]. The relationship between shear wave splitting orientations and the
direction of strain is dependent upon mantle stress conditions and water content [e.g. Karato et
al., 2008]. For the majority of the upper mantle, stress conditions and water contents are low
enough such that olivine A-, C-, and/or E-type fabrics develop. Each of these fabric types are
characterized by fast splitting directions that parallel strain [e.g. Karato et al., 2008; Lynner et al.,
2017]. In high stress, high water content regions, however, olivine B-type fabric can arise [Jung
et al., 2006]. B-type fabric produces the opposite splitting relationship to strain, where fast
splitting directions orient perpendicular to strain. In the corner of the mantle wedge, stresses and
water contents can be high enough to produce B-type fabrics [e.g. Kneller et al., 2008;
McCormack et al., 2013]. Elsewhere in the mantle wedge, A-, C-, or E-type fabrics likely
dominate [Karato et al., 2008], which can make interpreting shear wave splitting in subduction
zones challenging.

Shear wave splitting of S phases arising from local earthquakes within a subduction zone

(referred to as local-S splitting) offers an excellent means of probing anisotropy within the
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mantle wedge. Local-S splitting has been employed in a number of subduction zones worldwide
[e.g. Liu et al., 2008; Hammond et al., 2010; Kong et al., 2020], including in Alaska [Karlowska
et al., 2021; Richards et al., 2021; Yang et al., 1995; Yang et al., 2021], to great success. Since it
uses local earthquakes rather than distant teleseismic events, local-S splitting allowing us to
place constraints on the depth of anisotropy. Any observed shear wave splitting must originate
due to anisotropy between the event and the surface, avoiding potential complications like
subslab anisotropy [Lynner and Long, 2014]. Local-S splitting is often interpreted only in terms
of anisotropy in the mantle wedge despite anisotropy potentially being present in the upper plate
and in the downgoing slab [e.g. Wirth and Long, 2010; Karlowska et al., 2021; Richards et al.,
2021]. Contributions to local-S splitting from slab anisotropy are generally negligible due to the
minimal amounts of slab material sampled by the local-S phases. The upper plate may host some
anisotropy, but previous studies have shown that crustal splitting tends to be very small (between
0.1s and 0.3s) [Kaneshima, 1990; Crampin and Peacock, 2008]. Additionally, recent studies have
shown that the forearc mantle of the upper plate may be largely isotropic [e.g. Uchida et al.,
2020]. Therefore, local-S splitting primarily originates due to anisotropy within the mantle
wedge.

While the Alaskan region has been the focus of many studies [e.g. Christensen and Abers,
2010; Hanna and Long, 2012; Debayle et al., 2016; Karlowska et al., 2021; Lynner, 2021;
McPherson et al., 2020; Perttu et al., 2014; Richards et al., 2021; Venereau et al., 2019; Yang et
al., 1995; 2021], a detailed picture of how wedge anisotropy varies along the length of the AASZ
has been lacking due to poor seismic coverage along the Aleutian arc. This changed in 2019
when many broadband seismic stations along the length of the subduction zone were serviced
and brought back into operation. There are now nearly 200 broadband stations operating along
the length of the AASZ. Abundant slab seismicity and dense station coverage (Fig. 1) allows for
a high resolution look at wedge anisotropy along the length of the subduction zone. In this study,
we examine local-S shear wave splitting at all the broadband seismic stations operating along the

length of the Alaska-Aleutian subduction zone.

2. Methods
We measure shear wave splitting of local-S phases at all broadband seismic stations

operating along the length of the Alaska-Aleutian subduction zone from the beginning of data
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availability at each station until June 2022. The majority of seismic stations have data for ~3
years between 2019 and 2022. A few long-running stations have more than 20 years of data. We
restrict measurements to local events greater than magnitude 4.5. Local events are defined as
those originating in the subducting slab beneath a station such that the incoming direct S phase
has a vertical incidence angle of less than 35°. This has been shown to produce reliable local-S
splitting results [e.g. Wirth and Long, 2010]. We further restrict our analysis to earthquakes
located deeper than 75 km to ensure adequate wedge material is being sampled. The deepest
events in our dataset are shallower than ~250 km.

We use the SplitLab software package [Wiistefeld et al., 2008] to perform shear wave
splitting measurements. All seismograms are bandpass filtered between 8 and 25 seconds [e.g.
Long and van der Hilst, 2006; Lynner et al., 2022]. We visually inspect each waveform for the
clear arrival of the direct S wave. We employ the simultaneous use of the Rotation Correlation
[e.g. Bowman and Ando, 1987] and eigenvalue minimization [e.g. Silver and Chan, 1991]
methods to measure fast directions and delay times. Unlike traditional XKS splitting studies,
local-S phases do not have known initial polarizations, which is why we use the eigenvalue
minimization method [e.g. Wirth and Long, 2010]. Results are reported using the Rotation
Correlation method, but we require that the agreement between both methods is within 15° for
fast direction and 0.5 s for delay time. All shear wave splitting results retained in this study have
individual errors in fast direction of less than 30° and less than 0.9 s for delay time. On average,
errors in fast direction are ~14.8° and errors in delay time are ~0.3s. Null observations are based

on the linearity of the uncorrected particle motion [ Wiistefeld and Bokelmann, 2007].

3. Results

We examined local-S shear wave splitting at 193 broadband stations along the length of
the subduction zone (Table S1). Many stations yielded no splitting observations, and the majority
provided fewer than two measurements that met our quality control criteria (Fig. 1). This is
largely due to noise issues arising from extreme proximity to coastal noise sources. In total, we
made 114 split measurements and 204 null observations (Figs. 2, S1, and S2, Table S1). The
majority of our observations fall into two geographic locations: 1) the eastern the portion of the
subduction system beneath Alaska and 2) the central portion of the Aleutian arc between ~175°E

and ~160°W.
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In the central Aleutians, splitting directions are broadly oriented parallel to, or oblique to,
the strike of the trench. The trench oblique fast directions are aligned nicely with the motion of
the downgoing Pacific Plate [DeMets et al., 2010]. The eastern portion of our study area beneath
Alaska contains the bulk of our shear wave splitting measurements (Figs. 2 and S3). In this
region, fast directions rotate from strongly trench perpendicular in the south to strongly trench
parallel in the north over the span of ~400 km. This pattern is robust as it is driven by
observations at multiple stations along the length of the subduction zone. Additionally, nearby
observations are self-consistent suggesting a robust anisotropic feature. Delay times are less
varied throughout this region with an average delay time of ~0.9s.

We have great confidence in our local-S splitting observations in the regions of dense
measurements. The agreement seen regionally between nearby measurements suggests the
anisotropic features being imaged are prominent. We also document several instances where
single events yielded consistent splitting results at multiple stations (Fig. S4). These examples
show that individual measurements are not being heavily biased by differences in shallow crustal

anisotropy and instead reflect anisotropy throughout the wedge.

4. Discussion

4.1 Mantle wedge splitting beneath Alaska

We observe local-S shear wave splitting along much of the length of the AASZ (Fig. 2).
We see areas of trench parallel as well as plate-motion parallel splitting suggesting complex
anisotropy within the mantle wedge consistent with previous studies [e.g. Karlowska et al., 2021;
Long and Silver, 2008; Richards et al., 2021]. The best lateral density of local-S shear wave
splitting measurements is found in the eastern portion of our study region beneath Alaska (Fig.
2). Splitting recovery in this area is greatly improved by the EarthScope Transportable Array
stations [IRIS Transportable Array, 2003] and by larger landmasses.

Beneath Alaska, we observe a distinct transition in fast splitting directions from plate
motion parallel in the south to trench parallel in the north. This transition happens gradually over
~400km and is marked by fast directions that sweep through intermediate orientations. Our
results are broadly similar to previous local-S shear wave splitting studies, where trench-parallel
fast directions were seen in the Central Aleutians [Yang et al., 1995] and in the forearc beneath

Alaska [Karlowska et al., 2021; Richards et al., 2021]. In the backarc, fast directions rotate to
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trench-oblique or perpendicular [Karlowska et al., 2021; Richards et al., 2021], which mirrors
our findings in southern Alaska.

The transition in fast directions beneath Alaska is likely related to the edge of the
subducting Alaskan slab. Yang et al. (2021) observe similar complexity in fast directions to the
northeast of our study area, which they also attribute to toroidal flow around the slab edge. Such
a change in fast directions is predicted by geodynamic models that show slab edges can excite
toroidal flow [Jadamec and Billen, 2010; 2012; Schellart and Moresi, 2013; Kiraly et al., 2017].
The Alaskan slab terminates just east (within ~500 km) of the transition to trench parallel
splitting seen in our dataset. Toroidal return flow around the edge of the slab would yield trench
parallel fast directions in the mantle wedge that transition to normal entrainment of mantle
wedge material. This is consistent with our observations where splitting measurements further
south exhibit plate motion aligned fast directions. The transition in fast directions happens
quickly over a lateral distance of roughly 400 km. This is a smaller length scale than is predicted
by geodynamic models [e.g. Jadamec and Billen, 2010; 2012] suggesting the toroidal flow may
be stronger than previously proposed. This observation will prove useful in refining future
numeric models aimed at understanding mantle dynamics around the edge of this subducting
Alaskan slab.

There is the potential for B-type olivine fabric in the corner of the mantle wedge beneath
Alaska where stresses are high [Jung et al., 2006]. Should a transition in olivine fabric exist,
there would be a noticeable change in anisotropy [e.g. McCormack et al., 2013] due to the
antithetic relationship between splitting and strain exhibited by B-type fabric. Regions where B-
type olivine has been suggested exhibit event depth dependent shear wave splitting where
shallow events near the trench show nearly orthogonal fast directions to results from deeper
events [e.g. Long and van der Hilst, 2006]. We see no such relationship between fast directions
and event depth, Fig. 3. Deep (>200 km) events show the same pattern in splitting as the shallow
events. Additionally, the predicted change in splitting directions due to a fabric type change is
abrupt and nearly orthogonal. We see a gradual change in fast direction that sweeps through
intermediate orientations. The lacking correlation between fast directions and depth and the
gradual change in splitting suggests consistent olivine fabrics are being sampled by the local-S
phases. Previous local-S splitting studies, however, have yielded conflicting interpretations of the

role of B-type olivine beneath Alaska. Karlowska et al. [2021] also argue against the presence of



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

B-type fabric in the mantle wedge beneath Alaska based on the continuity of splitting results
throughout the region. Richards et al. [2021], however, suggest B-type olivine as one possible
explanation for their splitting results. Our results suggest there is likely no impact on splitting

from B-type fabric in the Alaska region.

4.2 Splitting from the wedge in the central Aleutians

In the central Aleutians, splitting measurements are either parallel to, or highly oblique to,
the strike of the trench. The variability in fast directions, however, disappears when examining
only deep earthquakes, Fig. 3. Deeper earthquakes yield more consistently trench parallel fast
directions than shallower events. Depth dependent fast directions can be tied to sampling of
larger volumes of mantle wedge material and/or changes in anisotropic fabrics. Stronger flow
orientations can develop in the thicker regions of the wedge that deeper events sample. Deep
event S-waves also traverse farther from the corner of the wedge where olivine B-type fabric
could exist. The shallowest events in our dataset (~75km depth) may be sampling less than ~50
km of mantle wedge material, are very near the corner, and correspondingly exhibit complex
splitting behavior.

The dominant splitting direction in the central Aleutians is trench parallel. This type of
splitting is found at all depths and comprises the majority of observations in the region. Further,
deep measurements show more consistently trench parallel orientations suggesting splitting is
driven by dynamics and not due to B-type olivine fabric. We interpret the trench parallel splitting
as the primary signal beneath the central Aleutians. The trench oblique measurements likely arise
due to smaller-scale, localized features, discussed below. Trench parallel wedge splitting has
been observed in several subduction zones world-wide [e.g. Wirth and Long, 2010; Long and
Wirth, 2013], including in portions of the AASZ [Christensen and Abers, 2010; Long and Silver,
2008; Lynner, 2021; Yang et al., 2021]. Trench parallel splitting is likely tied to trench parallel
anisotropy and along strike flow. As discussed above, the subducting Pacific slab terminates
beneath Alaska allowing for trench parallel toroidal flow to emerge. Numerical models show that
once established, return flow around a slab edge can produce trench parallel flow along much of
a subduction zone [e.g. Capitanio and Faccenda, 2012; Jadamec and Billen, 2012]. We argue that
the trench parallel splitting in the central Aleutians is tied to wide-spread trench parallel flow

along the length of the subduction zone. This is consistent with previous studies that have argued
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for trench parallel flow in the AASZ [e.g. Christensen and Abers, 2010; Hanna and Long, 2012;
Lynner, 2021; Yang et al., 2021].

The trench oblique fast directions in the central Aleutians are chiefly seen from events
originating shallower than ~130km depth. These fast directions roughly parallel the motion of
the Pacific plate (Fig. 2) and are likely related to entrainment of mantle material with the
downgoing slab. As the slab subducts, it drags mantle wedge material down with it via 2D corner
flow [e.g. Hall et al., 2000; Long et al., 2007]. Even in cases where 3D toroidal return flow
dominates, there should be some entrainment of wedge material with the subducting slab [e.g.
Faccenda and Capitanio, 2012; Long and Silver, 2008]. This creates plate motion aligned strains
and associated anisotropy. Near the corner of the wedge where corner flow is most prevalent, the
entrained layer may comprise the bulk of wedge anisotropy. Only once the trench parallel flow
becomes established can trench parallel splitting be observed. The shallow events in our dataset
may be sampling regions where the entrainment layer is still sufficiently strong to impact
splitting and produce plate motion parallel fast directions. Once the wedge is thick enough to
allow vigorous trench parallel flow, trench aligned splitting can emerge.

There may additionally be changes in olivine fabric type that complicate local-S splitting,
leading to deviations from trench parallel orientations. Olivine B-type fabric can exist in the nose
of mantle wedges and exhibits an orthogonal relationship between strain and fast direction to
what is seen for the more common A-, C-, and E-type fabrics. The depth dependent splitting
pattern between shallow and deep events could potentially be due to a transition to olivine B-
type fabric. Deeper events create local-S waves that sample farther from the corner of the wedge
and would therefore avoid sampling significant B-type fabrics, while shallow events are
impacted by B-type fabric. This is unlikely the main cause of our splitting signal because the
trench parallel and plate motion parallel fast directions are far from orthogonal, as would be
predicted by a change in fabric type alone. It is more likely the plate motion aligned splitting is

the result of slab entrainment, although changes in olivine fabric types cannot be ruled out.

4.3 Delay time variability along the AASZ

Throughout the AASZ, we do not see any significant variations in splitting with depth
despite having event depths that span from 75km to over 200km. Delay times are largely

consistent across the depth range with a few spurious large dt observations occurring at the
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shallowest depths, Fig. 3. Consistent delay times across event depths despite varying path lengths
is observed in many local-S splitting studies [e.g. Wirth and Long, 2010]. This is potentially due
to larger measurement scatter and errors associated with local-S splitting making discerning
patterns in dt difficult. Karlowska et al. [2021], however, did observe a correlation between depth
and average delay times beneath Alaska. While they also report significant scatter in individual
delay times, the pattern persisted. This may suggest that a relationship between dt and path
length is highly localized and examining larger regions masks this pattern in the AASZ.
Alternatively, Karlowska et al. [2021] use a different frequency band for their shear wave
splitting measurements than we use here. In Japan, frequency dependent local-S splitting was
observed in the delay times [Wirth and Long, 2010]. If the AASZ also exhibits frequency
dependent splitting, a relationship between dt and path length may only exist in the higher
frequencies. The source of this discrepancy and potential frequency dependence warrants further
study.

The central Aleutians also do not present a relationship between event depth and delay
times but exhibit a lateral change in delay times along trench strike, Fig. 2. Westernmost
measurements between 175°E and 170°W have an average delay time of ~1.4s while
measurements between 170°W and 160°W have an average delay time of ~1.9s. There is,
however, considerable scatter in dts recorded in each region. The primary difference between
these adjacent regions is the obliquity of subduction, Fig 2. The plate motion in the westernmost
region is more oblique to trench than in the region between 170°W and 160°W. This change in
obliquity could account for the difference in dts by impacting the amount of strain necessary to
align wedge anisotropy parallel to the trench. Where plate motion is more oblique to the trench,
plate driven entrainment flow above the slab should be more closely aligned parallel to the
trench simply due to geometry [e.g. Kneller and van Keken, 2008]. Wedge material would
therefore require less deformation (and therefore strain) to rotate sufficiently to produce trench
parallel anisotropy. Where plate motion is more orthogonal to the trench, a larger rotation in
anisotropic direction is needed to create trench parallel splitting. Larger strains associated with
greater rotations may be creating stronger anisotropy and consequently larger dts. We note,
however, that the difference in subduction obliquity between both regions is ~25°. It is unclear if

this is a sufficiently large change to create the deviation in splitting behavior that we observe.
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Finally, there are a few very large dt (<2.5s) events in our local-S dataset. Such large
delay times are difficult to attribute to simple olivine deformation in the mantle wedge due to the
relatively short paths of the local-S waves. These large dt measurements are not restricted to any
single region and tend to originate from shallower events. The shallower events can generate
local-S phases with incidence angles of greater than ~15°. Incidence angles greater than 35° are
rejected in shear wave splitting studies as shallow incidence angles can lead to conversions near
the free surface that mimic splitting and may yield erroneous large dts [Wirth and Long, 2010].
The large dt events in this study, while having larger incidence angles, are all below the 35°
cutoff, with some as low at ~16°. The large dts may be the result of dipping structures acting to
increase the apparent incidence angle of the incoming S waves creating spurious conversions and
large dts. The majority of larger incidence angle events, however, produce average delay time
measurements. The cause of the large dt events is not immediately clear and warrants additional

scrutiny.

Summary

We examine local-S shear wave splitting at broadband stations along the length of the
Alaska-Aleutians subduction zone. Local-S splitting allows us to isolate anisotropy within the
mantle wedge to examine patterns of mantle dynamics. We have dense measurement coverage in
the central Aleutians and beneath Alaska. Beneath Alaska, we observe splitting measurements
that rotate from trench orthogonal to trench parallel over a span of ~400km. This rotation in
splitting direction is tied to toroidal flow around the edge of subducting Pacific plate. This style
of toroidal flow has been suggested by numerical models of AASZ mantle dynamics. Our results
lend great confidence to such models. In the central Aleutians, complex splitting orientations are
observed, and they are mostly oriented parallel to the trench or the motion of the subducting
plate. Splitting directions become more strongly trench parallel when only deeper events are
considered suggesting trench parallel flow permeates the wedge. We propose that the patterns in
splitting in Alaska and in the central Aleutians are both tied to dynamics associated with the edge
of the subducting slab. Toroidal flow around the slab can account for the rotation in splitting
directions beneath Alaska which then excites trench parallel flow throughout the wedge creating

the trench parallel splitting in the Aleutians.
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Figures
Figure 1. Station (Top) and event (Bottom) maps of our study region. (Top) Stations where

recorded measurements were made are shown in red. Stations that were examined by yielded no
measures are shown in white. (Bottom) Local events that met our criteria between 2019 and 2022

are shown. Event locations are colored by event depth.

Figure 2. (A) Local-S shear wave splitting measurement for our study region, (B) for the central
Aleutians region, and (C) for the eastern Alaska region. Splitting results are plotted at the
midpoint between the event and station. The orientations of the black bars denote fast splitting
directions and the color of the circles show the measured delay times. Arrows show the motion

of the subducting Pacific plate in the no-net-rotation reference frame [DeMets et al., 2010].

Figure 3. Plots of delay time (top) and trench relative fast directions (bottom) versus depth (left)
and incidence angle (right) for the central Aleutians (blue) and Alaska (red) regions. Fast
directions plotted relative to the strike of the trench such that a value of 0 is trench parallel.

Individual measurement errors are shown.

Figure 4. Schematic cartoon of our preferred model. Toroidal flow around the edge of the
subducting Pacific slab excites trench parallel flow along the length of the subduction zone. In
the central Aleutians, while trench parallel flow dominates, plate motion entrainment is also

present.
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Figure 1. Station (Top) and event (Bottom) maps of our study region. (Top) Stations where
recorded measurements were made are shown in red. Stations that were examined by yielded no
measures are shown in white. (Bottom) Local events that met our criteria between 2019 and 2022

are shown. Event locations are colored by event depth.
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Figure 2. (A) Local-S shear wave splitting measurement for our study region, (B) for the central
Aleutians region, and (C) for the eastern Alaska region. Splitting results are plotted at the
midpoint between the event and station. The orientations of the black bars denote fast splitting
directions and the color of the circles show the measured delay times. Arrows show the motion

of the subducting Pacific plate in the no-net-rotation reference frame [DeMets et al., 2010].
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Figure 3. Plots of delay time (top) and trench relative fast directions (bottom) versus depth (left)
and incidence angle (right) for the central Aleutians (blue) and Alaska (red) regions. Fast
directions plotted relative to the strike of the trench such that a value of 0 is trench parallel.

Individual error measurements are shown.
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604
605 Figure 4. Schematic cartoon of our preferred model. Toroidal flow around the edge of the

606 subducting Pacific slab excites trench parallel flow along the length of the subduction zone. In
607 the central Aleutians, while trench parallel flow dominates, plate motion entrainment is also
608 present.
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