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Abstract. Classical deterministic optimal control problems assume full information about the
controlled process. The theory of control for general partially-observable processes is powerful,
but the methods are computationally expensive and typically address the problems with stochastic
dynamics and continuous (directly unobserved) stochastic perturbations. In this paper we focus on
path planning problems which are in between – deterministic, but with an initial uncertainty on
either the target or the running cost on parts of the domain. That uncertainty is later removed
at some time T , and the goal is to choose the optimal trajectory until then. We address this
challenge for three different models of information acquisition: with fixed T , discretely distributed
and exponentially distributed random T . We develop models and numerical methods suitable for
multiple notions of optimality: based on the average-case performance, the worst-case performance,
the average constrained by the worst, the average performance with probabilistic constraints on
the bad outcomes, risk-sensitivity, and distributional-robustness. We illustrate our approach using
examples of pursuing random targets identified at a (possibly random) later time T .
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1. Introduction. A common task in robotic navigation is to find a trajectory
that minimizes cumulative cost incurred on the way to a target. If the system state
is perfectly known in real time, this can be accomplished in the framework of dy-
namic programming by solving Hamilton-Jacobi-Bellman (HJB) partial differential
equations (PDEs) [7, 25]. The task of controlling partially-observable processes is
generally harder due to the added challenge of estimating the process state proba-
bilistically [30, 55]. Whether one aims for on-average optimality or robustness, the
methods in this general space are focused on the uncertainty due to frequent stochas-
tic perturbations in between observations. In contrast, we are interested in controlling
processes with uncertainty due to structured or delayed information acquisition pat-
terns. Here we focus on the simplest subset of such problem, in which everything is
deterministic, but some important aspects of the process are a priori unknown. We
start with a probabilistic description of the global environment, dynamics, costs or
targets, and then need to control the system until this initial uncertainty is resolved.

In a discrete setting, a classical example of such monotonically non-increasing
uncertainty is the “Canadian Traveller Problem” [38], in which one aims to find a
cost-minimizing path to a target on a partially known graph: some of the graph edges
might be absent with pre-specified/known probabilities, but whether they actually
are present is only learned later, as we enter nodes adjacent to them. A generaliza-
tion allowing random edge costs and more complicated information-gathering on a
graph is known as a “Stochastic Shortest Path with Recourse” [40]. While dynamic
programming algorithms are well known for these problems, they operate on a much
larger information-enriched state space, and their computational cost is typically pro-
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hibitive.
In this paper we examine path-planning problems in a continuous setting but

with a fairly simple information acquisition pattern: the full information about the
system and the environment is instantaneously gained at some “certainty time” T ,
and the problem remains deterministic thereafter. This simplification allows us to
develop efficient algorithms for optimizing the pre-certainty control and also helps
in comparing the merits of several notions of robustness. For motivation, consider
a semi-autonomous rover exploring a sequence of locations on Mars with infrequent
guidance from a command center on Earth. The center might identify a set of possible
future targets (with a probability specified for each of them a priori), but the final
choice will be identified at a later time T . While the rover could wait in place until
then, its cumulative cost-to-target can be reduced by choosing a suitable waypoint
and starting to move to it already now. To simplify the exposition, we describe all
algorithms in the context of such initial target uncertainty problems in 2D and with
isotropic cost/dynamics. But our general approach is broader and also covers other
types of initial uncertainty. In Appendix A, we show how it can be applied to a simple
environment-uncertainty problem: planning a path for an airplane to avoid a storm
front whose position remains uncertain until the time T .

In section 2, we start by reviewing the standard deterministic setting: planning an
optimal path to a known target by solving a single HJB equation. We then introduce
the target uncertainty in section 3 and develop methods for optimizing the average-
case performance. Interestingly, the methods for doing this depend entirely on what
is known about the certainty time T . Once the min-cost to each potential target is
known, we show that, for a fixed/constant T, the expected-cost-minimizing waypoint
is found by optimizing over a constraint set determined by solving a single stationary
HJB equation. If T is random and has a known discrete distribution, we show that
optimal waypoints are found by solving a sequence of time-dependent HJB equations.
For simplicity, our method is described with the likelihood of individual targets viewed
as independent of the realized value of T , but we later show in Appendix B that this
assumption is not essential. If T is an exponentially distributed random variable,
finding an optimal waypoint is not enough – we also need to find an optimal path
toward that waypoint since the target might be identified before we reach it. We
explain how this can be accomplished by solving a quasi-variational HJB inequality
of obstacle type.

The issue of robustness under initial uncertainty is the subject of section 4. Ro-
bust control is an important and well-developed research area, with H∞ methods [9]
particularly popular in stochastic systems subject to frequent or continuous random
disturbances. But in our setting, this approach is not directly applicable, though
one can still mitigate the risk of “unlucky scenarios” and guard against modeling
errors. Focusing primarily on the “fixed T” case, we develop methods for several
competing notions of robustness: optimizing the worst-case scenario, risk-sensitive
optimization, and optimizing the average case performance subject to constraints (ei-
ther hard or probabilistic) on bad outcomes. The case of probabilistic constraints is
particularly interesting since the optimal policy for selecting waypoints turns out to
be non-deterministic. We find a geometric interpretation of this challenge and lever-
age it to construct an efficient algorithm in subsection 4.4. We further examine the
Distributionally Robust Optimization (DRO) approach to guard against mistakes in
the perceived relative likelihood of potential targets. In addition, we also provide a
sub-optimality bound for the case when the set of targets is either misidentified or
intentionally subsampled.
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Many of the problems described above are reminiscent of those handled in dis-
crete settings by the techniques of multistage stochastic programming [48]. However,
their naive use would be prohibitive here since our state and action spaces are infi-
nite/continuous. In addition, our approach based on dynamic programming allows
solving these multi-stage optimization problems for all initial configurations simulta-
neously. These distinctions (and the computational efficiency gained by exploiting the
problem structure) are highlighted throughout the paper. We conclude by discussing
possible generalizations of our approach and directions for future work in section 5.

2. Deterministic setting overview. We first consider a fully deterministic
controlled process with a time-dependent process state y ∈ Rd and a terminal time
T. This is the setting of the classical optimal control theory and we include only a
brief overview, referring to [7] for technical details.

We will assume that the process dynamics is defined by an ODE{
y′(s) = f (y(s),a(s), s) , s ∈ [t, T ];

y(t) = x ∈ Rd.
(2.1)

The controller has a compact set A of available control values and chooses a mea-
surable control function a : R 7→ A to guide the evolution of the process state. The
“velocity function” f : (Rd × A × R) 7→ Rd, the initial state and time (x, t), and
the terminal time T are all explicitly known ahead of time. Given a running cost
K : Rd × A × R 7→ R and a terminal cost q : Rd 7→ R, one can define the cost
corresponding to a control a(·) starting from (x, t) as

J (x, t,a(·)) =

∫ T

t

K (y(s),a(s), s) ds + q(y(T )). (2.2)

A value function is then defined as the minimal cost-to-termination from a given
location; i.e., u(x, t) = infa(·) J (x, t,a(·)) . The principle of dynamic programming
is based on a tail optimality property of optimal controls; i.e.,

u(x, t) = min
a(·)

{∫ t+τ

t

K (y(s),a(s), s) ds + u (y(t+ τ), t+ τ)

}
should hold for any small τ > 0. Assuming that the value function is smooth, one
can use a Taylor series expansion and then let τ → 0 to derive a time-dependent
Hamilton-Jacobi PDE that u must satisfy:

ut(x, t) + min
a∈A

{K(x,a, t) +∇u(x, t) · f(x,a, t)} = 0, ∀(x, t) ∈ Rd × [0, T ) (2.3)

subject to a terminal condition u(x, T ) = q(x), ∀x ∈ Rd. Since the value function
is generally not smooth, this PDE usually does not have a classical solution. The
non-uniqueness of weak (locally Lipschitz) solutions made it necessary to introduce
additional test conditions [17] that pick out a viscosity solution of this PDE – the
unique weak solution that coincides with the value function of the original control
problem.

Even though the approach presented in this paper for treating the initial uncer-
tainty is general, all of our examples will be based on isotropic problems, in which
the cost and speed of motion depend only on x. We let A = {a ∈ Rd | |a| = 1}
and interpret a as the chosen direction of motion. Then K(x,a, t) = K(x, t) and
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f(x,a, t) = f(x, t)a, with f encoding the speed of motion through the point x. In
this case, the optimal direction is known analytically: a∗ = −∇u/|∇u| and (2.3)
reduces to a time-dependent Eikonal equation

ut − |∇u|f(x, t) + K(x, t) = 0; ∀x ∈ Rd, t ∈ [0, T ). (2.4)

Both the isotropic and the general problems can be similarly posed on a compact
domain Ω ⊂ Rd, with additional boundary conditions u = g posed on ∂Ω × [0, T ],
which can be interpreted as a cost of stopping the process prematurely as soon as it
exits Ω at some t < T . Setting g = +∞ can be used to restrict the process to this
domain1 and force the trajectories to avoid any obstacles (by simply excluding them
from Ω). Setting g(x, t) = 0 on any closed target set Γ ⊂ ∂Ω makes u(x, t) encode
the minimal cost to target Γ, with q specifying a penalty in case we cannot (or choose
not to) reach Γ by the time T . The latter case is further simplified when K and f
do not depend on t and T = +∞ (i.e., there is no time-restriction for reaching the
target). The corresponding value function satisfies a (stationary) Eikonal equation

|∇u|f(x) = K(x), ∀x ∈ Ω; u(Γ) = 0; u(∂Ω\Γ) = +∞. (2.5)

If K ≡ 1, u(x) simply encodes the minimum time to the target Γ (while staying inside
Ω) and the gradient descent yields time-optimal trajectories. When Γ consists of only
a single point x0, we denote the value function of this min-cost-from-x0-to-a-target-
at-x problem as u(x;x0).

Another convenient property of the Eikonal equation is that an optimal trajectory
from a starting position x0 to a target is the same (up to a time-reversal) as an
optimal trajectory from that target to x0. The optimal trajectory from x0 to any
target x can be found by following (−∇u(x;x0)) from x to x0 and then tracing it
backward. In Figure 1 we present an example of this on a 2D domain with a single
rectangular obstacle. Since K = 1, we are finding the time-optimal trajectories from
x0 = (0.3, 0.2) under the speed function f = 1.4 + 0.6 cos(2πx) sin(2πy) shown in
Figure 1A. In Figure 1B we show the optimal trajectories from x0 to 4 different
targets as well as the level sets of the function u(x;x0). In subsequent sections,
this general setup will be used as our representative example to explore the initial
target-uncertainty.

The viscosity solutions to the Hamilton-Jacobi-Bellman (HJB) equations are usu-
ally unavailable in analytic form and numerical approximations are thus unavoidable.
Numerical methods for time-dependent and stationary HJB equations have been an
active area of research in the last 25 years, with particularly many efficient techniques
developed for the stationary Eikonal equation (2.5) and its anisotropic generalizations.
The first challenge is to choose a discretization converging to the viscosity solution.
The simplest grid discretization approach (employed here) is to use the first-order up-
wind divided differences to approximate the partial derivatives of u; e.g., with d = 2
and a space-time grid based on (xi, yj , tn) = (ih, jh, n∆t), we can define the standard
one-sided divided differences as

D±xUn
i,j =

Un
i±1,j − Un

i,j

±h
and D±yUn

i,j =
Un
i,j±1 − Un

i,j

±h
,

1
To define such domain-constrained viscosity solutions, one has to treat the boundary conditions

“in the viscosity sense” [7] and we adopt this interpretation throughout the paper. Intuitively, this
means that the infinite exit cost g is charged not for touching ∂Ω but for attempting to leave Ω.
This allows traveling along ∂Ω (including the obstacle boundaries) and, combined with our isotropy
assumption, ensures the existence of optimal controls for every starting position.
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(A) (B)

Fig. 1. Time-optimal path planning. (A): a contour plot of the speed f = 1.4 +
0.6 cos(2πx) sin(2πy) on a unit square domain with one rectangular obstacle (shown in white) at
(0.45, 0.55)×(0.15, 0.85). The starting point x0 = (0.3, 0.2) is shown by an orange dot. The approach
finds optimal trajectories to all target locations, but we highlight four potential targets (shown by
orange stars and numbered clockwise, starting from the top): x̂1 = (0.5, 0.95), x̂2 = (0.9, 0.5), x̂3 =
(0.5, 0.05), and x̂4 = (0.1, 0.5). (B): a contour plot of u(x;x0) and the optimal trajectories (shown
by dashed red lines) to these four targets.

then plug

ut(xi, yj , tn) ≈ D−tUn
i,j =

Un
i,j − Un−1

i,j

∆t
,[

ux(xi, yj , tn)
]2 ≈

[
max

{
D−xUn

i,j , −D+xUn
i,j , 0

}]2
,[

uy(xi, yj , tn)
]2 ≈

[
max

{
D−yUn

i,j , −D+yUn
i,j , 0

}]2
(2.6)

into equation (2.4) and solve for Un−1
i,j . (The state constraints are handled by setting

U values to +∞ outside of Ω, including inside the obstacles.)
This discretization guarantees a monotone dependence on the neighboring grid

values, and this monotonicity yields convergence to the viscosity solution [8]. For
the time-dependent PDE (2.4), a time-explicit discretization makes the issues of ef-
ficiency trivial: the solution is computed by time-marching, computing one time-
slice at the time, from the terminal time t = T to the initial time t = 0, with the
O(NM)computational cost2. But in the stationary case (2.5), the resulting system
of discretized equations for Ui,js is non-linear, non-smooth, and coupled, adding the
challenge of solving that discretized system efficiently. A number of methods are
based on competing ideas for handling this task: from Fast Marching (e.g., [50], [44]),
to Fast Sweeping (e.g., [10], [57], [49]), to their hybrid versions [12, 13] and methods
mirroring the logic of label-correcting algorithms on graphs (e.g., [6, 29]). When opti-
mal paths are needed from a small number of starting positions only, additional gains

2
Throughout the paper, we will assume that PDEs are discretized on a spatial grid with a total of

M gridpoints and, whenever these PDEs are time-dependent, we will assume that there is a total of
N time-slices. Since our time discretizations are explicit, these N and M are not really independent:

e.g., with d = 2, Courant-Friedrichs-Lewy stability condition yields N = O(M
1/2

). But we will not
directly use this expression in computational complexity estimates since our goal is to emphasize the
general space-time structure and other (time-implicit [52] or semi-Lagrangian [24]) discretizations
could be used to avoid this dependence.
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in efficiency can be also obtained through a dynamic restriction of the computational
domain [16, 54]. Many of these methods have been generalized to simplicial meshes,
problems on manifolds and higher order accurate schemes. Other approaches have
also been developed using semi-Lagrangian [18, 23,24,41] and discontinuous Galerkin
discretizations [32, 56].

For the purposes of the current paper, we are indifferent to the choice of a specific
numerical method. For the sake of simplicity, our actual implementation uses the first-
order upwind discretization based on (2.6) and the Fast Marching solver (in stationary
cases), which can find a discretized solution of (2.5) in O(M logM) operations on a
spatial grid with M gridpoints. But other numerical techniques could be used as well
whenever we need to solve a fully deterministic problem. Our real focus is on treating
initial uncertainties – either in the target Γ or in the running cost K on parts of Ω.

3. Average case optimality under initial uncertainty. We begin by intro-
ducing our main sample problem of “optimally pursuing random targets”. We will
assume that the dynamics and the running cost are isotropic and time-independent
(i.e., K = K(x) and f(x,a) = f(x)a, with |a| = 1), and the goal is to minimize
the total cost of reaching a target x̂ ∈ Ω ⊂ R2. When x̂ is known and there is no
deadline, one can do this by solving (2.5) with Γ = {x̂} .

But what if we only know a set of possible targets X̂ = {x̂1, . . . , x̂m} and the
corresponding probability distribution p̂ = (p̂1, . . . , p̂m)? We can compute each “min
cost to the i-th target” u(x; x̂i) by solving (2.5) with Γ = {x̂i} , and from now on we
will use ui(x) to denote u(x; x̂i) as long as there is no ambiguity. Then we can define
the “expected min cost to target”

q(x) = Ex̂u(x) =
m∑
i=1

p̂iui(x). (3.1)

Here u(x) is a random variable satisfying P (u(x) = ui(x)) = p̂i. The global minima
of q suggest the best starting point(s) if the target is immediately revealed. But what
if we start elsewhere and what if the actual x̂ is only learned at a later time T? The
real question is what to do until then since the gradient descent in “correct” ui will
define the trajectory after x̂ = xi is known.

3.1. Fixed certainty time T . For a fixed and known certainty time T , the
answer is encoded by the solution of (2.4) with the terminal condition u = q on
Ω× {T} and the boundary condition u = +∞ on ∂Ω× [0, T ).

The case K = 1 is particularly simple since the total cost incurred until the
target identification is T regardless of the chosen control/trajectory. Thus, the goal
then becomes to minimize the “terminal cost” q among the points reachable from our
starting position x0. Solving (2.4) has the advantage of encoding the answer for all
starting positions simultaneously, but for any specific x0 we can further simplify the
computation. In this case, we solve (2.5) with Γ = {x0} to find the min-time-from-x0

(denoted u(x;x0); see the example in Figure 1B) and define the reachable set3

ΩT (x0) = {x ∈ Ω | u(x;x0) ≤ T}.

To simplify the notation, we will use ΩT whenever x0 is clear from the context. The

3
With K = 1 and fixed T , if we reach x too early, we can simply wait there without affecting

the cumulative cost.
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optimal expected time-to-target is then obtained by traveling from x0 to any waypoint

s ∈ argmin
x∈ΩT (x0)

q(x).

Since there are a total of m targets (each with its own value function ui), q can
be found on the entire Ω in O(mM logM) operations. After that, for any specific
starting position x0 the optimal waypoint s can be found in O(M̃ log M̃) operations
needed to determine the M̃ ≤ M gridpoints falling in the set ΩT (x0).

In Figure 2 we show two examples of such delayed-target-identification planning
for T = 0.08 and T = 0.4 and the set of four potential targets already specified in
Figure 1. Since q has multiple local minima, the value of T strongly influences the
optimal direction of motion starting from x0. When T is large enough (e.g., above
≈ 0.4528 ), the optimal waypoint s is a global minimum of q on the entire Ω.

(A) (B)

Fig. 2. Fixed certainty time. (A): T = 0.08. (B): T = 0.4. The speed f , domain geometry,
starting position x0 (orange dot) and four targets x̂1, . . . , x̂4 (orange stars) are the same as in Figure
1. The corresponding target probabilities (clockwise, starting at the top) are p̂ = (0.2, 0.3, 0.2, 0.3).
Boundaries of ΩT (in yellow) are superimposed on a contour plot of q. The time optimal path from
x0 to the optimal waypoint s = argminΩT

q(x) is shown in red, with dotted red lines showing time-
optimal trajectories from s to each x̂i. In the left subfigure, the s-to-x̂4 trajectory overlaps the
already traversed x0-to-s trajectory.

Remark 3.1. We note that our approach in the fixed-T case can be interpreted as
an infinite-dimensional version of the standard Two-Stage Stochastic Programming
(TSSP) [48]. In the first stage of a general TSSP problem, some decision variable

ζ1 ∈ G1 ⊂ Rd1 has to be chosen at a known cost Q1(ζ1). A random variable ω is
then drawn from a known distribution and the planner chooses their second decision
variable ζ2 ∈ Rd2 , satisfying a known nonlinear constraint ζ2 ∈ G2(ζ1, ω) and incurring
the cost Q2(ζ1, ω, ζ2). The goal is to minimize the expected sum of these two costs;
i.e.,

min
ζ1∈G1

{
Q1(ζ1) + Eω

[
min

ζ2∈G2(ζ1,ω)
Q2(ζ2, ω)

]}
.

In our setting, (ζ1, Q1) would describe the decisions and cost prior to the target-
identification time T , while (ζ2, Q2) would describe the decisions and cost after T . If
one needs to handle a general running cost K, ζ1 becomes a choice of a path from
our starting point x0, ω becomes the soon-to-be-identified target, ζ2 is a chosen path
to that target from our position x at the time T, while q(x) encodes the expected
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cumulative cost for the second stage. By using the time-dependent PDE (2.4) with
the terminal condition u = q on Ω× {T}, we manage to solve this two-stage problem
efficiently despite the fact that the spaces of paths ζ1 and ζ2 are infinite-dimensional.
Moreover, the value function provides the solution to an infinite collection of TSSP
problems – for all starting positions x0 simultaneously. For a single source x0 and
a constant running cost K = 1, one can also use the more efficient approach based
on a stationary PDE (2.5), with ζ1 ∈ G1 = ΩT (x0) interpreted as a chosen reachable
waypoint and Q1 = T .

It is also important to note that the source of initial uncertainty needs not be
the random nature of the target. Indeed, the element of initial uncertainty could
have resulted from one-time changes in the global environment – e.g., changes in the
geometry of the domain or in the running cost K. For instance, suppose that the
target was known, but we had a list of possible “obstacle” locations (subregions of Ω
that would be impossible or highly risky to traverse through). If the actual obstacles
were to be revealed at a later time T , we could use the above approach to plan the
optimal path until then. In Appendix A we illustrate this with an example of airplane
flight-path planning under weather uncertainty.

3.2. Random discrete certainty time T . We now consider a problem in
which the time of target discovery T is a discretely distributed random variable.
That is, we have a set of times {T1, ..., Tr} with 0 < T1 < ... < Tr, the probability
P(T = Tj) = pj > 0 is known for each j = 1, ...r, and

∑r
j=1 pj = 1. We will assume

that pj ’s can be also naturally used to define conditional probabilities. I.e., if we know
that the target has not been identified by the time Tj < Tr, we assume that

P
(
T = Tj+k | T > Tj

)
= pj+k /

r∑
l=j+1

pl, ∀k = 1, ..., r − j. (3.2)

In this setting, the problem can be handled by solving a sequence of HJB equa-
tions. To avoid confusion, in this section we will always use v for time-dependent
value functions, saving u for solutions of static HJB PDEs. Let vj(x, t) denote the
expected min-cost to target conditional on that target being not yet identified by the
time Tj−1 ≤ t. For j = r this means that P (T = Tr | T > t) = 1, and we are back to
the case already considered in the previous section: vr satisfies the equation (2.4) on
Ω× [Tr−1, Tr) with the terminal condition vr(x, Tr) = q(x).

If j = r − 1 and t ∈ [Tr−2, Tr−1), the target might be identified at the time Tr−1

(in which case the optimal remaining cost is encoded in q) or postponed until the time
Tr (in which case the optimal remaining cost is encoded in vr (·, Tr−1) already found
above). Thus, on this time interval vr−1 satisfies the same PDE (2.4), but with the
terminal condition

vr−1 (x, Tr−1) =
pr

pr−1 + pr
vr (x, Tr−1) +

pr−1

pr−1 + pr
q(x). (3.3)

Iterating this process (from j = r − 1 to j = 1) and using T0 = 0 to simplify the
notation, we can derive the general case. The value function vj satisfies the PDE
(2.4) on Ω×

[
Tj−1, Tj

)
with the terminal condition

vj(x, Tj) =

1−
pj
r∑

l=j

pl

 vj+1

(
x, Tj

)
+

 pj
r∑

l=j

pl

 q(x). (3.4)
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As before, the computational cost of obtaining q is O(mM logM), where M is
the number of gridpoints in the spatial grid and m is the number of potential targets.
If we assume that there are Nj time slices used in discretizing [Tj−1, Tj), then the
additional computational cost of solving the above r-stage problem is O(M

∑r
j=1 Nj).

We now consider an example using the same setup already presented in Figure
2, but with two possible times of target discovery: T1 = 0.08 and T2 = 0.4. Note
that, even though K = 1 and we are optimizing the expected time to target, it is
still necessary to solve two time-dependent PDEs. As an added benefit, we recover
the optimal control from every starting position, but for the sake of comparison we
focus on the same specific x0 (shown by an orange dot). In Figure 3 the inner yellow
ring illustrates ∂ΩT1

(x0), the boundary of the set reachable from x0 by the time T1.
The cyan dot indicates the optimal location s1 ∈ ΩT1

(x0) to reach by that time.
The outer yellow boundary shows ∂Ω(T2−T1)

(s1), the boundary of the set we will
have to consider if the target is not revealed at T1, and the second cyan dot s2 is
the optimal point to reach in that case. Note that the dependence of Ω(T2−T1)

on
s1 is precisely the reason why the stationary formulation of the previous section is
not usable. Again, the background shows the level sets of q (the expected time till
arrival if the true target is revealed immediately). Figure 3A shows that for p1 = 0.9,

(A) (B) (C)

Fig. 3. Random T with possible values T1 = 0.08 and T2 = 0.4. The basic setup is the
same as in Figure 2, but the optimal behavior is heavily dependent on T ’s probability distribution.
(A): p1 = 0.9, p2 = 0.1. (B): p1 = 0.55, p2 = 0.45. (C): p1 = 0.1, p2 = 0.9.

the first optimal waypoint s1 is close to argminx∈ΩT1
(x0)

q(x), the optimal solution

when p1 = 1 (and T = T1 is fixed). There is a somewhat opposite effect in the case
of p1 = 0.1 shown in Figure 3C. Since T = T2 is far more likely, we see that s2 is
close to argminx∈ΩT2

(x0)
q(x) and s1 is selected (despite its relatively high q value)

to make this possible. The example with p1 = 0.55 presented in Figure 3B is more of
a compromise. It is also interesting that in this case the optimal s1 is in the interior
of ΩT1

(x0).
The above modeling framework is flexible enough to treat possible temporal

changes in the target probabilities p̂ and even p̂’s possible dependence on the certainty-
time probabilities p. We illustrate this with an additional “emergency rescue” example
in Appendix B.

Remark 3.2. We note that the discrete-random-T case can be viewed as a “mul-
tistage”(MSSP) generalization of TSSP [48] mentioned in Remark 3.1. A general
r-stage stochastic programming problem can be written in a nested form:

min
ζ1 ∈ G1

Q1(ζ1)+Eω1

[
min

ζ2 ∈ G2(ζ1, ω1)
Q2(ζ2, ω1) + Eω2

[
· · · + Eωr-1

[
min

ζr ∈ Gr(ζr-1, ωr-1)
Qr(ζr, ωr-1)

]
· · ·

]]
,
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with ω1, ω2, · · · , ωr−1 being a stochastic process. The expectation Eωj
[·] is conditioned

on an observed realization of ω1, ω2, · · · , ωj−1.
For our model, the random outcomes of whether the true target is revealed at each

Tj correspond to the stochastic process of MSSP. The terminal conditions defined in
(3.3) and (3.4) are conditional expectations of the two possibilities at Tj , provided
that T > Tj−1. The HJB solution vj(x, t) in the jth stage encodes the optimal
remaining cost for any starting state x, which is naturally used to determine the
terminal conditions for the previous stage. Since we are obtaining the optimal control
for all initial (x, t) simultaneously, this is again equivalent to solving an infinite family
of infinite-dimensional MSSP problems.

3.3. Exponentially distributed certainty time T . We now move beyond
problems that can be solved stage-by-stage in a typical MSSP fashion. Section 3.2
assumes the certainty time to be a discretely distributed random variable. A natural
extension is to consider a continuously distributed T . The total cost can be again
split into two parts (before and after certainty is achieved), with the expected cost of
the latter part still encoded by q(x) defined in section 3.1. The target identification is
the termination of the first part, and the optimal control of such randomly-terminated
processes has already been considered in [5]. We will follow the same approach here,
taking T to be exponentially distributed with a known rate λ > 0. I.e., E(T ) = 1/λ

and P(T > t+ τ | T ≥ t) = e−λτ for all t, τ > 0.
Under this assumption, the expected cost can be computed as

J (x,a(·)) =

∫ ∞

0

λe−λT

[∫ T

0

K(y(t)) dt + q (y(T ))

]
dT

=

∫ ∞

0

e−λt [K(y(t)) + λq(y(t))] dt.

Thus, this problem can be also viewed as a discounted infinite-horizon problem with
λ interpreted as a discounted factor and (K(x) + λq(x)) as a new running cost. The

value function uλ(x) = infa(·) J (x,a(·)) can be recovered as a viscosity solution of a
Hamilton-Jacobi PDE

λ
(
uλ(x)− q(x)

)
+ |∇uλ(x)|f(x) = K(x). (3.5)

Focusing on time optimality, we can use K = 1 to have uλ(x) encode the (mini-
mized) full expected-time-to-target from x to uncertain x̂. Alternatively, we can use

the fact that E(T ) = 1/λ is trajectory independent and take K = 0 to have uλ(x) en-
code the (minimized) expected-time-to-target-after-it-is-identified. We follow [5] and

use the latter, which yields uλ ≤ q since one of the options is to stay in place until the
target is identified. This allows recovering the value function from a quasi-variational
inequality of obstacle type

max
(
uλ − q, λ

(
uλ − q

)
+ f |∇uλ|

)
= 0. (3.6)

We use Mλ to denote the motionless set of starting positions at which uλ = q, so that

λ
(
uλ − q

)
+ f |∇uλ| = 0 is solved on Ω\Mλ. For any starting position x0 ̸∈ Mλ, the

optimal trajectory is found by gradient descent in uλ and leads to some motionless
waypoint s ∈ Mλ. If the target is not identified by the time we reach s, it is optimal
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to stay there until x̂ is revealed. This is a problem with free boundary since Mλ is
not known in advance. (With K = 0, it is easy to show that every point in Mλ

is a local minimum of q. The converse is true for global minima of q, but its local
minima may or may not be motionless depending on λ and the global properties of
q.) Nevertheless, a modified version of Fast Marching Method can be still used to
compute the numerical approximation efficiently (see [5, Section 3.3 and Appendix B]
for implementation details). Since q has to be computed first before solving (3.5), the
overall cost is O ((m+ 1)M logM) .

The value of parameter λ determines whether one should make a quick transition
to a nearby local minimum or spend more time on a path to the global minimum
(risking that the target is identified while we are still traveling through high values
of q). The example in Figure 4 illustrates this, with E[T ] = 1/2.5 = 0.4 in the left
subfigure producing a trajectory similar to the one in Figure 2B, and E[T ] = 1/30 in
the right subfigure resulting in a completely different path to a local minimum. We
note that with an intermediate E[T ] = 1/20 that nearby local minimum is already
motionless, but the optimal trajectory from our chosen x0 still leads to a much farther
global minimum.

(A) (B) (C)

Fig. 4. Exponentially distributed T . Each subfigure shows the level sets of u
λ
, starting position

x0 (in orange), optimal waiting position s (in cyan), motionless local minima of u
λ

(in magenta)
and the optimal trajectory (in red). (A): with λ = 2.5 an early target identification is not very
likely, and the optimal trajectory leads to the global minimum of q. (B): with λ = 20 still heading
to the global minimum although the nearby local minimum is already motionless. (C): with λ = 30
reaching the global minimum before the target identification is less unlikely, and it is optimal to head
toward the local minimum nearby.

4. Robust path planning. We now turn our attention to robust control under
initial uncertainty, using the same example previously considered in section 3.1 (i.e.,
minimizing time-to-target that will be revealed at a known time T ). Our goal is to
compare several different notions of robustness: the worst-case optimization (§4.1),
the risk-sensitive average optimization (§4.2), optimizing the average with a hard con-
straint on the worst case (§4.3), and optimizing the average with a “chance constraint”
on bad outcomes (§4.4). As we will show, the corresponding optimal waypoints and
trajectories are quite different in each case, including the probabilistic definition of
optimal waypoints in §4.4. Along the way, we will also provide a brief discussion of
how these robustness models relate to each other. Two of these (in §4.1 and §4.3) will
be also extended to the case of an exponentially distributed random certainty time T
(introduced in §3.3).

All of the above describe robustness to aleatoric uncertainty; i.e., uncertainty due
to a random choice based on a known probability distribution p̂ over a known set



12 QI, DHILLON, AND VLADIMIRSKY

of potential targets X̂. We end this section by exploring robustness with respect to
epistemic uncertainty (§4.5); i.e., possible uncertainties in p̂ or X̂.

4.1. Worst-case scenario. Perhaps the most obvious robust approach is to
consider a Stackelberg-type “game against nature”, where the worst target is always
chosen (by a supposed opponent) based on our choice of a waypoint. In this case, the
time to target after identification is

q̄(x) = max{u1(x), · · · , um(x)}. (4.1)

and the worst-case optimal solution is to go from x0 to any waypoint

s̄ ∈ argmin
x∈ΩT (x0)

q̄(x). (4.2)

This approach (illustrated in Figure 5A) does not use any information from p̂
and is thus very conservative. E.g., the worst-case scenario could be very unlikely and
q(s̄) can be quite far from the average-case optimal q(s). Similarly, the worst-case
scenario q̄(s) can be much costlier than q̄(s̄). While these quantities can be compared
directly, a more nuanced discussion of the “worst versus average” trade-offs will be
covered in §4.3. The computational cost of obtaining s̄ through our Fast Marching
implementation is still O(mM logM).

As we show in Figure 5B, the same approach also works for the exponentially
distributed random certainty time discussed in section 3.3. For the specified rate
λ > 0, the worst-case optimal trajectory is found by using q̄ instead of q in PDE (3.5)

and then following (−∇uλ) from x0 to the corresponding motionless point. This
waypoint s̄ is one of the local minima of q̄, but we may not reach it if the target is
identified earlier. (Note that this is the worst case with respect to x̂ only while T is
still assumed to be random. If we allowed T to be chosen by the opponent/nature, it
would always result in T = 0, yielding q̄(x0) as our time to the worst-case target.)

(A) (B)

Fig. 5. Worst-case optimal planning. (A): the same (“Fixed T = 0.4”) setting as in Figure
2B. The cyan diamond represents a s̄ and the red curve is the time-optimal trajectory, with level
sets of q̄ in the background. (B): the same (“Exponentially distributed T with E[T ] = 0.4”) setting

as in Figure 4A except that q is replaced by q̄. Level sets of u
λ
are shown in the background.

4.2. Risk-sensitive optimization. The notion of risk sensitivity most com-
monly used in optimal control and Markov Decision Processes is based on minimizing
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the expectation of an exponential function of the outcome [25, 28]. Given a risk-
sensitivity parameter β > 0, it is natural to define

qβ(x) = Ex̂[e
βu(x)] =

m∑
i=1

p̂ie
βui(x). (4.3)

The waypoint is then chosen as

sβ ∈ argmin
x∈ΩT

qβ(x).

Figure 6 illustrates this approach for T = 0.4 and two different β values. Higher β
corresponds to more risk-averse behavior. As β increases, the exponential of the worst
outcome starts to dominate the expectation; so, sβ → s̄ as β → +∞. On the other
hand, when β is small, the Taylor expansion yields qβ ≈ 1+βq; so, sβ → s as β → 0.

Another approximation valid for small β’s establishes the connection with the
mean-variance trade-offs:

log(qβ)/β ≈ Ex̂u(x) +
β

2
Ex̂ [u(x)− Ex̂u(x)]

2
. (4.4)

Unfortunately, this holds only asymptotically and is not very useful in estimating the
worst-average case trade-offs for positive β values; see Figure 7 and Remark 4.1.

(A) (B)

Fig. 6. Risk-sensitive planning. The red curve is a time-optimal trajectory toward sβ (magenta
dot). Level sets of qβ are shown in the background. The position of sβ depends on the magnitude
of β. (A): A small β leads to sβ being close to s (compare with Figure 2B). (B): β is large and sβ
moves closer to s̄ (compare with Figure 5A).

4.3. Optimizing the average with a hard constraint on the worst case.
As usual, when evaluating more than one performance criterion, we have to em-
ploy the notion of Pareto-optimality. Focusing on K = 1 and deterministic T , we
will say that a waypoint z1 is dominated by another waypoint z2 if both q̄(z2) ≤
q̄(z1), q(z2) ≤ q(z1), and at least one of these inequalities is strict. We will say
that a waypoint z ∈ ΩT (x0) is Pareto-optimal if it is not dominated by any other
waypoint in ΩT (x0). Collectively, these waypoints encode all rational “average versus
worst” trade-offs since none of them can be improved with regard to both crite-
ria simultaneously. These trade-offs are well represented visually by a Pareto Front
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PF = {(q̄(z), q(z)) | z is Pareto-optimal} , which a practitioner could use to find the
desired compromise. Every such waypoint can be viewed as an answer to a constrained
optimization problem: minimize q subject to q̄ ≤ C (or, equivalently, ensuring that
the total time to target is below T +C). For a fixed starting position x0, this can be
done by restricting the domain to

ΩT,C(x0) = ΩT

⋂
ΩC , where ΩC = {x ∈ Ω | q̄(x) ≤ C},

and then selecting a waypoint

sc ∈ argmin
x∈ΩT,C(x0)

q(x).

Note that the problem has no solution if C is too small (resulting in ΩT,C(x0) =
∅), while for large enough C the problem becomes unconstrained, yielding the same
waypoints obtained in section 3.1. A more efficient approximation of the entire PF
is obtained by evaluating (q̄, q) at every gridpoint in ΩT (x0) and then removing the
dominated ones. The result of this approach for T = 0.4 and C = 0.56 is shown in
Figure 7.

(A) (B)

Fig. 7. Minimizing averaged cost with a hard constraint C = 0.56. (A): Three different optimal
waypoints (s, s̄, sc) corresponding to sections 3.1, 4.1 and 4.3 are shown by cyan markers (the
circle, diamond and square respectively). The red curve is the time optimal trajectory from x0 to
the latter, with the level sets of q̄ in the background. (B): The Pareto Front approximation is shown
in black, with the cyan markers corresponding to the 3 waypoints shown on the left. The dashed
line is q̄ = 0.56 and the square marker is the lowest one on the Pareto front satisfying q̄ ≤ 0.56.
The scattered magenta and green dots correspond to the risk-sensitive and distributionally-robust
waypoints discussed in sections 4.2 and 4.5.

Remark 4.1. By the optimality of sβ and Jensen’s inequality, we have

Ex̂[e
βu(s)] = qβ(s) ≥ qβ(sβ) = Ex̂[e

βu(sβ)] ≥ eβEx̂[u(sβ)] = eβq(sβ).

After rearranging this inequality and applying (4.4) we obtain

q(sβ) ≤ log
(
Ex̂[e

βu(s)]
)
/β ≈ q(s) +

β

2
Ex̂ [u(s)− q(s)]

2
.

which means the vertical gap between q(sβ) and q(s) is approximately bounded by
β
2Var[u(s)] when β is relatively small.
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If C and T are fixed, the solution can be obtained for all starting positions at
once by solving the time-dependent PDE (2.4) with K = 1 and the terminal condition
u(x, T ) = q(x) on ΩC and u(x, T ) = +∞ on Ω\ΩC . A constraint on the remaining
time-to-target after x̂ is identified can be similarly handled even with the exponentially
distributed random T discussed in section 3.3. We define uλ,C to be the solution of
(3.5) on the restricted domain ΩC (see Figures 8A, 8B for two examples with different
C values). By varying C we can also approximate the Pareto Front as shown in

Figure 8C. The average case performance is encoded by uλ,C(x0), while the worst
case corresponds to the largest value of q̄ encountered on the optimal trajectory from
x0 (found by following −∇uλ,C). This worst-case result is equal to C if that trajectory
touches ∂ΩC\∂Ω, but as Figure 8B shows, this is not always the case.

(A) (B) (C)

Fig. 8. Worst-case-constrained optimiziation for the exponentially distributed T with λ = 2.5.
(A): a binding constraint q̄ ≤ 0.725. The cyan dot shows the same waypoint as in Figure 4A; i.e.,

sc = s is the global minimum of q. But the optimal trajectory bends to stay inside ΩC and u
λ,C

(s) >

u
λ
(s). (B): a non-binding constraint q̄ ≤ 0.7. As C decreases, ΩC becomes disconnected and the

optimal trajectory leads to a closer local minimum. The dark cyan region is another connected
component of ΩC . (C): the Pareto Front (worst vs average case performance). There are no
solutions for C < q̄(s) ≈ 0.6566 and we use C values between 0.66 and 0.81 to approximate PF. The
cyan upward and downward triangles correspond to the the left and middle figures respectively. The
cyan dot corresponds to the unconstrained λ-optimal trajectory in Figure 4A.

Before moving on to other types of robust path planning, we note that this “con-
strain the worst, optimize the average” strategy can be also computationally efficient
even in a more general setting, where the uncertainty is not monotonically decreasing.
E.g., it was successfully used in robust routing on stochastic networks [22], where the
target was pre-specified, but each edge transition incurred a random penalty.

Remark 4.2. The computational cost of producing q, q̄, and qβ is the same. So,
finding s̄ or sβ for a specific β costs exactly as much as obtaining the risk-neutral s.
The same is also true for sc corresponding to any specific C. (In fact, the computa-
tional cost is usually reduced since ΩC is smaller than Ω.) To approximate the Pareto
front, we can first sort all (q̄, q) pairs in ΩT (x0) by the q̄ values, then go through all
of them in increasing order and prune all dominated pairs. The computational cost
of this process is O(M̃ log M̃), where M̃ ≤ M is the number of gridpoints in ΩT (x0).

4.4. Probabilistic constraints on bad outcomes. Probabilistic constraints
(also frequently known as chance constraints) provide a fairly general version of ro-
bustness when optimizing the expected performance. Unfortunately, they often result
in much tougher optimization problems [37,39,53], but we will show that in our simple
setting the additional computational cost is only moderate.

Focusing on each potential target x̂i, it is natural to define its “C-unreachable
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set” Ω̂i = {x ∈ ΩT (x0) | ui(x) > C} and the corresponding indicator function
χi(x) = 1Ω̂i

(x). The risk function can be then defined as the probability of not
meeting this constraint on the remaining time to target if we are at the point x when
that target is finally identified. I.e.,

r(x) =
m∑
i=1

p̂iχi(x). (4.5)

We note that the worst-case-constrained expectation optimization of section 4.3 can
be viewed as minimizing q(x) while guaranteeing that r(x) = 0. This approach is
highly conservative since it disqualifies many waypoints x with small q simply because
some ui(x) > C even if the corresponding p̂i is quite small. It might seem natural
to relax this hard constraint by minimizing q over the set {x ∈ ΩT (x0) | r(x) ≤ ϵ}.
But since our goal is to limit the overall risk, better results are obtained by allowing
the planner to use probabilistic/mixed strategies. We can occasionally use waypoints
with r > ϵ which are attractive because of their small q, and still limit the overall risk
by also using waypoints with r < ϵ whose q values are not as good. An intermittent
use of both s and sc is a simple example of this kind of strategy. With C = 0.56
and T = 0.4 corresponding to Figure 7, this actually happens to be optimal if we
use s with probability θs = min(1, ϵ/r(s)) and head to sc with probability (1 − θs).
However, we will show that this use of s and sc is not generically optimal. In many
cases, the set ΩT,C(x0) may be even empty, making sc undefined. Below we consider
a more interesting example with a lower C value resulting in a positive risk r on the
entire ΩT (x0).

For full generality, we could let a planner select a probability measure over all
possible waypoints in ΩT (x0), minimizing the expected q and restricting the expected
r with respect to that measure. But in practice we will assume that the planner
selects a discrete pdf θ = (θ1, . . . , θn) over the set of gridpoints X = {x1, · · · ,xn} ⊂
ΩT (x0). I.e., we will assume that θj ≥ 0 is the probability of choosing a gridpoint
xj as our waypoint. In this setting, the probabilistically-constrained optimization
can be performed by solving a finite-dimensional linear program with θj ’s as decision
variables:

minimize
n∑

j=1

θjq(xj)

subject to
n∑

j=1

r(xj)θj ≤ ϵ,

n∑
j=1

θj = 1, θj ≥ 0, j = 1, · · · , n.

(4.6)

As long as the feasible set is non-empty, it will be an (n − 1)-dimensional polytope
with a minimum attained at one of its vertices (i.e., where (n − 1) constraints are
active). Since there is only one constraint based on the risk, at least (n− 2) values of
θj ’s are actually zero at any vertex. Thus, regardless of m and n, there always exists
an optimal solution assigning non-zero probability to at most 2 waypoints as long as
the feasible set is non-empty. If one wished to impose κ probabilistic constraints

n∑
j=1

P(u > Ck) ≤ ϵk, k = 1, ...κ,
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a similar argument shows that an optimal mixed strategy could be found based on at
most (κ+ 1) waypoints4.

While the general linear programming algorithms are certainly suitable for solv-
ing (4.6) based on a 2D grid, we also describe a better (more geometric and efficient)
approach based on (r, q)-Pareto optimality. The set of possible waypoints X is nat-
urally mapped to X r,q = {(r(x), q(x)) |x ∈ X} . Any point within its convex hull
Υ = co (X r,q) is attainable by selecting an appropriate θ. The solution of (4.6) corre-
sponds to min {q | (r, q) ∈ Υ, r ≤ ϵ} , which is actually attained on Υ’s “southwestern”
boundary

V =
{
(r, q) ∈ ∂Υ | with r < r′ or q < q′, ∀(r′, q′) ∈ Υ \ {(r, q)}

}
.

This V is a simple polygonal chain whose vertices are among the Pareto-optimal points
of X r,q, stretching from a “first-r-then-q” minimizing waypoint on the left to a “first-
q-then-r” minimizing waypoint on the right; see Figure 9B. Any of the planar convex
hull methods can be used to compute V efficiently; e.g., Graham scan [27] or monotone
chain [4] algorithms can compute it in O(n log n) operations. If ∂Υ has only k ≪ n
vertices on it, Chan’s algorithm [14] yields an even better worst-case complexity of
O(n log k).

Once V is obtained as an r-sorted list of its k vertices, this essentially solves
(4.6) for all possible ϵ’s at once. If ϵ < min

(r,q)∈V
r, the problem has no solution. If

ϵ ≥ max
(r,q)∈V

r, the problem is unconstrained. In all other cases, the line r = ϵ intersects

some segment of V, which can be found by a binary search in O(log k) steps. This
intersection point yields the corresponding probabilities with which the waypoints at
the segment vertices should be selected; see Figure 9B. If the line r = ϵ passes through
a vertex of V, it is optimal to use the corresponding single waypoint deterministically.

Remark 4.3. For the case m ≪ log n, additional speed up can be achieved by
ignoring the dominated (i.e., the non-Pareto-optimal) points in X r,q. Note that in
our setting r(x) is a piecewise constant function with at most 2m possible values
(based on whether or not x belongs to each Ω̂i). When computing r(x), we can check
which Ω̂i’s x belongs to and compare its q(x) with the smallest q already computed
within the same-r-value group. Thus, maintaining a list of minimal q values for all
groups takes O(nm) steps. Notice that all the 2m r values are generated by taking
sums of all the subsets of {p̂1, · · · , p̂m}. If all the p̂i’s are sorted (which can be done
with O(m logm) steps), using the merge sort algorithm we can sort all the 2m values
in O(2m) steps. Once groups are already r-sorted, discarding the dominated group
minimals takes O(2m) steps and Graham scan will now compute V in only O(2m)
steps. Each look-up for a specific ϵ will now cost O(m).

4.5. Robustness to modeling errors. Up till now, we have only considered
aleatoric uncertainty, taking on faith the correctness of input data: the probability
distribution over the set of possible targets and their exact locations were always
assumed to be known. We next discuss the robustness with respect to epistemic (or
“systemic”) uncertainty caused by modeling errors.

4.5.1. Robustness to errors in p̂. In practice, the probability distribution
p̂ over the set of targets will be usually defined using historical data. So, the true

4
The authors are grateful to Dmitriy Drusvyatskiy for pointing this out.
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(A) (B)

Fig. 9. Probabilistic constraints (C = 0.365; ϵ = 0.25). (A): Level sets of q(x) corresponding to
p̂1 = p̂2 = 0.18, p̂3 = 0.35, and p̂4 = 0.29 with the same target locations as in Figure 2. The boundary
of ΩT (x0) is yellow and the boundaries of Ω̂i’s are blue. The “unconstrained optimal” waypoint
s = argminx∈ΩT (x0)

q(x) is located exactly at the target x̂3 (in cyan). The pair of (C, ϵ)-optimal
waypoints are shown in red and magenta, and the optimal mixed strategy selects them with the
respective probabilities of 0.3889 and 0.6111. (B): The set X r,q

is shown in black, its non-dominated
points are shown by circular markers, while V (the “southwestern boundary” of its convex hull Υ)
is shown in green. The line r = ϵ is shown in blue and the ratio in which it divides the segment
of V determines the probabilities of red and magenta waypoints in the optimal mixed strategy. The
magenta waypoint can be also viewed as maximizing the probability of a desirable event (i.e., u < C).
Even though m = 4, there are only 6 values of r in this example since many of the 2

m
groups of

gridpoints are empty and a few groups give the same values (since p̂1 = p̂2).

distribution would typically be different from such nominal/assumed p̂. Distribution-
ally robust (DR) optimization deals with this uncertainty by defining an ambiguity
set of possible distributions, and letting the opponent/Nature select the worst among
them while we are minimizing the expected cost [20]. We will use the standard
total variation distance, which for probability distributions p̂ = (p̂1, · · · , p̂m) and
p̃ = (p̃1, · · · , p̃m) over a finite set X̂ can be conveniently computed as

W (p̂, p̃) = 1−
m∑
i=1

min(p̂i, p̃i) =
1

2
∥p̂− p̃∥1, (4.7)

coinciding with a Wasserstein-1 distance if we use a discrete metric d(x̂i, x̂j) = 1−δij
on the set of targets [51].

We will refer to our assumed pdf p̂ as the nominal distribution and will define the
ambiguity set to be a closed ball Bδ(p̂) = {p̃ : W (p̂, p̃) ≤ δ}. If q̃(x, p̃) denotes the
expected time-to-target corresponding to p̃ and q̃δ(x) is the worst q̃(x, p̃) among all
p̃’s in Bδ(p̂), the DR approach prescribes traveling to a waypoint s̃δ that minimizes
that worst outcome. In other words,

q̃(x, p̃) =
m∑
i=1

p̃iui(x), q̃δ(x) = max
p̃∈Bδ(p̂)

q̃(x, p̃), s̃δ ∈ argmin
x∈ΩT

q̃δ(x).

Our explicit representation of W (p̂, p̃) makes computing q̃δ(x) particularly easy.
Suppose that ui(x)’s are sorted in ascending order; i.e., u1(x) ≤ u2(x) ≤ · · · ≤ um(x).
The maximizer p̃δ = (p̃δ,1, · · · , p̃δ,m) will increase the probability of the “hardest
target” x̂m while compensating with a corresponding decrease in probabilities of the
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“easiest targets” (x̂1, x̂2, ...). The first half of this plan can be implemented by setting
p̃δ,m = min{1, p̂m + δ}. If p̃δ,m = 1 this immediately implies p̃δ,i = 0 for i < m.
Otherwise, this increase is compensated by starting with p̃δ,1 = max{0, p̂1 − δ} and
continuing (e.g., with p̃δ,2 = max{0, p̂2 − δ + (p̂1 − p̃δ,1)}) until we reach a total
reduction of δ. Since the difference between ui(x)’s is at most [um(x) − u1(x)], the
DR loss can simply be bounded as q̃δ(x) ≤ q(x)+δ[um(x)−u1(x)]. This reveals that,
for small δ, minimizing q̃δ is approximately equivalent to minimizing q(x). Obtaining
s̃δ mainly involves computing u1, · · · , um, which takes O(mM logM) operations, and
sorting p̂1, · · · , p̂m , which takes O(m logm) operations.

In Figure 10 we show the results of the DR approach for the fixed T = 0.4 example
of section 3.1. For δ = 0, there is no ambiguity in distribution and we are left with
q̃δ = q, the case presented in Figure 2. For δ ≥ (1 − mini p̂i), we know that p̃δ will
assign probability 1 to the worst target, and q̃δ = q̄. (Note that this can happen
even for smaller δ’s; e.g., when the probability of the most difficult target is higher.
See Figure 10C.) But for the intermediate δ values, q̃δ continues to change and the
corresponding waypoint s̃δ will be different from s and s̄.

It is also worth asking how good is the DR approach for balancing the worst-
average case performance with respect to our nominal distribution p̂. The green dots
in Figure 7B correspond to the same waypoints used in Figure 10. They clearly
show that the DR waypoints are better in this sense than the risk-sensitive waypoints
(defined in section 4.2), but certainly are not Pareto optimal. An additional example
in Appendix C shows that the DR approximation can also miss most of the Pareto
frontier.

(A) (B) (C)

Fig. 10. DR optimization. (A) & (B): δ = 0.02, 0.1 respectively. The red curve is time-optimal
to a waypoint s̃δ(lime dot). Level sets of q̃δ are shown in the background. (C): q̃δ(s̃δ) computed
using 40 different δ values between 0 and 0.8.

4.5.2. Coarsening the target set. All problems considered so far assumed
that the target set is finite. We now suppose that the target x̂ is a random variable
taking values in Ω, with a general probability measure µ̂. The expected minimum
time-to-target is

ξ(x) = Ex̂u(x; x̂) =

∫
Ω

u(x;y) dµ̂(y), (4.8)

where u(x;y) is obtained by solving (2.5) with Γ = {y}. If our goal is to achieve the
average-case optimality with a fixed target identification time T , we should select a
waypoint

sµ̂ ∈ argmin
x∈ΩT (x0)

ξ(x).
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However, for the sake of computational efficiency, we could instead use a domain

decomposition Ω =
m⋃
i=1

Υi, with m non-overlapping subdomains Υi and a single rep-

resentative target x̂i ∈ Υi selected from each of them. The approach from section
3.1 can be now viewed as finding an approximately optimal waypoint for a coarsened
target set X̂ with

q(x) =
m∑
i=1

∫
Υi

u(x; x̂i) dµ̂(y) =
m∑
i=1

u(x; x̂i)p̂i, p̂i =

∫
Υi

dµ̂(y). (4.9)

Once we reach the waypoint s ∈ argminΩT
q(x) and the true target y ∈ Ω is revealed,

we will proceed there directly. This strategy yields the average time to target ξ(s),
and the natural question is how much worse it is than the optimal ξ(sµ̂).

Suppose our speed of motion is bounded below by fl > 0 and all subdomains are
small enough so that ∀y ∈ Υi there is a path of length at most h connecting y to x̂i

without leaving Υi. Then the triangle inequality yields

|ξ(x)− q(x)| ≤
m∑
i=1

∫
Υi

|u(x;y)− u(x; x̂i)| dµ̂(y) ≤
m∑
i=1

∫
Υi

u(y; x̂i) dµ̂(y)

≤
m∑
i=1

∫
Υi

(h/fl) dµ̂(y) = h/fl. (4.10)

Recalling the q-optimality of s and using (4.10) twice (with x = sµ̂ and then with
x = s), we see that

ξ(sµ̂) ≥ q(sµ̂)− h/fl ≥ q(s)− h/fl ≥ ξ(s)− 2h/fl, (4.11)

i.e., the suboptimality of s is bound by 2h/fl.

5. Conclusions. Our focus has been on the challenge of optimal and robust
path-planning under initial uncertainty. We have considered three different models
for the certainty time T and derived efficient numerical methods for optimizing the
average case performance in each case. For the fixed T and exponentially distributed
T we have also introduced a number of robust path-planning techniques, encoding
different approaches to balancing the average case performance against the particu-
larly bad/unlucky scenarios. Under the assumption that the running cost K and the
certainty time T are constant, the problem reduces to a choice among T -reachable way-
points, which allowed us to evaluate several robust planning techniques that are often
prohibitively expensive in the general setting. E.g., we have introduced a polynomial
time algorithm for optimizing the expectation under probabilistic constraints on bad
outcomes. Risk-sensitive and distributionally-robust optimization are often viewed
as closely approximating the optimal tradeoffs between the average and worst-case
performance. But we have shown that in our setting, the resulting waypoints can be
far from Pareto optimal. Extending these robust planning algorithms to the case of
general random T is a challenge that we hope to address in the future.

While most of our presentation is focused on target uncertainty, a similar approach
can be employed with initial uncertainty on cost or dynamics (on yet to be explored
part of the domain); see Appendix A for a representative example. For the sake of
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simplicity, our examples were always isotropic and relied on Fast Marching Method
with first-order accurate upwind finite difference schemes. But similar techniques
would be easy to implement with Fast Marching-style methods developed for higher-
order accurate discretizations (e.g., [2, 45,46]) and more general anisotropic problems
(e.g., [3, 19, 34, 35, 47]).

Beyond path planning, we believe that our approach is also promising for treating
structured uncertainty in general control problems and Markov Decision Processes
[25]. For instance, techniques similar to those described in our section 3.2 have recently
been applied to determining optimal car braking policy under traffic signal duration
uncertainty [26].

Another useful future direction is to adapt our techniques to the setting of Mean
Field Games (MFG), where a large number of interacting agents plan their actions
selfishly, and the initial uncertainty can be viewed as a particularly simple model of
(instantaneous) “common noise” affecting all agents. E.g., evacuating a building under
uncertainty on which exit will be open at a later/known time T is an example of this
type considered in [1, 11]. If the agents are cooperative and centrally controlled, this
can be handled in the framework or Mean Field Control [31] or, for a smaller number
of agents, by solving a high-dimensional HJB equation (e.g., using neural networks
[33, 36] or tensor decomposition techniques [21]). As an alternative to the mean field
approximations, sequential path-planning [15, 42] can be also used to alleviate the
curse of dimensionality if the agents are cooperating and can be assigned priority.
We believe that our models of initial uncertainty would be beneficial in each of these
settings.

Throughout this paper, we have assumed that the uncertainty disappears instan-
taneously. It will be useful and challenging to extend our methods to general problems
with delayed information acquisition. Example in Appendix B is actually a small step
in this direction, with target-uncertainty reduced gradually at several distinct times
Ti. A different generalization of this type will be to consider problems where the tran-
sition to certainty is still instantaneous, but our choice of pre-certainty control affects
the probability distribution of T . This situation arises naturally in many “stochastic
shortest path with recourse” problems [40].
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Appendices
Appendix A. Uncertainty in running cost: the storm fronts example.

Returning to the setting of a fixed certainty time T in section 3.1, we now show
how our approach can similarly handle initial uncertainty arising due to anticipated
changes in a global environment even if the target is perfectly known in advance.

Consider a challenge of risk-hedged air traffic routing under uncertain weather
conditions. Given a forecast of probable storm front trajectories, one option is to
devise a good flight path and commit to it in advance all the way to the target.
This is the key idea of the approach developed in [43], but one can do much better
by taking into account the future re-routing once a more precise forecast becomes
available. What follows is an illustration of how this can be done in our framework
under a simplifying assumption that the true position of the storm front will be
revealed at a known time T .

First, consider the deterministic case with an a priori known location of an elliptic
storm region. Our running cost K is assumed to be identically one on most of the
domain, but is higher inside the storm region. In particular, if the storm is centered at
x̃ and the canonical equation for the storm region boundary is (x− x̃)TA(x− x̃) = 1,

we will assume that inside that region K(x) = 1 + α
(
1 − (x − x̃)TA(x − x̃)

)γ
with

α = 2 and γ = 2.5. (Note that this yields K = 1 on the storm boundary, ensuring
the continuity.) For any fixed/known x̃ and A, finding an optimal path to the target
x̂ is simply a matter of solving an Eikonal equation and using gradient descent on
the value function. In Figure 11 we illustrate this for three different storm locations
(encoded by (x̃, A)). Unsurprisingly, optimal trajectories deviate from the quickest
(straight line) path to the target to decrease the amount of time spent inside the
storm.

(A) (B) (C)

Fig. 11. A deterministic case of different storms with elliptic shapes. f = 1,K = 1 outside
storm region, while f = 1,K > 1 inside. The source x0 is at (0.1, 0.1) while the target x̂ is at
(0.9, 0.9). Each storm location results in a different running cost Ki(x) and value function ui(x).
The red lines are cost-minimal trajectories and in the background are level sets of u1, u2 and u3.

Suppose that initially we only have a probability distribution p̂ = (p̂1, p̂2, p̂3) over
these three storm regions (enumerated in the same order as in Figure 11) and the true
position of the storm will be revealed at a later time T . We will further assume that T
is small enough so that all three possible storm regions have no overlap with ΩT ; i.e.,
the plane can never reach any storm region before the “storm-revealing time”. The
optimal waypoint is found in the same way as in section 3.1. I.e., the plane should
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follow the time-optimal path to

s ∈ argmin
x∈ΩT (x0)

q(x), where q(x) = Ex̃,A

[
u(x)

]
=

∑
i=1,2,3

p̂iui(x).

In general, the time complexity of obtaining s is O(msM logM) with ms being the
total number of potential storm regions and M the number of gridpoints.

As we can see from Figure 12, the optimal waypoint is heavily dependent on p̂.
Of course, the above setting is highly simplified since in reality the weather forecasts

(A) (B)

Fig. 12. Uncertain elliptic storms with different p̂’s. Level sets of q(x) are shown in the
background. The cyan dot is s, attaining minimal q in ΩT , with T = 0.4. The dashed red lines
labeled yi(t) (i = 1, 2, 3) are the optimal trajectories from s to the target – to be used once the actual
storm location is discovered. (A): p̂ = (0.8, 0.1, 0.1). (B): p̂ = (0.1, 0.8, 0.1).

would be updated numerous times or even continuously. But the amount of uncer-
tainty would normally still decrease with time and the main ideas of sections 3.1-3.3
would be still applicable.

Appendix B. Temporal changes in target probabilities.
The following is an “emergency rescue” example where pj ’s are not independent

of p̂i’s. The rescue vehicle starts at x0 and moves with isotropic speed f in the
domain with a rectangular obstacle, exactly as shown in Figure 1. The goal is to
minimize the expected time until we rescue a subject known to be located at one
of the 4 possible sites x̂1, · · · , x̂4 with the a priori likelihood reflected by p̂1, · · · , p̂4.
But unlike the previous examples, here we assume the availability of 3 lightweight
aerial drones also launched from x0 and flying to the closest 3 sites (x̂3, x̂4, and
x̂2) along the straight lines (unconstrained by the ground rectangular obstacle). For
simplicity, we will assume that drones move with speed fd = 5/3 and notify the main
vehicle whether the rescue subject is found as soon as they reach their respective
destinations. For the locations specified in Figure 1, these drones’ arrival times will
be T1 = |x̂3 − x0|/fd < T2 = |x̂4 − x0|/fd < T3 = |x̂2 − x0|/fd. If the first
drone discovers that subject at x̂3, the rescue vehicle follows the quickest path to it.
Otherwise, the probabilities of other sites is adjusted accordingly: p̂newj = p̂j/(1− p̂3)
for all j ̸= 3 and p̂new3 = 0. The probabilities are similarly adjusted at T2 if x̂ ̸= x̂4.
If the subject has not been located earlier, at the time T3 we will discover whether he
is at the last drone-visited site x̂2 or at the remaining site x̂1. The question is how
to optimally plan the rescue vehicle’s path until the discovery time T ∈ {T1, T2, T3}.
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This can be handled by solving the same sequence of time-dependent PDEs (2.4).
The value functions vi(x, t) will satisfy (2.4) on [Ti−1, Ti], i = 1, 2, 3 with T0 = 0 and
the terminal conditions

v3 (x, T3) =
p̂2

p̂2 + p̂1
u2(x) +

p̂1
p̂2 + p̂1

u1(x),

v2(x, T2) =
p̂4

p̂1 + p̂2 + p̂4
u4(x) +

p̂1 + p̂2
p̂1 + p̂2 + p̂4

v3 (x, T2) ,

v1(x, T1) = p̂3u3(x) + (p̂1 + p̂2 + p̂4) v2 (x, T1) .

(A) (B)

(C) (D)

Fig. 13. The drone-assisted emergency rescue example with the same initial p̂i’s as in Figure 2.
(A): The optimal waypoint s1 for the time T1 and the x0 → s1 trajectory, superimposed on the level
sets of v1(x, T1). The yellow curve shows the boundary of the reachable region ΩT1

(x0). (B): If
the first drone discovers the subject, the vehicle follows a dashed red s1 → x̂3 trajectory. Otherwise,
it follows a solid red trajectory to the T2-optimal waypoint s2, shown on top of the level sets of
v2(x, T2). The yellow curve is the boundary of ΩT2−T1

(s1). (C): If the subject is not discovered
by the first drone but the second, the vehicle follows a dashed red s2 → x̂4 trajectory. Otherwise,
it follows a solid red trajectory to the T3-optimal waypoint s3, shown on top of the level sets of
v3(x, T3). The yellow curve is the boundary of ΩT3−T2

(s2). (D): By the time T3, the drone either
finds the subject at x̂2 and the vehicle follows the dashed red trajectory, or we conclude that the
subject is at x̂1 and the vehicle follows the solid red path shown over the level sets of u1(x).



25

Appendix C. DR optimization missing a large part of (q, q̄) Pareto front.

Figure 7B showed that risk-sensitive waypoints can remarkably deviate from q− q̄
Pareto front. The distributionally-robust waypoints are much closer to Pareto opti-
mality in that same figure. However, the following example shows that often there is
no DR-optimal s̃δ satisfying q̄(s̃δ) = q̄(sc) for many sc values. Thus, the DR results
cannot approximate the corresponding parts of the Pareto front, which in this case
is highly non-convex and even discontinuous. The DR optimal waypoints cluster into
three groups, with large gaps between clusters.

(A) (B) (C)

Fig. 14. (A): Expectation-optimal waypoint and post-certainty paths to each target. The cor-
responding target probabilities (clockwise, starting at the top) are p̂ = (0.17, 0.35, 0.3, 0.18). The
symmetry of target locations is broken as the top target (x̂1) is moved slightly left to (0.45, 0.95).
The speed function is also slightly different: f = 1.4 − 0.6cos(2πx)sin(2πy). Level sets of q(x)
are shown in the background. (B): Three different optimal waypoints (s, s̄, sc) (cyan dot, diamond
and square) corresponding to average, worst-case optimality and minimizing average with a hard
constraint C = 0.53. A hundred distributionally-robust waypoints s̃δ’s are also shown as green dots
with equally spaced δs between 0 and 1. Level sets of q̄(x) are shown in the background. (C): q − q̄
Pareto front and all the waypoints from (B).
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