
Processing-in-Memory Architecture with
Precision-Scaling for Malware Detection

Sreenitha Kasarapu∗, Sathwika Bavikadi∗, Sai Manoj Pudukotai Dinakarrao
Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, USA

{skasarap, sbavikad, spudukot}@gmu.edu

Abstract—The wide adaptations of embedded systems in mul-
tiple fields have led to smart connectivity across devices and
enhanced computation capabilities. Despite the vast applications
in different areas, embedded systems face huge security threats.
One of the critical security vulnerabilities is caused by mali-
cious software a.k.a malware. Successful malware detection by
employing Machine Learning (ML) is widely adopted in many
systems. One of the prominent challenges in implementing neural
network (NN) architectures is the requirement to have a large
number of computational resources. Furthermore, the frequent
movement of data between logic and memory units adds large
overheads. Conversely, the IoT and edge devices are often limited
in terms of the number of available resources. As a panacea, we
introduce a PIM-based architecture to address such concerns
and improve memory access latency. Such a paradigm further
enriches the malware detection latency by mitigating the data
transfer latency. To further improve the throughput and energy
consumption, we employ precision scaling for the PIM-based
malware detection in this work. We observe a malware detection
accuracy of 98% with the proposed technique. Our proposed PIM
architecture has 1.09× higher throughput than other traditional
PIM architectures. Furthermore, precision scaling and PIM
improve the energy efficiency by 1.5× compared to the full-
precision operation without any penalty in performance.

I. INTRODUCTION

With the technical developments in hardware architecture
and embedded systems, IoT devices and applications have
procured enormous interest in the past few decades [1]. These
IoT and edge computing devices connect to the internet over
a network for communicating between devices and with the
base station(s). As these devices handle vast amounts of user
data and are considered a soft target by cyber-attackers [2].
Among multiple cyber threats, malicious applications a.k.a
malware is considered a prominent threat [2] due to its
feasibility to propagate and ease of development. Malware is
malicious software developed to infect a system to exploit
and steal information such as passwords and financial data,
manipulating the stored data without the user’s consent. In
2021 alone, over 5.4 billion recorded malware attacks [3]. In
the first half of 2022, nearly 2.8 billion malware attacks were
recorded on IoT and edge devices.

Anti-virus software has been introduced to detect malware.
However, anti-virus software often involves large overheads
regarding resource usage and memory footprint. Static and
dynamic analysis [4] is employed in anti-virus software for
malware detection. Static analysis [4] is performed in a non-
runtime environment by examining malware binaries’ internal
structure and not by executing the binary executable files. In

§*Both authors contributed equally to this research

dynamic analysis, the binary applications are inspected for
malware traces by executing them in a harmless, isolated
environment [4]. Unlike static analysis, dynamic analysis is
a functionality test. The static analysis serves as quick testing
but is not efficient. However, efficient dynamic analysis is a
bulky and time-consuming process [5].

Malware detection using Machine Learning (ML) is seen
as an efficient technique [6]. Nataraj et al. [7] introduced a
technique for malware detection using image processing where
binary applications are converted into grayscale images and
classified using ML algorithms such as SVM. Among the
ML-based malware detection techniques, the Convolutional
Neural Network (CNN)-based image classification technique
[8] is more robust and efficient due to its prime ability to
learn image features. However, one of the main challenges
with adopting such a technique is the massive computations
involved. This challenge is exacerbated by the overheads
involved in moving the data between memory and logic blocks.
To alleviate these challenges, processing-in-memory (PIM) [9]
has been proposed as an alternative paradigm in recent years.
PIM architectures perform computations inside the memory,
alleviating data movement overheads.

In this study, we propose a novel approach for malware
detection to utilize the in-memory computing technique for the
Processing-in-memory (PIM) platform. PIM is a novel com-
puting paradigm in which the memory chip is enhanced with
computing capabilities. This essentially restricts the circulation
of the data within the memory chip and thereby drastically
minimizes the power consumption and latency caused by the
data movements. In addition, a PIM architecture takes advan-
tage of its proximity to the data to perform massively parallel
computing. Therefore, such a PIM paradigm is particularly
suitable for data-intensive applications like deep learning (DL)
and optimization problems.

Several recent studies have proven that PIM architectures
outperform GPU and CPU designs for training deep neural
networks (DNN) and combinatorial optimization problems in
terms of throughput and energy efficiency. While traditional
PIM architecture, such as bitline-wise architecture [10] and
analog crossbar array architecture [11], have been regarded
as better alternatives to conventional computing hardware for
executing the heavy computational load of DNN [9]. These ar-
chitectures suffer from the complexity and overhead of digital-
to-analog (DAC) and analog-to-digital (ADC) conversions.
Unlike the bitwise processing PIMs, the recently developed
Look-up-table (LUT) based PIMs are more flexible, with



superior energy efficiency for a similar level of performance,
such as LAcc [12], pPIM [13]. This feature makes the LUT-
based PIM architectures superior for DNN computations [13].

By considering the benefits of superior malware detection
performance by DNNs and hardware efficiency by LUT-based
PIMs, we propose a LUT-based hardware accelerator for
malware detection in this work. This is primarily targeted
toward the edge and resource-constrained devices. We further
employ precision scaling to decrease the power consumption
of malware detection.

The novel contributions of this work are outlined as follows:
• We introduce a malware detection approach that uti-

lizes a LUT-based Processing-in-Memory computational
paradigm.

• Precision scaling is introduced to achieve lower power
consumption for malware detection without trading off
the performance.

• We evaluate the malware detection on various CNN
architectures, including AlexNet, ResNet-18, -34, -50,
VGG-16, and MobileNet V2.

II. RELATED WORK
A. Malware Detection Techniques

Static analysis [4] on malware data is performed by com-
paring the opcode sequences of binary executable files, control
flow graphs, and code patterns. The main drawback of static
analysis is it is unable to detect malware when adversaries
add junk of unrelated functionalities, which decreases the
malware similarity score [14]. Malware detection using dy-
namic analysis is performed based on detecting system calls,
or HPC [4]. However, they are computationally expensive and
are inefficient in detecting hidden malware code blocks.

Later [7] introduced a technique for malware detection using
image processing where binary applications are converted
into grayscale images. The generated images have identical
patterns because of the executable file structural distributions.
The paper used the K-Nearest Neighbour ML algorithm to
classify malware images. Other approaches [6] include image
visualization and classification using ML algorithms such as
SVM. However, the involved latency is significant and the
achieved performance is limited. Neural networks such as deep
neural networks (DNNs) are used extensively to solve the
problem [15], as neurons can capture the features of the images
more accurately than other ML algorithms. But, the fully
connected layers of artificial neural networks tend to exhaust
computational resources. In [8], authors use convolutional
neural networks (CNNs) due to their ability to efficiently
handle image data through feature extraction by Convolutional
2D layers and using Maxpooling 2D layers to downsample
the input parameters. However, the involved computations and
depth of CNNs make it challenging to embed them on edge
and IoT devices.
B. Processing-in-Memory (PIM)

In recent years, PIM designs have received a lot of atten-
tion from DNN/CNN applications. The PIM architecture can
reduce data movement’s latency and energy costs. Moreover,
with the integration of memory and processing capability, the

PIM architecture can efficiently execute matrix-vector multi-
plication (MVM) operations, which are fundamental comput-
ing operations in various disciplines of research such as signal
processing, machine learning [12], [13], deep learning [16],
and stochastic computing, image processing, and recognition
[17], data mining [13], and cryptographic [18], [19].

Numerous works have been proposed on in-memory com-
puting hardware accelerators on different memory platforms
including the traditional memory platforms of Static and
Dynamic Random Access Memory (SRAM and DRAM) [20],
[12], [17], [21], non-volatile Resistive RAM (ReRAM) [22],
Phase-changing Memory (PCM), and Magnetic RAMs such
as Spin Transfer Torque MRAM (STT-MRAM), and Spin-
Orbit Torque MRAM (SOT-MRAM) technologies. It has been
found that a satisfactory level of accuracy can be retained even
despite performing various levels of quantization/down-scaling
of data parameters in CNN algorithms [16]. This opens up an
exploration space for high-performance and low-power CNN
implementations for real-time application domains such as IoT,
mobile, and edge applications. The PIM architecture is gaining
popularity in real-time application domains. To the best of
our knowledge, the PIM architecture has not been utilized for
malware detection.

III. PROBLEM FORMULATION

With technology advancements, attackers are introducing
complex malware families, making it impossible for low-
scale embedded systems to detect malware under constrained
resources. Even advanced anti-malware software fails to de-
tect these advanced malware families in real-time. One can
define the problem of reliable malware detection in low-scale
embedded devices as follows:

C(D) : X → Y

s.t. S =
mem∑
i=1

t∑
j=1

C[M−i · T−j ]
(1)

In Equation 1, C is a classifier model trained with dataset
D to perform malware detection. After training, the classifier
C will be able to classify any input sample X and map it
to either malware class M or benign class B. The output
class is represented as Y . As Equation 1 represents, malware
detection in real-time requires addressing the memory and
timing constraints, represented as M−i and T−j respectively.

This work utilizes the PIM architecture designed to support
the data-intensive malware detection framework. Utilizing
PIM-based processing and also employing precision scaling
on the input operands improves the resource consumption and
throughput of the ML model used for malware detection. In
bitwise logic-based architectures, which by nature employ bit-
wise parallel processing to accomplish operations with variable
bit-width, it becomes challenging to perform large-data (8-
bit/16-bit) operations. These architectures allow sacrifices of
accuracy but are useful for low-power applications. LUT-based
PIMs can prevent this by employing decomposition algorithms
instead of extensive adder chains and shifters to produce
products of operands. Therefore we use a novel LUT-based



Subarray

Subarray

Subarray

Cluster Cluster Cluster

Cluster Cluster Cluster

SA
 D

E
C

SA
 D

E
C

SA
 D

E
C

EXEEXE
EXE

EXE

EXE

G
lo

ba
l R

ow
 D

ec
od

er

Input
Samples

(a) DRAM Bank

Output
Classes

Benign

Malware

Memory

core core core

core core core

core core core

(b) Cluster

Router

MUX

F
un

ct
io

n 
w

or
d

A B

(c) LUT-Core Microarchitecture

Read port

Dense
Layers

Flattening
Layer

Output
Class

Maxpooling
Layer

Input
Images Convolutional

Layer

(d) Malware Classifier

Fig. 1. Hierarchical view of the architecture implementation of malware detection on the processing in-memory architecture

PIM [13] architecture in order to tackle the computational
loads of the CNN layer operations of large data (8-bit/ 16-
bit). These are inherently capable of offering CNN/ DNN
inference with higher data precision with better accuracy while
not sacrificing performance and efficiency.

IV. PROPOSED TECHNIQUE
A. Overview of the Proposed Technique

The overview of the proposed technique follows the flow
as shown in Figure 1. The input data samples are stored
in the DRAM memory bank as represented in Figure 1(a).
In-memory processing is employed using a DRAM cluster
to improve memory access time. The architecture of each
DRAM cluster is represented in 1(b). Each cluster’s LUT-core
is represented as 1(c). The binary input samples are processed
in the memory and converted into images. As this is done
using an in-memory processing technique, there was no need
for excessive data movement. Once the data is accessed from
memory, it is given as input to the malware classifier given in
1(d). The test data used for inference is precision scaled using
uniform quantization. The different elements in the proposed
technique are:

• PIM Unit: To overcome the memory and resource con-
straints in low-scale embedded systems for malware de-
tection, a novel PIM architecture is employed. In-memory
processing improves throughput and limits resource con-
sumption.

• Malware Classifier: Binary malware and benign samples
are fed to the Convolutional Neural Network to train a
malware classifier.

• Precision-scaling: While retaining the malware detection
accuracy, a low-precision data version is employed to de-
crease the power consumption to make the task applicable
to real-time detection.

B. Malware Detection Model
Computer vision-based machine learning (ML) techniques

need images for localized feature extraction. In this work,
the input data is stored in the memory. As the CNNs/DNNs
in the computer vision operate on the pixel information,
we employ the stored digital data of the applications for
processing, i.e., directly classifying the applications stored in
the memory. This alleviates the conversion complexity and
overheads as well. Each stored binary file value is represented

using an 8-bit vector format. Thus, each 8-bit vector represents
a value of the programming file or application in the machine-
readable format stored in the memory. These values are stored
and accessed in a row-column format, representing a tabular
input. This tabular input will be fed to the PIM-based CNN
for malware detection. However, one of the challenges in
comparison with the traditional computer vision applications
is that the size of the gray-scale image varies with the size of
the binary file.

To address this challenge, we perform table resizing and
scaling to make its size uniform. As the pattern or sub-pattern
of malware cannot alter despite embedding the malware to
launch a malicious payload, through this technique, the mal-
ware can be detected with a higher performance (around
98% accuracy). To minimize the computational latency and
resources, we employ uniform quantization. While retrieving
the binary data stored in DRAM memory banks, uniform
quantization is applied to quantize them from floating point
32-bit to integer types 16-bit, 8-bit, and 4-bit and feed to
the PIM-based CNNs. This drastically reduces the associated
computational overheads and the memory consumption.

In the proposed work, the training data consists of several
sequences for a variety of classes of malware (backdoor,
rootkit, trojan, virus, and worm) and benign applications stored
in the DRAM. The CNN model is trained (offline) using these
data samples for classification, as shown in Figure 1(d). The
inference is processed in real-time in low-scale embedded sys-
tems. The multiply-and-accumulate (MAC) operations in each
of the CNN layers are accommodated by PIM architecture by
programming the LUT cores inside the cluster, as shown in
Figure 1(c). The CNN classifier trained on input data is used
to classify the output class. The inference is performed during
runtime.

The classification accuracy a(·) can be defined as the
difference in probability of the predicted class P (Ypred) to
the real class P (Ytrue).

a(·)← P (Ytrue)− P (Ypred) (2)

The novel PIM-based architecture utilized for malware
detection is discussed in detail in IV-C.
C. The PIM Architecture

This work utilizes a PIM architecture designed to support
compute-intensive applications, including convolution neural



networks (CNNs) and DNNs. This PIM architecture is de-
picted hierarchically in Figure 1, including (a) the arrangement
of clusters within a DRAM bank, (b) the architecture of a
cluster, and (c) the architecture of the LUT core.

1) Core Architecture: At the center of the PIM architecture
is the proposed core, which facilitates programmable oper-
ations on two 4-bit inputs. A LUT-based design is adopted
for the PIM core instead of a pre-defined logic circuit to
provide functional programmability. The LUT-based PIM can
perform in-memory arithmetic operations such as addition,
multiplication, substitution, and comparison operations with a
significantly lower delay than bitwise computations. Therefore,
a collection of these operations can be used to implement
various ML algorithms.

Figure 1(c) shows a detailed view of the architecture of a
single LUT core. The LUT cores inside the cluster are formed
of an 8-bit 256:1 multiplexer, accompanied by eight 256-bit
latch arrays. The pre-calculated outputs of any particular 8-bit
operation are stored in the latches as eight 256-bit function
words. These latches can read new function words from the
bit lines of the DRAM subarrays. Each LUT can produce a 4-
bit data output for two input data operands with a size of 4-bit
width, as shown by A and B registers in Figure 1(c). These
registers together drive the select pins of the multiplexers and
make them ‘look up’ specific 8-bit data from the eight latches
that represent the operation’s output.

2) Cluster Architecture: To perform operations necessary
for CNN acceleration, such as convolution operations, the PIM
cluster integrates all the operations done by the LUT core.
Nine PIM cores are arranged as shown in Figure 1(b) and
placed inside the memory unit to form a PIM cluster and
perform in-memory computations. Inside the PIM cluster, the
PIM core performs various logic and arithmetic operations
associated with the CNN acceleration for malware detection.
To perform a specific operation, such as multiplication and
accumulation operations all the cores inside the cluster are
connected by a router. The router also makes it possible to
access data from any core at any moment throughout the
implementation to perform the operations.

3) Router Architecture: All nine LUT cores in a cluster
are connected via a router mechanism as shown in Figure
1(c), which enables direct and parallel communication be-
tween them. A router that connects the read/write ports on
all components of the cluster in order to facilitate parallel
communication among all the cores in the cluster. This enables
the router to access any data at any implementation point to
perform operations required for CNN acceleration for malware
detection.
D. Implementation on the PIM Architecture

Malware detection performs similar mathematical opera-
tions as the CNN/DNN classifier, which consists of convo-
lution layers, activation layers, max-pooling layers and fully-
connected layers. The PIM architecture can easily accommo-
date these operations by programming the LUT cores inside
the PIM cluster to perform these operations. For our baseline
design, we choose a single 8-bit operand or a pair of 4-bit

operands since it represents the majority of image & video
pixel data. At the center of the architecture, each core can
facilitate programmable operations on a pair of 4-bit inputs.
With the help of these cores and the routing mechanism, the
PIM architecture can perform any 8-bit mathematical opera-
tions required by the CNN/DNN layers. Since the clusters in
the PIM architecture can perform the required mathematical
operations for CNN, an array of these clusters can be utilized
to implement different layers of the CNN model. The LUT
cores in the PIM need to be re-programmed whenever there
is a need to perform a different operation than the prior
implemented operation. The key advantage of using LUTs in a
PIM architecture is that the LUT core in the PIM architecture
can be re-programmed and is faster compared to traditional
in-memory computations. As a result, the functional flexibility
required for implementing malware detection using CNNs is
provided.

In this work, we employ offline learning for ML detection,
thus the need for programming is minimal. The inference, i.e.,
classification of the malware (as described in Section IV-B),
is performed when a new application or programming file is
loaded into the memory. This facilitates real-time malware
detection.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

The proposed methodology is implemented on multi-
ple Jetson Nanos containing 128-core NVIDIA Maxwell
architecture-based GPUs. The PIM performance evaluations
are obtained through ICC-based simulations. We have obtained
malware applications from VirusTotal [23] with 12500 mal-
ware samples encompassing five malware classes: backdoor,
rootkit, Trojan, virus, and worm, and 13700 benign application
files. The files are stored in an 8-bit vector format and they
are accessed in a row-column format, representing a tabular
input. This tabular input is represented as a gray-scale image
and fed to the PIM-based CNN for malware detection. The
grayscale images are re-sized to 32 x 32 and split into 70%
training set and 30% test set. After training, we analyze the
models’ malware detection accuracy, energy efficiency, and
throughput. Further, the inference accuracy of these models
on precision scaling schemes such as 16-bit, 8-bit, and 4-
bit are evaluated. We also evaluated the performance using
different metrics(such as operational latency, power consump-
tion and active area) from HDL synthesis on Synopsys Design
Compiler using 28 nm standard cell library from TSMC. The
characteristics (delay, power consumption, and active area) of
the PIM cores and the PIM cluster that can perform a single
8-bit MAC operation are shown as 0.8 ns, 2.7 mW, 4196.64
µm2, 6.4 ns, 8.2-11 mW, 37769.81 µm2 respectively.

B. Evaluation of Malware Detection Accuracy on Various
Precision Schemes

The integer precision schemes such as 16-bit, 8-bit, and 4-
bit are applied to data given as input to various ML algorithms.
The effect of precision scaling on malware detection capability
is observed in various algorithms. The base accuracy of models
trained using 32-bit floating point data is compared to that



of 16-bit, 8-bit, and 4-bit data. As shown in Figure 2, the
performance of various CNN models on different data preci-
sions is compared. We can observe a considerable performance
decay with decreased precision for models such as AlexNet
and ResNet18. But other models such as ResNet34, ResNet50,
VGG-16, and MobileNetV2 retain the accuracy despite the low
precisions. We can observe a malware detection accuracy of
about 98% in models VGG-16 and MobileNetV2 for an 8-bit
precision scheme. And for 4-bit precision models ResNet34,
VGG-16, and MobileNetV2 have an accuracy of about 95%.
So even with precision scaling schemes, we can still retain
effective malware detection capability.

0

20

40

60

80

100

AlexNet ResNet18 ResNet34 ResNet50 VGG-16 MobileNetV2

32-bit 16-bit 8-bit 4-bit

A
c
c
u
r
a
c
y
(
%
)

Fig. 2. Performance Evaluation of AlexNet, ResNet18, ResNet34, ResNet50,
VGG16, and MobileNetV2 on the PIM accelerator with precision scaling (a)
32-bit floating point, (b) 16-bit integer type, (c) 8-bit integer type and (d)
4-bit integer type

Table I presents the comparison of the proposed technique
with the existing malware detection techniques. We compare
the performance of the proposed technique in terms of ac-
curacy, F1 score, and recall. All the models in table I focus
on malware detection based on malware and benign features.
Compared to the existing techniques the proposed PIM-based
malware detection achieves high throughput without perfor-
mance decay. It maintains a malware detection accuracy of
98%. It is also evident that the proposed technique achieves
efficient malware detection accuracy even in low-precision
settings.

TABLE I
COMPARISON WITH EXISTING HPC-BASED DETECTION TECHNIQUES

Model Accuracy F1-score Recall
(%)

OneR [24] 0.81 0.81 0.82
JRIP [24] 0.83 0.83 0.84
PART [24] 0.81 0.815 0.831

J48 [24] 0.82 0.82 0.82
Adaptive-HMD [25] 0.853 0.853 0.858

SVM [26] 0.739 0.736 0.772
RF [26] 0.835 0.834 0.822
NN [26] 0.811 0.811 0.816

SMO [27] 0.932 0.933 0.931
Proposed 0.987 0.987 0.982

C. Performance Evaluation
This section presents the comparative analysis of the algo-

rithm implemented on PIM in terms of throughput (in Frames
per second) and Energy Efficiency (Frames/Joules). For eval-
uation purposes, we have implemented AlexNet, ResNet 18,
34, 50, VGG16, and MobileNetV2 networks on the PIM
accelerator. Figure 3 presents comparisons of the throughput
(in Frames per second) and Figure 4 energy efficiency (in
Frames per Joule) of inference on all these CNNs deployed
on the PIM accelerator.

From Figure 3 it can be observed that the proposed PIM
model is capable of performing malware detection tasks with

0

0.2

0.4

0.6

0.8

1

1.2

1.4

AlexNet VGG 16 ResNet 18 ResNet 34 ResNet 50 MobileNet V2

E
n

er
g

y
 E

ff
ic

ei
n

cy
 (

F
ra

m
es

/J
o

u
le

)

Fig. 3. Comparison of Energy efficiency (Frames/Joules) for AlexNet,
ResNet18, ResNet34, ResNet50, VGG16, and MobileNetV2 on the PIM
accelerator

an impressive performance of low latency. For example,
ResNet-50, the largest network consisting of 50 layers and
thirty-eight billion computations, is processed within 10 mS.

A similar trend is observed for energy consumption, from
Figure 4 it can be observed that the proposed PIM model
is capable of performing malware detection tasks with high
energy efficiency. This is because the PIM module supports 8-
bit precision mode in order to perform the operations required
for CNN acceleration. These tasks can be performed by
distributing the data across the cluster which contains nine
cores connected by a router which inherently offers a higher
degree of parallelization and performs all the operations in
comparatively fewer steps.

1

2

4

8

16

32

64

AlexNet VGG 16 ResNet 18 ResNet 34 ResNet 50 MobileNet V2

T
h

ro
u

g
h

p
u

t 
(F

ra
m

es
/S

ec
o

n
d

)

Fig. 4. Comparison of Throughput (Frames/second) for AlexNet, ResNet18,
ResNet34, ResNet50, VGG16, and MobileNetV2 on the PIM accelerator
D. Performance Comparison with State-of-the-Art Hardware
Accelerators for CNN Implementation

Performance is evaluated by comparing the proposed ar-
chitecture with state-of-the-art hardware accelerator architec-
tures in terms of power consumption (Watt) and throughput
(Frames/second), as shown in Figure 5.

As a proof of concept, we evaluate and implement AlexNet
[28] on the proposed architecture with the 8-bit width preci-
sion. We envision a 256 PIM cluster arrangement in a DRAM
chip as this configuration provides a fine balance between
performance, power consumption, and on-chip area overhead.
An input dimension of 224x224x3 has been considered for
performance benchmarking with the other CNN accelerators
and different operational modes of PIM. The PIM architectures
under comparison in this section include DRAM-based bulk
bit-wise processing devices DRISA [20], and LUT-based PIM
implemented on the DRAM platforms such as LAcc [12]. On
the other hand, the von Neumann devices under comparison
are Intel Knights Landing (KNL), a state-of-the-art CPU [29],
and Pascal Titan X, a state-of-the-art GPU.

It can be observed from Figure 5, that the PIM architectures,
in general, outperform both the CPU and the GPU by a huge



1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+00

1.00E+01

1.00E+02

1.00E+03

KNL (CPU) Pascal Titan X
(GPU)

DRISA Lacc Proposed PIM

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

W
at

ts
)

T
h

ro
u

g
h

p
u

t 
(F

ra
m

es
/s

ec
o

n
d

)
Throughput Power consumption

Fig. 5. Comparative performance analysis of PIM with respect to state-of-the-
art hardware accelerator architectures in terms of throughput (Frames/second)
and power consumption (Watt)

margin since all these PIMs can avoid the significant overhead
and latency associated with off-chip communications, unlike
the CPU and the GPU. In fact, the most computation-intensive
8-bit fixed-point operation mode PIM ideally provides 4.02×,
45× higher throughput compared to Pascal Titan X GPU and
Knights Landing Processor while being 74.62×, 64.13× more
energy-efficient.

On the other hand, a relatively higher throughput is observed
for DRISA [20] due to its ability to parallelize operations
across multiple banks, albeit at significantly low power ef-
ficiency. The benefits of adopting LUTs in order to utilize
pre-calculated results instead of performing in-memory logic
operations are convincingly demonstrated by LAcc [12] which
achieves impressive inference performance at quite a low
power consumption. From Figure 5, it is also observed that
the proposed PIM outperforms DRISA and LAcc in both the
throughput by 0.065×, 1.09× as well as power efficiency by
29.25×, 1.5× respectively for AlexNet inference.

VI. CONCLUSION
In this paper, we proposed a PIM-based ML modeling

technique for malware detection. The proposed approach not
only achieves low latency for implementing malware detection
tasks but also provides high energy efficiency. Such a method-
ology makes the real-time malware detection task in embedded
devices adaptable. The performance of the proposed PIM is
evaluated by comparing it with state-of-the-art CPU, GPU, and
other PIM architectures. The experimental results indicate that
the proposed PIM is 74.62×, 64.13× more energy-efficient
and has 4.02×, 45× higher throughput compared to the GPU
and CPU respectively. It is also observed that the PIM is
1.5× energy efficient and has 1.09× higher throughput than
other LUT-based PIM architecture. Multiple CNN models
were trained using data that was precision scaled into 16-bit,
8-bit, and 4-bit samples, to further aid the energy efficiency
and throughput. The performance of these models is compared
with state-of-the-art malware detectors. From experimental
results, it is evident that the proposed technique is efficient
for malware detection as it does not experience performance
decay.

REFERENCES

[1] T. Adiono, “Challenges and opportunities in designing internet of
things,” 2014 The 1st International Conference on Information Tech-
nology, Computer, and Electrical Engineering, 2014.

[2] O. Abbas and et al., “Big data issues and challenges,” 2016.
[3] J. Johnson, “Number of malware attacks per year 2020,” Aug 2021.

[Online]. Available: https://www.statista.com/statistics/873097/malware-
attacks-per-year-worldwide/

[4] A. Damodaran et al., “A comparison of static, dynamic, and hybrid
analysis for malware detection,” Journal of Computer Virology and
Hacking Techniques, 2015.

[5] C. Rossow and et.al, “Prudent practices for designing malware exper-
iments: Status quo and outlook,” Symposium on Security and Privacy,
2012.

[6] K. Kancherla and et.al, “Image visualization based malware detection,”
in Computational Intelligence in Cyber Security (CICS), 2013.

[7] L. Nataraj and et al., “Malware images: Visualization and automatic
classification,” in Int. Symposium on Visualization for Cyber Security,
2011.

[8] D. Gibert and et.al, “Using convolutional neural networks for classifica-
tion of malware represented as images,” Journal of Computer Virology
and Hacking Techniques, 2019.

[9] S. Bavikadi et al., “A review of in-memory computing architectures for
machine learning applications,” in GLSVLSI, 2020.

[10] V. S. et al., “Ambit: In-memory accelerator for bulk bitwise operations
using commodity dram technology,” IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO).

[11] A. D. P. et al., “An mram-based deep in-memory architecture for deep
neural networks,” in IEEE International Symposium on Circuits and
Systems, 2019.

[12] Q. Deng and et al., “Lacc: Exploiting lookup table-based fast and
accurate vector multiplication in DRAM-based CNN accelerator,” in
ACM/IEEE Design Automation Conf. (DAC), 2019.

[13] P. R. Sutradhar et al., “pPIM: A programmable processor-in-memory
architecture with precision-scaling for deep learning,” IEEE Computer
Architecture Letters.

[14] A. Moser and et.al, “Limits of static analysis for malware detection,”
in Annual Computer Security Applications Conference (ACSAC 2007),
2007.

[15] A. Makandar and A. Patrot, “Malware class recognition using image
processing techniques,” in Int. Conf. on Data Management, Analytics
and Innovation (ICDMAI), 2017.

[16] P. R. Sutradhar et al., “Look-up-table based processing-in-
memoryarchitecture with programmable precision-scalingfor deep
learning applications,” IEEE TPDS, 2021.

[17] S. Bavikadi et al., “upim: Performance-aware online learning capable
processing-in-memory,” in 2021 IEEE 3rd International Conference on
Artificial Intelligence Circuits and Systems (AICAS), 2021.

[18] P. R. Sutradhar et al., “An ultra-efficient look-up table based pro-
grammable processing in memory architecture for data encryption,” in
2021 IEEE 39th International Conference on Computer Design (ICCD).

[19] S. Liu et al., “Accelerating adversarial attack using process-in-memory
architecture,” in 2022 18th International Conference on Mobility, Sens-
ing and Networking (MSN), 2022, pp. 325–330.

[20] S. L. et al., “Drisa: A dram-based reconfigurable in-situ accelerator,” in
IEEE/ACM International Symposium on Microarchitecture, 2017.

[21] S. Bavikadi et al., “Heterogeneous multi-functional look-up-table-based
processing-in-memory architecture for deep learning acceleration,” in
2023 24th International Symposium on Quality Electronic Design
(ISQED), 2023, pp. 1–8.

[22] P. C. et al., “Prime: A novel processing-in-memory architecture for neu-
ral network computation in reram-based main memory,” in ACM/IEEE
International Symposium on Computer Architecture (ISCA), 2016.

[23] “Virustotal package,” 2021. [Online]. Available:
https://www.rdocumentation.org/packages/virustotal/versions/0.2.1

[24] N. Patel et al., “Analyzing hardware based malware detectors,” in
ACM/EDAC/IEEE Design Automation Conference (DAC).

[25] Y. Gao et al., “Adaptive-hmd: Accurate and cost-efficient machine
learning-driven malware detection using microarchitectural events,” in
IEEE International Symposium on On-Line Testing and Robust System
Design (IOLTS), 2021.

[26] A. P. Kuruvila, S. Kundu, and K. Basu, “Analyzing the efficiency of
machine learning classifiers in hardware-based malware detectors,” in
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2020.

[27] H. Sayadi and et.al, “Customized machine learning-based hardware-
assisted malware detection in embedded devices,” in IEEE International
Conference On Trust, Security And Privacy In Computing And Commu-
nications, 2018.

[28] M. Z. Alom et al., “The history began from alexnet: A comprehensive
survey on deep learning approaches,” arXiv, 2018.

[29] A. Sodani, “Knights landing (knl): 2nd generation intel® xeon phi
processor,” in 2015 IEEE Hot Chips 27 Symposium (HCS).


