
1

Collaborative Learning based Spectrum Sensing
under Partial Observations

Weishan Zhang, Student Member, IEEE, Yue Wang, Senior Member, IEEE, Xiang Chen, Member, IEEE,
Lingjia Liu, Senior Member, IEEE, and Zhi Tian, Fellow, IEEE

Abstract—To deal with the complex wireless cognitive radios,
data-driven learning technologies have been advocated for spec-
trum sensing. While the existing learning-based methods are
designed for basic single-band circumstances, they may not work
well in practical wideband regimes. Due to the limited sensing
capability and hardware constraints of practical secondary users
(SUs) devices, individual SUs can only collect limited training
data to observe a narrowband part of the entire wideband
spectrum pool. It is known as the issue of partial observations,
which leads to a heterogeneous multi-task learning problem. To
overcome these challenges, this work proposes a novel framework
of cooperative spectrum sensing via collaborative learning among
distributed SUs. Capitalizing on the hierarchical nature of
neurons of deep neural networks (DNN) in heterogeneous feature
extraction, we propose a novel multi-task DNN architecture to de-
tect wideband spectrum occupancy accurately and efficiently. By
decoupling the large multi-band DNN into smaller band-specific
sub-networks, these sub-networks can be jointly trained among
distributed SUs even with heterogeneous local data. Simulation
results indicate that our proposed method outperforms existing
benchmarks in small-data regimes by achieving higher learning
accuracy with less model complexity and computational cost.

Index Terms—Cognitive radio, spectrum sensing, collaborative
learning, partial observation, deep neural network, decoupling.

I. INTRODUCTION

Cognitive Radio (CR) has been widely recognized as an en-
abling technology for spectrum-efficient wireless communica-
tions [1]. Spectrum sensing, as the key technique in CR, aims
to accurately and efficiently detect the spectrum opportunities
in terms of idle spectrum resources, and has been intensively
studied in the CR literature [2]–[5]. While traditional spectrum
sensing methods, e.g., energy detection, matched filtering, and
cyclostationary detection work well in the ideal settings with
perfectly known signal and channel models, they unfortunately
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Fig. 1. Cooperative spectrum sensing under partial observations.

become vulnerable to model mismatch issues such as channel
uncertainty and/or noise uncertainty [6]–[9].

To cope with such limitations of the traditional model-
based techniques, deep learning (DL) based methods are
recently advocated for single-band spectrum sensing [10],
[10]–[17] and the multi-band case [18], [19]. Such methods
utilize the strong capability of DL in learning the underlying
representation of complicated models from training data in
physical layer communications [20]. Despite the success of
these pioneer works in homogeneous settings and idealized
observation conditions, the goal in realistic CR practice is to
find out as many as spectrum opportunities from wideband
spectrum under the constraint of locally partial observations
[21]. As shown in Fig. 1, given the limited sensing capability
and hardware constraints of individual secondary users (SUs),
each SU can only collect limited data to observe a small
narrowband part of the entire wideband spectrum pool. As a
result, the small dataset collected by each SU merely reflects a
few locally observable bands, which means that the standalone
DL-based methods are incapable for wideband spectrum sens-
ing under partial observations. To build collaboration among
distributed SUs, straightforward learning-based cooperative
spectrum sensing methods have been proposed via collecting
the measurements from all SUs and aggregating the data
at a data center to make a one-shot decision on spectrum
occupancy [16], [22], [23]. Unfortunately, such data aggrega-
tions lead to high communication overhead, huge computation
overload, and unwilling measurement data privacy exposure,
which are all unacceptable for practical CR networks.

To overcome the aforementioned drawbacks of the existing
methods while utilizing the cooperation benefits among dis-
tributed SUs, this paper aims to develop novel deep neural
network (DNN) based cooperative spectrum sensing frame-
work and training techniques. Through a holistic integration of
the design of low-cost DNN architecture with the development
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of efficient DL solutions, we develop effective collaboration
among distributed SUs under partial observations. To the best
of our knowledge, this has not been studied in the literature
of DL-based wideband spectrum sensing regimes. Over the
years, parameter server (PS) [24] and federated learning (FL)
[25] have been proposed as two main techniques for the imple-
mentation of collaborative learning. However, neither PS nor
FL can be directly applied for CR wideband spectrum sensing
under partial observations. This is because they both hinge on
a prerequisite that all local participants share a homogeneous
DNN structure for a common learning task. But, spectrum
data collected through partial observations are heterogeneous
at different SUs, which leads to a more challenging multi-task
learning problem.

To achieve accurate and efficient wideband spectrum sens-
ing under partial observations, we propose a novel DNN-based
cooperative spectrum sensing framework via collaborative DL
across distributed SUs whose local training data observe par-
tially overlapping bands. Considering the data characteristics
in wideband spectrum pools and the demand to detect each
band distinctively, we design a multi-task DNN for multi-
band spectrum sensing, where a flexible DNN decoupling
and reconfiguration scheme enables efficient collaboration
among SUs with heterogeneous data and sensing tasks. The
proposed multi-task learning DNN can dramatically save the
computation and storage costs thanks to the smaller model
size that is locally trained at individual SUs than the global
model. Meanwhile, the proposed collaborative training method
enhances the performance of band-wise spectrum sensing with
small datasets on SUs under partial observations. To the best
of our knowledge, this is the first work using collaborative
learning for cooperative spectrum sensing under partial obser-
vations. The contributions of this paper are summarized below.

• For the first time, we formulate the problem of learning-
based wideband spectrum sensing with distributed users
under partial observations. To address the major chal-
lenges of heterogeneity of both learning tasks and train-
ing data, we propose a collaborative multi-task learning
framework to accommodate the heterogeneous DNNs on
different users. The key idea is to efficiently utilize a
critical connection between the neuron activation prefer-
ence in deep hidden layers of DNNs and the band-specific
spectrum occupancy characteristics in wideband regimes.

• Exploiting the hierarchical nature of DNN neurons in fea-
ture extraction of CR wideband spectrum, we reconfigure
the original dense DNN structure into multiple learning
paths, by reducing unnecessary connections between the
data flows for detecting different bands. This enables
the band-wise parameter sharing among the multi-task
sensing models to fit the heterogeneously observable
bands at individual SUs, which is otherwise unavailable
in existing standard DNN methods.

• In addition, we develop an efficient training process that
is customized for the implementation of the proposed col-
laborative learning based cooperative spectrum sensing.
It not only jointly optimizes the heterogeneous DNNs
among all distributed SUs with small training datasets,

but also quickly obtains the global detection of channel
occupancy over entire wideband spectrum pool.

• In view of the scarcity of available training data of
wideband spectrum measurements, we also present a
data generation approach to produce synthetic wideband
spectrum datasets under partial observations for various
modulation types and channel conditions.

Simulations results show that our proposed method out-
performs the benchmarks of existing DL-based methods in
terms of better spectrum sensing performance with small
datasets under partial observations, more robustness to noise
uncertainty and higher computation efficiency thanks to less
DNN parameters to train at individual SUs.

II. RELATED WORKS

To improve spectrum sensing performance in complex wire-
less environments, DNNs have been introduced to CR systems
in detecting spectrum occupancy from the signals of interest
based on their temporal and spectrum features.

A. Deep learning for single-band spectrum sensing

Recently, various DNN-based methods have been proposed
for single-band spectrum sensing by learning the underlying
features of primary signals. In the basic single-SU case, DL-
based algorithms are proposed for occupancy detection [14]
and modulation recognition [26]. Among them, Xie et al.
design a CNN-LSTM model that features a cascade structure
containing a CNN for the correlation feature extraction and
then an LSTM to estimate PU activity pattern [10]. Xing
et al. develop a composite DNN which incorporates convo-
lutional, LSTM, and self-attention to extract local features
and global correlations from the time series data [11]. Mei
et al. design a learning-based sparse signal reconstruction
method by leveraging deep unfolding and CNN, to conduct
wideband spectrum sensing with sub-Nyquist sampled data
[12]. Chae et al. develop a CNN-based spectrum sensing
model with multiple antennas, to enhance sensing performance
by using cross-correlation features between multiple antennas
of a receiver [13]. All these learning methods only concern
centralized implementation.

To overcome the sensing performance degradation due to
wireless fading and shadowing impacts, DNN techniques have
been integrated into cooperative spectrum sensing recently in
the simple single-band scenarios [10]–[17]. Lee et al. develop
a deep cooperative sensing framework with learnable decision
fusion, which is a CNN-based cooperative sensing method
[16]. Janu et al. design a LSTM-based cooperative spectrum
sensing method to learn the PU activity pattern hierarchically
at both the SU and group levels [27]. While these DNN-
based cooperative spectrum sensing techniques improve the
sensing accuracy in the presence of model uncertainties by
learning the latent features of the primary signal, most of
them are designed for single-band signal or single detection
objective. Further, exiting DNN-based cooperative spectrum
sensing methods involve data fusion, which means SUs have
to share sampled spectrum. As a result, undesired privacy
leakage and communication consumption inevitably happen
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in practical applications. In summary, the existing works on
learning-based methods for single-band scenarios limit their
efficiency and quality in wideband CR environments.

B. Deep learning for multi-band spectrum sensing

Recently, a few research efforts have been found to design
DNN models for single-user multi-band spectrum sensing.
Zhang et al. solve the sub-band occupancy pattern iden-
tification problem in a multi-band environment which can
accommodate a few occupancy statuses [18]. Ambika et al.
propose another DNN model to detect occupancy statuses from
a dataset that contains the spectrograms of multiple chan-
nels [19]. These multi-band occupancy detectors are designed
based on classifiers to differentiate all possible occupancy
statuses. Specifically, in the design of their output layers,
softmax and cross-entropy loss function are adopted, which is
however not suitable for band-wise spectrum sensing problems
in wideband scenarios. This is because the problem size
for classification goes exponential in the number of bands.
As a result, these existing works can only identify limited
categories of all the possible occupancy statuses. Moreover,
these methods rely on large training datasets to learn spectrum
features, which is impractical due to the dynamic nature of
wireless environments.

C. Data parallel distributed learning

As a major branch of distributed learning, data parallel
methods leverage the parallel computation power at distributed
nodes of a multi-agent system to learn general knowledge
about a global task from distributed data [28]. Along this
line, PS [24] and FL [25] have been proposed to implement
distributed training. While these training methods result in
high communication efficiency and privacy provisioning, they
usually hinge on an assumption that all agents share a ho-
mogeneous DNN structure and independent and identically
distributed (IID) data to achieve a common learning task.
This requires an idealized CR scenario where all SUs need to
have the global observation over the entire wideband spectrum
pool. However, this is not the case for real CR sensing
systems. Under the circumstance of partial observations, lo-
cal spectrum data and corresponding local model structure
become heterogeneous. To the best of our knowledge, there
is no existing work on collaborative learning based wideband
spectrum sensing.

III. PROBLEM STATEMENT

A. Signal model

In this section, we first formulate the signal model of
the power spectrum density (PSD) based measurement data
collected by distributed SUs under partial observations. Sup-
pose a wideband spectrum pool is uniformly divided into Nf
bands as in Fig. 1, where each band is assigned to a certain
primary user (PU) who may occupy the band or not. For a
CR system with J SUs, the time series sampled at the SU-j,
∀j ∈ [1, J ], are regarded as measurements of received signals
in the time domain. Each sample is given by a summation of

every primary signal sequence reaching SU-j plus the noise
vector wj :

xj =

Nf∑
n=1

ynh
j
nxn + wj , (1)

where xn is the modulation signal transmitted on band-n if
it is occupied by a certain PU, yn is the n-th entry of a
Boolean vector y = [y1, y2, . . . , yNf ] ∈ BNf that stores the
ground-truth occupancy conditions of all bands with values
equal to either 1 (occupied) or 0 (unoccupied), coefficient
hjn denotes the channel gain of band-n between PU and
SU-j. In the channel model, we consider the impacts of
path-loss and shadowing. The channel gain is formulated as

hjn =

√
β
(
d0
djn

)α
10
−ψjn
10 [29], where β is a constant related

to the antenna characteristics and average attenuation, α is
the path-loss exponent, djn is the distance between SU-j and
the PU on band-n, d0 is the reference distance, and ψjn is
a Gaussian-distributed random variable with mean zero and
variance σ2

ψjn
that measures the shadow fading of the channel

over band-n between PU and SU-j.
To extract the spectrum features in the frequency domain

for learning process, we observe xj over multiple snapshots
and calculate their second-order statistics in terms of their
autocorrelation. Then, by applying Fourier transform on au-
tocorrelation, the wideband PSD at SU-j is obtained as:

sj = FT(Corr(xj)) ∈ NNwNf×1, (2)

where FT denotes the Fourier transform, Corr(.) computes
the signal autocorrelation, and Nw is the spectrum resolution
of each band. Considering that all bands share a common
bandwidth, the wideband PSD sj in (2) can be uniformly
segmented into Nf band-specific PSD vectors as sj =
[sj1; . . . ; sjn; . . . ; sjNf ], where sjn ∈ NNw×1, n = 1, 2, . . . , Nf .
Due to power leakage [30], channel aggregation [31], and other
factors, there exist inherent correlations of primary signals
between different bands in realistic wideband environments.
To unveil and capture such inter-band correlations via deep
learning-based methods, we rewrite sj into an Nw×Nf matrix
as the input training data:

Sj = vec−1(sj) = [sj1, . . . , s
j
Nf

], (3)

where vec−1(·) is the inverse vectorization operation.

B. Deep learning-based wideband spectrum sensing

Now, we discuss how spectrum sensing is formulated into a
deep learning problem. Given the input training data (3), the
most basic CR spectrum sensing problem at SU-j for multi-
band settings can be expressed as a binary hypothesis testing
problem in H0 when band-n is vacant; or in H1 when band-n
is occupied. For a basic single-band model with input data sn,
output label {0, 1} and DNN parameter set W , the spectrum
sensing problem can be expressed as a function, f(sn,W) ∈
[0, 1]. In this sense, the task of deep learning-based spectrum
sensing at a specific SU-j for a single band n is to find the
optimal parameter setW∗ that generates the correct hypothesis
based on the received band-specific PSD sjn:
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{
f(sjn|H1

,W∗) ≥ 0.5;
f(sjn|H0

,W∗) < 0.5.
(4)

Thanks to the representation power of DNN even in the lack
of expert knowledge of underlying signal and channel models,
the learning-based single-band detectors can be automatically
trained with sufficient labeled data. The objective of training
can be formulated as:

min
W

∑
{sjn,yn}∈D

Lossb(f(sjn,W), yn) (5)

where D is the dataset including the PSD and the labeled
occupancy of the target single band, the ground truth occu-
pancy yn = {0, 1} is used as the label, and Lossb denotes
the binary cross-entropy loss function of two probability-based
confidence values defined as [32]

Lossb(p, q) = p log q + (1− p) log (1− q). (6)

When extending the single-band case to the multi-band case,
Eq. (6) plays a key difference from the regular cross-entropy
loss used in the existing classifiers [18], [19]. Specifically,
multi-band sensing models are developed to distinguish one
category out of a total number of Nc = KNf classes where
K denotes the number of occupancy status for each band.
However, in order to encode all Nc occupancy categories of
Nf bands, the size of softmax output layers for classifiers
grows exponentially. In fact, the sensing technique in [18],
[19] only handles limited occupancy conditions, which leaves
most situations unattended. For high computational efficiency,
the sensing model is expected to detect all possible occupancy
conditions of the spectrum pool with the least number of
output channels. To this end, we next design a novel multi-
class predictor based DNN structure with smaller model size
and reduced computational complexity.

IV. COOPERATIVE SPECTRUM SENSING

In this section, we aim to develop a novel band-wise cooper-
ative spectrum sensing framework, which utilizes collaborative
training of multi-band DNNs among distributed SUs. It is
designed to detect a wideband spectrum pool that turns to
be heterogeneous over partially observable bands at different
SUs.

A. Band-specific DNN structure reconfiguration

To implement collaborative learning for wideband spectrum
sensing under partial observations, we first design an efficient
DNN reconfiguration scheme to support band-wise parameter
training and sharing. The key idea is to cut the unnecessary
connections between neurons among multi-task data flows for
detecting different bands in heterogeneous DNNs. It is im-
plemented by utilizing the band-specific neuron sensitivity in
DNN and then decoupling their corresponding sub-networks,
which will be discussed in detail next.

Fig. 2. Band-specific neuron separating and the proposed CNN structure.

1) Hierarchical band-specific neuron sensitivity: In DNNs,
the neurons play as fundamental feature extractors by gen-
erating an effectively large output, once they are activated
by certain features from their inputs [33]. We observe that
neurons on different layers of a DNN exhibit a hierarchical
nature in feature extraction. Specifically, in the multi-task
learning model for wideband spectrum sensing as illustrated by
Fig. 2.(a), there exist two facts: (1) the neurons in the shallow
layers (in blue color) are sensitive to the common features that
are widely presented by the PSD sample data collected from
all bands; (2) the neurons in the deep layers corresponding
to the multiple tasks highlighted in red, purple and yellow
colors, respectively, are sensitive to the task-specific features
of different bands.

For the neurons in the deep layers of the densely connected
multi-task DNNs, while their outputs are calculated with
all outputs from their prior layer, only those neurons that
contribute large values can play a dominant role in decision
making. In this sense, when a PSD data is fed into the multi-
task DNN, the neurons of the shallow layers are fully activated
while only a part of the neurons in individual deep layers are
activated as shown in Fig. 2.(b). Accordingly, the data flow of
the multi-task DNN for spectrum sensing passes all neurons of
the shallow layers, but then only goes through some activated
neurons of the deep layers selectively.

2) Decoupling multi-band DNN into band-specific sub-
networks: Given the hierarchical nature of DNN neuron’s
sensitivity to band-specific input features, we identify the links
through which the band-specific data flows pass within the
multi-task DNN model. This insight motivates us to keep the
corresponding links that carry each data flow related to the
sensing task for a specific band. Meanwhile, we remove the
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other unnecessary links between the neurons that belong to
the different data flows. The key idea is that the original
dense DNN structure can be compressed into a couple of
compact sub-networks with (much) less training parameters
without sacrificing learning capability. In this way, we de-
couple the original large multi-task DNN into multiple sub-
networks. The proposed decoupling scheme is illustrated as
shown in Fig. 2.(c). Since such sub-networks corresponding
to individual spectrum sensing tasks have fewer parameters
than the original dense DNN, they can be trained in a more
efficient manner.

Note that our proposed reconfiguration scheme is different
from the existing DNN pruning methods in the following two
perspectives. (1) Our decoupling scheme is motivated by the
hierarchical neuron sensitivity to different sensing tasks and
is actually applied before training in a proactive manner. On
the other hand, the existing pruning techniques are usually
conducted to remove the insignificant weights from a well-
trained model [34]. (2) Fig. 2.(a) and (c) indicate that our
decoupling method neither changes the depth of DNN nor
alters the number of its total neurons. However, the existing
pruning method may lead to a decrease of the number of
neurons (a.k.a., filter pruning), when all the input links con-
nected to some neurons have trivial weights [35]. Furthermore,
such variation in neuron numbers between different SUs may
unfortunately lead to complicated coordination among these
SUs for local model averaging in collaborative learning. Thus,
our proposed architecture retains model capacity for multi-
band spectrum learning at reduced model complexity.

B. Model design under partial observations

Different from the DNN classifiers that produce the multiple
softmax outputs in [18], [19], we apply a sigmoid function
to activate each output channel of our proposed multi-task
DNN. Thus, each output digit independently represents the
probability-based confidence value of the occupancy of each
band and its value is restricted between 0 and 1. Accordingly,
we adopt the binary cross-entropy (6) to calculate the loss
function value of the output digit of each band, instead of
the regular cross-entropy loss for classifiers in [18], [19].
Considering the 2-D nature of our PSD-based spectrum data
Sj in (3), we choose convolutional neurons as the feature
extractor [36], [37], to take advantage of the correlation in the
2-D input spectrum measurement data via the shift invariance
of CNN1.

Ideally, if the wideband spectrum pool is globally observ-
able to all SUs, then the learning-based cooperative spectrum
sensing boils down to a standard multi-band detection problem
for training a homogeneous model with IID training data.
However, for realistic CR systems under partial observations,
the multi-task DNNs trained on different SUs turn to be
heterogeneous. This is because practical CR systems usually
focus on wideband spectrum sensing over a large physical
area with the sensing-capability constrained SUs as illustrated

1Note that the proposed neural network architecture and the corresponding
methodology developed in this work can be extended to other DNN models
as well.

Fig. 3. Collaborative training system with partial observers.

in Fig. 1. Meanwhile, the path-loss related term hjn in (1) is
inversely proportional to the distance of signal propagation.
For example, if the PU on band-n is far away from SU-j,
then the PSD of the received signal on this band becomes
(much) smaller than that caused by noise. Then, the spectrum
occupancy characteristics in the local PSD on this band, sjn,
cannot be captured by the DNN detector. As a result, these
kinds of bands become unobservable to SU-j. In this sense, the
multi-task DNN at SU-j generates only N j

f (< Nf ) effective
output logits, and each of them corresponds to one band that
is observable locally at SU-j.

In order to obtain the global detection of the entire wide-
band spectrum, decision fusion is necessary to combine the
local decisions from distributed SUs. However, under partial
observations, if the multi-task DNN detector on each SU is
independently trained in a standalone manner, then it is prone
to over-fit the local model to the data collected under location-
dependent wireless conditions, which makes the trained model
infeasible for dynamic CR systems and insufficient local data.
Considering that different SUs share partially overlapping
bands, it is motivated to exchange the learned knowledge about
the common spectrum occupancy on these overlapping bands
across different SUs. However, conventional data parallel
collaborative learning like FL hinges on homogeneous learning
tasks and IID training data across all SUs, which is unreal-
istic under partial observations. To collaboratively learn the
knowledge about wideband spectrum occupancy through band-
specific parameter sharing, we next develop efficient band-
wise collaborative training among DNNs for heterogeneous
tasks with non-IID data.

C. Collaborative training among partial observers

Given the band-specific sub-networks decoupled via our
DNN reconfiguration scheme proposed in Section IV-A, we
now aim at developing collaborative training solutions to
achieve effective cooperation among heterogeneous SUs in
detecting their overlapping bands.

1) Collaborative training system: To detect the entire
wideband spectrum pool with Nf bands under partial ob-
servations, we setup a learning-based cooperative spectrum
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sensing system that is composed of J multi-task DNNs. The
j-th multi-task DNN is reconfigured into N j

f sub-networks
corresponding to the N j

f observable bands at SU-j, as shown
in Fig. 3. Our collaborative learning system can be deployed in
a centralized topology. There exists a centralized fusion center
to collect the locally updated model for parameter averaging
and then broadcast the averaged model parameters back to the
SUs for their next round local update [38]. Meanwhile, our
proposed method can be applied in a decentralized manner
as well, where the distributed SUs directly exchange their
local updates with their neighboring SUs. This enhances the
system robustness to node/communication failures [39]. For
the implementation of the band-wise collaborative learning
among SUs on their overlapping bands, the reconfigured sub-
networks for the detection on the same bands should have
the homogeneous network structures. The training scheme
for such collaborative learning based cooperative spectrum
sensing will be discussed next.

2) Collaborative training scheme: The training scheme for
our collaborative learning based spectrum sensing consists of
two alternative stages: local training and parameter averaging.

Local training: At SU-j, the parameters of the local multi-
task DNN, denoted by Wj , are optimized through stochastic
gradient decent (SGD) with its locally available data. Here,
these local model parameters Wj are updated by minimizing
the binary cross-entropy loss function in a batch form as
(5). Such a local training process can be conducted over
multiple sub-networks simultaneously, thanks to the separable
nature of these multi-task sub-networks, which is enabled
by the proposed reconfiguration scheme via decoupling the
original dense DNN structure. Further, compared with the
training process for an occupancy-status classifier [18], [19],
our training solution is actually optimized over a smaller
searching space whose dimension is reduced by 2N

j
f−N j

f .
Parameter averaging: After the above local training at

SUs is completed, the learned knowledge in terms of the
updated local model parameters Wj needs to be generalized
through parameter averaging and then shared among SUs in
collaborative learning. Considering the heterogeneous property
between SUs due to their different partial observations of the
entire wideband spectrum pool, the parameter averaging of
{Wj}, j = 1, . . . , J should be conducted in a hierarchical
way.

Since the shallow layers are common for all bands at all
SUs, their parameter averaging is conducted as

W̄ =
1

J

J∑
j=1

(W̄j), (7)

where W̄j is the local parameters of the shallow layers at
SU-j. For the deep layers, their parameter averaging is done
in a band-wise manner. For band-n, the deep layer parameter
averaging is operated as

W̃n =
1

|Jn|
∑
j∈Jn

W̃j
n, (8)

where Jn is the set including the indices of SUs which can
observe band-n, |Jn| is the cardinality of Jn, andWj

n denotes

Fig. 4. Band-specific model averaging for collaboration.

the deep layer parameters at SU-j for detecting band-n. The
collaborative training scheme is illustrated in Fig. 4, whose
pseudo-code implementation is listed in Algorithm 1.

Algorithm 1 Collaborative training of shallow and deep layers.
1: Initialize Wj , j = 1, . . . , J
2: for each round i = 1, 2, . . . , I do
3: for each SU-j, j = 1, . . . , J in parallel do
4: Wj ← Local training via SGD (i,Wj ,D)
5: end for
6: Parameter averaging:
7: Shallow-layer averaging via (7)
8: Deep-layer averaging via (8) for n = 1 . . . Nf
9: end for

Remark 1 (Reduced complexity): The total number of train-
able parameters of our decoupled multi-task DNN is greatly
reduced compared with that of the original dense DNN. This
benefits from the band-specific DNN structure reconfiguration
via sub-network decoupling and removing the unnecessary
links between the neurons belonging to different sub-networks.
This can then greatly save the computation, storage, and
communication loads consumed by individual SUs during the
collaborative learning process.
Remark 2 (Increased adaptability): While our DNN reconfig-
uration and collaborative training are proposed to enhance the
sensing performance and computation efficiency, the trained
multi-task model also has good adaptability to new testing
cases during its deployment in practice. The trained sub-
networks can be reassembled to form a new DNN model
without extra training. It is able to detect the spectrum occu-
pancy of new multi-band combinations which have never been
trained, when new SUs participate for new sensing tasks. This
merit results from the separable nature of these multi-task sub-
networks, which are well represented in our decoupling-based
reconfiguration and efficiently trained through our hierarchical
collaborative training.

V. SIMULATION RESULTS

In this section, we present the simulation results to evaluate
the performance of the proposed collaborative learning based
cooperative spectrum sensing 2, compared with the benchmark

2For implementation details, please refer to our online repository available
at https://github.com/FrancisZWS/PartialObservation.
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methods of standalone learning 3, federated learning 4, as
well as the traditional cooperative spectrum sensing based on
energy detection method.

A. Data generation

Considering the scarcity of wideband sensing datasets col-
lected by distributed SUs, we first explain how to generate the
synthetic wideband PSD data, which reflects the heterogeneity
caused by partial observations. For the inherent correlations
between different bands, we consider power leakage and
channel aggregation effects which widely exist in realistic
wideband environments.

In a wideband spectrum pool containing Nf bands, when
band-n with n ∈ {1, . . . , Nf} is occupied by a certain PU,
we generate the original single-band PU signal xn in (1) by
modulating a random message sequence through a predefined
modulation scheme used by the PU. This modulation scheme
results in a specific inner-band feature in terms of the unique
PSD waveform which is different to other modulation types.

To depict the power leakage issue between contiguous
bands, we calculate the PSD of xn in the form of an overflown
s′n ∈ R3Nw which includes PSD of its side lobes leaking to
its adjacent bands:

s′n = [s′n,L, s
′
n,M, s

′
n,R], (9)

where s′n,M ∈ RNw is the PSD main lobe on band-n, and
s′n,L ∈ RNw and s′n,R ∈ RNw denote the left and right PSD
sidelobes of xn leaked to band-(n − 1) and band-(n + 1),
respectively. Then, the band-wise PSD sn collected by SU-j
under the impact of potential power leakage from band-(n−1)
and band-(n+ 1) can be generated as:

sjn =yn|hjn|2s′n,M + yn−1|hjn−1|2s′n−1,R
+ yn+1|hjn+1|2s′n+1,L + wn,

(10)

where wn ∈ RNw represents the AWGN noise over this
band, yn and hjn as defined in (1) indicate the ground truth
occupancy condition and channel gain on band-n, respectively.
The wideband PSD matrix Sj for the input of DNN on SU-
j can be generated by repeating (10) over n = 1, . . . , Nf
and then stacking {sjn}

Nf
n=1 according to (3). In this way, the

band-wise PSD sjn is also affected by the occupancy of its
contiguous bands and their sidelobes’ waveforms. According
to our discussion about partial observation in section IV-B,
when the PU on band-n is far away from SU-j, the channel
gain hjn become small correspondingly. When this band is
occupied, the single-band PSD sjn we generated for SU-j has:

yn|hjn|2s′n,M � sjn (11)

Consequently, the occupancy of band-n cannot be learned
from our sjn because: sjn|yn=1 ≈ sjn|yn=0. In this way, the
partial observation issue is reflected in our synthetic dataset.

Considering the factor of channel aggregation by the same
PU over multiple bands, the occupancy conditions of certain

3For standalone learning, each SU trains its own local model and only
collaborates with other SUs in detection decision fusion.

4In federated learning, all SUs work on a homogeneous densely-connected
CNN.

non-contiguous bands are strongly correlated. To reflect such
spectrum dependencies, let Bn contain indices of bands aggre-
gated with band-n. When ∀n′ ∈ Bn 6= φ, we have yn = yn′ .
In this way, band-n shares the same spectrum occupancy
condition as band-n′, when n′ ∈ Bn. For a certain SU, the
partial observation to the spectrum pool can be generalized to
the partial observation to different PUs.

B. Experimental settings and results

1) Simulation settings: In our simulation, a multi-band CR
system monitors Nf = 20 spectrum bands where Nw = 64
frequency points are sampled for the PSD measurement of
individual bands. Thus, the data dimensionality of one input
PSD sample Sj to SU-j becomes (64× 20). The CR system
contains 10 SUs and 10 PUs whose locations are shown
in Fig. 5. Each PU is assigned to use one or several non-
contiguous aggregated bands, which are specified in Table I.
For wireless channels, we simulate the impact of path-loss
with α = 3.71, β = 10−3.154, and the log-normal shadow
fading as a Gaussian-distributed random variable with mean
zero and standard deviation σψjn = 3.65dB. The reference
distance is set as d0 = 1m. Due to the partial observation
issue, the input PSD samples collected by a certain SU can
only reflect the occupancy of spectrum bands utilized by its
adjacent 3 PUs, which are specified in Table II. The sensing
performances of different methods are evaluated under a range
of signal-to-noise ratios (SNRs) between [−16,−2] dB.

Fig. 5. Locations of PUs and SUs in the CR system.

TABLE I
BAND UTILIZATION OF PUS

PU index Assigned bands Modulation scheme
0 0 BPSK
1 1, 10 MSK
2 2, 11, 14 2FSK
3 3 16PSK
4 4, 19 4FSK
5 5, 13 16QAM
6 6, 15, 17 BPSK
7 7, 12, 18 MSK
8 8, 16 2FSK
9 9 16PSK

2) Training and testing: We let the 10 distributed SUs
to conduct training for multi-band spectrum sensing given
partial observations on their local data. The final decision on
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TABLE II
OBSERVABLE BANDS OF SUS

SU index Observable PU Observable bands
0 0, 3, 4 0, 3, 4, 19
1 0, 1, 4 0, 1, 4, 10, 19
2 1, 4, 5 1, 4, 5, 10, 13, 19
3 1, 2, 5 1, 2, 5, 10, 11, 13, 14
4 2, 5, 6 2, 5, 6, 11, 13, 14, 15, 17
5 3, 4, 7 3, 4, 7, 12, 18, 19
6 4, 7, 8 4, 7, 8, 12, 16, 18, 19
7 4, 5, 8 4, 5, 8, 13, 16, 19
8 5, 8, 9 5, 8, 9, 13, 16
9 5, 6, 9 5, 6, 9, 13, 15, 17

the occupancy of each specific band is obtained by doing a
majority vote decision fusion among all SUs who can observe
that band. Our collaborative learning method is compared with
standalone learning and federated learning in five different
cases with limited training data. For Case 1, we generate
20 local training samples on individual SUs for each of the
total 2NPU = 1024 occupancy patterns. Based on Case 1, we
further evaluate the performance and generalization capability
of our proposed model and method in another four different
scenarios by modifying the data generation in training and
testing stages. For Case 2, there are only 10 samples per
occupancy pattern on individual SUs, which aggravates the
insufficiency of training data. For Case 3, we test our proposed
method across different channel conditions by changing the
path-loss exponent of (1) from α = 3.71 in training to α = 5.0
in testing. For Case 4, we evaluate the capability of different
methods in dynamic spectrum access scenarios, where PUs
may change their modulation types from training to testing
stages. Specifically, we randomly select the modulation type
for all active PUs when generating input samples for training
and testing. For Case 5, we testify the generalization power
across different partial observation conditions by changing
SU locations, which exposes SUs with different observable
bands in training and testing. Different learning-based spec-
trum sensing methods are conducted with the same training
scheduling scheme. The stochastic gradient descent is chosen
as the optimizer and the training batch sizes are fixed to 50.
The initial learning rates are equally set to 0.05 and it will
be reduced by multiplying 0.2 every 20 training epochs. For
our collaborative learning method and federated learning, the
model averaging operations are conducted under the same
frequency, which is once per training epoch.

3) Our multi-task DNN: The multi-task DNN model on
each SU contains 4 convolutional layers followed by 1 fully
connected output layer. The first convolutional layer is re-
garded as the shared shallow layer and it has 40 convolutional
filters (i.e., neurons). The following 3 convolutional layers
are decoupled along the band-specific data flow, where 8
convolutional filters are allocated on each layer of one sub-
network. Finally, the output layer is also band-wise decoupled
so that each neuron accepts activation only from the last
convolutional layer of its sub-network to generate a sigmoid
output. Other configuration details for the DNN on SU-j’s
are specified in Table III. The local detection outcome of

each band is calculated by comparing the sigmoid output of
the matching sub-network with a pre-defined threshold, (e.g.,
equal to 0.5). Our collaborative sensing method as well as
other spectrum sensing methods involved in the simulation is
implemented with PyTorch 2.0.1.

4) Benchmark DNNs: To the best of our knowledge, there
is no existing work on learning-based wideband coopera-
tive spectrum sensing among distributed narrowband SUs,
given the challenges of heterogeneous learning tasks at par-
tial observers with their non-IID data. Thus, we simulate
the following methods as the benchmarks for our proposed
solution. Energy detection followed by band-wise majority-
vote decision fusion is tested as the conventional model-
based spectrum sensing method [21]. To compare our solution
with the off-the-shelf learning-based techniques that can be
reasonably used under partial observations, we apply the
standalone learning [33] and federated learning [25] for multi-
band spectrum sensing. In this standalone learning method,
each SU trains a heterogeneous densely connected CNN to
detect its locally observable bands with its own dataset. To
make a fair comparison, we let the dense standalone CNN on
certain SU have the same number of neurons per layer as in our
reconfigured multi-task DNN, but the latter has much fewer
links between the neurons in the deep layers than the former
after DNN reconfiguration and decoupling. In the federated
learning method, each SU trains a homogeneous dense CNN
that is the 20-band version of the standalone CNN, i.e., it has
160 neurons for the 2nd, 3rd, and 4th convolutional layers. In
this method, all DNNs use y, which stores the occupancy of
all bands, as the training label while the same majority-vote
decision fusion strategy is applied in the testing phase to detect
each band.

TABLE III
MULTI-TASK DNN ARCHITECTURE FOR SU-j

Layers In ch Out ch Kernel Groups
Conv1(Relu)
BatchNorm 1 40 (3× 3) 1

Conv2(Relu)
BatchNorm 40 8 (3× 3) Nj

f

Maxpool1 (4× 1)
Conv3(Relu)
BatchNorm 8 8 (3× 3) Nj

f

Conv4(Relu)
BatchNorm 8 8 (3× 3) Nj

f

AvgPool (4× 5)
FC(Relu)
Sigmoid 32 1 Nj

f

In ch: the input channel number (per sub-network);
Out ch: the output channel number (per sub-network);
Groups: the number of sub-networks;
Strides and paddings of convolutional filters are set to 1

5) Complexity evaluation: we compare the complexity of
our method with that of standalone learning and federated
learning in terms of model parameter size and computation
cost. For the former, we compare the total number of trainable
parameters of the DNNs on 10 SUs. For the latter, the entire
Multiply-Accumulate Operations (MACs) of 10 SUs each pro-
cessing one partially-observed input PSD sample is calculated
as their computation costs. According to Table IV, the model
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size of our collaborative learning method is only 5% of the
federated learning method with homogeneous local models,
while our computation cost is only 14% of it. Compared
with the standalone learning method, our parameter volume
is 40% of it while our computation cost is 77% of it. In
this sense, our proposed method can significantly reduce the
storage consumption and computation load on SUs devices.

TABLE IV
PARAMETER SIZES AND COMPUTATION COSTS

Complexity
Method Our method Standalone FL

Parameter size 253020 622428 5331400
MACs 245M 317M 1676M

C. Performance evaluation

In this part, we conduct simulations in different cases to
compare our method with the benchmarks. First, we evaluate
their training convergence under certain SNRs, then we plot
the receiver operating characteristic (ROC) of different meth-
ods. We also compare their probability of detection (PD) under
a fixed probability of false alarm (PFA) of 5% over all bands.

1) Case 1 Sufficient training data: As shown in Fig. 6, our
proposed method converges to the highest sensing accuracy
under SNRs of −4dB, −10dB, and −16dB. Compared with
federated learning, our method achieves a higher convergence
speed. This is because our model-decoupling operation can
effectively separate the DNN parameters trained to detect
different bands and coordinate model averaging accordingly.
Due to the over-fitting issue caused by limited training data
volumes, the final accuracy of each learning-based sensing
method is lower than its highest accuracy in the training
process. For the three SNR values in Fig. 6, the largest
gap between our highest sensing accuracy and final sensing
accuracy is only 1.0%, while for the standalone method
and the federated learning method they are 5.0% and 5.4%,
respectively. This means that our method is more resistant to
the performance reduction caused by the over-fitting issue.
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Fig. 6. Training convergence of learning-based methods in Case 1.

We also run the ROC curve of the best models of different
methods under these SNRs. As shown in Fig. 7, our proposed
collaborative learning method achieves the best ROC perfor-
mance under all SNRs. Thanks to the power of deep learning,
our method and the standalone learning method outperform the

energy detection method which is denoted as ED in the plot.
In comparison, the learning capability of federated learning is
inconsistent, especially under SNR = −4dB when its ROC
is the worst among these methods. Further, We compare the
PD of different methods under a range of SNRs between
[−16, 2]dB. As plotted in Fig. 8, our method achieves the
best performance under all SNRs. The standalone learning
method outperforms the energy detection method while the
federated learning method achieves the worst performance
under high SNRs. That is because the homogeneous DNN
structure and the trivial model averaging scheme of federated
learning are unsuitable for collaborative learning of SUs which
detect heterogeneous bands due to partial observation.
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Fig. 7. The ROC of different methods in Case 1.
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Fig. 8. The PD of different models given PFA = 5% in Case 1 with sufficient
training data.

2) Case 2 Small training data: We evaluated the perfor-
mance of these methods in Case 2 where the smaller training
datasets aggravate the over-fitting issue. As shown in Fig. 9,
our proposed method still achieves the best sensing accuracy
among these methods during the training process. Meanwhile,
we also achieve the highest convergence speed in this case.
With the smaller training data volume in this case, the highest
accuracy of the federated learning method under each SNR
is apparently lower than those in Case 1. This indicates that
the federated learning method with homogeneous local DNNs
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is more vulnerable to the over-fitting issue caused by data
insufficiency.
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Fig. 9. Training convergence of learning-based methods in Case 2.

We also run the ROC curve of different methods under
the same selected SNRs, which is shown in Fig. 10. While
the ROC performances of the standalone learning and the
federated learning methods degrade significantly due to the
reduced training data volume in this case, the ROC of our
method is still the best, which remains nearly unchanged as
in Case 1. We also run the PD of these methods under the
same range of SNRs covered in Case 1. As shown in Fig. 11,
our method still achieves the highest PD under all SNRs.
Due to the smaller training dataset, the standalone learning
method works worse than energy detection under high SNRs
in [−8,−2]dB. The performance of federated learning is also
degraded that it works worse than energy detection under most
SNRs. By comparison, our collaborative learning method is
the only learning-based method that consistently outperforms
energy detection under all SNRs in this case.
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Fig. 10. The ROC of different methods in Case 2.

3) Case 3 Varying channel condition: We evaluate these
methods by comparing their performances on the testing data
with α = 5.0 after their models are trained with α = 3.71. As
shown in the simulation results in Fig. 12, for a given PFA,
the PD of our proposed method is apparently higher than the
benchmarks. This demonstrates that the proposed method can
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Fig. 11. The PD of different models given PFA = 5% with small-volume
training data.
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Fig. 12. PD of different models given PFA = 5% with different channel
conditions (α = 3.71 in training and then α = 5 in testing).

generalize across different path-loss conditions and achieve
better sensing accuracy than the baselines.

4) Case 4 Dynamic modulation type: The training data in
this case is applicable for a wide range of scenarios where the
exact modulation types used by PUs are varying and unknown.
As shown in Fig. 13, the proposed method always outper-
forms the standalone learning and federated learning. This is
because our proposed model and method can take advantage of
band-specific collaborative learning, via hierarchical parameter
sharing between heterogeneous models at distributed SUs,
under partial observations. Our proposed method retains the
capability of collaborative deep learning by enabling band-
specific parameter sharing between heterogeneous models to
overcome the partial observation issue.

5) Case 5 Varying partial observation condition: We eval-
uate the generalization power of our method to varying
partial observation conditions from training to testing. For
our method, when SU location changes after the model is
trained, we can reconfigure the DNN on SU to match the
observable bands in testing as discussed in Remark 2. As
shown in Fig. 14, our method still works better than other
benchmark methods in this case. Comparing with Fig. 8 where
the partial observation condition in testing aligns with that
in training, our method remains its performance in PD. This
means that the knowledge learned under the historical partial
observation condition is successfully generalized to detect the
new observable bands at SUs. In contrast, the standalone
learning method fails to work, as it suffers from the model
mismatch issue seriously.

We also run the ROC curves of different methods in
Cases 3, 4, and 5, when SNR=−8dB, in Fig. 15. The ROC
performances of the standalone learning and the federated
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Fig. 13. PD of different models given PFA = 5% when PUs randomly use
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learning methods degrade significantly in Case 4 and Case 5,
which are even worse than the conventional energy detection
method. This means that the local CNNs that focus on static
observable bands in the training of the standalone learning
are ineffective in generalizing across dynamic modulation
types or changing partial observation conditions. The federated
learning method, on the other hand, suffers from parameter
mismatch problems, when the homogeneous CNNs trained
corresponding to heterogeneous observable bands are averaged
for partial observers. The ROC of our method significantly
outperforms all the baselines, while only showing very tiny
variations across Cases 3, 4, and 5. This means that our method
is not only effective for dynamic spectrum environments but
also highly transferable to generalize across channel conditions
and partial observation conditions different from those in the
training stage.

6) Runtime evaluation: we compare the execution time of
our method with that of the federated learning, by running their
training process on our desktop computer with an Intel Core
i9-12900KF CPU, an Nvidia RTX3090 GPU, and 128GB-
RAM. Specifically, we record their wall-clock runtime taken
to train their corresponding models in one iteration, i.e., calcu-
lating the gradient with a single mini-batch of data, and then
plot the trend of their runtime versus varying batch sizes. The
model adopted for federated learning is a densely-connected
CNN with Nf = 20 sigmoid outputs, whose specifications
have been provided in Section V.B.4). For our decoupled
CNN models, we test their runtime with three different model
configurations. In Configuration-1, all 20 sub-networks of our
model are activated to detect all 20 bands. In Configuration-2
or Configuration-3, only 8 or 4 sub-networks of our model
are activated to detect 8 or 4 bands, corresponding to the
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Fig. 15. The ROC of different models in Cases 3, 4, and 5, when SNR
=− 8dB.

partial observation scenarios such as SU-4 or SU-0 specified
in Table II, respectively. As shown in Fig. 16, our decoupled
DNN always runs faster than the densely-connected CNN,
even when all 20 sub-networks are activated as in the FL
benchmark, thanks to the band-wise decoupling architecture.
Moreover, as the number of observable bands decreases, the
runtime can be further reduced at the cost of reduced sensing
capability per SU.
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Fig. 16. Runtime of different models per batch for varying batch size.

In summary, all these results demonstrate that our collabora-
tive learning method is suitable for wideband sensing scenarios
under partial observations and data insufficiency. Considering
the relatively low model complexity and computation costs,
our method achieves a desired trade-off between wideband
sensing performance and model training complexity. As a
result, our method not only improves model efficiency through
DNN reconfiguration but also enhances learning capability
under small data, through collaborative training of shared tasks
between heterogeneous models on different SUs.

VI. CONCLUSIONS

This paper develops a novel collaborative learning frame-
work with distributed partial observers to conduct wideband
cooperative spectrum sensing. Capitalizing on the hierarchical
neuron sensitivity of deep neural networks to band-specific
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features, our proposed technique decouples the original large
deep neural network into smaller heterogeneous sub-networks,
which are collaboratively trained at distributed secondary users
detecting the overlapping bands. The simulation results verify
that our method achieves higher learning accuracy and com-
putation efficiency with faster convergence speed and presents
better robustness to noise effect than the existing benchmarks.
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