

struct LogRecord {

uint64_t seqnum; string data;

vector<tag_t> tags; string auxdata;

};

// Append a new log record.

status_t logAppend(vector<tag_t> tags, string data,

uint64_t* seqnum);

// Read the next/previous record whose seqnum >=

// `min_seqnum`, or <= `max_seqnum`. Log reads guarantee

// "monotonic reads" and "read-your-writes" semantics.

status_t logReadNext(uint64_t min_seqnum, tag_t tag,

LogRecord* record);

status_t logReadPrev(uint64_t max_seqnum, tag_t tag,

LogRecord* record);

// Alias of logReadPrev(kMaxSeqNum, tag, record).

status_t logCheckTail(tag_t tag, LogRecord* record);

// Trim the LogBook until `trim_seqnum`, i.e., delete

// all log records whose seqnum < `trim_seqnum`.

status_t logTrim(uint64_t trim_seqnum);

// Set auxiliary data for the record of `seqnum`.

status_t logSetAuxData(uint64_t seqnum, string auxdata);

Figure 2. Boki’s LogBook API (§ 3).

Boki provides a LogBook abstraction for its serverless

functions to access shared logs (§ 3). Boki applications cre-

ate LogBooks shared between functions to manage states.

Internally, Boki maintains a small number of physical, inde-

pendent, totally ordered logs. Application-facing LogBooks

are multiplexed on these physical logs for better resource

e�ciency.

To simplify stateful serverless applications using shared

logs, Boki also includes support libraries on top of the Log-

Book API aimed at three di�erent serverless use cases: Bok-

iStore for durable object storage, BokiQueue for message

queues, and BokiFlow for fault-tolerant work�ows with

exactly-once execution.

3 LogBook API

Boki provides a distributed shared log accessible via a simple

API, shown in Figure 2. Like previous shared log systems [5,

6, 9, 19], Boki exposes append, read, and trimAPIs for writing,

reading, and deleting log records. These APIs apply to logical

LogBooks, which are sequences of data records contained in

a physical log. Applications or application components that

wish to coordinate application state with strong consistency

and fault tolerance use the same LogBook.

Two important features of the API that distinguish Boki

from previous work is the list of tags and the auxiliary data

stored with each log record. Discussed in detail below, the

list of tags enables atomic writes to multiple LogBooks. The

auxiliary data allows Boki clients to share materialized views

of the log. Previous systems like Tango [7] built materialized

views, but only in thread-local memory.

Seqeunce numbers (seqnum). In a LogBook, every log

record has a unique sequence number (referred to as seqnum)

establishing the total order of records. As illustrated in Fig-

ure 2, the logAppend API returns the seqnum for the newly

appended log record. Seqnums are monotonically increas-

ing within a LogBook but not guaranteed to be consecutive.

logReadNext is used for forward log read, while logReadPrev

is used for backward log read. Given the non-consecutive na-

ture of seqnums, these read APIs necessitate specifying the

lower or upper bound of the seqnum for the read operation.

Log tags. Tagging log records with arbitrary strings is a

unique feature of Boki shared logs that enables selective log

reads. Each log record in the LogBook can be associated with

a set of string tags. Log tags are immutable metadata of a log

record, which can only be speci�ed when appending the log,

i.e. the logAppend API (see Figure 2). To selectively read the

log via tags, both logReadNext and logReadPrev APIs accept

a tag argument, meaning only log records with the given

tag are considered. Although a single tag is su�cient for

selective reads, every log entry can have multiple tags. Sup-

porting multi-tagging enables certain important use cases,

e.g., atomic group updates (explained in § 4.1.1).

Consistency guarantees. When a LogBook is shared by

multiple clients, Boki ensures sequential consistency for Log-

Book operations. Guarantees of sequential consistency in-

clude total write order, monotonic reads/writes, and read-

your-writes. A LogBook’s total write order is re�ected in the

monotonically increasing seqnums of log records. Access

to a total order of state updates allows di�erent clients to

agree on the �nal outcome of deterministic computations. Se-

quential consistency does not guarantee real-time visibility

of new log records, but read-your-writes ensures immedi-

ate visibility in the producing client. Moreover, monotonic

reads ensure that once a client reads some log record, all

log records having a smaller seqnum in the same LogBook

become visible. Monotonic reads means that any computa-

tion invoked by a client sees at least as much of the log as

its invoker could see, which is often an implicit assumption

within applications.

Auxiliary data. LogBook’s auxiliary data is designed as per-

log-record cache storage, which is set by the logSetAuxData

API. When performing log reads, auxiliary data is returned if

was ever set and is still resident in the cache (see the return

struct of logReadPrev and logReadNext APIs). Auxiliary data

can cache object views in a shared-log-based object storage.

These cached object viewswill signi�cantly reduce log replay

overheads (§ 4.1.3).

Auxiliary data is only used as a cache, so Boki does not

guarantee its durability. It provides only best e�ort support.

Moreover, Boki does not maintain the consistency of auxil-

iary data, i.e., Boki trusts applications to provide consistent

auxiliary data for the same log record. The desired usage pat-

tern of auxiliary data is to cache states related to log replay,

Increase a single counter by delta

def counter_inc (name : str , delta : int) :

logAppend (tags : [name] ,

data : { name : delta })

Increase multiple counters atomically

def counter_multi_inc (names : list [str] ,

deltas : list [int]) :

data = { }

for name , delta in zip (names , deltas) :

data [name] = delta

logAppend (tags : names , data : data)

Get the value of a single counter

def counter_get (name : str) - > int :

value = 0

pos = 0

while True :

record = logReadNext (tag : name ,

min_seqnum : pos)

break if record == None

value += record . data [name]

pos = record . seqnum + 1

return value

Figure 3. Implementing counters using LogBook APIs (§ 4.1). In

this example, the log record stores counter increase commands that

modify one or multiple counters. The log record is tagged with

names of modi�ed counters, and its data �eld stores a map where

keys are counter names and values are deltas to counters.

which should be uniquely determined by a deterministic

process. Relaxing durability and consistency allows Boki to

store auxiliary data in node-local in-memory caches without

any mechanism for consistency.

4 Using the LogBook API

In the literature of distributed systems, many log-structured

protocols are proposed to achieve strong consistency and

fault tolerance [5, 7, 8, 14, 17–20]. Boki’s LogBook API is

designed to implement common log-structured protocols

with minimum development e�ort.

In this section, to demonstrate the usability of the Log-

Book API, we use two important paradigms as examples: (1)

state machine replication (SMR) for shared data structures,

and (2) write-ahead logging (WAL) for exactly-once execu-

tion. For SMR-based protocols, we further explain three key

techniques unique to Boki: (1) how LogBook’s multi-tagging

enables atomic group updates, (2) how to achieve lineariz-

ability, and (3) how auxiliary data speeds up log replay.

4.1 State machine replication (SMR)

State machine replication (SMR) [16] is a paradigm for fault

tolerance, where application state is replicated across servers

using a log of commands. The command log is traditionally

backed by consensus algorithms such as Paxos [13, 18] or

Raft [14], but recent studies show a shared log can provide

an e�cient abstraction to support SMR-based data struc-

tures [7, 19] and protocols [5, 8]. When using a shared log to

implement SMR, state machine commands are ordered and

persisted by the shared log.

Figure 3 illustrates an SMR-based counter implementation

backed by a LogBook. In this example, a counter is an integer

which can be increased or decreased by a delta value. The

implementation allows multiple counters, which are iden-

ti�ed by string names. The counter_inc function increases

a counter by an integer delta. Using a negative delta value

e�ectively decreases the counter. The counter_inc function

appends a new log record representing the execution of

the counter increase command using the delta value. The

counter_get function re-constructs the current state of the

counter by replaying the log. Log records for counter increase

commands are tagged with the name of the counter being

modi�ed, which enables selective log reads in the counter_get

function.

Boki includes two support libraries, BokiStore and Bok-

iQueue, to provide SMR-based data structures for serverless

applications. Shared data structures like maps and queues

are common in distributed applications. Strong consistency

provided by SMR means that any code that uses these data

structures will work correctly. Code often makes implicit

assumptions about the semantics of data structures, for ex-

ample, that an item enqueued after another is also dequeued

after that item.

BokiStore implements a strongly consistent object store,

similar to Tango [7], which enables applications to store

data structures with strong consistency and fault tolerance.

Objects are identi�ed by unique string names and are rep-

resented as JSON objects. All object update commands are

stored in the shared LogBook, and the total order provided

by the LogBook becomes the single source of consistency.

Similar to the previous counter example, log records are

tagged with object names to allow selective log reads for

re-constructing objects. BokiStore also supports multi-object

transactions, with a transaction commit protocol derived

from Tango but taking advantages of log tags.

BokiQueue provides a simple push and pop API for send-

ing and receiving messages. Like BokiStore, BokiQueue uses

the log to store all push and pop commands, and the outcome

of each operation is determined by replaying the history

stored in the log. Applications make sure that results of log

replay are deterministic.

4.1.1 Atomic group updates via multi-tagging. Log

tags enable selective reads, which improves log replay per-

formance. But whenwewant to update multiple SMR-backed

objects together, it becomes challenging to achieve atomicity.

Consider the counter implementation in Figure 3. Suppose

there are two counters a and b that represent two di�erent

bank balances. We might want to e�ect a transfer of funds by

decrementing a by 100 while atomically incrementing b by

sessions/presentation/wei-michael.

[20] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel,

and Vincent Liu. Fault-tolerant and transactional stateful serverless

work�ows. In 14th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 20), pages 1187–1204. USENIX Association,

November 2020. URL: https://www.usenix.org/conference/osdi20/pre

sentation/zhang-haoran.

Zhipeng Jia, Emmett Witchel„

