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Abstract

Infancy is a sensitive period of development, duringwhich experiences of parental care

are particularly important for shaping the developing brain. In a longitudinal study of

N = 95 mothers and infants, we examined links between caregiving behavior (mater-

nal sensitivity observed during amother–infant free-play) and infants’ neural response

to emotion (happy, angry, and fearful faces) at 5 and 7 months of age. Neural activity

was assessed using functional Near-Infrared Spectroscopy (fNIRS) in the dorsolateral

prefrontal cortex (dlPFC), a region involved in cognitive control and emotion regula-

tion. Maternal sensitivity was positively correlated with infants’ neural responses to

happy faces in the bilateral dlPFC and was associated with relative increases in such

responses from 5 to 7 months. Multilevel analyses revealed caregiving-related indi-

vidual differences in infants’ neural responses to happy compared to fearful faces in

the bilateral dlPFC, as well as other brain regions. We suggest that variability in dlPFC

responses to emotion in thedevelopingbrainmaybeone correlate of early experiences

of caregiving, with implications for social-emotional functioning and self-regulation.
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1 INTRODUCTION

Infancy is a sensitive period of development, during which experiences

of parental care are particularly important for shaping the develop-

ing brain (Fox et al., 2010). Emotionally responsive, “serve-and-return”

interactions with caregivers lay the foundation for neural architecture

and calibrate the social functions of the human brain, with lasting con-

sequences for children’s development (Shonkoff, 2016). Indeed, the

development of the infant brain is a key mechanism linking early care-

giving experiences to later social competence and emotional health

(Callaghan & Tottenham, 2016; Gee & Cohodes, 2021; Tottenham,
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2020). Much of the research to date has focused on the deleterious

consequences of caregiving adversity—experiences of abuse, neglect,

and institutionalization (e.g., Wade et al., 2019; Zeanah et al., 2017).

Yet to fully understand the neural underpinnings of caregiving and

child development, it is also important to understand the neurodevel-

opmental consequences of positive parenting behaviors and normative

variation in early caregiving experience.

In the present paper, we examine pathways linking sensitive care-

giving to infant neural processing of emotion in a community sample

of mothers and infants, followed across the first months of postnatal

life.We briefly contextualize ourworkwithin the history of the science
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ofmaternal care in infancy, review previous research linking caregiving

experiences to infant brain development, and describe a novel empiri-

cal study examining associations between the quality of maternal care

and infants’ social brain function in the first months of life.

1.1 Sociohistorical context

Harlow’s (1958) seminal work on the importance of early parental

care in rhesus monkeys laid the foundation for Bowlby’s (1969/1982)

groundbreaking theory of attachment in human infants. Attachment

theory emphasizes the role of loving, mutually responsive caregiving

experiences in the first years of life in shaping healthy social-emotional

development across the life course. But how might something as

complex as maternal care be operationalized? Ainsworth’s (1967;

Ainsworth et al., 1978) observations of mothers and infants in Uganda

and theU.S. provided an empirical framework for capturing key dimen-

sions of caregiving behavior, including sensitivity versus insensitivity

to infants’ cues (i.e., responsiveness to signals of need) and coopera-

tion versus interference with infants’ ongoing activity (i.e., support for

autonomous exploration). Ainsworth’s (1969) Sensitivity Scales remain

the gold standard for studying caregiving behavior in early parent-

child relationships, with decades of research demonstrating their

predictive power in social-emotional domains such as children’s social

competence, executive function, andmental health (Deans, 2020).

Yet from a modern developmental neuroscience perspective, a key

question remains: what are the neural correlates linking parental care to

social-emotional development?

1.2 Evidence linking caregiving to infant social
brain development

Early research on this question examined the detrimental effects

of social deprivation on children’s development (Rutter et al., 1998;

Zeanah et al., 2003). A large body of work now demonstrates that

caregiving adversity undermines the healthy development of the social

brain—particularly brain functions associated with emotion learning

and regulation (Belsky & deHaan, 2011; Gee, 2020; Tottenham, 2020).

For example, infants with a history of caregiver maltreatment show

perceptual biases for angry faces, including increased attention to,

faster recognition of, and a larger P300 response (indexing attention

and memory) to angry compared to neutral faces (e.g., Pollak et al.,

1997, 2001); this work suggests that a heightened neural threat bias

may develop from early experiences of abuse. Related work has shown

that institutionally reared children show mild impairment in face dis-

crimination and reduced peak amplitude in the N170, Nc (Parker &

Nelson, 2005), P1, and P400 components (Moulson et al., 2009; see

alsoMesquita et al., 2015), suggesting that childrendeprivedof respon-

sive social interactions with caregivers may develop blunted responses

to social stimuli. As Perry and colleagues conclude (2017, p.1), “with-

out sensitive caregiving, infants fail to developmechanisms needed for

later-life emotion and emotion regulation.”

ResearchHighlights

∙ Infancy is a sensitive period of brain development, during

which experiences with caregivers are especially impor-

tant.

∙ This studyexamined linksbetweensensitivematernal care

and infants’ neural responses to emotion at 5–7months of

age, using functional near-infrared spectroscopy (fNIRS).

∙ Experiences of sensitive carewere associatedwith infants’

neural responses to emotion—particularly happy faces—in

the dorsolateral prefrontal cortex.

Critically, however, the development of the social brain in infancy

is facilitated not only by the absence of adversity but by the pres-

ence of positive parenting experiences with responsive caregivers (see

Ilyka et al., 2021; Stern & Grossmann, in press). A recent study using

functional Near Infrared Spectroscopy (fNIRS) suggests that as early

as 5 months of age, experiences of maternal sensitivity are positively

associated with infants’ functional connectivity in the default mode

network (implicated in theory of mind and self-referential thought),

even when accounting for family socioeconomic status (Chajes et al.,

2022). Maternal care is also related to infant neural responding to

positive emotion: an EEG study found that maternal sensitivity was

associatedwith infants’ increasedNcamplitude (associatedwith atten-

tiveness) in response to happy faces compared to neutral faces at

7 months (Taylor-Colls & Fearon, 2015). These findings suggest that

infants who experience sensitive care may perceive smiling faces to be

more rewarding (Clements et al., 2022).

Similarly, research has shown that secure attachment—theorized

to result from repeated experiences of sensitive caregiving and co-

regulation of emotion (Ainsworth et al., 1978; Bowlby, 1969/1982)—

predicts key differences in emotion and cognition associated with

social brain development (see Vrtička, 2017). Insecurely attached

infants, for instance, show reduced relative left frontal brain activity

across baseline and two social interaction conditions (Dawson et al.,

2001). In a study by Peltola and colleagues (2020), although mater-

nal sensitivity was unrelated to infant face processing, attachment

was associated with significant differences in ERP responses to emo-

tional faces. Specifically, securely attached infants, but not insecurely

attached infants, showed age-typical N290 face processing responses

differentiating fearful vs. non-fearful faces at 7 months. Attachment-

related differences in neural development appear to persist beyond

childhood; indeed, attachment in infancy predicts differences in brain

structure and function as much as 20 years later (Moutsiana et al.,

2014, 2015; see Long et al., 2020).

Related findings from hyperscanning studies reveal that infants’

brain activity synchronizes with that of adults during social interac-

tions, and that such neural synchrony varies as a function of adult

responsiveness, proximity, and emotional valence. In one study of

9- to 15-month-old infants, neural coupling was heightened when
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infants engaged in social interactions with an adult experimenter,

particularly in the prefrontal cortex (PFC) (Piazza et al., 2020). In

studies of parents, mothers and their 4-6-month-old infants showed

greater neural synchrony in thePFCduringproximal face-to-face inter-

actions, particularly those involving affective touch (Nguyen et al.,

2021). Moreover, maternal sensitivity was linked with greater neu-

ral synchrony, whereas maternal intrusiveness was associated with

lower synchrony among mothers and their 5- to 12-month-old infants

(Endevelt-Shapira & Feldman, 2023). Finally, mothers and their 10-

month-old infants showed stronger neural integration when mothers

expressed positive compared to negative affect (Santamaria et al.,

2020). These cross-sectional studies suggest that experiences ofmutu-

ally responsive caregiver–infant interactions may involve coordinated

neural processes, particularly in prefrontal regions.

1.3 The role of the dorsolateral prefrontal cortex

Despite early views that the infant prefrontal cortex was functionally

silent, mounting evidence reveals that prefrontal regions are active

within the first months of life (Grossmann, 2015), develop rapidly,

and are especially sensitive to environmental inputs such as caregiver

behavior (seeHodel, 2018).Onearea inparticular, thedorsolateral pre-

frontal cortex (dlPFC), may be especially important for understanding

associations between maternal care and infant neural processing of

emotion. Maternal sensitivity has been linked to connectivity between

the hippocampus and brain regions implicated in emotion regulation

and social-emotional functioning including the dlPFC at 6 months of

age (Rifkin-Graboi et al., 2015).Moreover, infants ofmotherswhoshow

greater behavioral engagement during play at 5 months demonstrate

increased neural responses in the left dlPFC to social threat (i.e., angry

faces), assessed with fNIRS, as well as more effective visual orient-

ing to social threat, assessed with eye-tracking, at 7 months (Thrasher

et al., 2021). In this same sample, researchers found that maternal

engagement was associated with infants’ detection of fearful faces at

7 months, as indicated by heightened initial attention (i.e., first fixation

duration) and lower neural responses in the left dlPFC; infants’ detec-

tion of fearful faces, in turn, predicted their prosocial helping behavior

in the second year of life. The authors suggest that the dlPFCmay be a

potential neural mechanism linking early maternal care to later social

behavior (Grossmann et al., 2018).

1.4 The present study

To date, however, few studies have examined longitudinal links of sen-

sitive caregiving to infant prefrontal response to emotion over more

than one time point in the first months of life. Thus, the aim of the

present longitudinal study was to examine how maternal sensitiv-

ity relates to the development of infant emotion processing in the

dlPFC, focusing on a sensitive window of neurodevelopment spanning

5–7 months, when emotion processing undergoes critical develop-

ment (Grossmann, 2012; Jessen & Grossmann, 2020; Peltola et al.,

2009). We leveraged a multi-method longitudinal dataset following

infants from birth through age 7 months, integrating Ainsworth’s

(1969) classic observational methods for assessing maternal behav-

ior with cutting-edge infant neuroimaging technology at two time

points. Specifically, we used functional near-infrared spectroscopy

(fNIRS), an optical neuroimaging technique that uses near-infrared

light to measure changes in blood flow indicating brain activity in cor-

tical regions. FNIRS has a number of advantages for developmental

research: it is non-invasive and safe for use with infants, has better

spatial resolution than EEG and is more cost-effective than fMRI, and

can be implemented with awake and engaged infants (see Wilcox &

Biondi, 2015).

Building on priorworkwith this age group (Bayet et al., 2021;Gross-

mann et al., 2018; Thrasher et al., 2021), we examined infants’ neural

response to three facial expressions of emotion: happy, fearful, and

angry.1 Research suggests that infants discriminate angry from happy

faces by 3 months of age, demonstrate a visual preference for happy

faces by 4 months of age, and then begin to show an attentional pref-

erence and differentiated neural response to fearful faces between 5

and 7 months of age (for reviews see Grossmann, 2015; Ruba & Repa-

choli, 2020). Thus, we aimed to capture individual differences in the

neurodevelopment of emotion recognition as it first comes online in

early ontogeny. Critically, by examining infant neural responses at both

5 and 7months, we aimed to gain amore fine-grained understanding of

developmental continuity and change during this period, as infants first

become able to discriminate fear from other expressions of emotion

around 7months of age (Grossmann, 2015).

We hypothesized that maternal sensitivity would be related to

greater neural sensitivity to emotional faces localized in the dlPFC—

particularly fear—given prior work linking maternal engagement and

secure attachment to infants’ neural responses to fearful faces (Gross-

mann et al., 2018; Peltola et al., 2020). In exploratory follow-up

analyses, we examined potential developmental shifts in infant neural

responses across ages 5 to 7 months as a function of maternal sensi-

tivity to test two competing possibilities: On the one hand, insensitive

caregiving may be associated with accelerated maturation of the PFC

(e.g., Thijssen et al., 2017), but on the other hand, sensitive caregiving

may be linked to adaptive increases in the neural bases of emotion reg-

ulation and cognitive control (e.g., Kerr et al., 2019). Given the dearth

of research on maternal sensitivity and cortical response to emotion

at this early age, we did not have a priori hypotheses about other

brain regions. However, building on previouswork examining the social

brain in infancy (Grossmann, 2015; Ilyka et al., 2021; Stern & Gross-

mann, in press), in exploratory analyses we also examined infant neural

responses in the medial prefrontal cortex (mPFC), temporal cortex

(TC), inferior frontal cortex (IFC), and temporo-parietal junction (TPJ);

results are reported in Supplementarymaterials.

The central hypothesis, pre-processing pipeline for all fNIRS data,

and regions of interest computed for analyses were pre-registered

as part of the larger longitudinal study from which the data were

drawn (https://osf.io/cpmxg; Hypothesis A). Transparent changes to

the preregistration include (a) focusing hypotheses primarily on the

dlPFC, following a careful review of the literature presented here,

 14677687, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/desc.13497 by U

niversity O
f V

irginia A
lderm

a, W
iley O

nline Library on [13/09/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://osf.io/cpmxg


4 of 14 STERN ET AL.

and (b) improving the data analytic approach in response to reviewer

feedback.

2 METHOD

2.1 Participants and procedure

Participantswere drawn fromanongoing longitudinal study ofN=121

mothers and babies recruited from a local hospital in the mid-Atlantic

United States when infants were newborns (for details see Kelsey

et al., 2021). In line with the Declaration of Helsinki, parents gave

informed consent for their infant to participate and all procedures

were approved by the university’s institutional review board (proto-

col #20381). Participants received monetary compensation for their

participation. Data collection took place from 2018–2019 (prior to

the pandemic). At the initial assessment, the majority of mothers

(Mage=31.73, SD=4.59)weremarried (77%) and reported that fathers

were involved in infants’ care (97%).

Of the initial sample,N= 106 participated returned to the lab when

infants were 5 months old and participated in a mother-infant free

play session, fromwhich maternal sensitivity was coded. Demographic

characteristics for families who participated in this session are summa-

rized in Table 1. Infants completed two fNIRS recording sessions at 5

months and again at 7months of age.

Participants were excluded from the present analyses because (a)

the fNIRS cap deviated beyond 1.5 cm from the correct placement

(n = 4), (b) equipment or experimental error occurred for the fNIRS or

free-play paradigm (n = 4), and (c) infants failed to meet looking crite-

ria for the fNIRS paradigm (n = 29). To be included in analyses, infants

had to participate in the5-monthmother-infant free-play (n=106) and

have usable data for at least one fNIRS recording at 5 months (n = 87)

or 7 months (n = 76). Therefore, infants were excluded if they par-

ticipated in either the 5- or 7-month visit but were unable to provide

sufficient useable fNIRS data at either time point (n= 11). Thus, a total

of N = 95 infants and their mothers were included in the final analytic

sample. There were no significant differences in baseline characteris-

tics between infants whowere excluded compared to those included in

the analytic sample (all ps> 0.05).

2.2 Maternal sensitivity

2.2.1 Free-play procedure

Participantswere invited to a laboratory playroom,where infantswere

placed on their backs on a blanket at the center of the room (follow-

ing Grossmann et al., 2018). The experimenter asked mothers to “play

with your child as you normally would”; then the experimenter left the

room. Mother–infant dyads were observed for 5 min, following pre-

vious work (Bigelow et al., 2010; Grossmann et al., 2018; Stern et al.,

2023; Thrasher et al., 2021) and to minimize participant burden after

a long laboratory session that could be taxing to parents and young

TABLE 1 Sample characteristics.

N (%)

Child sex

Female 45 44.6

Male 56 55.4

Child racea

Black 19 17.9

White 95 89.6

American Indian/Alaska Native 1 0.9

Asian 3 2.8

South Asian

(Pakistani/Indian/Bangladeshi)

4 3.8

Pacific Islander 2 1.9

Other 3 2.8

Child ethnicity: %Hispanic 5 4.7

Maternal education

SomeHigh School 2 1.9

High School Diploma/GED 16 15.1

SomeCollege/Associate’s Degree 23 21.7

Bachelor’s Degree 26 24.5

Graduate Degree (e.g., Master’s or Ph.D.) 39 36.8

Household Income

Less than $15,000 7 6.7

$15,001–$30,000 16 15.2

$30,001–$45,000 16 15.2

$45,001–$60,000 9 8.6

$60,001–$75,000 6 5.7

$75,001–$90,000 8 7.6

$90,001–$110,000 13 12.4

$110,001–$125,000 6 5.7

$125,001–$175,000 13 12.4

$175,001–$225,000 6 5.7

$225,001+ 5 4.8

aNote: Child race totals greater than100%, as participants could selectmore

than one racial identity.

infants. Two wall-mounted cameras recorded the free-play session:

one focused on the infant’s face and body, and the other focused on

the mother. All participants were provided with a standardized set of

objects (toys and a book) and were free to select which objects, if any,

they wished to explore.

2.2.2 Coding

Video recordings were coded by a team of coders trained to use

Ainsworth’s (1969) gold-standardSensitivity Scales using the twomost

widely-used scales: sensitivity versus insensitivity to the infant’s signals
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and cooperation versus interferencewith the infant’s ongoing activity (i.e.,

support for the child’s autonomy). Each video is assigned a score on a

9-point scale for maternal sensitivity (1 = highly insensitive, 5 = incon-

sistently sensitive, 9 = highly sensitive) and for cooperation (1 = highly

interfering, 5 = mildly interfering, 9 = conspicuously cooperative). All

videos were coded by two independent raters, and discrepancies were

resolved via conferencing at weekly meetings to prevent coder drift.

Krippendorff’s alpha (Hayes&Krippendorff, 2007;Krippendorff, 2011)

demonstrated good interrater reliability for sensitivity (K-alpha=0.70)

and cooperation (K-alpha= 0.75).

2.3 Infant fNIRS recording session

2.3.1 fNIRS procedure

Infants sat on their caregiver’s lap approximately 60 cm from the com-

puter monitor in a small, quiet testing area. Caregivers were asked to

refrain from interacting with their infant during the experiment. The

experimental paradigm was presented using Presentation software

(Neurobehavioral systems, USA) and trials were manually initiated by

the experimenter to maximize infants’ looking to the screen during

experimental trials. fNIRS recording sessions took approximately 12

min to complete, andvideo recordingsof the testing sessionswereused

to conduct offline behavioral coding.

2.3.2 Stimuli

Color photographs of adultWhite females with happy, angry, and fear-

ful facial expressionswere chosen fromavalidated stimulus set (FACES

database; Ebner et al., 2010). Each experimental block started with

an audio-visual attention getter (i.e., a shaking rattle accompanied by

changing tones) followed by three trials (one for each emotion). The tri-

als lasted approximately 6 s and contained a pseudo-dynamic repeated

presentation of a female face with a neutral expression (500 ms), fol-

lowed by an emotional expression (e.g., happy face for 700 ms). A

6-s minimum non-social (pseudo-dynamic presentation of vegetables)

interstimulus interval followed each trial. Trial order was pseudo-

randomized such that no actress and no emotional expression were

repeatedmore than twice in a row.

2.3.3 Data acquisition

Infants’ fNIRS data were recorded using a NirX Nirscout continuous-

wave system and NIRStar acquisition software. fNIRS quantifies the

relative concentration changes of oxygenated hemoglobin (oxyHb) and

deoxygenated hemoglobin (deoxyHb), providing an indirect assess-

ment of brain activity at a probing depth of approximately 1.5 cm

below the cerebral cortex surface (for a review of this method see

Lloyd-Fox et al., 2010). Optodes (16 sources and 16 detectors) were

placed within an elastic Easy Cap resulting in 49 channels (2.5 cm

distance) covering the frontal, temporal, and parietal regions. Data

were recorded at a sampling rate of 3.9 Hz. Near-infrared light was

emitted at two wavelengths (760 nm, 850 nm) with a power of

25mW/wavelength.

At the beginning of the visit, the infant’s head circumference was

measured, and an appropriately sized cap (within 1.5 cm) was selected.

Caps were placed with reference to anatomical landmarks, and video

recordings were used to document cap placement. Infants were fitted

with overalls which hooked into the cap and wore over-cap netting to

helpmaintain desired cap placement.

2.3.4 Excluding non-usable data

Cap placements and looking behaviors were reviewed by trained

research assistants. For cap placements, if the cap deviated more than

1.5 cm from the cap location, the infant’s data were excluded. In addi-

tion, infants’ looking behaviors toward the screen were coded offline

from video recordings. Infants needed to look for at least 70% (4.2 s) of

the time for a trial to be included. A second trained coder reviewed 60

videos, and therewas a high degree of reliability (95.5%agreement) for

looking time assessments. Infants needed to have adequate looking for

at least three trials per emotional condition to be included (see Partic-

ipants section above for details). On average, infants contributed data

for a total of 36.3 trials, SD=14.3 (MeanHappy=7.05, SD=2.82;Mean

Angry= 6.09, SD= 3.01;Mean Fear= 6.74, SD= 2.86).

2.3.5 Average hemodynamic response calculation

fNIRS data were preprocessed following a pre-registered pipeline

using Homer2 and customMATLAB scripts (see Powell, 2020 for more

information on the processing pipeline). First, raw intensity data were

converted to optical density (hmrIntensity2OD). Next, channel quality

was inspected and channels were excluded if they had mean inten-

sities outside the system recommended values (enPruneChannels;

dRange = [dmin = 10−2, dmax = 109]). Then, motion correction was

performed using a flexible targeted Principal Component Analysiswith

up to three iterations (hmrMotionCorrectPCArecurse; tMotion = 1.0,

tMask = 1.0, Std Thresh = 100, Amp Thresh = 0.1, nSV = 0.97). Data

were then band-passed filtered (0.083–0.3 Hz2; see Grossmann et al.,

2018; Kelsey et al., 2021; Kelsey et al., 2023 for other fNIRS stud-

ies with similar ages and filter parameters). OD data were converted

to concentration changes using the modified Beer–Lambert law and

a developmentally appropriate partial pathlength factor of 5 (Bayet

et al., 2021; Cope & Delpy, 1988; Duncan et al., 1996; Pirazzoli et al.,

2019). OxyHb and deoxyHb concentration changes were then aver-

aged across a 5–10-s post stimulus time window. The time window

was chosen based on the peak response of all channels measured (see

Figures S1 and S2). Lastly, data were visually inspected and rejected if

artifacts remained in the data.
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F IGURE 1 fNIRS array displayed on an infant (A), in 2D space (B), and in 3D space (C), and the paradigm schematic (D).Note. In panels B and C
colorful circles indicate areas of interest: Purple is the dorsolateral prefrontal cortex (dlPFC), the hypothesized focal region of interest. Other
colors show exploratory regions of interest: Blue is the temporal parietal junction (TPJ), pink is the temporal cortex (TC), green is the inferior
frontal cortex (IFC), and yellow is themedial Prefrontal Cortex (mPFC). The 3D headmodels (C) show group level projections of channel locations
(large colorful circles) on an infant (ages 5–8months) atlas (top) and small orange dots indicate 10–20 locations.

2.3.6 Anatomical localization

Regions of interest were identified at the group level using photon

propagation simulation with realistic, age-appropriate (6- and 7.5-

month-old) head models using the devFOLD toolbox (Fu & Richards,

2021). Channels were identified for the dlPFC, as well as the

exploratory regions of interest (mPFC, IFC, TC, TPJ), using the LONI

atlas and based on their 10–20 reference points (see Figure 1).

2.4 Analytic plan

In preliminary analyses, we examined distributional properties of the

data and conducted Pearson correlations between maternal sensitiv-

ity scores and infant neural responses to each emotion condition in the

dlPFC at each time point. All study hypotheses are based upon changes

in oxygenated hemoglobin (oxyHb). OxyHb tends to have higher vari-

ability and is more often reported compared to deoxyHb (for a review

see Lloyd-Fox et al., 2010). Therefore, we did not have any specific

hypotheses about changes in deoxyHb; however, we report any sig-

nificant correlations found using this chromophore in Supplementary

materials.

The multilevel structure of the data is illustrated in Figure 2. To test

our focal hypothesis, we ran multilevel models in SPSS v.28 with emo-

tion condition, maternal sensitivity, and time predicting infant brain

response (change in oxyHb) in the dlPFC.Multilevel modeling is a pow-

erful alternative to ANCOVA because it (a) does not rely on assump-

tions of homogeneity of regression slopes and (b) is more robust
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F IGURE 2 Summary of study design andmultilevel model examining links of maternal sensitivity to infant neural responses, assessed across
three emotion conditions (happy, fearful, and angry) at two time points (5 and 7m).

to missing data, using maximum likelihood estimation to yield unbi-

ased estimates. Using this approach, the analytic sample comprised

N = 95 mother–infant dyads. Emotion condition (dummy-coded) and

time (0 = 5 m, 1 = 7 m) were modeled as within-subjects fixed factors,

with maternal sensitivity entered as a between-subjects continuous

covariate, using the Repeated command and diagonal covariance struc-

ture to account for the nested structure of the data. Predictors were

entered in 3 steps: (1) main effects of maternal sensitivity, emotion

condition, and time; (2) two-way interactions of sensitivity*emotion

and sensitivity*time; (3) 3-way interaction of sensitivity*emotion*time.

Post-hoc analyses of the three emotion conditions used Bonferroni

correction to account for multiple comparisons, α = 0.05/3 = 0.0167.

In exploratory follow-up analyses, we also examined main effects and

interactions of hemisphere (0 = left, 1 = right), to examine whether

effects of sensitivity on infant neural response to emotion were lat-

eralized on the left or right hemisphere. Significant interactions were

probed using simple slopes analysis. Note that due to limited statistical

power, we could not examine 4-way interactions.

3 RESULTS

3.1 Preliminary analyses

Scores for maternal sensitivity (range: 1.50–9.00;M= 6.26, SD= 1.77)

and cooperation (range: 1.00–9.00;M = 5.88, SD = 2.05) spanned the

full 1−9 scale andwere normally distributed, withmean scores slightly

above the scale midpoint, in the “inconsistently sensitive”/ “mildly

interfering” to “sensitive”/“cooperative” range, respectively. Detailed

descriptive statistics are provided in Table S1.

Correlations between maternal behavior and infant neural

responses to emotion showed small effect sizes (see Table S2).

Maternal sensitivity scores were positively associated with infants’

oxyHb responses to happy faces in the bilateral dlPFC at 5 months

(r = 0.24, p = 0.029) Maternal cooperation/ support for autonomy

scores were positively associated with infants’ oxyHb responses to

happy faces in the bilateral dlPFC (r = 0.27, p = 0.028) at 7 months.

No correlations with dlPFC responses to fearful or angry faces were

significant. Consistent with previous research, there was a high inter-

correlation between the sensitivity and cooperation scales (r = 0.81,

p < 0.001); thus, we averaged the two scales to create a composite

score for further analyses, following previous work (e.g., Stern et al.,

2020).

3.2 Hypothesis testing

Results of multilevel models examining associations of maternal sen-

sitivity, emotion condition, and time with infant dlPFC responses are

shown in Table 2. There were no significant main effects of maternal

sensitivity, emotion condition, or time on infant dlPFC responses.

Results were qualified by a significant interaction between sensitivity

and emotion condition. Post-hoc analyses showed that maternal

sensitivity was related to infants’ greater dlPFC response to happy

compared to fearful faces (b = 0.09, 95% CI [0.03, 0.16], p = 0.006).

As shown in Figure 3, simple slopes analysis revealed that maternal

sensitivity was significantly associated with infants’ greater dlPFC

response in the happy face condition (b = 0.06, p = 0.004), but not in

the fearful (b = −0.03, p = 0.279) or angry face conditions (b = 0.02,

p= 0.372). Moreover, infants showed lower dlPFC responses to happy

faces compared to fearful faces at low levels of maternal sensitivity

(16th percentile: sensitivity = 3.75; b = −0.24, 95% CI [−0.44, −0.05],

p = 0.016), but not at average (50th percentile: sensitivity = 6.50;

b = 0.01, 95% CI [−0.12, 0.14] p = 0.856) or high levels of sensitivity
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8 of 14 STERN ET AL.

TABLE 2 Multilevel model linkingmaternal sensitivity observed at
5months to infant dlPFC responses (oxyHb) to emotional faces at 5
and 7months (N= 95).

Type III fixed effects df F p

Intercept (1, 767) 1.45 0.229

Emotion (2, 554) 0.95 0.387

Time (1, 752) 0.63 0.428

Sensitivity (1, 762) 3.12 0.078

Emotion * Time (2, 538) 2.09 0.124

Emotion * Sensitivity (2, 551) 3.78 0.023

Sensitivity * Time (1, 750) 0.59 0.442

Emotion * Sensitivity * Time (2, 539) 0.02 0.976

Note: To account for the nested structure of the data, all models were

run with the Repeated command in 3 steps (main effects only, 2-way inter-

actions, 3-way interaction). Sensitivity = observed maternal sensitivity/

cooperation composite at 5m; Time (0= 5m, 1= 7m); oxyHb= oxygenated

hemoglobin; dlPFC = dorsolateral Prefrontal Cortex. Boldface indicates

significant parameters, p< 0.05.

F IGURE 3 Significant interaction betweenmaternal sensitivity
and emotion condition predicting change in oxyHb concentrations in
the bilateral dlPFC at 5–7months.

(84th percentile: sensitivity = 7.76: b = 0.13, 95% CI [−0.04, 0.30],

p = 0.139). Effects were not moderated by time, suggesting develop-

mental continuity of associations between sensitivity and infant dlPFC

response to emotion at 5 and 7m.

3.3 Exploratory analyses

Planned follow-up multilevel models showed that results were not

moderated by hemisphere, indicating that links betweenmaternal sen-

sitivity and infant neural responses in the dlPFC occurred bilaterally

(seeTable S3). To further probe the developmental link betweenmater-

nal sensitivity and infant dlPFC responses to happy faces over time, a

linear regression was run with maternal sensitivity at 5 m predicting

residualized change in infant dlPFC response to happy faces from 5 to

7m. To test the specificity of the link betweenmaternal sensitivity and

infant brain development and to rule out potential confounds, mater-

nal educationwas included as a covariate in themodel. Full information

maximum likelihood estimation in MPlus was used to handle missing

data. Maternal sensitivity was associated with relative increases in

infant dlPFC response to happy faces from 5 to 7 m, over and above

maternal education (see Table 3).

Exploratory analyses of other brain regions are reported in Supple-

mentaryMaterials (see Tables S3–S4). In brief, infants showed reduced

neural responses to happy versus fearful faces in the left temporal cor-

tex (a region involved in social perception; Richardson et al., 2021)

specifically at low levels of maternal sensitivity (b = −0.25, p = 0.016).

Additionally, there was a main effect of maternal sensitivity on infants’

neural responses to emotion in the TPJ (involved in theory of mind and

emotion recognition; Skerry& Saxe, 2015) (b= 0.04, p= 0.024); results

were not moderated by emotion condition, time, or hemisphere. Sen-

sitivity was not significantly associated with infant neural response to

emotion in themPFC or IFC after adjusting for multiple comparisons.

4 DISCUSSION

The present study examined longitudinal links between maternal sen-

sitivity and infant neural response to emotion in the dlPFC in the

firstmonthsof life. Integratingobservations of sensitivemother–infant

interactions with fNIRS neuroimaging sessions at 5 and 7 months,

this study contributes to a growing body of work examining links

between parental caregiving and the neural underpinnings of social-

emotional development (Ilyka et al., 2021). We found that infants of

less-sensitive mothers showed reduced neural responses to happy

compared to fearful facial expressions in the bilateral dlPFC, a region

involved in cognitive control and self-regulation (Kelsey et al., 2023;

Weissman et al., 2008). Results were driven principally by positive

associations between maternal sensitivity and infant dlPFC responses

to happy facial expressions. Preliminary analyses of developmental

change suggest that maternal sensitivity at 5m is associated with rela-

tive increases in infant dlPFC responses to happy faces from 5 to 7 m,

even after accounting for maternal education. We discuss each finding

in turn and outline avenues for future research at the intersection of

caregiving experiences and developmental neuroscience.

In partial support of hypotheses, lower maternal sensitivity was

related to infants’ neural differentiation of fearful versus happy emo-

tions in the dlPFC. Specifically, infants of less-sensitive mothers

showed a comparatively greater neural response to fear and lower

response tohappy faces in this region. This is somewhat consistentwith

previouswork in aGerman sampledemonstrating thatmothers’ behav-

ioral engagement during free play with their infants was associated

with 7-month-olds’ lower neural response to fearful faces in the left

dlPFC (Grossmann et al., 2018). In the present study, however, neural

differentiation of fearful versus happy faces was observed bilaterally,

and results appeared to be driven by the positive association between

sensitivity and dlPFC responses to happy facial expressions (rather
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TABLE 3 Regressionmodel linkingmaternal sensitivity observed at 5m to infant dlPFC responses (oxyHb) to happy faces at 7m, controlling
for maternal education and corresponding dlPFC responses at 5m.

Model predicting infant dlPFC response to happy faces (7m) β SE p R2

.08

Infant dlPFC response to happy faces (5m) −0.07 0.15 0.670

Maternal education −0.17 0.12 0.161

Maternal sensitivity (5m) −0.23 0.11 0.040

Note: dlPFC= dorsolateral prefrontal cortex; infant age of assessment is indicated in parentheses.

than lower dlPFC responses to fearful ones). Importantly, however,

maternal engagement and sensitivity are distinct constructs; while

mother-directed play, verbal instruction, and physicalmovement of the

child’s body would indicate high engagement, these behaviors were

explicitly coded as “interfering with the child’s ongoing activity” on the

cooperation versus interference dimension of Ainsworth’s (1969) sensi-

tivity scales. Thus, behavioral engagement may be more relevant for

infants’ developing attention to fear, whereas sensitive responsiveness

may have unique implications for responding to happy facial expres-

sions. Future work measuring multiple dimensions of caregiving could

illuminate the unique and interactive effects of different caregiver

behaviors on the developing brain (see, e.g., Bernier et al., 2019).

Developmentally, links between maternal sensitivity and infant

dlPFC responseswerenotmoderatedby time, suggesting developmen-

tal continuity in the magnitude of the association between maternal

sensitivity and infant dlPFC response to emotion over this period.

Exploratory analyses revealed thatmaternal sensitivitywas associated

with relative increases in infant dlPFC responses to happy faces from5

to 7 months, even after accounting for maternal education as a poten-

tial confound. This aligns with theory and research that experiences

with responsive caregivers may set the stage for the maturation of

self-regulatorybrain regions (Callaghan&Tottenham,2016). For exam-

ple, one previous study found that secure attachment to caregivers in

infancy predicted more efficient regulation of positive emotion in pre-

frontal regions 20 years later (Moutsiana et al., 2014). Findings also

align with behavioral evidence that both mothers’ and fathers’ sensi-

tive behavior were associated with young children’s inhibitory control,

while intrusive parental behavior predicted slower increases in chil-

dren’s inhibitory control over time (Geeraerts et al., 2021). The present

study builds on this work by suggesting that caregiving-related indi-

vidual differences in the development of prefrontal regulatory regions

may be observable as early as the first months of life. Future longitudi-

nal studies with additional time points may uncover caregiving-related

differences in trajectoriesofdlPFC functionover longerdevelopmental

periods. The present findings extend research linking maternal sensi-

tivity to functional connectivity between hippocampal regions and the

dlPFC (Rifkin-Graboi et al., 2015), aswell as fNIRS hyperscanningwork

showing greater mother–child inter-brain synchrony in the dlPFC dur-

ing cooperative interactions (Miller et al., 2019; Reindl et al., 2018).

In adults, dlPFC activity in threatening contexts can be socially reg-

ulated by the presence of a supportive partner (Coan et al., 2006,

2017). Thus, it is possible that early experiences of sensitive care

may calibrate the function of the dlPFC to help infants co-regulate

their response to threat (see Callaghan & Tottenham, 2016; Thrasher

et al., 2021) and direct the brain’s resources toward social reward

(e.g., smiling faces) and positive social engagement with others (e.g.,

cooperation). This aligns with research demonstrating that sensitive

caregiving and secure attachment are robust predictors of children’s

developing self-regulation, social competence, and prosociality (Deans,

2020;Gross et al., 2017; Stern&Cassidy, 2018). Indeed, dlPFC function

has been proposed as one neural mechanism linking early experiences

of maternal care to later prosocial behavior (Grossmann et al., 2018).

Among the most striking patterns to emerge from these data is

that sensitive caregiving was consistently positively linked to infants’

neural responses to happy facial expressions— more so than nega-

tive emotions such as anger and fear —in the dlPFC as well as other

brain regions, such as the TPJ. This is surprising, given previous work

highlighting the importance of an early-emerging fear bias in the devel-

opment of socially cooperative interactions with caregivers and others

(see Grossmann, 2023); in contrast, the present findings align more

with positivity bias perspectives highlighting the salience and impor-

tanceof happy faces in early social informationprocessing (seeHerbert

et al., 2023; Riddell et al., 2023). One potential explanation is cul-

tural context: Whereas prior studies of infant fear responding were

largely conducted in Germany and India, the present findings may be

specific to a U.S. context characterized by greater individualism and

positive emotional expressiveness.Moreover, according to attachment

theory, a central function of caregiving is to provide protection and

regulation of threat, so that infants can explore the broader environ-

ment (Bowlby, 1969); thus, the presence of a sensitive caregiver may

help to regulate distress so that infants can orient neural resources

toward social reward, approach, and cooperation. Previous work has

demonstrated that mothers’ own ability to distinguish happiness from

other emotions prospectively predicts more sensitive behavior toward

her infant (Stern et al., 2023). Thus, it is possible that the detec-

tion of happy faces is transmitted intergenerationally via sensitive

caregiving, which often involves caregiver co-regulation of negative

emotion and experiences of “mutual delight” or shared positive affect

(Ainsworth, 1967). Critically, sensitivity appears to be independent of

mothers’ expression of positive emotion within the samemother-infant

interaction— that is, sensitive mothers are not simply more expressive

or “smiley,” but rather emotionally attuned to the signals of the infant

(Stern et al., 2023). Together, results suggest that the recognition of

positive emotion is an important and underappreciated facet of early
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caregiver–child interaction, with implications for the development of

the social brain.

In sum, sensitive caregiving behavior observed in the first months

postpartum is associated with individual differences in emotion pro-

cessing in the infant dlPFC as early as 5–7months of age, as indexed by

changes in oxyHb (note that results were highly similar using deoxyHb;

see Supplementary materials). Findings contribute to a growing lit-

erature linking early caregiving experience to the neural bases of

cognitive control and regulatory capacities. It is important to note that

effect sizes in the present study were small, and thus substantial vari-

ance in infants’ neural response to emotion is left to be explained

by other factors within the child (e.g., genetics), as well as in the

mother–child relationship, family system, and broader social ecology

(e.g., neighborhood characteristics, systems of marginalization). We

outline promising avenues for future research in the following pages.

4.1 Strengths, limitations, and future directions

Strengths of the study include its prospective longitudinal design,

integration of Ainsworth’s (1969) classic observational measure of

maternal behaviorwith cutting-edge neuroimaging techniques, assess-

ment of infant brain function across two time points in the first

months of life, and pre-registration of the fNIRS processing pipeline

and regions of interest. However, the study’s findings should be contex-

tualized in light of its limitations, in part to illuminate avenues for future

work. First, although fNIRS offers a number of methodological advan-

tages for examining infant neurodevelopment (Wilcox & Biondi, 2015),

it cannot capture subcortical activity. Advances in infant fMRImayhelp

to illuminate the role of caregiving experiences in shaping early limbic

function (e.g., Graham et al., 2015).

Second, the study’s sample was small and majority White, middle-

class, and educated; included only biological mothers; and was drawn

from a Western context— common limitations in infant neuroimaging

research (Ilyka et al., 2021). Future work could leverage the strengths

of fNIRS (portability, non-invasiveness) to include more diverse cul-

tures, contexts, and racial-ethnic groups. Importantly, researchers in

the fields of cultural psychology and anthropology have suggested

that Ainsworth’s conceptualization of maternal sensitivity is cultur-

ally bound (e.g., Keller et al., 2018), and attachment researchers have

called for greater attention to culture and context when assessing

parenting behavior (e.g., Stern et al., 2022). Thus, future work should

incorporatemeasures of culture and context-specific parenting behav-

iors (e.g., norms regarding emotional expression and social interaction

with infants) that may be important for the development of the social

brain in infancy. Furthermore, given that fathers and grandparents

have unique effects on children’s development (Sadruddin et al., 2019;

Volling & Cabrera, 2019)—including effects of paternal sensitivity on

infant brain development (Kok et al., 2015; Sethna et al., 2019)—

future work should include other caregivers within the child’s social

environment.

Finally, the correlational design cannot test causal links between

caregiving behavior and infant brain development. It is possible, for

example, that genetic factors contribute to both caregivers’ sensitive

responses to infants’ emotional cues and infants’ neural sensitivity

to others’ emotions. Indeed, temperament and genetic factors are

important predictors andmoderators (i.e., susceptibility factors) of the

link between caregiving and child neural and behavioral development

(see Belsky & van IJzendoorn, 2017); future work should incorporate

measures of genetic variation.

Nevertheless, mounting causal evidence from intervention stud-

ies shows that programs to enhance maternal sensitivity and secure

attachment in infancy (e.g., Attachment and Biobehavioral Catch-Up;

Dozier & Bernard, 2019) have lasting effects on children’s cortical

development (Bick et al., 2019) and improve children’s neural func-

tion in brain regions associated with social cognition, which in turn

predicts fewer behavior problems in middle childhood (Valadez et al.,

2020). Moreover, children with a history of early deprivation who

were randomized to a foster care intervention in infancy showed

improvements in cortical function (Marshall et al., 2008), neural face

processing (Moulson et al., 2009; Moulson et al., 2015), and brain

structure specifically in the lateral and medial prefrontal cortex years

later (Sheridan et al., 2022; see also Nelson et al., 2007). At the

behavioral level, attachment-based parenting interventions have been

shown to improve children’s inhibitory control (Cassidy et al., 2017),

a skill subserved by dlPFC function (e.g., Durston et al., 2002). Future

work should continue to examine the causal effects of parenting

interventions on early brain development.

5 CONCLUSIONS

Leveraging data from a multimethod longitudinal dataset, we find evi-

dence that observedmaternal sensitivity is meaningfully related to the

development of the social brain in the first months of life. Specifically,

experiences of sensitive caregiving as early as 5 months were related

to infant neural responses to emotional facial expressions—particularly

happy faces—in the dlPFC, a region involved in cognitive control and

emotion regulation (Ochsner & Gross, 2005). Findings have implica-

tions for understanding the neural underpinnings of well-established

links between sensitive care and later social competencies, such as self-

regulation, empathy, prosociality, and emotion understanding (Deans,

2020). We join others in suggesting that policies and programs that

support caregivers to be able to engage inmutually responsive, “serve-

and-return” interactions with their infants (e.g., paid family leave,

access to affordable mental health services for caregivers) represent

an important investment in children’s brain development and social-

emotional functioning (Center on the Developing Child at Harvard,

2017; Teti et al., 2017).

ACKNOWLEDGMENTS

This research was supported by Danone North America, Gut Micro-

biome, Yogurt and Probiotics Fellowship grant; UVA Data Science

Fellowship; and Jefferson Scholars Foundation (CK); the National Sci-

ence Foundation Award 2017229 and UVA Brain Institute Seed fund

(TG); as well as a Transformative Neurodevelopment Pilot Grant from

 14677687, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/desc.13497 by U

niversity O
f V

irginia A
lderm

a, W
iley O

nline Library on [13/09/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



STERN ET AL. 11 of 14

the UVA Brain Institute and Baby Brain Initiative (JS & TG). Article

preparation was supported by the Eunice Kennedy Shriver National

Institute of Child Health & Human Development of the National Insti-

tutes of Health under Awards F32HD102119 (JS) and F32HD105312

(CK). The content does not represent the official views of NSF or

National Institutes ofHealth.We thank the familieswhoparticipated in

this research, and the research assistants who helped collect the data:

SarahThomas,ChristinaMarlow,KateHaynes,CarolynnMcElroy, Julia

Larsen, Sujal Sigdel, and Shefalika Prasad.Wealso thankour behavioral

coding team: Bridget Nortey, Ponni Velmurugan, Evelyn Garcia, Han-

nah Hardiman, Sydney Anderson, Tanvi Bhat, Cat Thrasher, and expert

coder Roseriet Beijers.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

Data are available upon reasonable request from the corresponding

author.

ETHICS STATEMENT

All procedures were carried out in accordance with APA ethical guide-

lines and approved by the University of Virginia Institutional Review

Board for Health Sciences Research (IRB-HSR approval #20381).

ORCID

JessicaA. Stern https://orcid.org/0000-0003-1357-724X

CarolineM.Kelsey https://orcid.org/0000-0001-8384-023X

HeathYancey https://orcid.org/0009-0009-4845-147X

TobiasGrossmann https://orcid.org/0000-0002-1116-6423

ENDNOTES
1We recognize that there is rich debate as to whether facial expressions

reflect internal states, which can then be recognized by others. However,

hereweuse the termshappy, angry, and fearful faces to avoid confusion, and
to be consistent with previous literature using these terms.

2Note that this parameter differs slightly from the pre-registered value of

0.2. The change was made to reflect more recent work supporting the use

of larger values.
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