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Abstract

Although adaptive cancer therapy shows promise in integrating evolutionary dynamics into
treatment scheduling, the stochastic nature of cancer evolution has seldom been taken into
account. Various sources of random perturbations can impact the evolution of heteroge-
neous tumors, making performance metrics of any treatment policy random as well. In this
paper, we propose an efficient method for selecting optimal adaptive treatment policies
under randomly evolving tumor dynamics. The goal is to improve the cumulative “cost” of
treatment, a combination of the total amount of drugs used and the total treatment time. As
this cost also becomes random in any stochastic setting, we maximize the probability of
reaching the treatment goals (tumor stabilization or eradication) without exceeding a pre-
specified cost threshold (or a “budget”). We use a novel Stochastic Optimal Control formula-
tion and Dynamic Programming to find such “threshold-aware” optimal treatment policies.
Our approach enables an efficient algorithm to compute these policies for a range of thresh-
old values simultaneously. Compared to treatment plans shown to be optimal in a determin-
istic setting, the new “threshold-aware” policies significantly improve the chances of the
therapy succeeding under the budget, which is correlated with a lower general drug usage.
We illustrate this method using two specific examples, but our approach is far more general
and provides a new tool for optimizing adaptive therapies based on a broad range of sto-
chastic cancer models.

Author summary

Tumor heterogeneities provide an opportunity to improve therapies by leveraging com-
plex (often competitive) interactions of different types of cancer cells. These interactions
are usually stochastic due to both individual cell differences and random events affecting
the patient as a whole. The new generation of cancer models strive to account for this
inherent stochasticity, and adaptive treatment plans need to reflect it as well. In optimiz-
ing such treatment, the most common approach is to maximize the probability of eventu-
ally stabilizing or eradicating the tumor. In this paper, we consider a more nuanced
version of success, maximizing the probability of reaching these therapy goals before the
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cumulative burden from the disease and treatment exceed a chosen threshold. Impor-
tantly, our method allows computing such optimal treatment plans efficiently and for a
range of thresholds at once. If used on a high-fidelity personalized model, our general
approach could potentially be used by clinicians to choose the most suitable threshold
after a detailed discussion of a specific patient’s goals (e.g., to include the trade-offs
between toxicity and quality of life).

1 Introduction

Optimizing the schedule and composition of drug therapies for cancer patients is an important
and active research area, with mathematical tools often employed to improve the outcomes
and reduce the negative side effects. Tumor heterogeneity is increasingly viewed as a key aspect
that can be leveraged to improve therapies through the use of optimal control theory [1]. Most
researchers using this perspective focus on deterministic models of tumor evolution, with typi-
cal optimization objectives of maximizing the survival time [2], minimizing the tumor size [3],
or minimizing the time until the tumor size is stabilized [4]. In models that address the sto-
chasticity in tumor evolution, a typical optimization goal is to find treatment policies that max-
imize the likelihood of patient’s eventual cure (e.g., [5-7]) or minimize the likelihood of
negative events (e.g., metastasis) after specified time [8]. However, this ignores the need for
more nuanced treatment policies that maximize the likelihood of different levels of success—
e.g., the probability of reaching remission or tumor stabilization without exceeding the speci-
fied amount of drugs and/or the specified treatment duration. The primary goal of this paper
is to introduce a rigorous and computationally efficient approach that addresses such challeng-
ing objectives in stochastic cancer models.

The advent of personalized medicine in cancer has changed the way we think about therapy
for patients whose tumors have actionable mutations. This has been a game changer for some
patients, drastically increasing life spans, reducing toxicity and improving quality of life. Frus-
tratingly, however, this population of patients is still small; it was estimated in 2020 that only
/5% of patients benefit from these targeted therapies [9]. Further, despite the many advan-
tages of personalized therapies, they rarely, if ever, lead to a complete cure since tumors
develop resistance through the process of Darwinian evolution [10]. In response to this realiza-
tion, a new approach called “evolutionary therapy” seeks to use the evolutionary dynamics of
diseases to alter therapeutic schedules and drug choices. Through a combination of mathemat-
ical and experimental modeling, investigators have worked to understand a range of theoreti-
cal questions of practical importance. E.g., how does the emergence of resistance to one drug
affect the sensitivity to another? Do heterogeneous (phenotypically or genotypically mixed)
populations within tumors respond to drugs differently depending on their current state? The
insights gained in these investigations have already led to progress in rational drug ordering/
cycling for bacterial infections [11-14] as well as for a number of cancers [15, 16]. In the study
of therapeutic scheduling, adaptive therapy, which uses mathematical tools from Evolutionary
Game Theory (EGT), has shown promise not only in theory [17], but also in a phase 2 trial for
men with metastatic prostate cancer [18]. Experimentally, there have been confirmations of
EGT principles in vivo [19] as well as more quantitatively focused assay development in vitro
[20], and observations of game interactions using these methods [21]. There are also many
other models capturing the competition within heterogeneous tumors without using game-
theoretic derivations; e.g., [3, 22-24]. The majority of theoretical work in this space has
focused on optimization of different drug regimens for deterministic models of cancer
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evolution [25-29]. In contrast, our goal here is to provide efficient computational tools for
nuanced therapeutic scheduling in cancer models that directly account for stochastic
perturbations.

Cancers (and other populations of living things) are comprised of individual cells (or
organisms) with their own behaviours and evolutionary histories. Stochastic phenomena are
ubiquitous in their interactions and life histories. These include individual genetic differences,
fate transitions [30], varying reactions to drugs [31], differences in signalling, and small-scale
variations in the tumor environment. Many of these are instances of demographic stochasticity
[32], which often can be “averaged-out” when dealing with a sufficiently large population.
Indeed, this notion is crucial for any description of tumor heterogeneity through splitting the
cells into sub-populations. Such splitting is natural if the mutation-selection balance is tuned
so that only closely related genotypes, encoding the same phenotype, will stably exist. These
groups are also referred to as quasispecies [33, 34] and exist as distributions around a central
genotype, with all cells in the group behaving in a similar manner despite random birth/death
events [32, 35] and small within-the-group genetic heterogeneities [36]. In contrast, our focus
here is on environmental stochasticity, which cannot be ignored even in large populations
since it describes random events that simultaneously affect the entire groups. Such perturba-
tions are typically external [32, 35]; e.g., for cancer they might result from therapy-unrelated
drugs or from frequent small changes in the host’s physiology. Of course, any such event will
also cause varying responses of individual cells within each subpopulation; so, our use of the
term “environmental stochasticity” should be interpreted as direct modeling of subpopula-
tion-averaged responses to such system-wide perturbations.

Modeling such perturbations in continuous-time usually results in Stochastic Differential
Equations (SDEs) [37, 38], whose behavior can be optimized using Stochastic Optimal Control
Theory [39]. The latter provides a mathematical framework for handling sequential decision
making (e.g., how much drug to administer at each point in time) under random perturbations
(e.g., stochastic changes in respective fitness of competing subpopulations of cancer cells). Any
fixed treatment strategy will result in a random tumor-evolutionary trajectory and a random
cumulative “cost” (e.g., cumulative amount of drugs used, or time to recovery, or a combina-
tion of these two metrics). The key idea of Dynamic Programming (DP) is to pose equations
for the cumulative cost of the optimal strategy and to recover that strategy in feedback form:
i.e., decisions about the dose and duration of therapy are frequently re-evaluated based on the
current state of the tumor instead of selecting a fixed time-dependent treatment schedule in
advance. This idea is applicable across a wide range of cancer models and therapy types,
including those intended to stabilize the tumor and those aiming to eradicate it. We follow this
approach here, but with an important caveat: instead of selecting an on-average optimal strat-
egy (e.g., the one which minimizes the expected cost of treatment) as would be usual in sto-
chastic DP, we select a strategy maximizing the probability of some desirable outcome (e.g.,
reaching the goals of the therapy without exceeding a specific cost threshold). The resulting risk-
aware (or, more precisely, “threshold-aware”) policies are designed to be adaptive, adjusting
the treatment plan along the way based on the responsiveness of tumor to drugs already used
(and the cost already incurred) so far. In contrast to standard methods of constrained stochas-
tic optimal control, our approach makes it easy to compute such threshold-aware policies for a
range of thresholds simultaneously.

As is often the case, there remains a significant gap between simplified mathematical mod-
els and clinical applications. Much work remains in refining and calibrating EGT models, and
also in measuring different aspects of biological stochasticity. But once high-fidelity personal-
ized models become available, our general approach could potentially be used by clinicians to
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choose the most suitable threshold after a detailed discussion of a specific patient’s goals (to
include the trade-offs between toxicity and quality of life, for example).

2 Methods and models

To emphasize the broad applicability of our “risk-aware” adaptive therapy optimization
approach, we first describe it for a fairly generic cancer model. Two specific examples are then
studied in detail in §2.2 and §2.3.

2.1 Traditional and risk-aware control in drug therapy optimization

We note that most of the literature on dynamic programming in cancer models starts with
positing a specific known/fixed treatment horizon T, with the success or failure of therapy
assessed after that time (or earlier, in case of the modeled patient’s death). This makes it easier
to use the standard equations and algorithms of “finite-horizon” optimal control theory. But
such a pre-determined T is not well-aligned with the notion of adaptive therapies. Instead, we
adopt the indefinite-horizon framework, in which the process terminates as soon as the tumor’s
state satisfies some predefined conditions, with the terminal time T thus dependent on the
chosen treatment policy. We use this framework in all of the control approaches described
below, even though many of them have direct finite-horizon analogs as well.

We begin by describing several “traditional” optimal control formulations, followed by the
threshold-aware version, which addresses some of their shortcomings in cancer applications.
Starting with the deterministic setting summarized in Box 1, we use x(¢) € R" to encode the
time-dependent state of a tumor (e.g., this could be the size or the relative abundance of n dif-
ferent sub-types of cancer cells). Tumor dynamics are modeled by an ODE system
x = f(x, d), where the rate function ftakes as inputs both the current state x(¢) and the current
control, the “therapy intensity” d(f). In models with a single drug, this is just a scalar d(t) € [0,
dmax] indicating the current rate of that drug’s delivery, where d,;,,, encodes the Maximum
Tolerated Dose (MTD), which can in principle be patient-specific. But the same framework
can also be used for multiple drugs, with a separate upper bound specified for each element of
d(t). Given an initial tumor configuration x(0) = &, a successful therapy aims to drive the
tumor state to a set Ay, while ensuring that the set Ag,; is avoided. E.g., in eradication therapy
models, Agycc might correspond to tumors below the detection level, while Ag,; might specify a
much larger size that effectively kills a patient; see §2.3. On the other hand, for models that
only track the relative abundance of cancer subpopulations, Ag,.. might be defined in terms of
the desired low abundance of specific subpopulations affected by d(t), with the idea that the
tumor size stabilizes or an entirely different therapy strategy is adopted after x(t) enters Agycc;
see §2.2.

If the therapy manages to reach A, . while avoiding Ag,, its overall “cost” 7 is assessed by
integrating some running cost K = K(x, d) along the “trajectory” from & to A = Agycc U Agyy and
adding the “terminal cost” g depending on its final state. E.g., g might be defined as + oo on
At,;) to make such outcomes unacceptable. The running cost K depends on the current state of
the tumor and the current drug usage levels and can be used to model the direct impact on the
patient of the tumor size and composition as well as the side effects of the therapy. The key
idea of dynamic programming [40] is to define a value function u(§) encoding the minimal
overall cost for each specific initial tumor state and to show that this 4 must satisfy a stationary
Hamilton-Jacobi-Bellman equation (2.4). Once that partial differential equation (PDE) is
solved numerically, the globally optimal rate of treatment can be obtained in feedback form for
all cancer states (i.e., d = dx(£)), which makes it suitable for the adaptive therapy framework.
Throughout this paper, we will use dx(£) to denote an optimal feedback policy for the
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Box 1: Problem setup of a typical deterministic optimal cancer-
control problem

Evolutionary dynamics with control on therapy intensity:

x=f(x,d),
{ (2.1)
x(0) =¢&.
Process terminates as soon as either { ) € A if therapy succeeds;
x(t) € Apys if therapy fails.
Definitions and Parameters:
e x € R", n-dimensional cancer state;
o d: R, — D (D compact), time-dependent intensity of the therapy (control);
o A CR", success region;
o Ay C R, failure region;
o A= Agec U Agy, terminal set.
Total treatment time:
T(& d(-) =inf {te R, | x(t) € A, x(0) =&} (2.2)
Treatment cost function:
T
76.40)) = [K(s(e) dle) de + g (x(1)) 23
0

where T:= T(&, d(-)) is the terminal time, K(x, d) is the running cost, and the terminal
cost is

+oo, if x(T) € A,
glx) = .
0, if x(T) € A

succ®

Value function:

u(8) = inf 7(&,d()

is found by numerically solving a first-order HJB PDE
min {K(&,d) + Vu(§) - f(&,d)} = 0, (2:4)

with the boundary condition u# = gon A. See S1 Text §C.1 for the derivation and §D.2 for
the numerics.
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Box 2: Problem setup of the stochastic optimal control problem

Stochastic evolution dynamics with control on therapy intensity (a drift-diffusion
process):

dX = a(X, d) dt + X(X, d) dW,
{ (2.5)

X(0) = &.

X(t) e A if therapy succeeds;

succ?

Process terminates as soon as either
X(t) € Ay, if therapy fails.

Definitions and Parameters:

e X € R", n-dimensional cancer state;

o W, standard m-dimensional Brownian motion;
« a(X,d) € R", the drift function;

o X(X,d) € R"", the diffusion function.

Note: Definitions of the total treatment time T := T(&, d(-)) and the treatment cost func-
tion J (&, d(-)) stay the same as in Box 1. But they are now random variables as we will
replace x(t) by X(¢).

deterministic version of each control problem. If K is chosen so that the overall cost of a suc-
cessful therapy J reflects a weighted sum of the total therapy duration and the cumulative use
of each drug, the weights can be adjusted to reflect the relative importance of these optimiza-
tion criteria. In this case, if fis also a linear function of d, it is easy to show that the optimal
treatment policy dy (&) is generally bang-bang; i.e., for each drug, it prescribes either no usage
or the maximal (MTD) usage in every cancer state &.

In a generic continuous-time stochastic cancer model (summarized in Box 2), the tumor
state X(¢) becomes a random variable, with the dynamics specified by a Stochastic Differential
Equation (SDE) (2.5), which replaces the deterministic Ordinary Differential Equation (ODE)
(2.1). The definitions of the total treatment time T(&, d(-)) and the overall treatment cost
J(&,d(-)) remain the same, but both of them become random variables. The standard (risk-
neutral) approach of stochastic optimal control is to find a feedback-form treatment policy
that minimizes the expected treatment cost E[7]. As explained in Box 3, the resulting value
function satisfies another stationary HJB PDE (2.7). The choice of suitable boundary condi-
tions is more subtle here: setting g = + 0o on Ag,; is no longer an option since the probability
of entering Ag,; before Ag,. is usually positive under every treatment policy, which would
result in J = +oo for every occasional failure and the overall E[7] = 4o0c. This makes it nec-
essary to either choose a specific finite “cost” of failure (which can be problematic both for
practical and ethical reasons) or switch to an entirely different optimization objective. For
example, one can try to simply maximize the probability of fulfilling the therapy goals (i.e.,
eventually reaching Ay, while avoiding Ag,;) by solving the Eq (2.9). But this latter
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Box 3: Standard stochastic dynamic programming approaches

A risk-neutral (expectation-minimizing) approach [41]:
Value function:

w(€) = inf E[J (& d())] (2.6)

d()

can be found by solving a second-order Hamilton-Jacobi-Bellman (HJB) equation:

min {K(@ d) + V(&) 226585 ), }zo, (2.7)

where B=3%" and w = gon A = Agec U Ag.

Note: If one uses g(X(T)) = +oo when therapy fails (i.e., when X(T) € Agy), the diffusion
will generally result in w = + co for most if not all initial tumor configurations outside of
ASllCC'

An alternative is to maximize the probability of eventual goal attainment:

Value function:

w(g) = sil)) P(X(T) € A,..) (2.8)

can be found by solving a second-order Hamilton-Jacobi-Bellman (HJB) equation:

max {VW( Z@f 85 ,d), } =0, (2.9)

with the boundary condition w = 1 on Ag,.c and w = 0 on Agy.

formulation ignores many important practical considerations: e.g., it can easily result in an
unreasonably long treatment time or in significant side effects from a prolonged MTD-level
drug administration.

In contrast, the approach we are pursuing here allows for a more nuanced definition of suc-
cess (e.g., taking into account the total drug usage, the treatment duration, and/or the cumula-
tive burden from the tumor). Choosing a running cost K to reflect the above factors, we define

the overall cost as 7 (&, d( f K(X (7)) dr + g(X(T)), which might be infinite if X

(T) € Apyt. We then maximize the probability of reaching the policy goals, but constraining the
overall cost by some pre-specified threshold 5. I.e., we need to find an adaptive therapy that
maximizes P(J < 5). Our goal is to compute such threshold-aware policies efficiently for all
starting tumor configurations £ and a broad range of threshold levels simultaneously. It is easy
to see that here good treatment policies will have to also take into account the cost accumu-
lated so far. This makes it natural to treat our chosen threshold s as an initial cost budget, track-
ing the remaining budget s(f) by solving Eq (2.13) in Box 4. The value function can be found
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Box 4: Our threshold-aware approach

Value function:
W(£,5) = sup P(j(g, d(~)> < s> (2.10)
d()

can be found by solving a different second-order HJB equation:

2

max {_%@»)K@, &)+ V(&) alEd) +3 >

- ag,agv(’; s)B(S, d),-,]} =0,(2.11)

where s € [0, S]. See the detailed derivation in S1 Text §C.2.

The boundary conditions of HJB equation:

v(&,s) =1, if E€ A, sc0,S];

succ?

v(&,s) =0, if &€ Ay, s€0,S]; (2.12)
v(&,0) =0, if £E¢ A,
The (random) ODE describing the reduction of budget:
§=—K(X(t),d(t)), s(0)=5€(0,8]. (2.13)

by solving the parabolic PDE (2.11) numerically, and the optimal feedback policy & (£, s) is
recovered in the process for all 5 € (0, S].

We note that, in classical stochastic optimal control, parabolic HJB equations are usually
encountered when dealing with finite horizon problems, where the terminal time T is specified
in advance. See [8, 42, 43] for typical examples in cancer-related literature. In contrast, the
parabolicity in PDE (2.11) arises because of the monotone decrease in the remaining budget s
().

The details of our numerical method based on Box 4 are included in S1 Text §D.1. In the
interest of computational reproducibility, we provide the source code for approximating value
functions and computing threshold-aware policies for all the examples from §3 at https://
github.com/eikonal-equation/Stochastic-Cancer.

While this threshold-aware framework has important advantages illustrated below, it also
brings to the forefront several subtleties avoided in the more traditional stochastic optimal
control approaches. First, an adaptive treatment policy optimal for one specific threshold is
usually not optimal for another. (The starting budget in (2.13) is important for deciding when
to administer drugs.) This would make it necessary for a practitioner to have a detailed discus-
sion with their patient to choose a suitable threshold value before the treatment is started. Sec-
ond, stochastic perturbations make the outcome random, and the budget might run out under
any treatment policy; i.e., we might see s(t,) = 0 at some random time ¢,. But this scenario is

only a failure in the sense that the overall cost 7 will now definitely exceed the threshold value
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5. If the patient is still alive (X(t) ¢ Ay, Vr € [0,]) and interested in continuing treatment,
one has to make a decision on the new strategy. This can be done either by posing a new
threshold for future treatment costs or by switching to an entirely different policy—e.g., either
by employing some traditional stochastic optimal control approach (based on Eqs (2.7) or
(2.9)) or by using a deterministic-optimal policy based on Eq (2.4). The latter version is used
in all stochastic simulations in the following sections.

Informally, threshold-aware policies reflect a tension between two objectives which are
often (but not always) in conflict. Maximizing the probability of treatment attaining its pri-
mary goals (e.g., tumor stabilization or eradication) is balanced against reducing the cost (a
combination of tumor and treatment burdens) suffered along the way. The former is opti-
mized but only over the scenarios where the latter stays below the prescribed threshold. We
close this subsection by highlighting connections of our approach to general multiobjective
optimal control and optimal control with integral constraints.

In deterministic optimal control theory, the idea of treating some version of cumulative
cost as an additional state variable is well-known. But the resulting ODE systems are typically
treated within the framework of Pontryagin’s Maximum Principle (PMP) [44], which has an
important advantage (its suitability for high-dimensional problems) but also a number of seri-
ous drawbacks: the fact that policies are not recovered in feedback form, the fact that these pol-
icies are generally not guaranteed to be globally optimal, occasional difficulties in ensuring the
convergence of numerical methods needed to find such policies, and challenges in handling
non-trivial state constraints. In cancer literature, this PMP-based approach has been used to
impose “isoperimetric constraints” on the amount of administered chemotherapy [45] or
immunotherapy [46]. In addition to the issues listed above, we note that the suitability of
equality (isoperimetric) constraints is not obvious in many cancer applications. Indeed, the
fact that a less aggressive treatment may in some cases improve the outcomes is one of the
main reasons for the interest in adaptive therapies. Thus, insisting that all available drugs must
be used is hard to justify, and inequality constraints (e.g., imposing an upper bound on the
cumulative drug use) seem much more reasonable.

The first dynamic programming (HJB-based) formulation for handling such constraints in
general deterministic control problems was developed in [47]. It circumvents all these PMP-
associated difficulties with an added benefit of finding globally optimal policies for a range of
inequality constraint levels simultaneously. The threshold-aware method presented here
extends many of the same ideas to a stochastic setting.

2.2 Example 1: An EGT-based competition model

To develop our first example, we adopt the base model of cancer evolution proposed by Kaz-
natcheev et al. in [48], which describes a competition of 3 types of cancer cells. Glycolytic cells
(GLY) are anaerobic and produce lactic acid, which damages the surrounding non-cancerous
tissue. The other two types are aerobic and benefit from better vasculature, development of
which is promoted by production of the VEGF signaling protein. Thus, the VEGF (over)-pro-
ducing cells (VOP) devote some of their resources to vasculature development, while the
remaining aerobic cells are essentially free-riders or defectors (DEF) in game-theoretic termi-
nology. If (zg(1), zp(t), zv(t)) encode the time-dependent subpopulation sizes of these three
cancer types, their dynamics are given by z, = ,z;, where i € {G, D, V} and (yg, ¥, ) are
the respective type fitnesses. The actual expressions for these y; are derived from the inter-pop-
ulation competition in the usual EGT framework; see S1 Text §A.1. This competition of cells
in the tumor is modeled as a “public goods” / “club goods” game: VEGF is a “club good” since
it benefits only VOP and DEEF cells, while the acid generated by GLY is a “public good” since
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the damage to healthy tissue is assumed to benefit all cancer cells. The base model in [48]
assumes that each cell interacts with n others nearby. How much it benefits from these interac-
tions depends on its own type and the proportions of different cell types among those nearby
cells. Assuming that all participants are drawn uniformly at random from a large well-mixed
population, one can derive all fitnesses y; as expected payoffs in this game of (n + 1) players.

Those expected payoffs will naturally depend on the current subpopulation fractions (or rela-
s z; zZy .
, Xp = ,and x, = ———— . A Replicator
Zg t2zp +zy Ze T2p t 2y Zg t2p + 2y
Ordinary Differential Equation (ODE) [49, 50] is a standard EGT model for predicting the

changes in these subpopulation-fractions as a function of time.

tive abundances) x; =

In both the original deterministic case and its stochastic extension, it is easier to view the
replicator equation as a 2-dimensional system (e.g., by noting that xp = 1 — xg — xv). Following
[48], we use a slightly different reduction, rewriting everything in terms of the proportion of
glycolytic cells in the tumor p(f) = x(t) and the proportion of VOP among aerobic cells
q(t) = o)

x(0) + %0
is similarly easy to encode by modifying the Replicator ODE; see Eq (2.14) in Box 5 and the
Supplementary Materials in [48] for the derivation. The goal of the drug therapy here is to
drive the GLY fraction p(t) = xg(f) down below a specified “stabilization barrier” y,. (In [48],
this goal is justified by noting that, with GLY gone, the DEF cells will then quickly overcome
VOP, leading to “an aerobic tumor with no—or significantly diminished—ability to recruit
blood vessels,” which stabilizes (or at least significantly slows down the growth of) the tumor.)
For a range of parameter values, this model yields periodic behavior of cancer subpopulations:

. A drug therapy (in this example, affecting the fitness of GLY cells only)

without drugs, xg(1), xp(#), and xy(¢) alternate in being dominant in the tumor, with the ampli-
tude of oscillations determined by the initial conditions [48]. This highlights the importance of
proper timing in therapies: starting from the same initial tumor composition (o, po), the same
MTD therapy of a fixed duration could lead to either a stabilization (p(¢) falling below y,) or a
death (p(#) rising above the specified “failure barrier” y¢) depending on how long we wait until
this therapy starts; see Fig 2 in Kaznatcheev et al. [48].

This strongly suggests the advantage of adaptive therapies, which prescribe the amount of
drugs based on continuous or occasional monitoring of (¢(¢), p(f)) or some proxy (non-inva-
sively measured) variables. A natural question is how to optimize such policies to reduce the
total amount of drugs used and the total duration of treatment until p(f) < v,. Gluzman et al.
have addressed this in [29] using the framework of deterministic optimal control theory [39].
A time-dependent intensity of the therapy d(f) (ranging from 0 to the MTD level d,,,,x) was

T
chosen to minimize the overall cost of treatment [7(q,, p,, d(-)) = [d(t)dt + 6T +
0

g(q(T),p(T)), where T is the time till stabilization (or failure, if (q(T), p(T)) € Ay and g = +
oo) while the value of § > 0 reflects the relative importance of two optimization goals (total
drugs vs total time). In the framework of deterministic dynamic programming [40] summa-
rized in Box 1, this corresponds to minimizing the integral of the running cost K = d(t) + 6. In
[29], the deterministic-optimal policy is obtained in feedback form (i.e.,d = d, (q,p)) by
numerically solving the Hamilton-Jacobi-Bellman (HJB) PDE (2.4). As explained in §2.1, this
policy is bang-bang. Fig 1a summarizes it (showing in yellow the MTD region where dx (g, p)
= dinax) and illustrates the corresponding trajectory for one specific initial (qo, po)-

A natural way to introduce stochastic perturbations into this base model is to assume that
the rates of subpopulation growth/decay are actually random and normally distributed at any
instant, with the fitness functions (yg, ¥p, Yv) encoding the expected values of those rates and
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Box 5: Example 1 (an EGT-based competition model adopted from [29, 48])

The deterministic base model (components for the approach in Box 1):
O 1-a0 ) (25> 0) -
q q nt 14

p(t) (1 —p(r)) (i (b~ a(t) - d(t))

The above reflects the formulas for subpopulation fitnesses (¥, ¥p, ¥v); see details in S1
Text SA.1.

Xy

x= m:[w] and & = f(x,d) =

XG

(2.14)

The stochastic model (components for the approaches in Boxes 2-4):

[ Q Xy WG
p =Xy +X, |, W= Wy |,
Xs Wy

: o
Q(1— Q){ < Zpk} = c> +[1-Qe2 - Qag]}

axd) - nb—l—l 2 (215)

p(1-2){ (2 - (.- 90 d) - [otp - o3(1 - 1 - OF ~ 31 - P)] |

X =

n+1
0 —0Q1-Q)  6Q1-0Q)
EXA) =1, p1-P) 0p1-P)(1-Q) oqu—P)Q]'

Definitions and Parameters:

ed:R,—[0,d,,], time-dependent intensity of GLY-targeting therapy;

o Aguce = {(g, p) € 10,117 | p < 7.}, success region where ¥, is the stabilization barrier;
o Ac={(g, p) €10, 1]°| p > ¥4, failure region where ¢ is the failure barrier;

« K(X, d) = d + 6, running cost function where J is the treatment time penalty;

[ Foo, if x(T) € Ay,
&7 V0,  ifx(T)eA

terminal cost;
succ?

e W= (Wg, Wp, Wy), standard 3D Brownian motion for (GLY, DEF, VOP) cells;
* (0g, 0ps Ov), volatilities for (GLY, DEF, VOP) cells;

o b,, the benefit per unit of acidification;

o b, the benefit from the oxygen per unit of vascularization;

o ¢, the cost of production of VEGF;

o (n + 1), the number of cells in the interaction group.

Conditions for the heterogeneous regime (coexistence of all cell types):

b
n_;1<bv—c<cn. (2.16)

The optimal threshold-aware policy in feedback form:

. [Ov ov
d*(q,p,s) — dmax? if (8_pp(1 7p) +E> < 07 (217)
0, otherwise.
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Fig 1. Deterministic-optimal policy in the EGT-model. The (GLY-VOP-DEEF) triangle represents all possible relative abundances of respective
subpopulations. Since the optimal policy is bang-bang, we show it by using the yellow background where drugs should be used at the MTD rate and the
blue background where no drugs should be used at all. Starting from an initial state (go, po) = (0.26, 0.665) (magenta dot), the subfigures show (a) the
optimal trajectory found from the truly deterministically driven system (2.14) with cost 5.13; (b) two representative sample paths generated under the
deterministic-optimal policy but subject to stochastic fitness perturbations (the brighter one incurs a total cost of 3.33, whereas the duller-colored path
incurs a much higher 6.23); (c) CDFs of the cumulative cost 7 approximated using 10° random simulations. In both (a) & (b), the green parts of trajectories
correspond to not prescribing drugs and the red parts of trajectories correspond to prescribing drugs at the MTD rate. In (a), the level sets of the value
function in the deterministic case are shown in light blue. In (c), the blue curve is the CDF generated with the deterministic-optimal policy d. Its observed
median and mean conditioning on success are 4.95 and 4.91 respectively. The brown curve is the CDF generated with the MTD-based therapy, which in
this example also maximizes the chances of “budget-unconstrained” tumor stabilization. Its observed median and mean conditioning on success are 5.95
and 5.96 respectively.Orange and pink curves show the CDFs for two different threshold-aware policies (with § = 4.5 and 5 = 5 respectively). The large dot
on each of them represents the maximized probability of not exceeding the corresponding threshold. The term “threshold-specific advantage” refers to the
fact that, at 5, the CDF of d is above the CDFs of all other policies.

https://doi.org/10.1371/journal.pcbi.1012165.g001

DEF VOP DEF

the scale of random perturbations specified by (oG, op, ov). This approach, originating from
Fudenberg and Harris paper [51], is suitable for modeling heterogeneous tumors, in which
subpopulations not only interact [52] but can also vary in their growth rates over time [53].
Adopting the usual probabilistic notation of using capital letters for random variables, we can
again start with the subpopulation sizes (Zg, Zp, Zy) evolving based on the Stochastic Differen-
tial Equations (SDEs) dZ; = (y;dt + 0:dW;)Z;, where i € {G, D, V} and each W; is a standard
one-dimensional Brownian motion, modeling independent perturbations to the fitness of the
respective subpopulation. This can be used to derive the SDEs for the corresponding fractions
(X6, Xp, Xv) We note that similar Stochastic Replicator Equations arise naturally in ecology,
where they have been studied in depth to address a possible coexistence of species in randomly
perturbed environments [54, 55].

The summary of Replicator SDEs for the reduced (Q, P) coordinates is provided in Box 5;
the derivation can be found in S1 Text §B.2. The terminal set A is still the same: the process ter-
minates as soon as P(f) crosses a stabilization barrier (GLY’s are low, leaving mostly aerobic
cells in the tumor) or the failure barrier (GLY’s are high, the patient dies). But the terminal
time T and the incurred cumulative cost 7 will also be random even if we fix the initial tumor
configuration (g, po) and choose a specific treatment policy d(-). Fig 1b shows one example of
using the deterministic-optimal policy d() = dx (Q(f), P(#)) in this stochastic setting. Gather-
ing statistics from many random simulations that start from the same (g, po), we can approxi-
mate the Cumulative Distribution Function (CDF), measuring the probability of keeping J
below any given threshold s if the deterministic-optimal policy is employed:

E,(s) = P(J <),

whose graph is shown in blue in Fig lc. If one instead opts to solve the PDE (2.9) to maximize
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the probability of reaching A, while avoiding Ag,;, this yields a simple MTD-policy d = dp,ax
whose CDF (shown in brown in Fig 1c) is strictly worse than that of dy. This is not surprising
since the more selective d is quite safe for this particular (g, po), with Ag,; avoided in all of
our 10° simulations. However, its resulting “cost” can be still high in many scenarios. E.g., in
47.4% of the dy-based simulations, J exceeded 5; in 72.6% of all cases it exceeded 4.5.

This motivates our optimization approach: deriving a threshold-aware optimal policy d; to
maximize the probability of stabilization without exceeding a specific cost threshold s. As
explained in §2.1 and summarized in Box 4, this is accomplished for a range of threshold val-
ues and all initial cancer configurations simultaneously. Fig 1c already shows that such policies
can provide significant threshold-specific advantages over the deterministic-optimal therapy.
Additional simulation results and the actual policies are illustrated in §3.1.

2.3 Example 2: A Sensitive-Resistant competition model

We also illustrate our approach by extending a model proposed by Carrére [3], which focuses
on the actual size of lung cancer cell populations studied in vitro. They consider a heteroge-
neous tumor that consists of two types of lung cancer cells: the sensitive (S) “A549” (sensitive
to the drug “Epothilene”) and the resistant (R) “A549 Epo40”. This was based on the data from
a series of experiments conducted by Manon Carré at the Center for Research in Oncobiology
and Oncopharmacology, Aix-Marseille Université. Mutation events were neglected due to
their rarity at the considered dosages of Epothilene and due to relatively short treatment dura-
tions. The competition model presented below was derived based on phenotypical observa-
tions, with fluorescent marking used to trace and differentiate the cells.

Considered separately, both of these types obey a logistic growth model with respective
intrinsic growth rates gs and gg. The carrying capacity of the Petri dish (C) is assumed to be
shared, with the resistant cells assumed to be m times bigger than the sensitive; so, the fraction
2,(t) + mz, (1)

C
sensitive cells quickly outgrow the resistant ones despite the fact that their intrinsic growth
rates are similar [3]. To model this competitive advantage, they have used an additional com-
petition term —f3 zszg to describe the rate of change of zr(t) with the coefficient 3 calibrated
based on experimental data. It was further assumed that R cells are completely resistant to a
specific drug, which reduces the population of S cells at the rate of azs(t)d(t) with d(t) reflect-
ing the current rate of drug delivery and the constant coefficient a reflecting that drug’s effec-
tiveness. With a normalization zg(t) — z5(£)/C, zr(t) — zr(t)/C, the resulting dynamics are
summarized by

Z.s(t) = gs(l - Zs(t) - mzk(t))zs(t) - “Zs(t)d(t)a
zo(t) =gl — z(t) — mzy(1)) 2y (t) — BCzs() 2 (1)

In both the original deterministic case and its stochastic extension, it is more convenient to
restate the dynamics in terms of the effective tumor size p(t) = zs(t) + mzg(t) and the fraction of
effective tumor size comprised of the sensitive cells g(t) = z5(¢)/p(t). Note that the proportion
mq(t)
1+ (m—1)q(1)
size ratio m between S and R cells. This change of coordinates yields an ODE model (2.19)
summarized in Box 6; see S1 Text §A.2 for the derivation. In this case, the goal of our adaptive
therapy is eradication: i.e., driving the total tumor size p(t) below some remission barrier y,
(e.g., a physical detection level) while ensuring that throughout the treatment this p(t) stays
below a significantly higher failure barrier y¢ < 1.

of space used at the time ¢ is . When cultivated together, it was observed that the

(2.18)

of sensitive cells in the tumor, by number, is instead of just q(f) due to the
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Fig 2a illustrates the natural dynamics of this model with no drug use. In this case, the com-
petitive pressure reduces the population R, which at first decreases the tumor size for many ini-
tial conditions. But a rapid growth in S eventually increases the overall tumor, leading to an
inevitable failure (p(t) > y¢). The deterministic-optimal drug therapy is again sought to mini-
mize a weighted sum of total drugs used and the time of treatment (with the running cost K =
d(t) + ) until the eradication. It is obtained in feedback form d = dx (g, p) after solving the
PDE (2.4). Fig 2b shows that, for smaller tumor sizes, this dx prescribes MTD-level treatment
only after this initial tumor reduction is over, once S gets rid of most R cells which are not sen-
sitive to Epothilene. However, for larger initial p, this deterministic-optimal policy starts using
the drugs much earlier, planning to keep S cells in check as soon as they are numerous enough
to control R.

Stochastic perturbations can be similarly introduced here by assuming that the intrinsic
growth rates are actually random and normally distributed at any instant. (This approach was
also used in modeling persistence strategies among bacteria in [42].) In Example 1, we
assumed that the fitness function of each subpopulation was affected by its own random per-
turbations. The Brownian motion in Box 5 was three-dimensional, corresponding to subpopu-
lations impacted by three separate and uncorrelated aspects of the fluctuating environment.
Depending on the nature of perturbations, a similar assumption might be reasonable in the
current example as well. But this is not a necessary feature for the threshold-aware optimiza-
tion approach to be applicable. To demonstrate this, we will instead assume here that the same
aspect of fluctuating environment impacts both subpopulations, and thus a single (1D) Brown-
ian motion perturbs the intrinsic growth rates of both S and R. We will use (gs, gr) to represent
their expected growth rates and (o5, or) to denote their respective volatilities. This yields SDEs
for the stochastic evolution of (Q, P), which are derived in S1 Text §B.3 and summarized in
Box 6. As shown in Fig 2, if the deterministic-optimal policy dy is used in this stochastic set-
ting, the initiation time of the MTD-based therapy (and the resulting overall cost [J) can vary
significantly. This motivates us again to use the threshold-aware approach based on the PDE
(2.11), with the policies illustrated and advantages quantified in §3.2.

3 Results
3.1 Policies, trajectories, and CDFs for the EGT-based model

We explore the structure and performance of threshold-aware policies computed for the sys-
tem described in §2.2. The parameter values dy,x = 3, b, = 2.5, b, =2, ¢ = 1, n = 4 are the same
ones provided in Kaznatcheev et al. [48] and Gluzman et al. [29]. However, we use y, =1 — y¢ =
1072 and & = 0.05 as opposedtoy,=1—-7y;= 107*° and 6 = 0.01 in [29]. Additionally, we con-
sider small uniform constant volatilities oG = op = oy = 0.15, characterizing the scale of ran-
dom perturbations in fitness function for all 3 cancer subpopulations. The details of our
Monte-Carlo simulations used to build all CDFs can be found in S1 Text §D.3. Additional
examples, including those with higher volatilities, in which the threshold-performance advan-
tages are even more significant, can be found in S1 Text SE.

In Fig 3, we present some representative s-slices of threshold-aware optimal policies and
their corresponding optimal probability of success for respective threshold values. Since these
policies are also bang-bang, the drugs-on region (at the MTD level) is shown in yellow and the
drugs-off region is shown in blue in all of our figures, following the convention from [29]. We
observe that this drugs-on region is strongly s-dependent and completely different from the
one in the deterministic-optimal case shown in Fig la. Since the cancer evolution considered
here has stochastic dynamics given in (2.5) and (2.15), different realizations of random
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Box 6: Example 2 (a Sensitive-Resistant competition model adopted from [3])

The deterministic base model (components for the approach in Box 1):

Zs
x = lq] = | zg + mzy
p

zs + mzy
and
1= 1= = Cp*q*(1 — q) — aq(1 — q)d(t
&= find) l( P)al = a)(g: g0 + PP (1 =) —oa(l = ) )] i)
p(1 = p)lgsq + & (1 = q)] = PCp*q(1 — q) — aqpd(1)
The stochastic model (components for the approaches in Boxes 2-4):
] Z
X = S}:: I:ZS+mZR:I7 W =[B,],
Zy + mZy

a(X,d) — Q(1 - Q){(l — P)(g; — g) — od + BCQP + (1 — P)’[6%(1 — Q) — 02Q + USGR]}] (220

| P(1 - P)(g:Q+ g (1 — Q) — #QPd — CPQ(1 - Q)
(1-P)Q(1 - Q)(o5 — ay)

I(X.d) = p(1P)[aSQ+0R(1Q)]}

Definitions and Parameters:
ed:R,—[0,d,,], time-dependent intensity of S-targeting therapy;
o Aguce = {(g> p) € [0, 117 | p < 7.}, success region where ¥, is the remission barrier;

o Ac={(g, p) €10, 1]°| p > 74, failure region where ¢ is the failure barrier;

« K(X, d) = d + 6, running cost function where J is the treatment time penalty;

_ |} +oo, if x(T) € A, sttt ot
cg= 0. if x(T) € A erminal cost;

succ?

* (gs> gr), growth rate for the sensitive and resistant cells, respectively;
o B, standard 1D Brownian motion;

« (05, 0r), volatilities for the sensitive and resistant cells, respectively;
o m, size ratio between S and R cells;

o C, Petri dish carrying capacity;

* @, drug efficiency;

« B, action of sensitive on resistant.

Parameter values are specified in S1 Text SE.2.

The optimal threshold-aware policy in feedback form:

ov ov ov
d ., if (=—og(l-— — — | <0,
d(gp =14 = (Ga0 -0+ g2+ 5;) (221)
0, otherwise.
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Fig 2. Deterministic-optimal policy in the Sensitive-Resistant model. Starting from an initial state (¢, po) = (0.1, 0.5) (magenta dot), the
subfigures show (a) the deterministic trajectory without therapy that ends in the Ag,;; (b) the optimal trajectory found from the deterministically
driven system (2.1) and (2.19) with cost 49.30; (c) two representative sample paths generated under the deterministic-optimal policy but subject to
stochastic perturbations in (gs, gr) (the brighter one incurs a total cost of 49.43, versus a much higher 70.45 for the duller-colored path); In (a), the
white dashed-line is part of the nullcline where p = 0; In both (b)&(c), the green parts of trajectories correspond to not prescribing drugs and the red
parts of trajectories correspond to prescribing drugs at the MTD rate. The level sets of the value function u in the deterministic case are shown in
light blue.

https://doi.org/10.1371/journal.pchi.1012165.9002

perturbations will result in entirely different sample paths even if the starting configuration
and the feedback policy remain the same. Three such representative sample paths are shown in
Fig 4, starting from the same initial tumor configuration (g, po) = (0.26, 0.665) already used in
Fig 1 and focusing on a threshold 5§ = 5. We use the example from Fig 4a, in which the stabili-
zation is achieved while incurring the total cost of J = 4.70 < 5, to illustrate the general use
of threshold-aware policies. Starting from the initial budget s = s, the optimal decision on
whether to use drugs right away is based on the first diagram in Fig 3a. For our initial tumor
state, this indicates that d.(qo, po, 5) = 0 (not prescribing drugs initially) would maximize the
probability of stabilizing the tumor without exceeding the threshold s = 5.0. As time passes,
we accumulate the cost, thus decreasing the budget, even if the drugs are not used. If we stay in
the blue region for the time 6 = 1/, the second diagram (the “s = 4.0” case) in Fig 3a becomes
relevant, with subsequent budget decreases shifting us to lower and lower s slices. Of course, in
reality we constantly reevaluate the decision on d, (as s changes continuously while Fig 3a
presents just a few representative slices) taking into account the changing tumor configuration
(Q(1), P(t)). (Movies with additional information for Figs 3 and 4 are available at https://
eikonal-equation.github.io/Stochastic-Cancer/examples.html).

In contrast to the success story in Fig 4a, we note that there are two very different ways of
“failing”. First, the process can stop if the proportion of GLY cells becomes too high, as in Fig
4b. When VOP is relatively low, the deterministic portion of the dynamics can bring us close
to the failure barrier, with random perturbations resulting in a noticeable probability of cross-
ing into Ag,;. Second, even if we stay away from Ag,j, the budget might be exhausted before
reaching A, as in Fig 4c. Threshold-aware policies provide no guidance once s = 0, but it is
reasonable to continue (using some different treatment policy) since the patient is still alive. In
our numerical simulations, we switch in this case to a deterministic-optimal policy dy illus-
trated in Fig 1. This decision is somewhat arbitrary; e.g., one could choose instead to switch to
an MTD-based policy, which in this example maximizes the probability of reaching Ag,.. while
avoiding Ag,; without any regard to additional cost incurred thereafter. For this initial tumor
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Fig 3. Representative slices of the threshold-aware optimal policy (top row) and the corresponding probability of success (bottom row) for the EGT-
based model. Each triangle represents all possible tumor compositions (proportions of GLY/VOP/DEEF cells in the population). Top row shows the policy,
which prescribes the optimal instantaneous decisions on drug usage given the indicated remaining budget (s) and the current tumor state. Bottom row
shows the probability of “stabilization within the budget” if the optimal policy is followed from this time point and onward. Each column corresponds to a
specific budget level s, which is shown below each triangle. The arrows indicate the natural decrease of the remaining budget while implementing the
policy.

https://doi.org/10.1371/journal.pcbi.1012165.9g003

configuration and parameter values, continuing with dy typically yields smaller costs while
only slightly increasing the chances of eventual failure (e.g., = 0.36% of crossings into Ag;
using dy versus ~ 0.07% using the full MTD once the original budget of s = 5.0 is exhausted).
But whatever new policy is chosen for such “unlucky” cases, this choice will only affect the
right tail of 7’s distribution; i.e., P(J > §) will be affected only for s > 5.

Returning to the optimal probability of success v(g, p, s) shown in Fig 3b, we observe that v
has particularly large gradient near the level curves of the deterministic-optimal value function
u shown in Fig la. (The particular level curve of u near which v changes the most is again s-
dependent as the budget decreases.) If the remaining budget is relatively low (e.g., s = 1.5), one
can see from Fig 3b that there is no chance to stabilize the tumor within this budget unless the
GLY is already low (and a short burst of drug therapy would likely be enough) or VOP is high
(and the no-drugs dynamics will bring us to a low GLY concentration later on). Consequently,
the optimal policy for s = 1.5 is to not use drugs for the majority of tumor states.

The contrast in threshold-specific performance is easy to explain when the deterministic-
optimal and threshold-aware policies prescribe different actions from the very beginning. To
illustrate this, we consider (go, po) = (0.27, 0.4), for which dy = d;,.x while & = 0 for a range of
5 values; see Fig 5a and 5b for representative paths and Fig 5¢ for the respective CDFs. Under
the deterministic-optimal policy (whose CDF is shown in blue), only 50% of simulations yield
the cost not exceeding 4.71. A threshold-aware policy (implemented for s = 4.71, with CDF
shown in pink) maximizes this P(7 < 5) and succeeds in 63.7% of all cases. The potential for
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fraction

Fig 4. Representative sample paths starting from the same initial state (g, po) = (0.26, 0.665) (magenta dot) and the same initial budget s = 5. Top
row: sample paths on a GLY-DEF-VOP triangle. (a) eventual stabilization with a cost of 4.70 (within the budget); (b) eventual death; (c) failure by running
out of budget (eventual stabilization with a total cost of 7.80 by switching to the deterministic-optimal policy after s = 0). Some representative tumor states
along these paths (with indications of how much budget is left) are marked by black squares. In (c), the part where 7 > 5 is specified in orange (no drugs)
and brown (at MTD level).Bottom row: evolution of sub-populations with respect to time based on the sample paths from the top row. Here we use light
green and light pink backgrounds to indicate the time interval(s) of prescribing no drugs and of prescribing drugs at the MTD-rate, respectively. We use
black pentagrams and black crosses to indicate eventual stabilization and death, respectively. In (c), we use a dashed black line to indicate the budget

depletion time ¢,.

https://doi.org/10.1371/journal.pcbi.1012165.9004

improvement is even more significant with lower threshold values. For instance, we see that
P(J(d,) < 4.35) < 10%, while our threshold-aware policy (implemented for s = 4.35, with
CDF shown in orange) ensures that P(7(d5) < 4.35) = v(q,, p,,$) = 45.6%. This improve-
ment can also be translated to simple medical terms: starting from this initial tumor configura-
tion, the deterministic-optimal policy will likely keep using the drugs at the maximum rate
dimax all the way to stabilization; see Fig 5a. In contrast, our threshold-aware policies tend not
to prescribe drugs until GLY is relatively low and VOP is relatively high; see Fig 5b. As a result,
the patient would suffer less toxicity from drugs in most scenarios.

It is worth noting that each threshold-aware policy maximizes the probability of success for
a single/specific threshold value only. E.g., for all the pink/orange CDFs we have provided, the
probability of success is only maximized at those pink/orange dots. Moreover, we clearly see
from Fig 5¢ that the probability of 7 not exceeding any 5§ < 4.35 is lower on the pink CDF
than on the orange CDF (computed for s = 4.35). Intuitively, this is not too surprising. In the
early stages of treatment, a (pink) policy computed to maximize the chances of not exceeding
§ = 4.71 is more aggressive in using the drugs and thus spends the “budget” quicker than the
(orange) policy, which starts from a lower initial budget s = 4.35. This is also consistent with
the budget-dependent sizes of drugs-on regions in Fig 3a.

3.2 Policies, trajectories, and CDFs for the SR-model

We now turn to the SR model system described in §2.3. Our numerical experiments use d,,«
=3,7,=1-y=10"2 8 = 0.05, and volatilities ox = o5 = 0.15. For other parameter values, see
S1 Text SE.2.
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Fig 5. Comparison between threshold-aware policies and the deterministic-optimal policy. Starting from an initial state (qo, po) = (0.27, 0.4) (magenta
dot): (a) a sample path with cost 4.75 under the deterministic-optimal policy; (b) a sample path starting at § = 4.35 with a realized total cost of 4.02 under
the (orange) threshold-aware policy; (c) CDFs of the cumulative cost [J approximated using 10° random simulations. In (c), the solid blue curve is the CDF
generated with the deterministic-optimal policy. Its median (dashed blue line) is 4.71 while its mean conditioning on success is 4.72. The solid orange curve
is the CDF generated with the threshold-aware policy with § = 4.35; and the solid pink curve is the CDF generated with the threshold-aware policy with
§s=4.71.

https://doi.org/10.1371/journal.pchi.1012165.g005

DEF VOP

We show the representative s-slices of threshold aware policies and the corresponding suc-
cess probabilities in Fig 6. Similarly to the EGT-model, we observe that the drug-on regions
(shown in yellow) are strongly budget-dependent and quite different from the ones specified
by dy in Fig 2b. We note that the drugs-on region generally shrinks in size (toward the Q = 1
line, where only S cells are present) as the budget s decreases. For even tighter budgets, this yel-
low region becomes disconnected, prescribing the drugs for large P values (to substantially
decrease the tumor size) and in a thin layer near Ay, (where a short burst of drugs is likely
sufficient).

In Fig 7, we provide sample random trajectories and compare the performance of three dif-
ferent policies: the deterministically optimal dy and the threshold-aware d° implemented for
two different thresholds s = 69.45 and 5§ = 60. A suitable choice of the initial tumor configu-
ration is less obvious for this example and deserves a separate comment. For many multi-pop-
ulation models, it is reasonable to assume that the system had approached some drug-free
coexistence equilibrium before the tumor was detected and the therapy started. But since the
model described in [3] does not include mutations, it also does not have a drug-free coexis-
tence equilibrium. In our testing of various drug policies, we choose the initial tumor with
96% of sensitive cells and the tumor size at 90% of the carrying capacity. Since the resistant
cells are much larger [3], this corresponds to initial conditions (qo, po) = (0.45, 0.9).

Despite the fact that all three tested policies use no drugs at the very beginning, the deter-
ministic-optimal policy typically starts prescribing drugs much earlier. See the comparison of
sample trajectories under dy and & in Fig 7a and 7b. As a result, our threshold-aware policy
(implemented for s = 69.45, with CDF shown in pink) improves P(J < s) to 67.4% from
50% produced by dy. This advantage is even more significant with lower thresholds. E.g.,
P(J(d,) < 60) is only 19.6%, while our threshold-aware policy (implemented for s = 60,
with CDF shown in orange) more than doubles this probability of under-threshold remission
to 39.8%.
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Fig 6. Representative slices of the threshold-aware optimal policy (top row) and the corresponding probability of success (bottom row) for the
Carrére example. Each square represents all possible tumor states (sizes and compositions). The horizontal axis is the fraction of the Sensitive (Q) and the
vertical axis is the total population (P). Top row shows the policy, which prescribes the optimal instantaneous decisions on drug usage given the indicated
remaining budget (s) and the current tumor state. Bottom row shows the probability of “eradication within the budget” if the optimal policy is followed
from this time point and onward. Each column corresponds to a specific budget level s, which is shown below each square. The arrows indicate the natural
decrease of the remaining budget while implementing the policy.

https://doi.org/10.1371/journal.pcbi.1012165.9006

4 Discussion

That cancers evolve during therapy is now an accepted fact, and is slowly being incorporated
into therapeutic decision making. In some cases, this can be implemented simply by changing
from one targeted therapy to another, but in most, where tumors are a heterogeneous mixture
of interacting phenotypes, this is not feasible. In these cases, ecological thinking is rising to the
fore in the form of adaptive therapy. Until recently, clinical trials, and theoretical investiga-
tions, of adaptive therapy have relied on a priori assumptions of the underlying interactions,
and their effects on tumor composition over time. Several studies, both in vitro [20] and in
vivo [19, 52], however, have begun to provide methods for more rigorous quantification of
these interactions. As these tools mature, the next challenges will be to understand these inter-
actions in patients and to exploit them in improving personalized treatment.

The presented approach is a step in this direction, aiming to limit the probability of high-
cost outcomes in the presence of stochastic perturbations. It is applicable to a broad class of
stochastic cancer models and therapy goals (e.g., tumor eradication or stabilization). While it
is standard to tune the treatment plan to maximize the probability of reaching its goal, we go
farther and maximize the probability of goal attainment without exceeding a prescribed
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Fig 7. Comparison between threshold-aware policies and the deterministic-optimal policy. Starting from an initial state (go, po) = (0.45, 0.9) (magenta
dot): (a) a sample path with cost 57.3 under the deterministic-optimal policy; (b) a sample path starting at s = 60 with a total cost of 53.63 under the
(orange) threshold-aware policy; (c) CDFs of the cumulative cost 7 with 10° samples. In (c), the solid blue curve is the CDF generated with the
deterministic-optimal policy. Its median (dashed blue line) is 69.45 while its mean conditioning on success is 70.5. The solid orange curve is the CDF
generated with the threshold-aware policy with § = 60; and the solid pink curve is the CDF generated with the threshold-aware policy with 5§ = 69.45. See
S1 Text $E.3 for time-evolution plots associated with sample paths in (a) and (b).

https://doi.org/10.1371/journal.pcbi.1012165.9007

threshold on cumulative cost (interpreted as a combination of the total drugs used, cumulative
disease burden, and the time to remission/stabilization). We show that these optimal treatment
policies become threshold-aware, with the drugs-on/drugs-off regions changing as the treat-
ment progresses and the initial “cost budget” (for meeting the chosen threshold) gradually
decreases. The comparison of CDFs generated for the deterministic-optimal policy and thresh-
old-aware policies demonstrates clear advantages of the latter, often resulting in a significant
reduction of drugs used to treat the patient.

More generally, dynamic programming provides an excellent framework for finding opti-
mal treatment policies by solving Hamilton-Jacobi-Bellman (HJB) equations. The fact that
these policies are recovered in feedback form makes this approach particularly suitable for
optimization of adaptive therapies. But even though the use of general optimal control in can-
cer treatment is by now common [1], the same is not true for the more robust HJB-based
methods, which so far have been used in only a handful of cancer-related applications [4, 8, 23,
29, 56-58]. This is partly due to the HJBs’ well-known curse of dimensionality: the rapid
increase in computational costs when the system state becomes higher-dimensional. This is a
relevant limitation since our threshold-aware approach introduces the “budget” as an addi-
tional component of the state. Similarly to the presented examples, our current implementa-
tion would be easy to adopt to any cancer model based on a two-dimensional (g, p) state space,
with the budget s adding the third dimension. For cancer models with a larger number of sub-
populations, the general approach would remain the same, but the approximate HJB-solver
would likely need to rely on sparse grids [59], tensor decompositions [60], or deep neural net-
works [61].

The presented examples did not model any mutations, but we note that this is not really a
limitation of the method itself. E.g., drug-usage-dependent mutations would be easy to incor-
porate into our EGT-based example by switching to a Replicator-Mutator ODE/SDE eco-evo-
lutionary model [62, 63]. We did not pursue such examples here primarily to make for an
easier comparison with prior work [29] and to limit the number of model parameters.
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Our SDE models of global (or environmental) stochastic perturbations to subpopulation fit-
nesses and intrinsic growth rates are based on perspectives well-established in biological appli-
cations [42, 51]. While our focus on environmental stochasticity is motivated by “averaging-
out” the variability within each subpopulation, it is worth noting that this assumption is not
always justifiable. Whenever the subpopulation size is sufficiently small, the demographic sto-
chasticity becomes crucially important. (This is also the regime in which the validity of ODE/
SDE models is far less obvious.) Even though we do not deal with this important limitation
here, we note that our threshold-aware approach can be used with a variety of perturbation
types, including jump-diffusion processes, which could be used to build future models that
account for demographic stochasticity in these special small-subpopulation regimes. Such dis-
continuous jump-transitions (e.g., reflecting possible subpopulation extinctions) can be natu-
rally handled in our framework. For instance, a similar method has been developed in [64] for
controlling “piecewise-deterministic” processes, where perturbations happen at discrete points
in time and amount to abrupt switches in system dynamics. More recently, our framework
was also used to control the hybrid dynamics of a sailboat navigating in stochastically changing
wind conditions and trying to reach the destination prior to a specified deadline 5 [65]. We
note that dynamic programming is also used in discrete population models focused on demo-
graphic stochasticity [66]. It will be also interesting to investigate the usability of our approach
in that discrete setting.

Sensitivity with respect to threshold variation can be tested by comparing CDFs of d° for
different 5 values. While it is also possible to perform a similar comparison under perturbation
of model parameters, we believe that another approach is more promising: any bounded
uncertainty in parameter values can be treated as a “game against nature,” leading to a Hamil-
ton-Jacobi-Isaacs PDE, whose solution will yield policies optimizing the threshold-perfor-
mance in the “worst parameter variation” scenarios [64].

Another important extension will be to move to “partial observability” since the state of the
tumor is only occasionally assessed directly through biopsies and some proxy measurements
have to be used at all other times [8]. Finally, it will be also interesting to study the multiobjec-
tive control problem of optimizing threshold-aware policies for two different threshold values
simultaneously.

In summary, we have presented a theoretical and computational advance for the toolbox of
evolutionary therapy, a new subfield of medicine focused on using knowledge of evolutionary
responses to inform therapeutic scheduling. While there are a number of cancer trials using
this type of evolutionary-informed thinking, most are based on heuristic designs and are not
formulated to consider the underlying stochasticities. Developing a theoretical foundation for
future clinical studies requires EGT models directly grounded in objectively measurable biol-
ogy [20]. Therapy optimization based on such models requires efficient computational meth-
ods, particularly in the presence of stochastic perturbations. We hope that the general
approach presented here will be useful for a broad range of increasingly accurate stochastic
cancer models.

Supporting information

S1 Text. Supplementary materials. Mathematical details and additional computational exper-
iments.
(PDF)
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