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Abstract

We consider the problem of redeploying nodes into a wireless sensor network (WSN) to

maintain reliable area coverage over time as nodes fail. Specifically, we consider the class of

time-based node redeployment policies in which the WSN is inspected after a fixed amount of

time, after which new sensor nodes are redeployed to bring the number of functioning nodes to

a desired level. Whereas previous research on time-based node redeployment assumes nodes

are identical with respect to time to failure, we use multiple classes of sensor nodes to rep-

resent a scenario where nodes’ times to failure are dependent on positioning in the network.

We propose a partial survival signature (PSS) approach for estimating area coverage reliability

under a given time-based redeployment policy, where the PSS is estimated by Monte Carlo

simulation. This PSS representation enables efficient re-evaluation of coverage reliability un-

der different redeployment policies, thus allowing the use of metaheuristics to obtain a set of

redeployment policies that are near-efficient with respect to cost and coverage reliability. We

present a numerical example to demonstrate that the PSS approach yields accurate estimates

of coverage reliability within a reasonable amount of computation time. Furthermore, we ap-

ply non-dominated sorting genetic algorithm II (NSGA-II) to optimize the numerical example

with respect to cost and coverage reliability.
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1 Introduction

Wireless sensor networks (WSNs) have received substantial attention in the literature due to their

wide applications, including military, health care, and infrastructure environment monitoring. A

WSN is a collection of sensor nodes that can record and transmit data through the network to

monitor a region or system of interest. WSNs present an attractive alternative to wired monitoring

systems due to their low cost and flexibility of deployment. Conceptually, a large number of low-

cost sensor nodes can work together to record data over a substantial area, and for a significant

duration of time; however, it is challenging to deploy WSNs at scale for a number of reasons, one

of which is the potential for node failure, either due to hardware malfunction or exhaustion of a

limited power supply for required communicating, processing, and sensing tasks [1].

In practice, the occurrence of node failures may be uncertain due to unpredictable environ-

mental conditions and inherent difficulties in predicting the lifetime of sensor node batteries [2, 3].

Considering this uncertainty, substantial research has focused on characterizing WSN performance

with respect to a variety of network reliability metrics as well as improving WSN reliability through

design and control strategies.

One way to improve the reliability of a WSN with uncertain node failures is by periodically

deploying new nodes into the WSN. These actions can be costly, especially when the WSN is

deployed in an area that is difficult to access. It is therefore of interest to determine cost-efficient

policies for deploying new WSN nodes (e.g., including the quantity and location of nodes and

timing of deployment) to improve WSN reliability. This problem is challenging in general due to

sequential and dynamic nature of decisions as well as the underlying difficulty in evaluating WSN

reliability metrics.

In this work, we consider the problem of redeploying unreliable sensor nodes periodically into

a multi-hop WSN to maximize the WSN’s α-coverage reliability (i.e., the probability that the WSN

covers at least a threshold proportion of target nodes) while also minimizing the cost rate due to

deploying nodes. We consider node deployment policies that allow for specifying the quantity of
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nodes to deploy and the frequency of redeployment. Although the location of deployed nodes is

assumed to be random, the policies also allow for controlling the extent to which sensor nodes

are centrally concentrated near the sink node, similar to [4]. It is well known that nodes located

near the sink node are more heavily utilized to relay communications, thus resulting in faster

battery consumption and shorter lifetimes. We incorporate this feature by grouping sensor nodes

into classes based on distance from the sink node and assuming nodes within each class share a

common time-to-failure distribution.

The contributions of this work follow:

1. To our knowledge, this paper is the first to examine the problem of reliable multi-hop WSN

node redeployment in the context of load-heterogeneous nodes.

2. We formalize the concept of a time-based node redeployment policy in the context of nodes

with position-dependent time to failure.

3. Using survival signatures, we characterize a WSN’s α-coverage reliability under a given

time-based node redeployment policy. This characterization disaggregates computational

complexity arising due to design decisions (e.g., the size of the network) and redeployment

frequency, thus enabling exploration of time-based node redeployment policies that are effi-

cient with respect to cost and area coverage reliability.

4. We propose a Monte Carlo approach (MC) for estimating α-coverage reliability based upon

estimating only a portion of the survival signature elements. The proposed partial survival

signature (PSS) estimation enables quickly reevaluating α-coverage reliability for networks

with more than two node classes. To the best of our knowledge, our work is the first to esti-

mate a system’s reliability by using a PSS. Due to the computational complexity associated

with evaluating the full survival signature, this contribution may enable enhanced reliability

estimation procedures for other large-scale systems.

The proposed method for estimating α-coverage reliability is advantageous because MC need

only be performed once (to estimate the PSS) for each problem instance. This PSS estimate can be
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reused to estimate the α-coverage reliability of different time-based node redeployment policies,

thereby reducing computational effort associated with policy exploration. By contrast, although it

is also possible to estimate α-coverage reliability using other sophisticated MC approaches (e.g.,

Lomonosov’s Turnip [5, Chapter 9]), doing so would require performing MC once for each time-

based node redeployment policy explored.

Below, we summarize our main assumptions, which are defined formally in Section 4:

1. The sink node and all target nodes are perfectly reliable.

2. Communications are distance-based. That is, a sensor node can (with perfect reliability)

communicate with other nodes or monitor a target node located within a predefined distance.

3. Sensor nodes in the same class have identical time-to-failure distribution.

4. Sensor nodes are independent with respect to failure time.

5. Sensor nodes are deployed randomly.

The remainder of this paper is organized as follows. Section 2 summarizes the literature related

to our research. Section 3 provides an overview of survival signature followed by a formal intro-

duction of the WSN model and α-coverage reliability metric in Section 4. Section 5 provides a

general characterization of α-coverage reliability using the survival signature. Section 5 introduces

the PSS and presents methodology for estimating α-coverage reliability through MC simulation of

the PSS. Section 6 demonstrates the results through several examples.

2 Literature Review

In what follows, we review the literature related to our contributions. Specifically, our research in-

vestigates WSN node redeployment policies with respect to a network reliability metric; therefore,

this section highlights previous works related to WSN node deployment and redeployment as well

as WSN reliability. In subsection 2.1, we review the literature related to WSN node deployment

5



and redeployment strategies, and we categorize the papers based on the metrics or restrictions used

to guide (re)deployment of nodes. In subsection 2.2, we summarize papers focused on evaluating

and improving WSN reliability and explain the relation to our work.

2.1 WSN Node Deployment and Redeployment

Substantial research has focused on determining the initial location of WSN nodes while consid-

ering the impact on WSN lifetime and performance.

With regard to WSN lifetime, node location is an important design consideration because sen-

sor nodes close to the sink node are known to have a heavier traffic load and thus have a shorter

lifetime. Researchers have examined a variety of random deployment strategies and noted that

non-uniform deployment of sensor nodes enable achieving more balanced energy consumption

among the WSN nodes [6], potentially improving the network’s capacity or prolonging the WSN’s

lifetime. Chang and Chang [7] proposed a node placement technique in which the region of in-

terest is partitioned into zones and then the number of nodes to be deployed (randomly) within

each region is determined using distance and density considerations. Researchers have also sought

to improve network lifetime by deploying sensor nodes randomly according to a Gaussian [4, 8]

and other non-uniform distributions [9, 10, 11]. Other researchers have examined deterministic

layouts [12, 13] designed to create redundant sensor-to-sink paths. Whereas many of these works

focus on locating sensor nodes, researchers have also sought to extend network lifetime by strate-

gically placing higher-powered relay nodes specifically designed to assume some of the burden of

communicating data toward the sink node [14, 15, 16]. In addition to node location decisions, the

research summarized in this paragraph has sought to extend network lifetime by jointly considering

topology control [6], routing [10, 11, 16], and clustering [7, 8, 13] decisions.

Many works in the literature have sought to identify WSN node deployment strategies that

ensure coverage (i.e., all targets can be monitored by a sensor node) and network connectivity [17]

(i.e., all sensor nodes can communicate with each other and/or sink nodes). A heuristic sensor

deployment algorithm, where sensor nodes can be relocated after initial deployment, is proposed
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in [18] to ensure coverage. Yu et al. [19] examine a related problem in which a minimum subset

of sensor node locations is chosen while ensuring k-coverage, in which each target should be

monitored by at least k > 1 sensor nodes. Misra et al. [20] and Almasaeid and Kamal [21] examine

the problem of placing a minimum number of relay nodes to ensure k-connectivity, in which sensor

nodes are connected to the sink node by at least k > 1 node-disjoint paths. Researchers have

also focused on combining both coverage and connectivity in the objectives to decide on node

deployment. For example, the authors in [22, 23] proposed multi-objective optimization models

for sensor node deployment in WSNs, which considered objectives such as the number of sensor

nodes, coverage, connectivity, and energy consumption. Although the works summarized in this

paragraph may enable increasing a WSN’s tolerance to component failures, they do not directly

model uncertainty in component failures.

In addition to sensor node deployment, researchers have also examined sensor node replace-

ment policies after initial deployment. Node replacement strategies were proposed in [24, 25]

where a mobile robot or human periodically travels the network to determine which nodes should

be replaced and replace those with new one. References [26] and [27] developed node redeploy-

ment policies where the decision of replacing a failed node depends on the importance of this node

on the sensing coverage, and reference [28] proposed a joint routing and node deployment policy

to minimize the deployment cost. These papers on node replacement do not directly address WSN

reliability when determining node replacement.

2.2 WSN Reliability

Although early researchers noted the need for WSNs to have reliable “sensor-to-sink” and “event-

to-sink” communications [29, 30], the work of of AboElFotoh et al. [31, 32] appears to be the

first work to characterize a network-wide WSN reliability measure. This initial network reliability

measure, which was characterized for a WSN with cluster-based architecture and (independent)

unreliable nodes, was later extended to incorporate common-cause failure [33, 34, 35].

A variety of network reliability measures have been applied to WSNs. For example, research

7



has considered WSN reliability measures based on two-terminal reliability [36, 37], k-terminal

reliability [38, 39], and all-terminal reliability [40, 41]. Researchers have examined WSN reliabil-

ity in the presence of unreliable nodes [42, 43, 44, 45] as well as unreliable transmission of data

[46, 47]. With some exceptions, these works primarily focus only on evaluating a WSN’s relia-

bility. A variety of methods have been used for evaluating WSN reliability. Factoring [31, 42],

sum of disjoint products [45, 48], and binary decision diagrams [33, 34] are the most common

exact methods that have been used to evaluate WSN reliability. Due to the complexity of evalu-

ating exactly, Monte-Carlo simulation has also been used extensively to estimate WSN reliability

[43, 49, 50, 51, 52].

A number of researchers have sought to improve or optimize WSN reliability by determining

initial number and arrangement of number of sensor nodes or controlling WSN operations. For

example, Xiang and Yang [51] proposed a design based on determining the minimum number

of sensors needed to ensure a desired level of coverage reliability. Khoshraftar and Heidari [53]

applied a genetic algorithm to improve the construction of clusters (for hierarchical routing of data)

with respect to a network reliability measure. A variety of other metaheuristics have been applied to

optimize WSN reliability, including the social spider algorithm [54], particle swarm optimization

[55], and ant colony optimization [56]. In recent studies, researchers have also sought to improve

WSNs with respect to data transmission reliability by scheduling data retransmissions on network

links [57], scheduling sensor nodes in sleep/wake states [58], and prioritizing urgent “real-time”

packets to manage packet congestion at nodes [59]. The papers discussed in this paragraph do

not consider the possibility of adding nodes to the WSN to prolong functionality beyond an initial

mission.

With respect to a WSN with linear consecutive (r,s)-out-of-(m,n): F structure, Zhang et al [60]

propose two methods to analyze WSN reliability in the presence of repairable nodes. Similarly fo-

cusing on linear WSNs, researchers have analyzed preventive maintenance schedules [61], sensor

node allocation policies [62], and transmission power and data packet size assignment strategies

[63]. In comparison to the papers summarized in this paragraph, our work does not assume any
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special structure of the WSN topology.

To our knowledge, there is little previous research that aims to identify node deployment and

redeployment strategies that are efficient with respect to both a WSN reliability measure and sensor

deployment cost. Lin et al. [64] introduce the problem of identifying a cost-optimal age-based

redeployment policies for a WSN with unreliable nodes. This initial problem assumes the WSN

has single-hop (i.e., star) topology and that surviving nodes cannot be carried over for use after

deploying new nodes. Deif and Gadallah [56] applied ant colony optimization to minimize sensor

deployment cost while maintaining a predefined minimum level of WSN reliability. Chen et al. [65]

developed a multi-objective sensor deployment optimization model to maximize WSN reliability,

measured by coverage and connection degree, while minimizing sensor deployment cost. Neither

[56] nor [65] consider the possibility of redeploying nodes restore the WSN’s functionality after

nodes have failed.

Our research is most closely related to the work of Boardman and Sullivan [66], which char-

acterizes the α-coverage reliability and cost rate of a WSN with random node position under a

given time-based node redeployment schedule. Boardman and Sullivan [66] utilize a destruction-

spectrum-based representation of α-coverage reliability that allows quick re-evaluation of rede-

ployment policies. This initial work was later extended to explore condition-based redeployment

policies in which node redeployment actions are triggered based upon the state of the network

instead of by a fixed schedule [67, 68]. A limitation of these works is that they assume nodes are

independent and identically distributed (i.i.d.) with respect to time-to-failure distribution. Here,

we extend this work to the case of multiple classes of sensor nodes, each of which is characterized

by a different time-to-failure distribution. We associate the sensor node classes with different sub

regions of the WSN, thus capturing a scenario where sensor node deployed close to the sink node

are prone to fail more quickly than sensor nodes deployed far from sink node.
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3 Overview of Survival Signature

In what follows, we provide a brief summary of methodology for characterizing system reliability

based on the survival signature, which was introduced by [69] to characterize the reliability of a

complex system with multiple classes of binary-state (i.e., functioning or non-functioning) compo-

nents. Because this methodology can be applied to a variety of systems (i.e., not only networks),

we use the term system reliability in this section. Later, we explain in Section 5 how we incorporate

the survival signature to characterize α-coverage reliability.

Consider a system consisting of K ≥ 2 classes of components in which components of the same

class are assumed to have i.i.d. time to failure while components of different classes are assumed to

be independent but not identical with respect to time to failure. Let Fk(t), t > 0, denote the shared

time-to-failure cumulative distribution function (c.d.f.) of components in class k = 1,2, . . . ,K and

define T > 0 as the system’s time to failure.

Let nk denote the number of components in class k = 1, . . . ,K, and define n = ∑
K
k=1 nk as the

number of components in the system. Let the state vector associated with class k = 1, . . . ,K be

given by xk = (xk
1,x

k
2, . . . ,x

k
nk
), where xk

i = 1 if the ith component in class k is functional and xk
i = 0

otherwise, and define the system state vector as x = (x1,x2, . . . ,xK). Let Sk
l = {0,1}nk denote the

set of potential state vectors associated with class k, and define Sl = S1
l × S2

l ×·· ·× SK
l as the set

of potential system state vectors. Define the system structure function ψ(x), which equals 1 if the

system is functioning in state x ∈ Sl and 0 otherwise.

Let φ(l1, l2, . . . , lK) denote the probability the system functions given that exactly lk ∈{0,1, . . . ,nk}

of its class k components function, for each k = 1,2, . . . ,K. As shown by Coolen and Coolen-

Maturi [69], conditioning on (l1, l2, . . . , lK) enables characterizing the system’s reliability P(T > t)

at time t > 0 as

P(T > t) =
n1

∑
l1=0

n2

∑
l2=0

· · ·
nk

∑
lk=0

φ(l1, l2, . . . , lK)
K

∏
k=1

((
nk

lk

)
[Fk(t)]nk−lk [1−Fk(t)]lk

)
. (1)
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The collection of values φ(l1, l2, . . . , lK) is referred to as the survival signature. Computing the

survival signature is complex as it requires calculating ∏
K
k=1(nk + 1) elements, each of which

requires counting the (potentially exponential) number of system state vectors in which the system

is functioning and a given number of components function in each class. However, the survival

signature has certain benefits over traditional methods. For instance, it has the ability to separate the

system structure from the probabilistic information. Although exact methods have been developed

for evaluating a system’s survival signature [70, 71, 72], it is common to estimate the survival

signature of large-scale systems using Monte Carlo simulation [73, 74, 75].

4 WSN Model and Definition of α-Coverage Reliability

In this research, we examine the problem of periodically redeploying sensor nodes into a region

R to ensure a high probability of area coverage. Mathematically we model the WSN as a network

with a single sink node 0, sensor nodes N , and target nodes T . Here, the purpose of the target

nodes is to provide a discrete representation of the area that needs to be covered. In the case

of multiple sink nodes, without loss of generality, one can model the network by introducing an

artificial node 0 adjacent to each of the sink nodes.

We assume a disk graph model wherein each sensor node can communicate with any other

sensor node located within a distance of d1 > 0 and monitor any target node located within a

distance of d2 > 0. Define the directed arc set Acom ⊆ (N ∪ {0})×N to represent the set of

ordered node pairs (i, j) such that sensor (or sink) node i ∈ (N ∪{0}) is within a distance d1 of

(and can communicate with) sensor node j ∈ N . Let Amon ⊆ N ×T denote a set of directed arcs

that contains the sensor-target node pairs (i, j) if target node j ∈ T can be monitored by sensor

node i. Let G = (M ,A) denote the resulting directed network with nodes M = N ∪{0}∪T and

directed arcs A = Acom ∪Amon. A target node j ∈ T is said to be covered if G contains a directed

path from the sink node 0 to j, and the coverage of G is the proportion of target nodes covered.

As we summarize in the following paragraphs, the network G evolves stochastically over time
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as sensor nodes fail or are added to the network; therefore, denote the network at time t > 0 by

G(t), and let C[G(t)] denote the coverage of G(t). For a given threshold α, 0 ≤ α ≤ 1, we define

the network as functioning if C[G(t)] ≥ α and failed otherwise.We are concerned with designing

cost-efficient redeployment policies to ensure the α-coverage reliability

R(t) = Pr{C[G(t)]≥ α} (2)

remains high as the network evolves.

The sensor nodes N are assumed to be divided into K classes (i.e., subsets) N1, N2, . . . , NK

such that the sensor nodes within each class have i.i.d. time-to-failure distribution. Whereas the

prior work of Boardman and Sullivan [66] assumes all nodes have i.i.d. time to failure, utilizing

multiple classes of nodes allows for modeling a scenario where nodes experience different loads

and therefore have varying time-to-failure distributions. In practice, heterogeneous loads could

be caused as a result of the well-known energy-hole problem [76, 77, 78, 79, 80], which arises

because nodes closer to the sink are more heavily relied upon to transmit data. Alternatively, nodes

could experience different time-to-failure distributions due to different hardware components or

varying environmental conditions.

In accordance with the above, we assume a sensor node’s class (and thus its time-to-failure

distribution) depends on where it is located within the region R . Specifically, we assume R is

partitioned into K subregions, i.e., R = R1 ∪R2 ∪·· ·∪RK , such that nodes in N1, N2, . . . , NK are

respectively located in R1, R2, . . . , RK .

In what follows, we summarize the assumed process by which the network evolves over time.

Section 4.1 characterizes the assumed node-failure process and Section 4.2 follows by describing

time-based policies for redeploying nodes into the network

12



4.1 Node Failure Process

Let Fk(t) denote the time-to-failure c.d.f. for nodes in Nk, ∀k = 1,2, . . . ,K. We make the following

assumptions with regard to node failures.

Assumption 1. For each class k = 1,2, . . . ,K, the nodes deployed in Rk have i.i.d. time-to-failure

distribution characterized by the c.d.f. Fk(t).

Whereas Assumption 1 assumes both independence and a common time-to-failure c.d.f. among

nodes within the same class, we also assume independence among nodes from different classes.

This assumption is formalized below.

Assumption 2. Any subset of nodes deployed in R1 ∪R2 ∪·· ·∪RK is independent with respect to

time-to-failure distribution.

We make the following additional simplifying assumption.

Assumption 3. The target nodes j ∈ T and sink node 0 are completely reliable.

Although Assumption 3 imposes some loss of generality, note that the case of unreliable sink

nodes could be modeled in a similar framework through including the sink node (0) within a

dedicated node class.

4.2 Time-Based Node Deployment

In what follows, we summarize the assumed (n1,n2, . . . ,nK; t ′) time-based deployment policy, here-

after abbreviated as (n1,n2, . . . ,nK; t ′)-TBDP, by which new sensor nodes are added to the network.

In this policy, nk sensor nodes are initially deployed (i.e., at time 0) within Rk. The following as-

sumption governs the locations of deployed sensor nodes.

Assumption 4. New sensor nodes from class k are deployed randomly (and independently) with

uniform density over Rk, ∀k = 1,2, . . . ,K.
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Figure 1: With all functioning sensor nodes Figure 2: After the failure of some sensor nodes

We define the term “(n1,n2, . . . ,nK) random geometric graph”, hereafter abbreviated as (n1,n2, . . . ,nK)-

RGG, to refer to a network in which nk nodes are randomly deployed into Rk, ∀k = 1,2, . . . ,K

according to Assumption 4.

Every t ′ > 0 time units (i.e., at times ut ′, u ∈ Z>0) in the (n1,n2, . . . ,nK; t ′)-TBDP, the network

is inspected and new nodes from class k are respectively added to Rk to bring the number of

functioning nodes in Rk to nk , ∀k = 1,2, . . . ,K. The locations of nodes added in stage are also

assumed to be governed by Assumption 4; thus, the network immediately after inspection is an

(n1,n2, . . . ,nK)-RGG. We summarize this property below.

Property 1. Under an (n1,n2, . . . ,nK; t ′)-TBDP, each network G(ut ′), u∈Z≥0 is an (n1,n2, . . . ,nK)-

RGG.

Figures 1–3 illustrate an (n1,n2,n3; t ′)-TBDP for an example network. The regions R1, R2, and

R3 are depicted as concentric disks centered around the sink node 0. Initially, n1 = 50, n2 = 200,

and n3 = 250 sensor nodes are randomly deployed in regions R1, R2, and R3, respectively, as

illustrated in Figure 1. Since sensor nodes randomly fail over time, we display in Figure 2 a

scenario where 20 sensor nodes from N1, 110 sensor nodes from N2, and 133 sensor nodes from

N3 have failed after the time interval t ′. Figure 3 illustrates the replacement of failed sensor nodes

from N1,N2, and N3 with new sensor nodes after t ′ to ensure that a total number of functioning

sensor nodes for n1,n2, and n3 is achieved.
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Figure 3: After adding new sensor nodes to
R1,R2, and R3

5 Characterizing α-Coverage Reliability

After deploying new sensor nodes in an (n1,n2, . . . ,nK)-TBDP, the functioning sensor nodes will

have different ages and residual lifetime distributions depending on when they were deployed. In

what follows, we characterize a representation of α-coverage reliability after sensor node ages have

reached stationarity. The analysis follows closely to [66] and is inspired by the results from [81].

Because the following analysis applies separately to sensor nodes from each class, we tem-

porarily drop the “class” subscript for brevity of exposition. That is, suppose there is only one

class of sensor nodes. Let T ≥ 0 denote the lifetime of a sensor node, define F(t) as the c.d.f.

of T , and define F̄(t) = 1−F(t). Consider a sequence of epochs u ∈ Z≥0, where the uth epoch

refers to the time interval ((u−1)t ′,ut ′]; thus, immediately after the uth epoch, the age X(u) of a

sensor node is a random variable with range {ut ′ : u ∈ Z≥0}. Furthermore, the stochastic process

{X(u) : u ∈ Z≥0} is an infinite-horizon, discrete-time Markov chain with countably infinite states

u ∈Z≥0, where state u represents a sensor node having age equal to ut ′. A sensor node with age ut ′

either survives the next epoch (with probability F̄((u+1)t ′)/F̄(ut ′)) or fails and is replaced by a

new sensor; therefore, state u transitions to either state u+1 (with probability F̄((u+1)t ′)/F̄(ut ′))

or state 0 (with probability (1− (F̄((u+1)t ′)))/F̄(ut ′)). This Markov chain has the stationary

15



distribution

Pr
(
X = ut ′

)
=

F̄ (ut ′)
∑

∞
j=0 F̄ ( jt ′)

, (3)

provided that the denominator converges. A derivation of Equation (3) is provided in Appendix A.

Now consider a class of nodes, each described by a common time-to-failure c.d.f. F(t) and

having random age X described by the probability distribution in Equation (3). This scenario

describes each node class immediately after new nodes are deployed, assuming node ages have

reached stationarity. A sensor node having age X = x has a residual lifetime T x ≥ 0 described by

the c.d.f. Hx(t) = (F(x+ t)−F(x))/F̄(x). By conditioning on X , the residual lifetime of a node

with random age has c.d.f.

G(t; t ′) = Pr(TX ≤ t) =
∞

∑
u=0

Pr(TX ≤ t|X = ut ′)Pr(X = ut ′) (4a)

=
∞

∑
u=0

Hut ′ (t)Pr(X = ut ′) (4b)

=
∞

∑
u=0

F(ut ′+ t)−F(ut ′)
F̄(ut ′)

Pr(X = ut ′), (4c)

=
∑

∞
u=0 (F (ut ′+ t)−F (ut ′))

∑
∞
j=0 F̄ ( jt ′)

. (4d)

The analysis above holds separately for each node class. Therefore we have that

Gk(t; t ′) =
∑

∞
u=0 Fk (ut ′+ t)−Fk (ut ′)

∑
∞
j=0 F̄k ( jt ′)

, k = 1,2, . . . ,K . (5)

where Gk(t; t ′) is the probability that a sensor node from class k selected at random after new de-

ployment, survives an additional t time units. By applying Equation (1), the α-coverage reliability

after redeployment can be expressed as

R(n1,n2, . . . ,nK; t; t ′) =
n1

∑
l1=0

n2

∑
l2=0

· · ·
nK

∑
lK=0

φ(l1, l2, . . . , lK)
K

∏
k=1

b(lk,nk,1− Gk(t; t ′))). (6)

where φ(l1, l2, . . . , lK) is the probability that the network satisfies the coverage requirement given
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that exactly lk nodes from each class k = 1,2, . . . ,K, are active. Here, b(l,n, p) represents the

binomial probability function, i.e., b(l,n, p) =
(n

l

)
pl(1− p)n−l . Note that φ(l1, l2, . . . , lK), lk =

0,1, . . . ,nk, ∀ k = 1,2, . . . ,K are the elements of survival signature and that we refer to the corre-

sponding (n1 +1)× (n2 +2)×·· ·× (nK +1) matrix by Φ.

An advantage of this representation is that the survival signature is not dependent on the rede-

ployment frequency t ′; therefore, if the survival signature is computed (or estimated) for a single

value of (n1, n2, . . . , nK), Equation (6) can be used to quickly reevaluate α-coverage reliability

for different redeployment frequencies t ′.

6 Estimating α-Coverage Reliability

As the number of node classes K increases, it becomes prohibitive to store the full survival sig-

nature in memory, let alone to compute it (exactly) to evaluate α-coverage reliability using Equa-

tion (6). Here, we propose to estimate α-coverage reliability by performing Monte Carlo estimation

of a portion of the ∏
K
k=1(nk+1) elements of Φ. Let S = {(le

1, l
e
2, . . . , l

e
m)}E

e=1 denote a multiset con-

sisting of elements from {0,1, . . . ,n1}×{0,1, . . . ,n2}× · · ·×{0,1, . . . ,nK} and drawn at random

with replacement, and with each element equally likely to be drawn. We estimate the α-coverage

reliability as

R̂(n1,n2, . . . ,nK; t; t ′) =
∑

E
e=1 φ(le

1, l
e
2, . . . , l

e
K)∏

K
k=1 b(le

k ,n
e
k,1− Gk(t; t ′))

∑
E
e=1 ∏

K
k=1 b(le

k ,n
e
k,1− Gk(t; t ′))

. (7)

We define {φ(le
1, l

e
2, . . . , l

e
K)}E

e=1 as the partial survival signature (PSS) and refer to it henceforth

using the notation Φ′. Correspondingly, we refer to R̂ defined in Equation (7) as PSS estimate

of α-coverage reliability. We focus on the stable α-coverage reliability just before redeploying

new sensor nodes, i.e., at time t = t ′. Thus, we use t = t ′ in Equation (7) to evaluate α-coverage

reliability.

When S contains exactly one copy of each element in {0,1, . . . ,n1}× {0,1, . . . ,n2}× ·· · ×

{0,1, . . . ,nK}, note that Equation (7) reduces to Equation (6), i.e., the PSS estimate is exact. To
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summarize the intuition behind Equation (7), note that Equation (6) can be interpreted as an expres-

sion for R(n1, . . . ,nK; t; t ′) = E[φ(L1,L2, . . . ,LK)] by conditioning on the value of (L1,L2, . . . ,LK),

where (L1,L2, . . . ,LK) are independent and Lk ∼ binom(nk,1−Gk(t; t ′)) for each k = 1,2, . . . ,K.

In Equation (6), ∏
K
k=1(nk + 1) terms are summed to yield E[φ(L1,L2, . . . ,LK)] using the proba-

bility mass function h(l1, l2, . . . , lK) ≡ ∏
K
k=1 b(lk,nk,1−Gk(t; t ′)). The PSS estimate replaces the

∏
K
k=1(nk+1)-element outcome space of (L1,L2, . . . ,LK) in Equation (6) with the multiset S , where

|S | < ∏
K
k=1(nk + 1), in Equation (7). Because p(S) ≡ ∑

E
e=1 ∏

K
k=1 b(le

k ,n
e
k,1−Gk(t; t ′)) cannot be

guaranteed to equal 1, h(le
1, l

e
2, . . . , l

e
K) no longer represents a probability mass function on S ; there-

fore, we replace h(l1, l2, . . . , lK) in Equation (6) with h(le
1, l

e
2, . . . , l

e
K)/p(S) in Equation (7). Sec-

tion 7.1 presents an empirical comparison of the PSS estimate relative to alternative methods for

evaluating α-coverage reliability and demonstrates the PSS is competitive with respect to speed

and estimation error.

Although Equation (7) alleviates the computational complexity due to the number of elements

of Φ, it remains intractable to compute the elements of the PSS Φ′. With this motivation, Al-

gorithm 1 presents a MC algorithm for estimating the PSS Φ′ with respect to the collection of

(n1,n2, . . . ,nK)-RGGs. According to Assumption 1, sensor nodes in the same class have i.i.d.

time-to-failure distribution; therefore, sensor nodes are equally likely to fail in any order. As im-

plied by the Assumption 2, the sensor nodes in different classes are independent of each other.

Therefore, we estimate Φ′ by repeatedly sampling an (n1,n2, . . . ,nK)-RGG and K independent

permutations specifying the order of failure of nodes within each class.

Step 1 accepts input specifying the size of the network (i.e., the number of nodes nk located

in each region Rk, k = 1,2, . . . ,K), the number of replications B used in the simulation, and the

multiset elements S = {(le
1, l

e
2, . . . , l

e
m)}E

e=1 for which the survival signature needs to be estimated.

A counter φ′(le
1, l

e
2, . . . , l

e
K) = 0 is initialized in Step 2 for each multiset element and used to count

the number of replications in which the coverage remains at least α when exactly le
k functioning

nodes remain in each region Rk, k = 1,2, . . . ,K. Steps 3–12 update the counts φ′(le
1, l

e
2, . . . , l

e
K)

while looping through the MC replications, and Step 13 outputs estimates the PSS Φ′ by dividing
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the counts φ′(le
1, l

e
2, . . . , l

e
K) by the number of MC replications. The following paragraph explains

Steps 4–11, which comprise a single MC replication.

Algorithm 1 Monte Carlo algorithm for estimating the partial survival signature with respect to
the collection of (n1,n2, . . . ,nK)-RGGs.

1: input: n1,n2, . . . ,nK , B, S
2: set φ′(le

1, l
e
2, . . . , l

e
K) = 0, ∀e = 1,2, . . . ,E

3: while L ≤ B do
4: Generate G by locating nk nodes uniformly and independently within each subregion Rk

for each k = 1,2, . . . ,K
5: For every k = 1,2, . . . ,K, simulate a random permutation πk of the nodes in Nk; πk =

[ik1, i
k
2, . . . , i

k
nk
] where ikf is the f th-to-last node in Nk to fail, ∀k = 1,2, . . . ,K

6: for all e = 1,2, . . . ,E do
7: if C[G \

⋃K
k=1{πk(le

k +1),πk(le
k +2), . . . ,πk(nk)}]≥ α then

8: φ′(le
1, l

e
2, . . . , l

e
K) = φ′(le

1, l
e
2, . . . , l

e
K)+1

9: end if
10: end for
11: L = L+1
12: end while
13: return Φ̂′ = {(1/B)φ′(le

1, l
e
2, . . . , l

e
K)}E

e=1

At the beginning of each replication of Algorithm 1, Step 4 simulates a new (n1,n2, . . . ,nK)-

RGG G with node sets Nk defining the sensor nodes in Rk, and Step 5 generates permutations πk

which specify the order in which sensor nodes in Nk will fail. Let πk(l) ∈ Nk (l = 1,2, . . . ,nk,

∀k = 1,2, . . . ,K ) denote the l-th to last node to fail among the nodes in Nk. Due to Assumption 1,

the nodes within each class are equally likely to fail in any order; therefore, the nk! permutations of

Nk are generated for πi with equal probability. Steps 6–10 comprise a loop in which the coverage

of G is evaluated (e.g., by running a breadth-first search from node 0) for all e = 1,2, . . . ,E with

respect to the failure order defined by permutations πk. If the coverage is at least α when for each

k = 1,2, . . . ,K exactly le
k functioning sensor nodes remain in Nk, the counter φ′(le

1, l
e
2, . . . , l

e
K) is

incremented.
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Instance r1 r2 r3 r4 r5
K = 2 0.1 0.7
K = 3 0.1 0.4 0.7
K = 4 0.1 0.25 0.45 0.7
K = 5 0.1 0.25 0.45 0.65 0.7

Table 1: Parameter values specifying radius rk for each subregion in each instance

7 Numerical Examples

In this section, we present numerical examples in which we (i) demonstrate the performance of

the PSS estimate and (ii) apply optimization to identify TBDPs that are efficient with respect to

cost and α-coverage reliability. The code for Algorithm 1 is implemented in Spyder using Python

3.2 and tested on a high performance computer supported by the Arkansas High Performance

Computing Center.

In what follows, we examine instances involving K ∈ {2,3,4,5} node classes. Throughout

this section, we consider a circular region R with a radius of r = 0.7 and a sink node located at

coordinates (x,y) in the center of the region. The area allocated to each node class is adjusted

based on the total number of classes. The region R is divided into concentric subregions where rk

defines the outer radius of subregion Rk, i.e.,

Rk = {(xnk ,ynk) : rk−1 ≤
√
(xnk − x)2 +(ynk − y)2 ≤ rk} k = 1, . . . ,K. (8)

The values of rk for each k = 1,2, . . . ,K in each instance K ∈ {2,3,4,5} are presented in Table 1.

The communication radius d1 and sensing range radius d2 are set to 0.1. We located 81 target

nodes across the network. The target nodes are arranged in a (9×9) grid within a (1×1) region,

with the center of the grid coinciding with the location of the sink node. The distribution of target

nodes ensures that it covers every subregion of the network.

Within each instance K ∈ {2,3,4,5}, we assume sensor nodes in each class k = 1,2, . . . ,K have

Weibull lifetime with shape parameter βk = 1.5 and scale parameter λk with values given in Table 2.

Shape parameter values βk > 1 are used to impose that sensor nodes become more likely to fail
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Instance λ1 λ2 λ3 λ4 λ5
K = 2 5 10
K = 3 5 9 10
K = 4 5 10 11 12
K = 5 5 10 11 12 13

Table 2: Parameter values specifying Weibull time-to-failure distribution for each node class in
each instance

as they age, e.g., to model the assumption of limited battery charge and/or degradation of battery

capacity over time. The scale parameter (λ) value has proportional relation with the expected

lifetime; thus, we assign λ1 < λ2 < · · ·< λK to impose that sensor nodes closer to the sink (which

have heavier traffic loads) have shorter expected lifetime. Figure 4 displays the reliability function

associated with nodes in each class k = 1,2, . . . ,5 in instance K = 5.

For each instance K ∈{2,3,4,5}, we use Algorithm 1 with B= 10,000 replications and α= 0.8

to estimate the PSS with respect to an (n̄1, n̄2, . . . , n̄K)-RGG, where n̄k is a given upper bound on the

number of nodes in each class k = 1,2, . . . ,K (see Table 3). Let {φ̂(le
1, l

e
2, . . . , l

e
K)}E

e=1 and Φ̂ denote

the estimated PSS survival signature elements of the (n̄1, n̄2, . . . , n̄K)-RGG, and let Φ denote the un-

derlying (true) survival signature with elements φ(l1, l2, . . . , lK). Now consider the (n̄1, n̄2, . . . , n̄K)-

RGG t > 0 time units after node deployment, and suppose nk ≤ n̄k functional nodes remain in each

class k = 1,2, . . . ,K at this time. Because sensor nodes are randomly and independently located,

the network at this time is an (n1,n2, . . . ,nK)-RGG. Thus, letting φ̄(l1, l2, . . . , lK) denote the survival

signature elements of the (n1,n2, . . . ,nK)-RGG, we have

φ̄(l1, l2, . . . , lK) = φ(l1, l2, . . . , lK), (9)

for all lk ∈{0,1, . . . ,nk} and k= 1,2, . . . ,K. Therefore, an estimate of the PSS for any (n1,n2, . . . ,nK)-

RGG with nk ≤ n̄k for all k = 1,2, . . . ,K can be extracted from Φ̂ by disregarding the elements

(le
1, l

e
2, . . . , l

e
K), e = 1, . . . ,E, for which le

k > nk for some k = 1,2, . . . ,K.

In what follows, we estimate the PSS using a variety of values of E and measure the im-

pact on estimation error. The CPU time required for this step can be substantial, as shown in
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Figure 4: Reliability function F̄k(t) = 1−Fk(t)
for nodes in each class k = 1,2, . . . ,5 in in-
stance K = 5

Instance n̄1 n̄2 n̄3 n̄4 n̄5
K = 2 50 400
K = 3 50 200 250
K = 4 50 100 150 200
K = 5 50 100 150 190 60

Table 3: Upper bounds on nk in each instance

Table 4; however, following the discussion in the previous paragraph, this step need only be com-

pleted once. Thereafter, Equations (7) and (9) can used to estimate α-coverage reliability for any

(n1,n2, . . . ,nK; t ′)−TBDP with nk ≤ n̄k for all k = 1,2, . . . ,K.

7.1 Evaluating α-Coverage Reliability Estimation Error

In this section, we provide numerical results to demonstrate the effectiveness of estimating α-

coverage reliability using the PSS and Equation (7). We want to assess the efficacy of the pro-

posed PSS method with respect to estimation error and computation time; however, because it is

1Due to run-time limitations on the (shared) hardware we utilized, this result was obtained by aggregating over
multiple runs with only a subset of the elements.

Instance Total PSS Elements, E CPU Time (hours)
K = 2 10,000 18.45
K = 3 30,000 64.29
K = 4 100,000 222.72
K = 5 100,000 343.35

Table 4: Time required to estimate the PSS elements for each node class in each instance1
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intractable to compute the true α-coverage reliability for large-scale networks, we compare the

PSS estimate of α-coverage reliability against a Monte Carlo estimate of α-coverage reliability

for which the error properties are known. The Monte Carlo method, hereafter referred to as Base

MC, (i) simulates the state (functioning or failed) of each node i ∈ Nk in each class k = 1, . . . ,K

according to probabilities Gk(t ′; t ′); and (ii) estimates α-coverage reliability as the proportion of

replications yielding a coverage of at least α. Both the PSS and Base MC estimates of α-coverage

reliability are produced for 200 TBDPs within each instance K ∈ {2,3,4,5}, and the differences

between each pair of estimates are assessed relative to known properties of the Base MC error.

Whereas Base MC must be repeated for each TBDP, the MC to estimate the PSS is run only once

for each instance and the resulting PSS estimate is used in conjunction with Equations (7) and (9)

to produce the α-coverage reliability estimate for each TBDP within the instance. The TBDPs are

generated by selecting nk ∈ {
¯
nk, ¯

nk +1, . . . , n̄k} at random (and with equally likely probability) for

each k ∈ 1,2, . . . ,K, where values n̄k are specified in Table 3 and lower limits
¯
nk are chosen to

ensure that the selection of TBDPs results in interesting α-coverage reliability values (e.g., not all

close to zero). The value t ′ in each TBDP is selected randomly according to a continuous uniform

distribution on the interval from 1 to 7.

To formalize our comparison, let Xq and Yq respectively denote the PSS estimate and Base MC

estimate of α-coverage reliability for a particular TBDP q = [n1,n2, . . . ,nK, t ′] for instance K, and

suppose pq ≡ R(n1,n2, . . . ,nK; t ′; t ′) is the true (but unknown) α-coverage reliability for TBDP q.

Assuming b MC replications are used to produce the estimate Yq, the quantity bYq is distributed

binomial(b, pq) and Yq is therefore distributed approximately N(pq, pq(1− pq)/b), provided bpq >

5 and b(1− pq)> 5 [82, p. 344].

Now, supposing Xq has the same distribution as Yq and is independent, then

Wq =
Xq −Yq√

2
b

(
Xq+Yq

2

)(
1− Xq+Yq

2

) (10)

is distributed approximately N(0,1). This result forms the basis of the widely used large-sample
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hypothesis test on the difference in population proportions [82, p. 415]. Thus, we compute Wq

for TBDPs 1,2, . . . ,Q (where Q is the number of TBDPs) and compute W̄ as the sample mean

and S2 as the sample variance of {W1,W2, . . . ,WQ}. Assuming the Wq-values are independent of

each other and E[Xq] = pq, we should expect to see W̄ close to 0 and S2 close to 1 in this case

(i.e., if Xq has the same distribution as Yq). Note that, to satisfy the required assumptions of the

normal approximation to the binomial, we throw out TBDPs with b(1−Yq) ≤ 5 or bYq ≤ 5 prior

to computing S2.

Although Xq and Yq may not have the same distribution, we follow the above procedure (com-

puting W1,W2, . . . ,WQ; W̄ ; and S2) to assess the accuracy and precision of the PSS estimate relative

to Base MC. Specifically:

• To assess accuracy, we perform a t-test test (using W̄ and S2) on the hypothesis that the mean

Wq-value (i.e., as defined in Equation (10)) is equal to zero.

• To assess precision, we evaluate whether S2 < 1, which would suggest that the the PSS

estimate is at least as precise as the Base MC estimate.

In assessing precision, we opted not to perform a statistical test on the variance of the Wq-value.

As such, we note that observing S2 < 1 in our results may not imply a statistically significant

improvement in precision but rather that the PSS estimate of α-coverage reliability is more likely

than not to be more precise than that of the Base MC.

Table 5 summarizes the experimental results for each instance K ∈ {2,3,4,5} as we vary the

number of elements E in the PSS. We report the number of elements in the PSS as a percentage

of the number of elements in Φ (see column “Density”); W̄ and S2 (both defined in the previ-

ous paragraph); and also the average CPU time per TBDP (see column “CPU Time”) required to

(re)evaluate the α-coverage reliability estimate given that the PSS estimate has already been ob-

tained. In addition, we summarize the P-value resulting from the t-test. Here, note that a small

P-value (e.g., P < 0.05 or P < 0.1), suggests that the mean Wq-value is not close to 0, and a larger

P-value indicates it is more plausible for the mean Wq-value to be close to 0.
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Instance PSS Elements, E Density CPU Time (sec/TBDP) W̄ S2 P-Value
K = 2 5000 25% 1.06 0.11 0.61 0.15

10000 50% 1.70 0.08 0.61 0.27
20000 100% 3.05 0.04 0.54 0.64

K = 3 10000 0.4% 2.72 -0.14 1.23 0.11
20000 0.8% 4.89 0.05 1.17 0.58
30000 0.12% 7.05 0.09 0.76 0.19

K = 4 25000 0.0167% 8.20 0.02 2.02 0.84
50000 0.0334% 16.38 -0.08 1.40 0.41

100000 0.0667% 31.29 -0.01 0.98 0.90
K = 5 25000 0.0012% 11.43 0.18 10.08 0.46

50000 0.00234% 21.14 -0.01 5.42 0.58
100000 0.0012% 40.63 -0.08 2.82 0.54

Table 5: Experimental Results Summary

We first examine the results of Table 5 with regard to the accuracy of the PSS estimate. From

Table 5, we notice that for W̄ tends to be close to 0, especially as the PSS density is increased.

Additionally, the large P-values (especially with regard to larger values of E) suggest that the PSS

estimate of α-coverage reliability has little bias, or perhaps none. Because these P-values require

an assumption of normality, we present probability plots in Appendix C to demonstrate that the

normal distribution appears reasonable for the Wq-values.

Toward assessing the precision of the PSS estimate, we observe that S2 decreases for instances

K ∈ {2,3,4,5} as the number of elements in the PSS increases. This is an expected result because

Equation (6) is an exact characterization of α-coverage reliability when all elements are used in the

PSS. Because adding PSS elements increases CPU time, we are interested in identifying values of

E in which S2 < 1 and the CPU time per TBDP evaluation is less for PSS than Base MC. We are

able to achieve S2 < 1 in 1.059 seconds/TBDP for K = 2 (using E = 5,000), 7.048 seconds/TBDP

for K = 3 (using E = 30,000), and 31.29 seconds/TBDP for K = 4 (using E = 100,000), respec-

tively. On the other hand, the corresponding running times for Base MC were substantially greater

at 109.59, 142.57, and 114.87 seconds. Although the PSS yields a favorable alternative to Base

MC for K ∈ {2,3,4}, it does not appear to be preferable for K = 5. Although it may be possible

to decrease S2 for K = 5 by further increasing E, doing so would also increasing the running time.

Because the CPU time per TBDP with K = 5 and E = 100,000 is already of a similar magnitude
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as the Base MC time, the current approach does not appear to be advantageous for K = 5.

In what follows, we examine an optimization problem in which we seek to identify TBDPs that

are efficient with respect to cost and α-coverage reliability. We solve this optimization problem

using a metaheuristic that requires repeated evaluation of α-coverage reliability. From the above

discussions, the PSS estimate can be evaluated faster (and without sacrificing accuracy or preci-

sion) in such scenarios where we need to evaluate the α-coverage reliability of many TBDPs. On

the other hand, Base MC does not admit an efficient reevaluation of α-coverage reliability; thus,

this method is prohibitive for optimization in the case of large-scale systems.

7.2 Identifying Efficient Redeployment Policies

Having demonstrated the effectiveness of estimating α-coverage reliability using the PSS and

Equation (7), we now seek to identify TBDPs that are efficient with respect to cost and α-coverage

reliability. To this end, let c f denote a fixed cost incurred each time nodes are deployed and let cv

denote a variable cost per node deployed. We consider the multi-objective optimization model

max
n1,n2,...,nK ;t ′

{
R̂(n1,n2, . . . ,nK; t ′; t ′),−C(n1,n2, . . . ,nK; t ′)

}
, (11)

where C(n1,n2, . . . ,nK; t ′) = (c f + ∑
K
k=1 nkcvGk(t ′; t ′))/t ′ represents the cost rate of the TBDP

(n1,n2, . . . ,nK; t ′), following a similar concept introduced in [66]. For each instance K ∈{2,3,4,5},

we set c f = 100 and cv = 1 for all node classes.

To identify near-efficient TBDPs for Model (11), we apply non-dominated sorting genetic al-

gorithm II (NSGA-II) [83] using an adaptation of the source code developed by [84], wherein the

α-coverage reliability objective is evaluated through Equations (7) and (9) using the PSS estimate

Φ̂. Below, we present the optimization results for instance K = 4. For our tests, we constrain

n1 ∈ {10,11, . . . ,50}, n2 ∈ {50,51, . . . ,100}, n3 ∈ {75,76, . . . ,150}, and n4 ∈ {100,101, . . . ,200}

and restrict the redeployment interval t ′ to be between 1 and 7. For the NSGA-II experiments,

we use a crossover probability of 0.6 and mutation probability of 0.2. The distribution index for
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Figure 5: Efficient frontier
Figure 6: Sensitivity to redeployment time in-
terval

crossover and mutation parameters are set to 2 and 10, respectively. (Note: The distribution in-

dex for crossover controls the crowding distance, i.e., a measure of the concentration of solutions

within specific regions of the Pareto front. The distribution index for mutation controls the mu-

tation applied to individual genes, where the mutation is responsible for making a small change

to an individual’s decision variables to explore the solution space.) We use a population size of

100 and 20 generations, requiring approximately 47.5 hours of CPU time in addition to the time

required produce the PSS estimate Φ̂. Appendix B provides convergence analysis to demonstrate

that additional generations are unlikely to yield substantial gains in solution quality.

We summarize the results through a series of plots that depict the relation between objective

functions the decision variables. Figure 5 presents a summary of α-coverage reliability versus

cost rate for TBDPs on the (near) efficient frontier. To examine the structure of the obtained near-

efficient frontier, we plot each near-efficient TBDP’s variable values versus its cost-rate (i.e., the

value plotted on the horizontal axis in Figure 5). Figure 6 shows the relation between cost and

redeployment interval, t ′. From Figure 5 and 6, it is observed that as the redeployment interval

decreases, α-coverage reliability improves; however, the cost of redeployment is increasing. It is

possible to achieve over 99% α-coverage reliability with t ′ < 3, but marginal gains beyond this

point require a substantial increase in cost rate.

Figures 7–10 depict the relationship between cost rate and nk, k = 1,2,3,4. Among the near-

efficient TBDPs with cost rate less than 85, Figures 7–10 show a positive relationship between
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cost rate and the number of nodes in each region where both n3 and n4 reach their maximum limit.

This is an expected result: If we are willing to spend more overall, we should expect to allocate

more resources to each subregion. This pattern changes when considering near-efficient TBDPs

with cost rate greater than 85. Presumably, this is because all such near-efficient TBDPs have

α-coverage reliability greater than 0.9968. As such, we speculate that there are a large number

of other TBDPs that achieve a similar cost and α-coverage reliability. In combination with the

possibility of error in the PSS estimate, this leads to variability in the TBDPs identified as near-

efficient.

Figure 11 and Figures 12-15 provide an insight into how optimal policy changes with respect to

the changes in the shape (β) and scale (λ) parameter. From Figure 11 and Figure 12, we notice that

the results do not change substantially in response to small changes in β and λ1. The insensitivity

to change in λ1 is expected as the redeployment decision are accounting for the heavier traffic load

the fact that these nodes are used to relay. For λ2, λ3, and λ4, either a 20% decrease or 25%

increase substantially changes the results, where greater α-coverage reliability can be achieved for

the same cost when the λ-values are greater. However, the sensitivity to λ1, λ2, and λ3 become

less pronounced when the cost rate is greater than 80, which is expected as higher cost corresponds

a shorter redeployment interval. We conducted an additional sensitivity analysis to examine the

degree to which misspecifying λ or β may result in sub-optimal solutions. Specifically, we evaluate

the near-efficient policies for β= 1.3 and β= 1.7 with respect to the cost and α-coverage reliability

for β = 1.5. As illustrated in Figure 16, the resulting efficient frontier plots closely resemble those

for the β = 1.5 case, so the near-efficient TBDPs are robust to such changes in β. Likewise, we

evaluated the near-efficient policies with respect to the base λ-values (see Table 2) for the cost and

α-coverage reliability when all λ-values are decreased by 20% or increased by 25%. As shown in

Figure 17, the near-efficient TBDPs are also robust against changes in λ.
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Figure 7: Cost rate vs. n1 Figure 8: Cost rate vs n2

Figure 9: Cost rate vs. n3 Figure 10: Cost rate vs. n4

Figure 11: Sensitivity to β Figure 12: Sensitivity to λ1
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Figure 13: Sensitivity to λ2 Figure 14: Sensitivity to λ3

Figure 15: Sensitivity to λ4

Figure 16: Reevaluation of near-efficient TB-
DPs (for β = 1.3 and β = 1.7) with respect to
cost and α-coverage reliability for β = 1.5

Figure 17: Reevaluation of near-efficient TB-
DPs (for λ decreased by 20% or increased by
25%) with respect to cost and α-coverage reli-
ability for original λ-values
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7.3 Summary of Results

To summarize the results section, we first validated the efficiency of the proposed PSS method

by comparing it with Base MC (i.e., estimating α-coverage reliability directly by MC) in terms

of estimation error and computation time per TBDP on numerical examples. For K ≤ 4 (but not

K = 5), the results suggest that the proposed method achieves estimation error that is comparable to

Base MC in substantially less computational time. This reduction in computational time is due to

the PSS method’s ability to reuse computations in evaluating the α-coverage reliability of different

TBDPs for the same problem instance.

Later, we applied NSGA-II to identify TBDPs that are efficient with respect to redeployment

cost and α-coverage reliability. This analysis characterizes the tradeoff between these two metrics

while highlighting how the (near-efficient) TBDP changes for different cost thresholds. These

observations are crucial for decision-makers, as they provide valuable insights for both designing

the WSN and planning node redeployment in consideration of the impacts on cost and α-coverage

reliability.

8 Conclusion

In this work, we have considered the problem of redeploying unreliable sensor nodes into a multi-

hop WSN with the objective of maximizing network reliability and minimizing overall deployment

costs. We have established a survival signature characterization of the WSN’s α-coverage reliabil-

ity under a given time-based node deployment policy and multiple classes of unreliable nodes. Our

work extends the related literature by allowing nodes’ time-to-failure distribution to be dependent

on positioning in the network, whereas previous research assumes i.i.d. node failures. The paper

also contributes a method for estimating α-coverage reliability based on estimating only a portion

of the elements in the survival signature (i.e., the PSS). Using numerical examples, we demon-

strate that the resulting estimate of α-coverage reliability outperforms a straightforward Monte

Carlo estimate (in terms of accuracy, precision, and CPU time) as long as there are not too many
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node classes (e.g., for K ≤ 4 node classes in our instances). Furthermore, because the PSS need

only be estimated once for a given instance, the resulting estimate of α-coverage reliability can be

re-evaluated quickly. We have leveraged this result by employing NSGA-II to identify time-based

node deployment policies that are near-efficient with respect to cost and α-coverage reliability, and

we have discussed structural relationships among near-efficient node deployment policies corre-

sponding to different cost thresholds.

Although the survival signature has received substantial recent attention in the literature, the

use of the survival signature to estimate system reliability has usually been limited to systems that

are smaller in scale than the 500-plus node instances examined in our study; therefore, the idea to

use only a PSS may be attractive for estimating reliability in other large-scale, complex systems.

Our work opens several avenues for follow-on research. Whereas our work uses an unsophis-

ticated approach (i.e., equally likely with replacement) to sampling survival signature elements

for inclusion in the PSS, more sophisticated sampling approaches may yield additional improve-

ments to the accuracy and precision of the PSS estimate of α-coverage reliability. Note, however,

that the equally likely assumption is important in the sense of Equation (9): Because the sampled

PSS elements (le
1, l

e
2, . . . , l

e
K) are equally likely among the outcomes {0,1, . . . , n̄1}×{0,1, . . . , n̄2}×

·· ·×{0,1, . . . , n̄K}, when disregarding the sampled elements (le
1, l

e
2, . . . , l

e
K) with le

k > nk for some

k = 1,2, . . . ,K, the remaining elements can be considered as equally likely among the outcomes

{0,1, . . . ,n1}×{0,1, . . . ,n2}× ·· ·×{0,1, . . . ,nK}.

Additional follow-on research may seek to enhance Algorithm 1 for estimating the elements

of the PSS. For example, we note that Step 7 requires evaluating the coverage of the network

G(e)≡ G \
⋃K

k=1{πk(le
k +1),πk(le

k +2), . . . ,πk(nk) for each PSS element e = 1,2, . . . ,E. However,

for any two elements e,e′ ∈ {1,2, . . . ,E} with le
k ≤ le′

k for each k = 1,2 . . . ,K, observe that G(e′)

can be obtained from G(e) by adding some nodes and their adjacent arcs. Therefore, rather than

evaluating C[G(e′)] by executing a (new) breadth-first search, it is possible to initialize this search

using the output of the breadth-first search conducted to evaluate C[G(e)]. Based upon further

extensions of this idea, Lopes da Silva and Sullivan [75] (i) show that MC simulation of the (com-
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plete) survival signature for a two-terminal network entails solving a multi-objective maximum

capacity path (MOMCP) problem in each replication (ii) and demonstrate that, for the case of two

node classes, solving the MOMCP using a specialized algorithm substantially improves the rate

at which MC replications can be completed. Because the problem considered in our paper is sub-

stantially more general than [75] (e.g., estimating α-coverage reliability instead of two-terminal

reliability, including K > 2 node classes instead of only two node classes, and evaluating only a

portion of the survival signature elements instead of all elements), it is unclear whether such ideas

can also lead to enhancements in Algorithm 1.
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A Derivation of Equation 3

Let pu = F̄((u+1)t ′)/F̄(ut ′) denote the probability of transitioning from state u = 0,1,2, . . . ,∞

into state u+1, and note that state u transitions into state 0 with probability 1− pu. We can derive

the equation for limiting probabilities πu = Pr(X = ut ′) by using the stationarity equations

πu = πu−1 pu−1, u = 1,2, . . . ,∞, (12)

and
∞

∑
u=0

πu = 1. (13)

By recursively applying Equation (12), we have

πu = π0

u−1

∏
j=0

p j = π0

u−1

∏
j=0

F̄(( j+1)t ′)
F̄( jt ′)

= π0F̄(ut ′), u = 0,1, . . . ,∞, (14)

where the last equation follows (for u ≤ 1) because F̄(0) = 1 and (for u ≥ 2) due to cancellation

of the numerator of the jth term in the product with the denominator of the ( j + 1)st term for

j = 0,1, . . . ,u−2. Substituting Equation (14) into Equation (13) for all u = 0,1, . . . ,∞ yields

∞

∑
j=0

π0F̄( jt ′) = 1, (15)

which can be rearranged to solve for π0 as

π0 =
1

∑
∞
j=0 F̄( jt ′)

. (16)

By substituting Equation (16) into Equation (14), the remaining limiting probabilities are

πu =
F̄(ut ′)

∑
∞
j=0 F̄( jt ′)

, u = 0,1, . . . ,∞. (17)
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Figure 18: Number of Iterations vs Efficient Frontier

Figure 19: Normal probability plot (K = 2) Figure 20: Normal probability plot (K = 3)

Figure 21: Normal probability plot (K = 4) Figure 22: Normal Probability plot (K = 5)
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B Efficacy of NSGA-II

We performed a convergence analysis to determine whether increasing the number of generations

in NSGA-II might be likely to yield substantially improved solutions. For the instance with K = 4,

we increased the number of generations from 20 to 50 and (due to time limitations), we set the

initial population to 50 for both cases. All other parameters remained the same as described in

Section 7.2. Figure 18 displays the efficient frontier for both cases. The results suggest that the

increase in number of generations results in only very minor improvements in solution quality.

C Probability plot of Wq

Figures 19–22 show the normal probability plot for instances K = 2,3,4,5 with respect to the

Wq-values resulting from Equation (10).
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