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Abstract—This paper presents a new reinforcement learning
approach to the design and optimization of irregular reconfig-
urable intelligent surface (IRIS) for downlink communications in
6G multiuser wireless systems. Under the total power constraint
of the IRIS device, we formulate a sum rate maximization
problem that jointly optimizes the elements selection, the phase
shift and the precoding design. For this challenging problem,
we develop a deep reinforcement learning technique that can
approach the optimal solution at affordable complexity. Physical
constraints of the design parameters are properly incorporated
into the developed DRL approach. Simulation results show that
our proposed algorithm is able to learn from its environment and
gradually improve its performance, and also converge to better
performance compared to the state-of-the-art benchmarks when
implemented in large-scale antenna systems.

Index Terms—Reinforcement learning, irregular reconfigurable
intelligent surfaces, element selection, joint optimization.

I. INTRODUCTION

With recent developments in programmable meta-materials,
low-cost reconfigurable intelligent surfaces (RIS) have been
widely considered for adoption in wireless systems to enhance
system capacity and throughput [1]. An RIS is typically a
uniform array that consists of a large number of reflecting
elements with high-resolution phase shifters [2], and it serves as
a relay in a fully passive mode. However, power consumption
in adjusting the phases of all elements is non-negligible [3],
which limits the size of practical RIS devices.

To collect the diversity benefits of large-size RIS while
saving the power consumption, the concept of irregular RIS
(IRIS) was introduced [4], which only selects a limited number
of RIS elements from a large-size regular RIS structure to
maximize system capacity. Joint optimization of the antenna
selection and reflection beamforming design for IRIS was
formulated and implemented in [4], [5]. IRIS significantly
enhances the sum rate by activating elements distributed over
an enlarged surface, in contrast with conventional RIS structure
by packing the same number of active antennas. This line of
work is optimization-based, given known channel conditions.
As a result, IRIS parameters need to be re-designed whenever
the channel changes, which does not adapt to dynamic environ-
ments and not meet the real-time implementation needs given
high computational costs.

This work was supported in part by the National Science Foundation grants
#2128596, #2231209 and #2413622.

Artificial intelligent (AI) has been introduced in wireless
communications [6]-[8], such as beamformer designs and
channel estimation for large-scale MIMO systems using su-
pervised deep learning (DL) [9], [10], and wideband spectrum
sensing via attention-based and distributed DL [11], [12]. These
DL approaches significantly reduce the complexity and com-
putation time during online prediction, after offline training.
However, this requires large labeled training dataset. To over-
come this issue, deep reinforcement learning (DRL) provides
an alternative paradigm of training deep neural network on
an agent. DRL allows this agent to take actions and observe
the environment so as to maximize a cumulative reward [13],
[14]. DRL-based solutions have been developed for RIS design
involving all elements. In [14], the signal-to-interference-plus-
noise ratio (SINR) is maximized by jointly designing the beam-
forming, power control and interference coordination using
DRL. An RIS-aided MISO NOMA system is developed in [15],
where the DRL agent selects phase shift of the RIS element to
maximize the sum rate. In quest to maximize energy efficiency,
DRL is adopted to jointly select the base station beamforming
vector and RIS configuration [16], [17]. In [18], a DRL-RIS
empowered multihop terahertz communication is proposed to
jointly select both BS beamforming vector and RIS phase shifts
for each of the multi-RIS involved. However, these prior works
involve all RIS elements during communications, which entails
high power consumption and limits practical use of large-scale
RIS.

There is few work that considers DRL for IRIS. Unlike
RIS, IRIS requires antenna element selection in its design,
leading to an integer programming problem. Therefore direct
extension of DRL-RIS methods is not applicable for IRIS. In
[19], IRIS antenna element problem is solved using DRL in a
separate-approach manner. A single DRL structure first selects
the RIS elements, and then a signal processing (SP) based
phase estimation algorithm is applied to further find the phases
of these selected elements. Because an SP module is blended
into the data-driven DRL model, the DRL training has to be
customized to involve a predefined threshold, and the training
converges only when the accumulated rewards over several
episodes exceed the threshold. Setting the reward threshold
low may prevent the DRL agent from fully exploring the
environment to reach the optimal solution. On the other hand,
setting it too high may prevent the DRL agent from converging.
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Hence determining an judicious threshold is challenging, and it
renders this algorithm impractical. This is an inherent drawback
of such a DRL structure with a hybrid SP module, which
prevents to fully leverage the strength and benefit of DRL. Also,
the SP-based phase shift estimation is a nonconvex optimization
problem without closed-form solution. It is usually solved via
greedy search or approximation, e.g. iterative majorization-
minimization (MM) methods [19], which is not only computa-
tionally involved but also subject to suboptimal performance.
Therefore, it is still a challenging problem to design efficient
antenna selection schemes for IRIS to achieve high sum rate
in real time, as the focus of this work.

This paper investigates IRIS element selection to maximize
the sum rate for a typical IRIS-aided communication system
utilizing DRL. Assuming full channel state information (CSI),
we focus on solving the non-convex mixed integer program-
ming problem. We propose an IRIS optimization scheme based
on deep deterministic policy gradient (IRIS-DDPG) to jointly
optimize the transmit beamforming, the IRIS element selection
and the phase shift. Our contributions are summarized below:

o In IRIS-DDPG, we define the reward function via the sum
rate of multiple users, and design the DDPG procedure to
find the optimal actions: transmit beamforming, element
selection and phase shift policy in a given wireless envi-
ronment. In lieu of exhaustive search, the computational
bottleneck of integer programming for element selection
is resolved by properly designing the deep neural network
(DNN)-based action network using differentiable activa-
tion functions in the output neurons for antenna section.

« While traditional DRL applies to unconstrained optimiza-
tion problems, we design the DDPG structure for DRL to
tailor for the physical constraints of IRIS systems, given
a total power budget. To the best of our knowledge, this
is the first work to introduce a fully learning-based DRL
framework to IRIS optimization, without invoking ad hoc
design components such as thresholding. Such a learning-
based IRIS systems can interact with the complex wireless
environment and improve the performance by constantly
adjusting the DDPG model parameters.

o Numerical results demonstrate that the proposed IRIS-
DDPG is able to achieve the desired sum rate performance
which comes closer to the optimal results by exhaustive
search. Compared with existing algorithms with polyno-
mial complexity, IRIS-DDPG offers better performance
at lower computational complexity. Such advantages are
particularly attractive for real-time operations of large-
scale IRIS systems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a downlink RIS-aided communication system
where a BS equipped with M antennas communicates to K
single-antenna users. An N-element RIS plays as a relay in
Fig. 1, where only N, elements are activated during communi-
cations to save power. The BS transmitter employs a precoding

B Active element

Irregular RIS

Inactive element

0

User 1

User k

R “

Base Station User K

Fig. 1: A wireless communication system aided by IRIS.

vector for each user and superposes the precoded symbols from
all K users to form the transmitted signal:

x=W:s, (1

where W = [wy, Wy W] is the precoding matrix and
wi € CM*! denotes the precoding vector for user k, and
s = [s1,80, - sk]T € CEX! denotes the transmitted symbol
vector for K users satisfying E[ssf] = Ix. The signal is
transmitted to each user k through two channel paths: one direct
path between the BS and user k£ and the other reflected channel
from BS to IRIS and from IRIS to user k. To reflect antenna
selection, we introduce a selection matrix Z = diag(z), where
z = [z1,--+,2n]|7 is a binary-valued indicator vector repre-
senting the activation state of the N RIS reflecting elements,
that is, z, = 1 if the n-th element is selected, and z,, = 0
otherwise, n =1,..., N.
The reflection coefficient matrix for IRIS N elements has

© = diag ([e/?", €%, .- IV]), )

where Vn = 1---N, and 6, € [0,27] represent con-
tinuous phase shift of the n-th RIS element in the IRIS.
We define G € CN*M a5 the BS-RIS channel. We
let H? ¢ [h.1,h - h. k] € CKEXN and HY ¢
lha1,ha2 - hgg]? € CEXM where hl; and h}, repre-
sents the channel between the RIS and user k and direct channel
from BS to user k respectively. The received signal y € CK*1
for all K users can be expressed as

y = (HYZOG + H )x + u, 3)

where x € CM*1 is the transmitted signal at the BS in (1),
u € CE*! denotes the additive white Gaussian noise (AWGN)
with zero mean and variance o2, Based on the signal model in
Fig. 1, the SINR of user & is given by

h?, ZeG+hf,)w|?
SINR;, = K|( I’; dﬁ) d k=1,... K. (4)
> izl (0, ZOG+hy ) w;[>+02
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A. Problem Formulation

In this paper, our aim is to maximize the sum rate of
all users by jointly optimizing the element selection Z, the
corresponding phases ©® and the precoding matrix W of the
IRIS-aided system. The transmit power at the BS is given by
P, = Zszl |wp |3, which follows the allowable power budget,
that is, it cannot be larger than the maximum transmit power
Ppax. We then formulate the sum rate maximization problem

(P1) : max R, = S logy(1 4 SINRy),  (5)
st., (C1) : P, < Poax, (6)
(C2): 6, €[0,2n], Yn=1,2--- N, 7
(C3): 2z, €{1,0}, Yn=1,2,---,N, (8)
(C4): 17z = N,. )

Here (C1) depicts the transmission power constraint, (C2)
reflects the continuous-valued phase-shift range, and (C3) and
(C4) denote the antenna topology constraints that there are
N, ones (i.e., activated elements) and N — N, zeros (i.e.,
deactivated elements) in the topology matrix Z.

The problem (P1) is a mixed integer programming problem
due to the binary-valued vector z. Finding the optimal solution
entails exhaustive search over all 2V possible values for z,
which is inefficient especially for large-scale cases with large
N. In this paper, we opt to solving this challenging optimiza-
tion problem by reformulating it through DRL method to obtain
computationally feasible solutions to Z, W, ©.

III. DEEP REINFORCEMENT LEARNING EMPOWERED IRIS

This section starts from the DRL and DDPG techniques,
which are the foundation and the enabling methods to our IRIS
algorithm.

A. Fundamentals of DRL

RL is a learning framework where an agent gradually
makes the best decision by interacting with the environment
— performing actions in the environment, observing the instant
rewards and the transitions of the state in the environment.

State: Let S denote the set of all possible states describing
the environment. The state s(*) € S is the observation at time t.

Action: We use A to represent the set of actions. Action is
a set of options that an agent takes to transition between states
of the environment. At time ¢, once the agent performs action
a® € A following a policy m, the current state s*) transits to
next state s(**1) and the agent gets rewards 7(*).

State transition probability: Transitioning between states is
usually random and the environment is the source of random-
ness. The transition probability from state s to s after taking
action a is P2, = Pr(s(*) = ¢/|s() = 5.0 = q).

Reward: A value rewarded to the agent after an action is
taken. At a given time ¢, reward r® shows how good action
a® is given state s(*).

Experience buffer: Over episodes of the agent’s interaction
with the environment, its experience is stored in a buffer as a
collection of the quadruplets (s, a(®), () s(+1)) ¢, which
are used for training.

The agent aims an optimal policy to maximize the cumula-
tive reward given by

R(t) _ 2:0:0 ,}/7'74(t-|-7'-"-1)7 (10)

where v € [0,1] is the discount rate. To this end, Q-learning,
a model-free RL algorithm, can be used to find the optimal
action-selection policy [20]. To assess an action under the
current state, the @) function defines the expected reward as

an

For a huge state-action space, a function approximator is used
to obtain optimal Q*(s®,a®).

Qﬂ(s(t)7a(t)) - EW[R(t)|S(t) =s,a¥ = al.

B. Deep Deterministic Policy Gradients - DDPG

For continuous action space, DDPG as an actor-critic
DRL [21], is adopted in this work due to its ability to stabilize
the learning process and provides a more efficient approach for
learning in complex environments. DDPG has both actor and
critic architectures [13]. The actor network learns the optimal
policy to choose actions, while the critic network evaluates the
state-action pairs using @ function. Due to the huge state-action
space, DNN has been introduced to approximate both the )
function and the action. With DRL, the @ function is:

Q(s(t), a(t)) = Qo(s(t), a(t)), 12)
where 6 is the weight parameters of DNN and updated by

13)

where p is the learning rate for the update on 6 and Ay is the
gradient of the loss L(#) with respect to 6. The loss function
is the difference between the NN’s predicted value and the
actual target value. In RL, the actual target value is unknown.
To address this problem, DDPG introduces two NNs with
identical architectures. The training NN and the target NN with
value functions Q (™) |s(t) ¢(*)) and Q(H*ar9et)|s(t) (1))
respectively. The actual target value is estimated as

O+ 2 9 _ LAGL(G),

y = ,r,(t) + ’VH}ZE}XQ(Q(taTQEt)|S(t+1), a/). (14)
The loss function is given as
L(0) = (y = QO ™|s',al))?. (15)

In DDPG, the actor takes state as input and outputs an action,
which together with the state is fed as input to the critic. The
critic then calculates the Q value which is used to evaluate the
performance of the current action. The training critic network
(c, train) is updated by

g(t"rl) _ a(t)

c,train — Yc,train

- ﬂc,trainAL(G(t) )7

c,train

(16)
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LO0), i) = (1D +9G(00 )y et 841 ')
(01, i@, a2,

c,train

a7

where [i¢ 1rqin 1S the learning rate for the update on training
critic network. o’ is the action output from the target actor
network and AL(QE% «in) denotes the gradient with respect to
the training critic network Oc,train and target critic network
Oc,target- The training actor network (a, train) is updated as
G(H‘l) 9(75)

a,train ~ “a,train
—Ha, tT“a”LAq( c ta7‘get|8(t) (t))Aﬂ(at(lt?fraln| (t))’

where [i4 trqin denotes the learning rate for the training actor
network. Aﬂ(e(t) |s()) is the gradient of the training actor

a,train

(18)

network with respect to its parameters o) a,train - Lhe gradient of
the tar%et critic network with respect to the action is given by

N target\s(t) a®). The target network are updated after a
spec:1ﬁed time interval O by synchronizing it with the training
network, which is actively trained in each iteration.

19)
(20)

ac,target — Tcec,train + (]- - Tc)ac,targeta

ea,target — Taea,train + (1 - Ta)oa,targeta

where 7., 7, are the soft update rate of the target critic network
and the target actor network respectively. This soft update
ensures stability and convergence during training.

C. IRIS-DDPG

In this section, we discuss our proposed IRIS-DDPG algo-
rithm. The key steps are to properly define the state, actions and
rewards for the IRIS systems at hand, and design the double
DNNs that can effectively address that physical constraints
in our optimization formulation (P1). Note that the standard
DDPG is designed for unconstrained problems only.

State: In this work, we define s® to be the transmit power
and the received power of all users at the t*" time step as:

o= ({ra )

where PT(x)k is the transmit power for user k at time ¢ given by

2n

P(t),C = ||wk wi|* and P( )k is the received power for user &
at time ¢ given by Péx = |(h T,ykZ('-)G + hd,k)|2~
Action: We define the action to include the IRIS struture,
corresponding phases and the precoding design:
a® = {Z(t)7@(t)7w(t)}_ (22)
It is important to note that the action space of (22) should
be defined to obey constraints (6) — (9).
Reward: Given the instantaneous channels G, h, ., hg ;. VE
and the action W, Z(®) and ©® we compute the sum rate

R (5) as the reward. For the output of the critic networks, we
define the reward function as:

R, P =Tr(WWH) < P
’]’ fr
R,—C, P =Tr(WW) > P

where C is a large value to penalize any violation of the
power constraint, say C' = 100.

(23a)
(23b)

D. IRIS-DDPG DNN Architecture

The DNN structures of the actor and critic network are fully
connected DNNs, consisting of one input layer, one output
and 3 hidden layers as shown in Fig. 2. The input and output
dimension of the actor network is the cardinality of the state
and action respectively. Specifically, the numbers of tunable
elements in Z,®, W are N, N and M K, respectively, which
correspond to (2N + M K) total neurons at the output layer
of the action network. For the critic networks, the output layer
has one neuron to yield the Q value, which is based on the
reward function defined in (23) and the Q value function (11),
an indicator to evaluate the performance of current action.

A key step in our DRL design is to holistically confine
the agent within its constrained action space. Tailoring to the
specific constraints on design parameters of IRIS, we construct
the action and critic multi-layer neural networks as in Fig. 2.
First, to satisfy the power constraint (6) on W, we employ linear
activation functions for the M K output neurons corresponding
to W. Violation of (6) will be panelized in the reward function
(23). Then, the N RIS elements along the diagonal of Z are
chosen based on softmax algorithm. Specifically, we select the
highest N probabilities and the rest of N — N are the RIS
element not selected, to satisfy constraints (8) and (9). Lastly,
the corresponding N phases 6 of RIS element are chosen
according to sigmoid algorithm and then multiplied by 27 to
satisfy constraint (7).

L1 = State Dimension
L2 = Action Dimension

$s© =

(00" I I

Actor Network

T

L1+L2

2m(Sigmoid (0))

a® = Ww®, 20,91}

s® =

(bl e20)

Input

Dense Output

a® = w®,z®, e®)

II
[y

Critic Network

Fig. 2: The actor and critic networks in IRIS-DDPG.

The optimizer used for both the training critic network
and training actor network is Adam optimizer with adaptive
learning rate ugt) = /\Cu(t Y and ,u(t) )\a,u,(lt_l), where A,
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and )\, are the decaying rate for the training critic and training
actor network. The complete training process of proposed IRIS-
DDPG is summarized in Algorithm 1.

Algorithm 1 IRIS-DDPG Algorithm

Require: G,h, ;, hg;, Yk
Ensure: Action: W,Z, ®, Reward: R, Q-value function
1: Initialize the experience buffer B with size D, training
actor network parameter 0, trqin, target actor network
parameter 0 target = Oa,train, training critic network with
parameter 0 ;rqin, target critic network with parameter
Oc target = Uc train, transmit beamforming matrix W, RIS
element selection Z and phase shift matrix ©
for episode =0,1,---,N — 1 do
Collect G, h,., hy, Vk to obtain first state s()
fort=0,1,2---,T—1 do
Obtain output from output layer 6,
Compute Tr (WW?! ) = P, from section of layer
with linear activation

(train)
a

A

7: Choose highest N probabilities as selected ele-
ments in Z®) from section of layer with softmax activation

8: Choose respective phases @) from section of layer
with sigmoid activation and multiply by 27

9; Obtain action a® = W Z® @®

10: if P, < Pu.x then

11: Compute instant reward as (23a) with a®

12: else

13: Compute instant reward (23b) with a®

14: end if

15: Obtain new state s(**1) given action a(*)

16: Store in experience buffer (s(*), a(®) (1) s(t+1)

17: Update our network parameters by sampling ran-
dom batch size U from experience buffer

18: Calculate target value by (14)

19: Update the training critic network 6. trqin by (16)

20: Update the training actor network g trqin by (18)

21: Update target critic network 0. ;4rget after every O
steps by (19)

22 Update target actor network 0 ¢qrge: after every O
steps by (20)

23: end for

24: end for

IV. NUMERICAL RESULTS
A. Simulation settings and benchmarks

In the IRIS systems of interest, K single-antenna users are
served by a BS equipped with M antennas and an irregular RIS
equipped with N elements of which N, elements are selected.
The uncorrelated Rayleigh fading channel model is adopted.
The hyperparamters in our algorithm are described in table I.
We consider three state-of-the-art algorithms as benchmarks:
the ATS-NECE (NECE) algorithm [4], successive refinement
(SR) [22] and the optimal solution via exhaustive search.

Fig. 3 depicts the achieved sum rate performances of various
algorithms as a function of the total transmit power constraint,
for M =4, N=20, Ny=10 and K =4. It shows that IRIS-DDPG
outperforms the state-of-the-art and comes closest to that of
the optimal exhaustive search method. In general, the sum rate
increases with the transmit power.

TABLE I: Hyperparamter Descriptions

Simulation Parameters Value
Discounted rate y 0.95
Learning rate fic, fba, Tc, Ta 0.001
Decaying rate Ac, \g 10—°
Experience replay buffer size D 100000
Training episode N 100
Training steps 1" 10000
Mini-batch size U 16
Synchronization interval O 20
Noise power o2 -80dBm

Consider a large-scale system with M=4, N=100, N;=50,
and K=4. The large value of N makes it infeasible to simulate
the exhaustive search method, which is thus dropped from the
comparison. From Fig. 4, we observe that IRIS-DDPG method
outperforms the NECE and SR methods, which confirms the
effectiveness of IRIS-DDPG for large-scale RIS systems.

B. Computational Complexity

We analyze the complexity order of the proposed IRIS-
DDPG algorithm, along with that of other benchmarks.

In the exhaustive search method, ( ]J\y ) possible IRIS struc-
tures are searched. For each structure, we quantize to have up to
L phase shift combinations for each Ny active elements. Hence,
the complexity is on the order of O((y ) L™= K log N'#), which
is exceedingly high for large values of N and Nj.

The SR algorithm in [22] is an approximate search algo-
rithm that sequentially select the antenna elements one by
one in a greedy manner. The complexity is on the order of
O(eN(LN4)K log N3), 1 < e <10 [23].

NECE is a population-based optimization algorithm that also
resorts to an approximate search strategy. Its complexity order
turns out to be O(eN2K log N?), 1 < e <10 [23].

For complexity of IRIS-DDPG, L denotes the layers of the
model, Uy denotes the size of the input layer, U; represents the
size of the [-th layer. There are N,,; episodes and 1" steps per
episode. Then, the whole training computation is defined as

O (NepiT (Zle Ul_lUl)> . However, the size of the hidden

layers (Zle_zl Ul_lUl> are constant C. The size of the input
layer Uy is 2K and that of the output, Uy, is 2N+ M K. Hence
the complexity order turns out to be O(2K +2N + MK +C).
Once the actor and critic networks is trained, IRIS-DDPG can
be used to adapt to different channel environments directly,
without retraining. This is a huge computational advantage
over signal processing based approaches. By comparison, the
complexity order of IRIS-DDPG is linear in the RIS size N,
which has evident complexity advantages over benchmarks.
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Fig. 3: Sum rate versus transmit power for small scale system with
M=4, N=20, N,=10 and K=4.
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Fig. 4: Sum rate versus transmit power for large scale system with
M=4, N=100, N;=50 and K=4.

V. CONCLUSION

This work develops a new joint design of transmit beam-
forming, RIS element selection and phase shifts based on
the DRL technique. The proposed IRIS-DDPG method, by
virtue of its judicious design of the embedded double DNN
structures, efficiently overcomes the bottleneck of the mixed
integer programming problem imposed by antenna selection. In
addition, the DDPG structure is enhanced to accommodate the
total power constraint of the RIS systems. Simulation results
verify that the proposed IRIS-DDPG outperforms the start-of-
the-art methods in terms of both sum-rate performance and
computational complexity, making it attractive for high-data-
rate wireless systems with large-scale RIS.
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