L))

Check for
Updates

The Key Ideas Behind Boki’s Shared Logs

Zhipeng Jia
Google LLC
Seattle, WA, USA
zhipengjia@google.com

Abstract

The shared log approach has emerged as an attractive state
management option for distributed systems. A shared log
not only serves as persistent, strongly consistent, and fault-
tolerant storage, its ability to provide a total order enables
fine-grained state machine replication. Boki is a recent shared
log system that includes an intuitive LogBook abstraction
and novel shared log design choices. Despite Boki being
designed as storage for serverless functions, its design prin-
cipals are applicable to other distributed systems that disag-
gregate storage from compute.

1 Introduction

Distributed, shared, fault-tolerant logs [6, 9, 19] have emerged
as a powerful tool in distributed systems to solve several
difficult problems with a single, elegant abstraction. Logs
provide persistent and fault-tolerant storage, but they also
provide fine-grained state machine replication which forms
the basis for important distributed services like consensus [5]
and transactional data management [8]. A fault-tolerant dis-
tributed log enables distributed services to be built quickly
and correctly, while also providing a single target for low-
level, system optimizations.

Boki [11] brings shared logs to the serverless paradigm.
For serverless applications, the total order provided by the
shared log enables serverless functions to agree on the order
of state updates, eliminating the need for complex coordina-
tion protocols. Moreover, the shared log acts as a reliable and
durable storage layer, ensuring that state updates are per-
sisted even in the presence of failures. While Boki was devel-
oped to support serverless computation, it is effective in any
environment where compute can be scaled independently
from storage, e.g., by adding additional virtual machines to
a processing cluster.

Boki’s physical shared log is divided into logical LogBooks
that support an API (§ 3) similar to previous shared log
systems [5, 6, 19]. However, Boki adds important new fea-
tures including log tags and auxiliary data to speed up log-
structured protocols. Log tags provide selective reads which
are used to skip irrelevant records during log replay (§ 4.1).
Auxiliary data is used as cache to store materialized states
from log replay, so that new functions do not always need
to replay the log from the beginning (§ 4.1.3).

Logs are a write-optimized data structure, so systems that
use them often require read optimizations for higher per-
formance. For example, the log-structured file system [15]

Emmett Witchel
The University of Texas at Austin
Austin, TX, USA
witchel@cs.utexas.edu

Fmmmm e
1 Boki Support Libraries

Serverless

; | BokiFlow | | BokiStore | | BokiQueue |
Functions

1

|| FaaS Runtime
: (Nightcore)
1

1

1
1
Boki Shared Logs |
i
1

Boki Runtime

Figure 1. Boki overview (§ 2).

kept its index entirely in memory, and subsequent systems
have added features like substreams [7, 19] to reduce the
work of reconstructing state from a large number of updates.
Boki’s log tags are metadata in the form of a list of strings.
We show that log tags are a simple mechanism not only to
make selective reads faster, they also enable atomic updates
to multiple, independent logical streams that are stored in
the same shared physical log.

Boki takes inspiration from previous shared log systems [5-
7,9, 19], but also proposes two novel design choices to scale
shared logs while providing consistency guarantees. The
first design choice is using a log-structured approach for
maintaining Boki’s internal metadata. Boki internally uses a
data structure, called the metalog, to simultaneously provide
mechanisms for log ordering, read consistency, and fault
tolerance (§ 5.1). The second design choice is to build sepa-
rate indices for the log. Boki’s log index is the key enabler
for log tags and LogBook multiplexing. Moreover, the log
index design integrates with the metalog to provide read
consistency guarantees (§ 5.2).

The remainder of this paper is structured as follows: Sec-
tion 2 provides an overview of Boki components. Section 3
explains LogBook API in details. Section 4 demonstrates how
to use the LogBook API for two fault-tolerance paradigms:
exactly-once execution via write-ahead logging and state
machine replication. Section 4 also explains how to speed
up log-structured protocols via log tags and auxiliary data.
Section 5 describes key design elements in Boki: the metalog
and the log index. Section 6 concludes.

2 Overview of Boki

Boki’s design combines a FaaS system with shared log stor-
age (depicted in Figure 1). Boki’s implementation is based on
Nightcore [12], a state-of-the-art FaaS system for microser-
vices, while adding new components to support shared logs.

struct LogRecord {
uint64_t segnum;
vector<tag_t> tags;

string data;
string auxdata;

1

// Append a new log record.
status_t logAppend(vector<tag_t> tags, string data,
uint64_tx seqnum);

// Read the next/previous record whose segnum >=

// “min_seqnum’, or <= “max_seqnum . Log reads guarantee

// "monotonic reads" and "read-your-writes" semantics.

status_t logReadNext(uint64_t min_segnum, tag_t tag,
LogRecord* record);

status_t logReadPrev(uint64_t max_segnum, tag_t tag,
LogRecordx record);

// Alias of logReadPrev(kMaxSegNum, tag, record).
status_t logCheckTail(tag_t tag, LogRecord* record);

// Trim the LogBook until ~trim_segnum™, i.e., delete
// all log records whose segnum < ~trim_segnum™.
status_t logTrim(uint64_t trim_seqnum);

// Set auxiliary data for the record of ~segnum™.
status_t logSetAuxData(uint64_t segnum, string auxdata);

Figure 2. Boki’s LogBook API (§ 3).

Boki provides a LogBook abstraction for its serverless
functions to access shared logs (§ 3). Boki applications cre-
ate LogBooks shared between functions to manage states.
Internally, Boki maintains a small number of physical, inde-
pendent, totally ordered logs. Application-facing LogBooks
are multiplexed on these physical logs for better resource
efficiency.

To simplify stateful serverless applications using shared
logs, Boki also includes support libraries on top of the Log-
Book API aimed at three different serverless use cases: Bok-
iStore for durable object storage, BokiQueue for message
queues, and BokiFlow for fault-tolerant workflows with
exactly-once execution.

3 LogBook API

Boki provides a distributed shared log accessible via a simple
API, shown in Figure 2. Like previous shared log systems [5,
6,9, 19], Boki exposes append, read, and trim APIs for writing,
reading, and deleting log records. These APIs apply to logical
LogBooks, which are sequences of data records contained in
a physical log. Applications or application components that
wish to coordinate application state with strong consistency
and fault tolerance use the same LogBook.

Two important features of the API that distinguish Boki
from previous work is the list of tags and the auxiliary data
stored with each log record. Discussed in detail below, the
list of tags enables atomic writes to multiple LogBooks. The
auxiliary data allows Boki clients to share materialized views
of the log. Previous systems like Tango [7] built materialized
views, but only in thread-local memory.

Seqeunce numbers (seqnum). In a LogBook, every log
record has a unique sequence number (referred to as seqnum)
establishing the total order of records. As illustrated in Fig-
ure 2, the logAppend API returns the seqnum for the newly
appended log record. Seqnums are monotonically increas-
ing within a LogBook but not guaranteed to be consecutive.
logReadNext is used for forward log read, while 1ogReadPrev
is used for backward log read. Given the non-consecutive na-
ture of seqnums, these read APIs necessitate specifying the
lower or upper bound of the seqnum for the read operation.
Log tags. Tagging log records with arbitrary strings is a
unique feature of Boki shared logs that enables selective log
reads. Each log record in the LogBook can be associated with
a set of string tags. Log tags are immutable metadata of a log
record, which can only be specified when appending the log,
i.e. the logAppend API (see Figure 2). To selectively read the
log via tags, both logReadNext and logReadPrev APIs accept
a tag argument, meaning only log records with the given
tag are considered. Although a single tag is sufficient for
selective reads, every log entry can have multiple tags. Sup-
porting multi-tagging enables certain important use cases,
e.g., atomic group updates (explained in § 4.1.1).
Consistency guarantees. When a LogBook is shared by
multiple clients, Boki ensures sequential consistency for Log-
Book operations. Guarantees of sequential consistency in-
clude total write order, monotonic reads/writes, and read-
your-writes. A LogBook’s total write order is reflected in the
monotonically increasing seqnums of log records. Access
to a total order of state updates allows different clients to
agree on the final outcome of deterministic computations. Se-
quential consistency does not guarantee real-time visibility
of new log records, but read-your-writes ensures immedi-
ate visibility in the producing client. Moreover, monotonic
reads ensure that once a client reads some log record, all
log records having a smaller seqnum in the same LogBook
become visible. Monotonic reads means that any computa-
tion invoked by a client sees at least as much of the log as
its invoker could see, which is often an implicit assumption
within applications.

Auxiliary data. LogBook’s auxiliary data is designed as per-
log-record cache storage, which is set by the logSetAuxData
APIL When performing log reads, auxiliary data is returned if
was ever set and is still resident in the cache (see the return
struct of logReadPrev and logReadNext APIs). Auxiliary data
can cache object views in a shared-log-based object storage.
These cached object views will significantly reduce log replay
overheads (§ 4.1.3).

Auxiliary data is only used as a cache, so Boki does not
guarantee its durability. It provides only best effort support.
Moreover, Boki does not maintain the consistency of auxil-
iary data, i.e., Boki trusts applications to provide consistent
auxiliary data for the same log record. The desired usage pat-
tern of auxiliary data is to cache states related to log replay,

Increase a single counter by delta
def counter_inc(name: str, delta: int):
logAppend(tags: [name],
data: {name: delta})

Increase multiple counters atomically
def counter_multi_inc(names: list[str],
deltas: list[int]):
data = {}
for name, delta in zip(names, deltas):
data[name] = delta
logAppend(tags: names, data: data)

Get the value of a single counter
def counter_get(name: str) -> int:
value = 0
pos = 0
while True:
record = logReadNext(tag: name,
min_seqnum: pos)
break if record == None
value += record.data[name]
pos = record.seqnum + 1
return value

Figure 3. Implementing counters using LogBook APIs (§ 4.1). In
this example, the log record stores counter increase commands that
modify one or multiple counters. The log record is tagged with
names of modified counters, and its data field stores a map where
keys are counter names and values are deltas to counters.

which should be uniquely determined by a deterministic
process. Relaxing durability and consistency allows Boki to
store auxiliary data in node-local in-memory caches without
any mechanism for consistency.

4 Using the LogBook API

In the literature of distributed systems, many log-structured
protocols are proposed to achieve strong consistency and
fault tolerance [5, 7, 8, 14, 17-20]. Boki’s LogBook API is
designed to implement common log-structured protocols
with minimum development effort.

In this section, to demonstrate the usability of the Log-
Book API, we use two important paradigms as examples: (1)
state machine replication (SMR) for shared data structures,
and (2) write-ahead logging (WAL) for exactly-once execu-
tion. For SMR-based protocols, we further explain three key
techniques unique to Boki: (1) how LogBook’s multi-tagging
enables atomic group updates, (2) how to achieve lineariz-
ability, and (3) how auxiliary data speeds up log replay.

4.1 State machine replication (SMR)

State machine replication (SMR) [16] is a paradigm for fault
tolerance, where application state is replicated across servers
using a log of commands. The command log is traditionally
backed by consensus algorithms such as Paxos [13, 18] or
Raft [14], but recent studies show a shared log can provide

an efficient abstraction to support SMR-based data struc-
tures [7, 19] and protocols [5, 8]. When using a shared log to
implement SMR, state machine commands are ordered and
persisted by the shared log.

Figure 3 illustrates an SMR-based counter implementation
backed by a LogBook. In this example, a counter is an integer
which can be increased or decreased by a delta value. The
implementation allows multiple counters, which are iden-
tified by string names. The counter_inc function increases
a counter by an integer delta. Using a negative delta value
effectively decreases the counter. The counter_inc function
appends a new log record representing the execution of
the counter increase command using the delta value. The
counter_get function re-constructs the current state of the
counter by replaying the log. Log records for counter increase
commands are tagged with the name of the counter being
modified, which enables selective log reads in the counter_get
function.

Boki includes two support libraries, BokiStore and Bok-
iQueue, to provide SMR-based data structures for serverless
applications. Shared data structures like maps and queues
are common in distributed applications. Strong consistency
provided by SMR means that any code that uses these data
structures will work correctly. Code often makes implicit
assumptions about the semantics of data structures, for ex-
ample, that an item enqueued after another is also dequeued
after that item.

BokiStore implements a strongly consistent object store,
similar to Tango [7], which enables applications to store
data structures with strong consistency and fault tolerance.
Objects are identified by unique string names and are rep-
resented as JSON objects. All object update commands are
stored in the shared LogBook, and the total order provided
by the LogBook becomes the single source of consistency.
Similar to the previous counter example, log records are
tagged with object names to allow selective log reads for
re-constructing objects. BokiStore also supports multi-object
transactions, with a transaction commit protocol derived
from Tango but taking advantages of log tags.

BokiQueue provides a simple push and pop API for send-
ing and receiving messages. Like BokiStore, BokiQueue uses
the log to store all push and pop commands, and the outcome
of each operation is determined by replaying the history
stored in the log. Applications make sure that results of log
replay are deterministic.

4.1.1 Atomic group updates via multi-tagging. Log
tags enable selective reads, which improves log replay per-
formance. But when we want to update multiple SMR-backed
objects together, it becomes challenging to achieve atomicity.
Consider the counter implementation in Figure 3. Suppose
there are two counters a and b that represent two different
bank balances. We might want to effect a transfer of funds by
decrementing a by 100 while atomically incrementing b by

the same amount. We must take care to do the entire action
or none of it to ensure that funds are not lost or (erroneously)
created.

If we use the counter_inc function in Figure 3 to indepen-
dently change both counters, there will be two log records in
the LogBook. The LogBook read API cannot guarantee these
two log records are visible atomically for the reader, i.e., the
reader might see the update for counter a but not counter b.

Boki’s multi-tagging feature (i.e., allowing one log record
to have multiple tags) provides the mechanism to address
such a challenge. The counter_multi_inc function in Figure 3
demonstrates the approach. In this case, a single log record
corresponds to updates of multiple counters, and the record
is tagged with names of all involved counters. When a reader
reads counters a and/or b, they will get this single record that
has the update of both counters. The single-record nature of
the update ensures the atomicity of the multiple updates.

The multi-tagging feature also plays a critical role in Boki-
Store’s transaction protocol. In the protocol, the txn_commit
record is tagged with object names in the transaction write
set, which ensures the commit record appears atomically in
the update streams of all involved objects. At a high level,
Boki’s multi-tagging feature provides similar functionality
to multi-stream appends in vCorfu [19], but without any
coordination protocol.

4.1.2 Linearization challenge. Updates to our counter
(Figure 3) only record the delta, making them conflict-free
or commutative. If a single counter is incremented by 10 and
then by 20, the final value is independent from the update
order.

A lock is an important data structure whose operations
are not commutative. The lock state machine has two states:
empty and acquired. An acquire command can only succeed
when the lock is in the empty state, and vice versa. Suppose
a program wants to acquire the lock. It must first replay
the log to reconstruct the current lock state. If the lock is
in the empty state, the next step is to append an acquire
command to the log. But if there are multiple contending
threads, they will append multiple acquire commands. Which
participant should obtain the lock? and how do all of the
threads (efficiently) agree on the identity of the winner?

To obtain a correct lock implementation using only log
operations, the system must be able to linearize [10] the oper-
ations. Surprisingly, we can achieve linearizability for locks
without complicating the log API. Intuitively, the solution
is to include the tail seqnum of the current state machine
when appending the proposed update commands. If every
participant records their view of the tail, that ensures that
there is enough information in the log records for all partic-
ipants to agree on a unique outcome. While replaying the
log, participants choose only the first of any updates that
were concurrently proposed.

10

def check_lock_tail(lock_key:
tail, pos = None, 0

while True:

record =

str):

logReadNext (tag:
min_seqnum:
break if record None
if record.data["prev"] == tail.seqnum:
tail = record
pos = record.segnum + 1
return tail

lock_key,
pos)

def try_acquire_lock(lock_key: str) -> bool:
tail = check_lock_tail(lock_key)
if tail.data["state"] == EMPTY:
seqnum = logAppend (
tags: [lock_key],
data: {"state": ACQUIRED,
"prev": tail.seqnum})
tail = check_lock_tail(lock_key)
if tail.seqgnum
return True
return False

seqgnum:
Lock succeeded

Lock failed

def release_unlock(lock_key: str):
tail = check_lock_tail(lock_key)
assert tail.data["state"] == ACQUIRED
logAppend(tags: [lock_key],
data: {"state": EMPTY,
"prev": tail.seqgnum})

(a) Pseudocode of lock operations.

w

seqnum 0 1 2
state | E| A|A | E

Thread P (acquired the lock):
logAppend(state=ACQUIRE, prev=8) -> seqnum=1
logAppend(state=EMPTY, prev=1) -> seqnum=3

prev 1

Thread Q (failed to acquire the lock):
logAppend(state=ACQUIRE, prev=8) -> segnum=2

(b) An example log for the above lock implementation. Two threads P and
Q are contending to acquire a lock. Thread P wins due the its log record
has smaller seqnum.

Figure 4. Implementing locks using LogBook APIs (§ 4.1.2).

A linearizable lock is shown in Figure 4. In this example,
there are two concurrent lock acquire attempts, resulting
two log records, both having their prev fields equal to 0. The
first record in the log (seqnum=1) wins the lock. The second
record (seqnum=2) is a failed acquire attempt, and will be
ignored when replaying the log. Later, the lock is released
by the log record with seqnum=3.

We note this solution not only applies to two-state state
machines (e.g., locks), but it provides a generic approach
to linearize commands for any state machine when using
LogBook APIs.

4.1.3 Speedingup log replay using auxiliary data. Reads
in BokiStore are handled by replaying the log to re-construct
object state. This naive approach makes read latency pro-
portional to the number of relevant log records, i.e., the

+ €————— (1) Read backward until
log | | | | | | | | | | | | cached view exists
auxiliary > @ Replay the log, and
data |:| D |:|: fill m?s];iz:l}; c:‘choegd zlews

Figure 5. Use auxiliary data to cache object views in BokiStore,
which can avoid a full log replay (§ 4.1.3).

number of object writes. Tango [7] optimizes log replay by
caching local object views, such that only new records from
the shared log are replayed. However, this thread-local, in-
memory cache has two disadvantages: it is not present in
some environments like serverless, and it is not amortized
over multiple threads.

In BokiStore, object writes are logged as update commands
in the shared log. For each update command, its auxiliary
data stores a snapshot view of the modified object. When
reading an object, BokiStore seeks back from the log tail to
find the first relevant record having a cached object view
in its auxiliary data. Then BokiStore replays the log from
this position to re-construct the target object state. Figure 5
demonstrates this accelerated replay process. During replay,
for records missing cached object views, threads use the
logSetAuxData API to fill the auxiliary data with the updated
object views. Note that there is no coordination for setting
the auxiliary data because SMR by itself ensures object views
are always same for the same log position.

txn_commit records use auxiliary data to cache the de-
cided commit outcome. If the transaction commit succeeds,
the auxiliary data of the txn_commit also caches a view of
modified objects.

4.2 Exactly-once execution

Workflows composing multiple steps are an important para-
digm in distributed computing (e.g., serverless workflows [4]).
A workflow is a directed graph of computations where data
flows between nodes via the log. Workflows often inter-
act with cloud data storage (e.g., Amazon S3 [3] or Dy-
namoDB [1]) to manage their application state. While work-
flows can be connected with fault-tolerant queues (e.g., Ama-
zon SQS [2]), fault tolerance becomes challenging in such
scenario, because functions of a workflow can fail in the
middle of execution, leaving partial application states in
cloud storage. These partial states can cause records to be
processed multiple times or not at all when failures occur.
The key guarantee of stateful workflows is exactly-once
execution semantics, meaning even in face of failures, a work-
flow instance will eventually get executed exactly once as
if no failure has happened. Previous work proposes write-
ahead logging (WAL) to achieve exactly-once execution se-
mantics: Olive [17] proposes a client library interacting with
cloud storage, where a write-ahead redo log is used for recov-
ery in case of failures. Beldi [20] extends Olive’s log-based
techniques for transactional serverless workflows.

11

uid = read_inc(table=id, key="id")

Function X
(create person)

Cloud

: Invoke with uid key=“name’+uid, “Zhipeng Jia") Database

\
Function Y append_list(
(append attendees) table=conference, key=“SOSP21”, uid)

1
1
1
1
1
1
! : write(table=profile,
1
1
1
1
1

read_inc

a LogBook>

write | invoke | append_list |

Figure 6. Use logging to achieve exactly-once execution for server-
less workflows (§ 4.2).

To better support serverless workflows, Boki includes a
library, BokiFlow, which provides exactly-once execution
semantics with fault tolerance by using LogBook APIs. Boki-
Flow resembles Olive and Beldi’s logging techniques, which
log every operation having externally visible effects (e.g., a
database write). When failure happens, the log is used to
provide exactly-once guarantees, e.g., by avoiding duplicated
database updates.

Figure 6 shows an example serverless workflow for confer-
ence registration. This example has two serverless functions:
one to create a person’s profile, and the other for adding a
person to the conference attendance list. Consider a failure
that happens in between the two functions. If we simply
re-execute the workflow, the database may end up with du-
plicated people profiles. To provide exactly-once semantics,
BokiFlow uses a LogBook to log database updates and func-
tion invocations before and after these operations get exe-
cuted. When failure happens, the log is used to re-execute
the workflow while guaranteeing exactly-once execution
semantics.

5 Boki efficiency techniques

The API to append to a shared, distributed, fault-tolerant log
is simple, but the underlying implementation has to achieve
high throughput with global total order, as well as support
flexible log reads with consistency guarantees. To achieve
high throughput, concurrent log appends by independent
threads and nodes are buffered, then replicated to distributed
storage. At the same time, sequencers order the log and make
the total order visible to log readers [9]. To support flexible
log reads, Boki builds indices for the log, while providing a
mechanism for consistent log reads.

5.1 Metalog for log ordering

At the core of the log ordering mechanism, Boki employs
a log-structured approach: Boki maintains a data structure
called the metalog for ordering metadata updates to a physi-
cal log. Each metalog entry stores a cut vector which deter-
mines the global total order between multiple, concurrent

e[« [PIr2[7] [Flrlzl=]<]=]
sharda shard b shardc
Y
metalog| 211 [313 | 634 [646]
total order | 0% [12 obloc 20| 19| 20| 32 4a|1b|2° 3¢ 3‘7|4°|5c

Figure 7. An example showing how the metalog determines the
total order. A physical log in Boki is sharded, and the metalog uses
cut vectors to order records across log shards. Each element of a
cut vector corresponds to a log shard. In the figure, log records
between two red lines form a delta set, which is defined by two
consecutive vectors in the metalog (§ 5.1).

log shards. Shown in Figure 7, each log shard maintains a
local order of its log records, and a cut vector encodes the
progress of all shards, which are periodically appended to the
metalog. In this way, new updates to the metalog essentially
extend the underlying physical log, which also enables log
indices to be built by subscribing to metalog updates.

To achieve fault tolerance, every metalog is replicated on
a fixed number of sequencer nodes (3 in the prototype). One
of the sequencers is configured as primary, and only the
primary sequencer can append to the metalog. To append a
new metalog entry, the primary sequencer sends the entry to
all other sequencers for replication. Once acknowledged by a
quorum, the new metalog entry is considered as successfully
appended. If any sequencer node fails, reconfiguration is

triggered.
5.2 Log index for selective log reads with consistency

Boki builds log indices to enable multiplexing LogBooks on
internal physical logs and selective reads via log tags. The
structure of the log index is designed to fit the semantic of
LogBook read APIs (see Figure 2). The log index first groups
records by their LogBook identifiers (book_id) and log tags,
because a read can only target a single LogBook and a single
log tag. For each (book_id, tag) pair, it builds an index row that
includes seqnums of log records matching book_id and tag.
Given that LogBook read APIs seek for records sequentially
using lower or upper bounds for seqnums, the index row is
a sorted list of seqnums, allowing a binary search to locate
the target seqnum. When a log record has multiple tags, its
seqnum will appear in multiple index rows. Figure 8 depicts
the workflow of LogBook reads using the index.

From the LogBook read workflow, read consistency is de-
termined by the log index, because the index is first used
to locate the seqnum of log record to read. To scale read
throughput, Boki builds multiple index replicas, creating the
challenge to enforcing read consistency among replicas. To
achieve read consistency, Boki takes advantage of the fact
that log indices are built by subscribing the metalog, mean-
ing the metalog position of an index replica determines its
relative freshness. Recall that LogBook reads should provide
monotonic reads and read-your-writes (§ 3). For a log reader,

12

logReadNext (book_id =3, min_seqnum = 8, tag = 2)
e

1

i

MOgBookengine '

1

Log index @ f4j/'\ !
1

1

1

1

1

Storage nodes

Record store

(book_id, tag) | seqnums Record
...... [oon] cache
6.2 (67910, 1 |—73

Figure 8. Workflow of LogBook reads (§ 5.2): @D Locate a LogBook
engine stores the index for the physical log backing book_id = 3; @
Query the index row (book_id, tag) = (3, 2) to find the metadata of
the result record (seqnum = 9 in this case); @) Check if the record
is cached; @ If not cached, read it from storage nodes.

to guarantee monotonic reads, it must use log indices with
monotonically increasing metalog positions. Similarly, to
guarantee read-your-writes, a log reader must only use the
log index that already caught up to its latest log writes, i.e.,
the index includes the seqnum of the latest write.

To realize such mechanism, a log reader maintains a met-
alog position to represent its most recently read position in
the log. Before reading from an index replica, the log reader
will wait for the index to catch up if the replica’s metalog po-
sition is before the reader’s. After the read, the log reader will
update its metalog position to guarantee monotonic reads
for subsequent reads. Log writes also result in updating the
metalog position to include log records just appended, in or-
der to guarantee read-your-writes for future reads. Figure 9
illustrates this mechanism.

6 Conclusion

State management remains to be a key challenge for dis-
tributed systems, especially when fault tolerance and strong
consistency are required. Shared logs prove to be an effec-
tive solution in such challenging scenario. A shared log not
only scales to high write throughput, its total order property
naturally enables state machine replication [16], the generic,
widely-used paradigm for fault-tolerant services.

Modern distributed systems are moving to disaggregation
architectures, where machines for data storage are often
disaggregated from machines for compute. One prominent
example is function-as-a-service (FaaS) in cloud computing.
Boki is an attempt to provide shared logs in a FaaS environ-
ment, aiming at helping stateful serverless applications to
manage their state with fault tolerance and strong consis-
tency.

Boki designs an intuitive LogBook abstraction for appli-
cations to adopt log-structured protocols including write-
ahead logging and state machine replication. To speed up
log-structured protocols, the LogBook abstraction introduces
log tags for selective reads, and auxiliary data to cache log
replay states. The LogBook abstraction also allows multi-
ple tags to be associated with one log record, serving as
an elegant solution for atomic group updates and complex

metalog [© [@ B B)
positions > v the log >
o indices make progress
log indices @ @ independently

Consistency checks Updating metalog positions

1 [1
1 LY]
1 [:
e J[Preecs (&) o/ || [Frr]Press v &) = []
1 [1
[JPreoss () X { # [onr[Peppencs [V] —) [enr]
1 1 1

Figure 9. Consistency checks by comparing metalog positions
(§ 5.2). For a log reader (serverless function in this example), if
reading from a log index whose progress is behind its metalog
position, it could see stale states. For example, function h have
already seen record X, so that it cannot perform future log reads
through index A.

log-based protocols like transaction commits. Despite the
simplicity of the LogBook API, it can achieve strong consis-
tency properties including linearizability.

To scale shared logs while providing consistency guaran-
tees, Boki internally employs a log-structured mechanism,
the metalog, to manage its own metadata. The metalog de-
sign provides a unified mechanism to address log ordering,
read consistency, and fault tolerance. To enable selective
log reads while scaling read throughput, Boki builds indices
for shared logs. Boki’s log index serve as the first step to
read any log data, such that the index actually ensures read
consistency such as monotonic reads and read-your-writes.

References

[1] Amazon DynamoDB | NoSQL Key-Value Database | Amazon Web
Services. [Accessed Apr, 2022]. URL: https://aws.amazon.com/dyn
amodb/.

Amazon SQS | Message Queuing Service | AWS. [Accessed Apr, 2022].
URL: https://aws.amazon.com/sqs/.

Cloud Object Storage | Store and Retrieve Data Anywhere | Amazon
Simple Storage Service (S3). [Accessed Jan, 2021]. URL: https://aws.
amazon.com/s3/.

Workflows | Google Cloud. [Accessed Apr, 2022]. URL: https://cloud.
google.com/workflows.

Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mihir Dharamshi,
Ahmed Jafri, Xiao Shi, Santosh Ghosh, Hazem Hassan, Aaryaman
Sagar, Rhed Shi, Jingming Liu, Filip Gruszczynski, Xianan Zhang, Huy
Hoang, Ahmed Yossef, Francois Richard, and Yee Jiun Song. Virtual
consensus in delos. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 617-632. USENIX Associ-
ation, November 2020. URL: https://www.usenix.org/conference/osdi
20/presentation/balakrishnan.

Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wob-
bler, Michael Wei, and John D. Davis. CORFU: A shared log design
for flash clusters. In 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12), pages 1-14, San Jose, CA, April
2012. USENIX Association. URL: https://www.usenix.org/conference/
nsdi12/technical-sessions/presentation/balakrishnan.

Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan
Prabhakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou, and
Aviad Zuck. Tango: Distributed data structures over a shared log.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating

(2]
(3]

(4]
(5]

(6]

(7]

13

(8]

(]

(10]

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

Systems Principles, SOSP ’13, page 325-340, New York, NY, USA, 2013.
Association for Computing Machinery. doi:10.1145/2517349.25
22732.

Mabhesh Balakrishnan, Chen Shen, Ahmed Jafri, Suyog Mapara, David
Geraghty, Jason Flinn, Vidhya Venkat, Ivailo Nedelchev, Santosh
Ghosh, Mihir Dharamshi, Jingming Liu, Filip Gruszczynski, Jun Li,
Rounak Tibrewal, Ali Zaveri, Rajeev Nagar, Ahmed Yossef, Francois
Richard, and Yee Jiun Song. Log-structured protocols in delos. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP ’21, page 538-552, New York, NY, USA, 2021. Associ-
ation for Computing Machinery. doi:10.1145/3477132.3483544.
Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo Alvisi, and
Robbert Van Renesse. Scalog: Seamless reconfiguration and total order
in a scalable shared log. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages 325-338, Santa
Clara, CA, February 2020. USENIX Association. URL: https://www.us
enix.org/conference/nsdi20/presentation/ding.

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correct-
ness condition for concurrent objects. ACM Trans. Program. Lang.
Syst., 12(3):463-492, jul 1990. doi:10.1145/78969.78972.

Zhipeng Jia and Emmett Witchel. Boki: Stateful serverless computing
with shared logs. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, SOSP *21, page 691-707, New York,
NY, USA, 2021. Association for Computing Machinery. doi:10.114
5/3477132.3483541.

Zhipeng Jia and Emmett Witchel. Nightcore: Efficient and scalable
serverless computing for latency-sensitive, interactive microservices.
In Proceedings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS 2021, page 152-166, New York, NY, USA, 2021. Association
for Computing Machinery. doi:10.1145/3445814.3446701.

Tulian Moraru, David G. Andersen, and Michael Kaminsky. There
is more consensus in egalitarian parliaments. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP
’13, page 358-372, New York, NY, USA, 2013. Association for Comput-
ing Machinery. doi:10.1145/2517349.2517350.

Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 305-319, Philadelphia, PA, June 2014. USENIX
Association. URL: https://www.usenix.org/conference/atc14/technica
I-sessions/presentation/ongaro.

Mendel Rosenblum and John K. Ousterhout. The design and imple-
mentation of a log-structured file system. ACM Trans. Comput. Syst.,
10(1):26-52, February 1992. doi:10.1145/146941.146943.

Fred B. Schneider. Implementing fault-tolerant services using the
state machine approach: A tutorial. ACM Comput. Surv., 22(4):299-319,
December 1990. doi:10.1145/98163.98167.

Srinath Setty, Chunzhi Su, Jacob R. Lorch, Lidong Zhou, Hao Chen,
Parveen Patel, and Jinglei Ren. Realizing the fault-tolerance promise
of cloud storage using locks with intent. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), pages
501-516, Savannah, GA, November 2016. USENIX Association. URL:
https://www.usenix.org/conference/osdi16/technical-sessions/prese
ntation/setty.

Robbert Van Renesse and Deniz Altinbuken. Paxos made moderately
complex. ACM Comput. Surv., 47(3), February 2015. doi:10.1145/26
73577.

Michael Wei, Amy Tai, Christopher J. Rossbach, Ittai Abraham,
Maithem Munshed, Medhavi Dhawan, Jim Stabile, Udi Wieder, Scott
Fritchie, Steven Swanson, Michael J. Freedman, and Dahlia Malkhi.
veorfu: A cloud-scale object store on a shared log. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17), pages 35-49, Boston, MA, March 2017. USENIX Association.
URL: https://www.usenix.org/conference/nsdi17/technical-

[20]

Zhipeng Jia, Emmett Witchel,,

sessions/presentation/wei-michael.

Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel,
and Vincent Liu. Fault-tolerant and transactional stateful serverless
workflows. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 1187-1204. USENIX Association,
November 2020. URL: https://www.usenix.org/conference/osdi20/pre
sentation/zhang-haoran.

