

pubs.acs.org/JACS Article

Enhanced Excited-State Hydricity of Pd-H Allows for Unusual Headto-Tail Hydroalkenylation of Alkenes

Sumon Sarkar, Soumen Ghosh, Daria Kurandina, Yusuf Noffel, and Vladimir Gevorgyan*

Cite This: J. Am. Chem. Soc. 2023, 145, 12224-12232

ACCESS I

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Photoinduced enhancement of hydricity of palladium hydride species enables unprecedented hydride addition-like ("hydridic") hydropalladation of electron-deficient alkenes, which allows for chemoselective head-to-tail cross-hydroalkenylation of electron-deficient and electron-rich alkenes. This mild and general protocol works with a wide range of densely functionalized and complex alkenes. Notably, this approach also allows for highly challenging cross-dimerization of electronically diverse vinyl arenes and heteroarenes.

INTRODUCTION

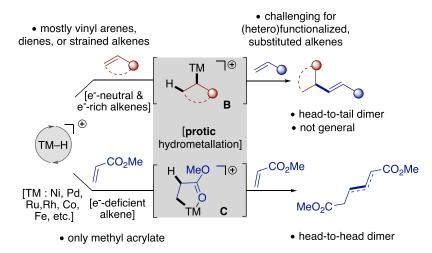
Catalytic cross-dimerization of feedstock olefins is one of the most powerful direct and atom- and step-economical approaches toward value-added alkenylated products. Despite substantial developments in homodimerization methods, more significant cross-dimerization protocols of substituted alkenes remain underdeveloped.¹ One traditional approach involves Brønsted- and Lewis acid-catalyzed protonation or Lewis acid activation of alkenes (via intermediate A, Scheme 1a), providing cross-dimerization of vinyl arenes, albeit with limited scope.² For example, the employment of electron-rich alkenes, such as 4-methoxystyrene, in this method leads to polymerization, whereas electron-deficient heteroaryl arenes remain unreactive. 2a,b Existing transition-metal-catalyzed hydroalkenylation approaches provide a partial solution to this problem. These methods typically operate via protonation-like ("protic") hydrometallation (intermediate B, Scheme 1b) of electron-rich or electron-neutral terminal vinyl arenes, dienes, or strained alkenes with cationic hydrido complexes of transition metals, such as Ni, Pd, Ru, Co, and Fe.3 Therefore, hydrometallation of electron-deficient alkenes in the presence of electron-rich alkenes is unfeasible. The existing examples of protic hydrometallation of electron-deficient methyl acrylate, which is achieved via coordination-assisted β -metalation (intermediate C, Scheme 1b), lead to regioisomeric mixtures of the headto-head homodimerization products.^{4,5} In general, the transition-metal-catalyzed approach often requires high temperatures (up to 160 °C) and employment of strong Lewis acid additives, which limit the functional group tolerance. 1c Thus, the development of a mild, Lewis acid-free protocol engaging hydridic hydrometallation of electron-deficient alkenes, followed by coupling with electron-rich or electron-neutral alkenes, which would unlock a new chemical space in crossdimerization and allow hydroalkenylation of densely functionalized and complex alkenes, is highly warranted.

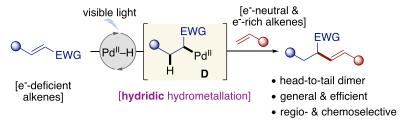
Herein, we demonstrate visible light-induced hydricity enhancement of Pd-H species, which enables hydridic hydropalladation of electron-deficient alkenes (via intermediate D, Scheme 1c). Using this approach, various Michael acceptors are efficiently alkenylated with electron-rich and electron-neutral alkenes, such as vinyl arene, heteroarene, and enyne, in a highly regio- and chemoselective fashion. Notably, this approach also enables previously inaccessible chemoselective cross-dimerization of electronically diverse vinyl arenes and heteroarenes.

REACTION DESIGN

As discussed above, transition-metal-catalyzed hydroalkenylation relies on protic hydrometallation, which is favorable for the electron-rich or electron-neutral alkenes or dienes over their electron-deficient counterparts. Apparently, in order to change the chemoselectivity of the hydrometallation step, it would require accessing more hydridic metal-hydride species. Recently, visible light-excited palladium catalysis became an emerging area. Our group and others have shown that visible light-induced homolysis of C(sp³)-Pd bond leads to the generation of palladium(I) hybrid radical species, which are capable of undergoing alkyl Heck-type transformations. 7,8

Received: March 8, 2023 Published: May 24, 2023




Scheme 1. Hydroalkenylation of Alkenes

a. Brønsted and Lewis acid-catalyzed head-to-tail cross-dimerization of alkenes

b. Transition metal-catalyzed hydroalkenylation of alkenes

c. This work: Light-induced Pd-catalyzed head-to-tail hydroalkenylation

Moreover, it was shown that palladium(I) hybrid radical species could be generated upon the addition of palladium hydride across diazocompounds^{7a} or strained systems^{7b} and a subsequent homolysis. However, neither the involvement of light in the hydropalladation step nor the change of the nature of the Pd-H species in this transformation has been validated. Previously, the Miller group has shown dramatic hydricity enhancement of [Cp*Ir(bpy)(H)]+ complex upon visible light excitation, which resulted in a striking rate enhancement of hydride transfer to N-methylpyridinium species (Scheme 2a).

Accordingly, we wondered whether photoexcitation can enhance the hydricity of a phosphine-ligated palladium hydride complex. If successful, it would allow us to switch the protic hydropalladation of the ground-state Pd-H species with electron-rich alkenes (E, Scheme 2b) to the hydridic hydropalladation of the excited-state Pd-H with electrondeficient alkenes (D, Scheme 2b). Thus, the anticipated electrophilic 10 hybrid radical species 11 F is expected to undergo chemoselective radical addition to the electron-rich alkenes over the electron-deficient alkenes due to the polarity matching,8 thus leading to the previously inaccessible head-totail cross-hydroalkenylation chemoisomers. The success of this design hinges on overcoming several potential pitfalls, such as uncontrolled regio- (G, Scheme 2b) and chemoselectivity (H) of hydropalladation, as well as isomerization and polymerization (I) via further hydropalladation of the alkenylation product. Moreover, uncontrolled radical reactivity could lead to HAT reduction, homodimerization, or chain polymerization (\mathbf{J}) .

RESULTS AND DISCUSSION

Reaction Optimization. First, cross-hydroalkenylation of ethyl acrylate (1a) with styrene (1b) under photoinduced Pdcatalyzed conditions in the presence of a Brønsted acid has been examined (Table 1).12 Optimization studies indicated the commonly employed palladium(II) precatalyst with xantphos ligand to be the most efficient catalytic system (Table 1, entries 1-4).¹³ It was found that a combination of pivalic acid and N,N-dicyclohexylmethylamine (NCy₂Me) as a proton source and tetrabutylammonium iodide (TBAI) as an additive was crucial for achieving highly selective and efficient hydro-alkenylation (entries 5–7). Under altered conditions, the formation of notable amounts of several side products was observed. 12 Thus, the employment of a more polar reaction media (entry 8) led to substantial isomerization of the product (1c), whereas the use of an equimolar ratio of reactants (entry 9) produced detectable amounts of oligomerization products (1d). Expectedly, under thermal conditions, the reaction was not efficient, producing small amounts of styrene homodimer 1e (entry 10). Control experiments indicated that both

Scheme 2. Reaction Design

a. Hydricity enhancement in the excited state 9

b. Reaction design and potential challenges

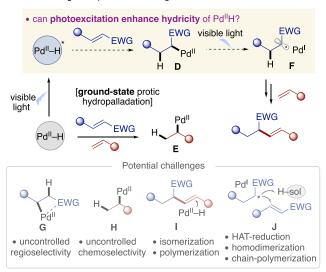


Table 1. Optimization of Reaction Conditions

entry	deviation from standard conditions	yield of 1 $(\%)^b$
1	none	99(95) ^c
2	Pd(OPiv) ₂ (5 mol %)	91
	Xantphos (14 mol %)	
3	DPEPhos as a ligand	6
4	dtbdppf as a ligand	0
5	without PivOH	32
6	without TBAI	83
7	without NCy2Me	81
8	PhH/DMA (3:1)	42 ^d
9	1a:1b = 1:1	70 ^e
10	no light, up to 160 $^{\circ}\text{C}$	0^f
11	without Pd(OPiv) ₂ or Xantphos	0

 a 0.2 mmol scale, 1a:1b=1:2, $1:1c>20:1.^{12}$ b GC-MS yields. c Isolated yield. d 1:1c=1.3:1. e 14% of 1d was formed. f 10% of 1e was formed.

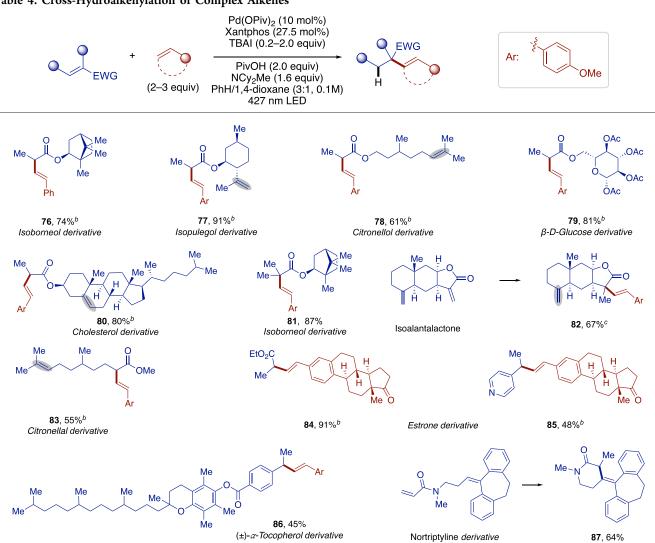
palladium catalyst and ligand were essential for this transformation (entry 11).

Hydroalkenylation of Alkenes. With the optimized conditions in hand, the generality of the hydroalkenylation protocol, starting with the scope of the electron-deficient alkenes, has been examined (Table 2). Differently substituted Michael acceptors were found to be suitable substrates for this transformation. Thus, terminal acrylates with different functional groups, including the free hydroxyl group, reacted efficiently with vinyl arenes to deliver hydroalkenylation products 2-7 in a highly chemo- and regioselective manner. Likewise, tertiary acrylamides provided good yields of crossdimerization products (8-11). More importantly, secondary (12) and primary (13) acrylamides underwent this hydroalkenylation tolerating unprotected amide groups, which is quite unusual for traditional palladium catalysis. Acrylonitrile afforded the head-to-tail cross-dimerization product 14 in reasonable yield. 1,1-Disubstituted electron-deficient olefins, including acrylate, acrylamide, and α,β -unsaturated lactone, were also efficient in this reaction, providing the corresponding hydroalkenylation products 15–23 in moderate to good yields. Expectedly, due to polarity mismatch, electron-rich vinyl ether moiety did not interfere with the hydridic hydropalladation step (17). Notably, the successful employment of this acidsensitive alkene, as well as precursor for 20 possessing an allylic alcohol moiety, highlights the mildness of this Lewis acid-free method. Additionally, this protocol can also be applied for double alkenylation reaction (24). Markedly, more challenging internal alkenes, including dimethyl fumarate, diethyl maleate, and crotononitrile, underwent smooth hydroalkenylation with vinyl arenes (25-36).12 Moreover, trisubstituted endo- and exocyclic acrylates (37-39) were found to be capable substrates for this hydroalkenylation reaction. It is worth mentioning that due to the low availability of the corresponding halides, 16 accessing many of these highly functionalized alkenylated products via the established alkyl Heck-type transformations^{7,8} would be problematic.

Next, the scope of the electron-rich cross-dimerization partner was evaluated. Differently substituted vinyl arenes were found to be suitable substrates for hydroalkenylation with acrylates. Thus, ortho-, meta-, or para-substituted vinyl arenes (40-44) containing electron-donating groups underwent smooth hydroalkenylation reaction, including the reaction at a larger scale (40). It deserves mentioning that this method tolerated various functionalities at the vinyl arene, including pyrazole (45), free amide (46), and free benzyl alcohol (47). Notably, a chemoselective cross-dimerization of electrondeficient vinyl arenes with electron-deficient acrylates also proved viable. Thus, differently substituted vinyl arenes, containing chloro (48, 49), trifluoromethyl (50), and pinacolboronate (51) groups, afforded hydroalkenylation products 48-51 in moderate to good yields. Vinyl pyridine derivative (52) also reacted well. Furthermore, 1,1-disubstituted vinyl arenes afforded cross-dimerization products (53-56) in good yields. More challenging internal alkenes including flavoring agent anethole delivered hydroalkenylation products 57–60 in moderate to good yields. Importantly, electron-rich olefins beyond vinyl arenes can also be employed. Thus, enyne (61), N-vinyl pyrazole (62), and even unactivated alkene (63) all underwent chemoselective cross-dimerization reaction, albeit in moderate efficiency.

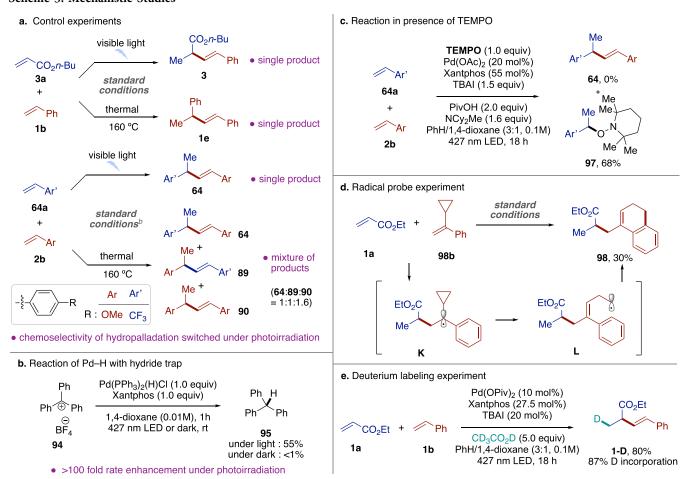
Heterodimerization of Vinyl Arenes and Heteroarenes. Next, the feasibility of a more challenging cross-

Table 2. Cross-Hydroalkenylation Alkenes^a



 a 0.2 mmol scale, isolated yields, unless otherwise mentioned E/Z. 12 b 3–5 equiv of alkene coupling partner was used; THF was used as a solvent. c No NCy₂Me. d Crotononitrile/4-vinylanisole (3:1), 0.25 (M) in PhH/1,4-dioxane. e Conducted on a 1 mmol scale. f 0.11 (M) in PhH/1,4-dioxane (5:1).

Table 3. Heterodimerization of Vinyl Arenes (Heteroarenes)^a


Table 4. Cross-Hydroalkenylation of Complex Alkenes^a

 a 0.2 mmol scale, isolated yields, unless otherwise mentioned, E/Z > 20:1.

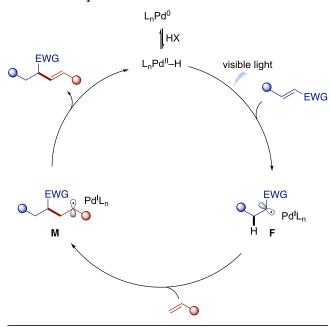
^a0.2 mmol scale, isolated yields, unless otherwise mentioned, E/Z > 20:1. ¹² ^b dr = 1:1. ^c dr > 20:1.

Scheme 3. Mechanistic Studies^a

"Standard conditions: $Pd(OPiv)_2$ (10 mol %), Xantphos (27.5 mol %), TBAI (20 mol %), PivOH (2.0 equiv), NCy_2Me (1.6 equiv), PhH/1,4-dioxane (3:1, 0.1 M), 427 nm LED, 12–18 h; 0.2 mmol scale. ¹² b.1.5 equiv of TBAI was used.

hydroalkenylation of electron-rich and electron-deficient vinyl arenes (heteroarenes) has been examined (Table 3). Gratifyingly, it was found that this light-induced methodology can also be applied toward highly chemoselective heterodimerization of vinyl arenes (64–68). Moreover, vinyl heteroarenes, such as vinyl pyridine derivatives, were capable substrates in this cross-dimerization reaction with differently substituted vinyl arenes (69–73). Remarkably, a highly chemoselective cross-dimerization of two different vinyl pyridines is also feasible (74, 75). Importantly, most of the vinyl arenes(heteroarenes) employed in this protocol are either incompatible or unreactive under traditional Brønsted- and Lewis acid-catalyzed methods (vide supra). (2a,b)

Hydroalkenylation of Complex Alkenes. Further, the generality of this photoinduced hydroalkenylation protocol was tested under a more complex setting (Table 4). Thus, acrylates containing terpene (76, 77, 81), terpenoid (78), carbohydrate (79), and steroid (80) derivatives furnished hydroalkenylation products 76-81 in moderate to good yields. Due to the involvement of the highly chemoselective hydridic hydropalladation process, terminal and internal alkenes in isopulegol (77), citronellol (78), and cholesterol (80) were all tolerated in this reaction. Besides, glucoside derivative 79 was also tolerated under this mild protocol. Analogously, sesquiterpene natural product isoalantalactone (82), terpenoid citronellal derivative (83), estrone derivatives (84, 85), and α-tocopherol


derivative (86) were also capable substrates. Besides, intramolecular hydroalkenylation of nortriptyline derivative led to tetrasubstituted alkene 87 in reasonable yield.

Mechanistic Studies and Proposed Mechanism. Involvement of hydridic hydropalladation via excited-state hydricity enhancement was supported by the following experiments (Scheme 3a). 12 In the reaction of butyl acrylate 3a with styrene 1b, switching from light-induced to thermal conditions led to a complete switch from the cross-alkenylation (3) to homodimerization of styrene (1e) product. A dramatic switch of chemoselectivity of hydropalladation, and hence of dimerization reaction, was also observed in the reactions of electronically distinct vinyl arenes 64a and 2b. The reaction under light-induced conditions led to exclusive cross-hydroalkenylation product 64 via the excited-state hydridic hydropalladation of electron-deficient vinyl arene 64a, whereas thermal hydroalkenylation proceeding mostly via the groundstate protic hydropalladation of electron-rich vinyl arene 2b led to a chemoisomeric mixture of 64, 89, and 90. The hydridic nature of the excited-state palladium hydride species was further supported by its trapping with trityl cation (94) (Scheme 3b). 17 Thus, under light irradiation, a dramatic rate enhancement of the hydride transfer (94 -> 95) was observed.⁴ Involvement of radical intermediates in this transformation was supported by the radical trapping and radical probe experiments. Thus, the employment of TEMPO

completely shut down the hydroalkenylation process to afford the TEMPO-trapping adduct 97 in good yield (Scheme 3c). In the radical probe experiment, cross-hydroalkenylation of acrylate 1a with cyclopropane-containing vinyl arene 98b led to dehydronaphthalene 98 apparently via the radical rearrangement cascade (K \rightarrow L \rightarrow 98) (Scheme 3d). Finally, the deuterium labeling experiments identified Brønsted acid as the primary proton source for the formation of Pd-H species (Scheme 3e).

Based on the results of the mechanistic studies¹² and literature precedents, ^{7,8} the following mechanism for this crosshydroalkenylation reaction is proposed (Scheme 4). First, Pd-

Scheme 4. Proposed Mechanism

H species is generated upon the oxidative addition of Pd(0)species 19 with Brønsted acid (HX). Upon visible light irradiation, the excited-state hydricity enhancement enables chemoselective hydridic hydropalladation of electron-deficient alkene, followed by the Pd-C bond homolysis, to form hybrid Pd(I) alkyl radical species F. A subsequent selective polaritymatched radical addition to electron-rich alkene generates translocated radical species **M**, which upon β -H loss affords the head-to-tail dimerization product and regenerates Pd-H species.

CONCLUSIONS

In conclusion, we report the novel head-to-tail cross-hydroalkenylation of electronically different alkenes. The unusual chemoselectivity of this transformation relies on the umpolung of the palladium hydride species, achieved by the visible lightinduced excited-state hydricity enhancement. This mild, Lewis acid-free, chemo- and regioselective method exhibits broad functional group compatibility and can be employed for crosshydroalkenylation of diversely substituted and complex alkenes. Notably, this approach also allows for highly chemoselective cross-hydroalkenylation of electronically diverse vinyl arenes(heteroarenes).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.3c02410.

> Experimental procedures and compound characterization data (PDF)

AUTHOR INFORMATION

Corresponding Author

Vladimir Gevorgyan – Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States; oorcid.org/0000-0002-7836-7596; Email: vlad@utdallas.edu

Authors

Sumon Sarkar – Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States

Soumen Ghosh – Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States

Daria Kurandina - Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States; Present Address: Seagen, Inc., Bothell, Washington 98021-3907, United States

Yusuf Noffel - Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.3c02410

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the National Institutes of Health (GM120281), the National Science Foundation (CHE-2246075), and the Welch Foundation (Chair, AT-0041) for financial support. S.S. and D.K. thank the UT Dallas Eugene McDermott Graduate Fellowship.

REFERENCES

(1) (a) RajanBabu, T. V. Asymmetric Hydrovinylation Reaction. Chem. Rev. 2003, 103, 2845-2860. (b) RajanBabu, T. In Pursuit of an Ideal Carbon-Carbon Bond-Forming Reaction: Development and Applications of the Hydrovinylation of Olefins. Synlett 2009, 2009, 853-885. (c) Hilt, G. Hydrovinylation Reactions - Atom-Economic Transformations with Steadily Increasing Synthetic Potential. Eur. J. Org. Chem. 2012, 2012, 4441-4451. (d) RajanBabu, T. V.; Cox, G. A.; Lim, H. J.; Nomura, N.; Sharma, R. K.; Smith, C. R.; Zhang, A. Hydrovinylation Reactions in Organic Synthesis. In Comprehensive Organic Synthesis, 2nd ed.; Molander, G. A.; Knochel, P., Eds.; Elsevier: Oxford, 2014; Vol. 5, pp 1582-1620. (e) Hirano, M. Recent Advances in the Catalytic Linear Cross-Dimerizations. ACS Catal. 2019, 9, 1408-1430.

(2) (a) Dai, J.; Wu, J.; Zhao, G.; Dai, W.-M. In(OTf)₃-Catalyzed Highly Chemo- and Regioselective Head-to-Tail Heterodimerization of Vinylarenes with 1,1-Diarylethenes. Chem. - Eur. J. 2011, 17, 8290-8293. (b) Mameda, N.; Peraka, S.; Kodumuri, S.; Chevella, D.; Marri, M. R.; Aytam, H. P.; Nama, N. Chemo- and Regioselective Head-to-Tail Heterodimerization of Vinylarenes with 1,1-Diphenylethene over a Heterogeneous Catalyst (Snβ Zeolite). RSC Adv. 2016, 6, 1296-1300. (c) Liu, M.; Zhang, J.; Zhou, H.; Yang, H.; Xia, C.; Jiang, G. Efficient Hydroarylation and Hydroalkenylation of Vinylarenes by

Brønsted Acid Catalysis. *RSC Adv.* **2016**, *6*, 76780–76784. (d) Fehn, S.; Schwarz, S.; Kempe, R. Regioselective Heterodimerization of Styrenes with Diarylethene and Vinylnaphthalene by a Catalyst System Consisting of Simple Acid and a Ketone. *ChemistrySelect* **2017**, *2*, 3289–3292.

(3) For selected examples of cross-dimerization of vinyl arenes, dienes, strain alkenes with substituted alkenes, see: (a) Gooßen, L.; Rodriguez, N. Heterodimerization of Olefins: A Highly Promising Strategy for the Selective Synthesis of Functionalized Alkenes. Angew. Chem., Int. Ed. 2007, 46, 7544-7546. (b) Simon, M. O.; Darses, S. Selective Direct Heterocoupling of Alkenes Catalyzed by in Situ Generated Ruthenium Complexes. J. Org. Chem. 2013, 78, 9981-9985. (c) Liu, P.; Wang, H.-S.; Pan, Y.-M.; Dai, W.-L.; Liang, H.; Chen, Z.-F. The First Palladium-Catalyzed 1,4-Addition of Terminal Alkenes to Acrylate Esters. Chem. Commun. 2013, 49, 5295-5297. (d) Ho, C.-Y.; Chan, C.-W.; He, L. Catalytic Asymmetric Hydroalkenylation of Vinylarenes: Electronic Effects of Substrates and Chiral N-Heterocyclic Carbene Ligands. Angew. Chem., Int. Ed. 2015, 54, 4512-4516. (e) Zargari, N.; de Prevoisin, G.; Kim, Y.; Kaneshiro, K.; Runburg, R.; Park, J.; LaCroix, K.; Narain, R.; Lee, B. D.; Lee, J. H.; Jung, K. W. Hydroalkenylation: Palladium Catalyzed Co-Dimerization of Unactivated Alkenes. Tetrahedron Lett. 2016, 57, 815-818. (f) Lian, X.; Chen, W.; Dang, L.; Li, Y.; Ho, C. Y. (NHC)NiH-Catalyzed Intermolecular Regio- and Diastereoselective Cross-Hydroalkenylation of Endocyclic Dienes with α Olefins. Angew. Chem., Int. Ed. 2017, 56, 9048-9052. (g) Simlandy, A. K.; Alturaifi, T. M.; Nguyen, J. M.; Oxtoby, L. J.; Wong, Q. N.; Chen, J. S.; Liu, P.; Engle, K. M. Enantioselective Hydroalkenylation and Hydroalkynylation of Alkenes Enabled by a Transient Directing Group: Catalyst Generality through Rigidification. Angew. Chem., Int. Ed. 2023, 62, No. e202304013.

(4) (a) Alderson, T.; Jenner, E. L.; Lindsey, R. V. Olefin-to-Olefin Addition Reactions. J. Am. Chem. Soc. 1965, 87, 5638-5645. (b) Barlow, M. G.; Bryant, M. J.; Haszeldine, R. N.; Mackie, A. G. Organic Reactions Involving Transition Metals III. The Palladium-(II)-Catalysed Dimerization of Olefinic Compounds. J. Organomet. Chem. 1970, 21, 215-226. (c) Mckinney, R. J. Ruthenium-Catalyzed Acrylate Dimerization. Organometallics 1986, 5, 1752-1753. (d) Wilke, G. Contributions to Organo-Nickel Chemistry. Angew. Chem., Int. Ed. 1988, 27, 185-206. (e) Brookhart, M.; Sabo-Etienne, S. Catalytic Tail-to-Tail Dimerization of Methyl Acrylate Using Rhodium(III) Catalysts. J. Am. Chem. Soc. 1991, 113, 2777-2779. (f) Direnzo, G. M.; White, P. S.; Brookhart, M. Mechanistic Studies of Catalytic Olefin Dimerization Reactions Using Electrophilic η^3 -Allyl-Palladium(II) Complexes. J. Am. Chem. Soc. 1996, 118, 6225-6234. (5) For selected examples of conjugate reduction of $\alpha \beta$ -unsaturated unsaturated carbonyl compounds, see: (a) Haskel, A.; Keinan, E. Palladium-Catalyzed 1,4-Reduction (Conjugate Reduction). In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.-I., Ed.; Wiley: New York, 2002; Vol. 2, pp 2767-2782. (b) Deutsch, C.; Krause, N.; Lipshutz, B. H. CuH-Catalyzed Reactions. Chem. Rev. 2008, 108, 2916-2927. (c) Lipshutz, B. H. Rediscovering Organocopper Chemistry through Copper Hydride. It's All About the Ligand. Synlett 2009, 2009, 509-524. (d) Meyer, C. C.; Ortiz, E.; Krische, M. J. Catalytic Reductive Aldol and Mannich Reactions of Enone, Acrylate, and Vinyl Heteroaromatic Pronucleophiles. Chem. Rev. 2020, 120, 3721-3748.

(6) (a) Parasram, M.; Gevorgyan, V. Visible Light-Induced Transition Metal-Catalyzed Transformations: Beyond Conventional Photosensitizers. *Chem. Soc. Rev.* 2017, 46, 6227–6240. (b) Chuentragool, P.; Kurandina, D.; Gevorgyan, V. Catalysis by Visible Light Photoexcited Palladium Complexes. *Angew. Chem., Int. Ed.* 2019, 58, 11586–11598. (c) Kancherla, R.; Muralirajan, K.; Sagadevan, A.; Rueping, M. Visible Light-Induced Excited-State Transition-Metal Catalysis. *Trends Chem.* 2019, 1, 510–523. (d) Zhou, W. J.; Cao, G. M.; Zhang, Z. P.; Yu, D. G. Visible Light-Induced Palladium-Catalysis in Organic Synthesis. *Chem. Lett.* 2019, 48, 181–191. (e) Cheng, W. M.; Shang, R. Transition Metal-Catalyzed Organic Reactions under Visible Light: Recent Developments and Future Perspectives. *ACS*

Catal. 2020, 10, 9170–9196. (f) Cheung, K. P. S.; Sarkar, S.; Gevorgyan, V. Visible Light-Induced Transition Metal Catalysis. Chem. Rev. 2022, 122, 1543–1625.

(7) (a) Zhang, Z.; Kvasovs, N.; Dubrovina, A.; Gevorgyan, V. Visible Light Induced Brønsted Acid Assisted Pd-Catalyzed Alkyl Heck Reaction of Diazo Compounds and N-Tosylhydrazones. *Angew. Chem., Int. Ed.* **2022**, *61*, No. e202110924. (b) Zhang, Z.; Gevorgyan, V. Palladium Hydride-Enabled Hydroalkenylation of Strained Molecules. *J. Am. Chem. Soc.* **2022**, *144*, 20875–20883.

(8) For selected examples on radical alkyl Heck type transformations, see: (a) Kurandina, D.; Parasram, M.; Gevorgyan, V. Visible Light-Induced Room Temperature Heck Reaction of Functionalized Alkyl Halides with Vinyl Arenes/Heteroarenes. Angew. Chem., Int. Ed. 2017, 56, 14212-14216. (b) Kurandina, D.; Rivas, M.; Radzhabov, M.; Gevorgyan, V. Heck Reaction of Electronically Diverse Tertiary Alkyl Halides. Org. Lett. 2018, 20, 357-360. (c) Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. Irradiation-Induced Heck Reaction of Unactivated Alkyl Halides at Room Temperature. J. Am. Chem. Soc. 2017, 139, 18307-18312. (d) Chuentragool, P.; Yadagiri, D.; Morita, T.; Sarkar, S.; Parasram, M.; Wang, Y.; Gevorgyan, V. Aliphatic Radical Relay Heck Reaction at Unactivated C(sp3)-H Sites of Alcohols. Angew. Chem., Int. Ed. 2019, 58, 1794-1798. (e) Kancherla, R.; Muralirajan, K.; Maity, B.; Zhu, C.; Krach, P. E.; Cavallo, L.; Rueping, M. Oxidative Addition to Palladium(0) Made Easy through Photoexcited-State Metal Catalysis: Experiment and Computation. Angew. Chem., Int. Ed. 2019, 58, 3412-3416. (f) Kurandina, D.; Chuentragool, P.; Gevorgyan, V. Transition-Metal-Catalyzed Alkyl Heck-Type Reactions. Synthesis 2019, 51, 985-1005.

(9) (a) Pitman, C. L.; Miller, A. J. M. Molecular Photoelectrocatalysts for Visible Light-Driven Hydrogen Evolution from Neutral Water. ACS Catal. 2014, 4, 2727–2733. (b) Barrett, S. M.; Pitman, C. L.; Walden, A. G.; Miller, A. J. Photoswitchable Hydride Transfer from Iridium to 1-Methylnicotinamide Rationalized by Thermochemical Cycles. J. Am. Chem. Soc. 2014, 136, 14718–14721. (c) Perutz, R. N.; Procacci, B. Photochemistry of Transition Metal Hydrides. Chem. Rev. 2016, 116, 8506–8544.

(10) For a review on radical philicity of radical species, see: Parsaee, F.; Senarathna, M. C.; Kannangara, P. B.; Alexander, S. N.; Arche, P. D. E.; Welin, E. R. Radical Philicity and Its Role in Selective Organic Transformations. *Nat. Rev. Chem.* **2021**, *5*, 486–499.

(11) Hydrides of first row transition metals, such as Mn, Fe, Co, are known to generate alkyl radicals directly via a reversible hydrogen atom transfer (MHAT) reactions with alkenes. Expectedly, protic MHAT is chemoselective towards more electron-rich alkenes over the electron-deficient alkenes. However, cross-dimerization of olefins via this path usually leads to the Giese reaction-type products. For selected examples, see: (a) Sweany, R. L.; Halpern, J. Hydrogenation of α -Methylstyrene by Hydridopentacarbonylmanganese(I). Evidence for a Free-Radical Mechanism. J. Am. Chem. Soc. 1977, 99, 8335-8337. (b) Isayama, S.; Mukaiyama, T. A New Method for Preparation of Alcohols from Olefins with Molecular Oxygen and Phenylsilane by the Use of Bis(acetylacetonato)cobalt(II). Chem. Lett. 1989, 18, 1071-1074. (c) Lo, J. C.; Yabe, Y.; Baran, P. S. A Practical and Catalytic Reductive Olefin Coupling. J. Am. Chem. Soc. 2014, 136, 1304-1307. (d) Crossley, S. W. M.; Martinez, R. M.; Obradors, C.; Shenvi, R. A. Mn, Fe, and Co-Catalyzed Radical Hydrofunctionalizations of Olefins. Chem. Rev. 2016, 116, 8912-9000. (e) Lo, J. C.; Kim, D.; Pan, C.-M.; Edwards, J. T.; Yabe, Y.; Gui, J.; Qin, T.; Gutiérrez, S.; Giacoboni, J.; Smith, M. W.; et al. Fe-Catalyzed C-C Bond Construction from Olefins via Radicals. J. Am. Chem. Soc. 2017, 139, 2484-2503. (f) Green, S. A.; Crossley, S. W. M.; Matos, J. L. M.; Vásquez-Céspedes, S.; Shevick, S. L.; Shenvi, R. A. The High Chemofidelity of Metal-Catalyzed Hydrogen Atom Transfer. Acc. Chem. Res. 2018, 51, 2628-2640. (g) Shevick, S. L.; Wilson, C. V.; Kotesova, S.; Kim, D.; Holland, P. L.; Shenvi, R. A. Catalytic Hydrogen Atom Transfer to Alkenes: A Roadmap for Metal Hydrides and Radicals. Chem. Sci. 2020, 11, 12401-12422. (h) Herbort, J. H.; Bednar, T. N.; Chen, A. D.; RajanBabu, T. V.; Nagib, D. A. C-H

Functionalization of Amines via Triple H-Atom Transfer of a Vinyl Sulfonyl Radical Chaperone. *J. Am. Chem. Soc.* **2022**, *144*, 13366–13373

- (12) See Supporting Information for details.
- (13) (a) Parasram, M.; Chuentragool, P.; Sarkar, D.; Gevorgyan, V. Photoinduced Formation of Hybrid Aryl Pd-Radical Species Capable of 1,5-HAT: Selective Catalytic Oxidation of Silyl Ethers into Silyl Enol Ethers. J. Am. Chem. Soc. 2016, 138, 6340-6343. (b) Ratushnyy, M.; Parasram, M.; Wang, Y.; Gevorgyan, V. Pd-Catalyzed Atom Transfer Radical Cyclization at Remote Unactivated C(sp³)-H Sites Enabled by Hydrogen Atom Transfer of Hybrid Vinyl Pd-Radical Intermediates. Angew. Chem., Int. Ed. 2018, 57, 2712-2715. (c) Ratushnyy, M.; Kvasovs, N.; Sarkar, S.; Gevorgyan, V. Visible Light-Induced Palladium-Catalyzed Generation of Aryl Radicals from Aryl Triflates. Angew. Chem., Int. Ed. 2020, 59, 10316-10320. (d) Cheung, K. P. S.; Kurandina, D.; Yata, T.; Gevorgyan, V. Photoinduced Palladium-Catalyzed Carbofunctionalization of Conjugated Dienes Proceeding via Radical-Polar Crossover Scenario: 1,2-Aminoalkylation and Beyond. J. Am. Chem. Soc. 2020, 142, 9932-9937. (e) Kvasovs, N.; Iziumchenko, V.; Palchykov, V.; Gevorgyan, V. Visible Light-Induced Pd-Catalyzed Alkyl-Heck Reaction of Oximes. ACS Catal. 2021, 11, 3749-3754. (f) Cheung, K. P. S.; Fang, J.; Mukherjee, K.; Mihranyan, A.; Gevorgyan, V. Asymmetric Intermolecular Allylic C-H Amination of Alkenes with Aliphatic Amines. Science 2022, 378, 1207-1213.
- (14) Alkyl amines are known to convert Pd(II) salts to Pd–H species upon β -hydride elimination. Thus, NCy₂Me may help for the off-cycle generation of Pd–H species. For selected examples, see: (a) Diamond, S. E.; Mares, F. β -Elimination from Transition Metal Amides. *J. Organomet. Chem.* 1977, 142, C55–C57. (b) Hartwig, J. F.; Richards, S.; Barañano, D.; Paul, F. Influences on the Relative Rates for C–N Bond-Forming Reductive Elimination and β -Hydrogen Elimination of Amides. A Case Study on the Origins of Competing Reduction in the Palladium-Catalyzed Amination of Aryl Halides. *J. Am. Chem. Soc.* 1996, 118, 3626–3633. (c) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. Insights into the Origin of High Activity and Stability of Catalysts Derived from Bulky, Electron-Rich Monophosphinobiaryl Ligands in the Pd-Catalyzed C–N Bond Formation. *J. Am. Chem. Soc.* 2003, 125, 13978–13980.
- (15) Previously, beneficial effects of halide additives were observed in photoinduced Pd-catalyzed reactions. ^{7a,b,13c,e} For selected examples of beneficial effects of halide additive in transition metal catalysis, see: (a) Lin, Y.-S.; Yamamoto, A. Direct Carbonylation of Benzyl Alcohol and Its Analogs Catalyzed by Palladium and HI in Aqueous Systems and Mechanistic Studies. *Bull. Chem. Soc. Jpn.* **1998**, *71*, 723–734. (b) Maitlis, P. M.; Haynesa, A.; Jamesb, B. R.; Catellanic, M.; Chiusolic, G. P. Iodide Effects in Transition Metal Catalyzed Reactions. *Dalton Trans.* **2004**, *21*, 3409–3419.
- (16) (a) Bornstein, D.; Mandelbaum, A.; Vidavsky, I.; Domon, B.; Mueller, D. R.; Richter, W. J. Mechanism of Electron Impact Ionization-induced Halogen Elimination From 2-Methyl-2-bromosuccinates. *Org. Mass Spectrom.* 1993, 28, 230–234. (b) Snider, B. B.; Duvall, J. R. Synthesis of the 4-Methyl-1,2-oxazetidine-4-carboxylic Acid Moiety of the Originally Proposed Halipeptin A and B Structures. *Tetrahedron Lett.* 2003, 44, 3067–3070.
- (17) (a) Ilic, S.; Alherz, A.; Musgrave, C. B.; Glusac, K. D. Thermodynamic and Kinetic Hydricities of Metal-Free Hydrides. *Chem. Soc. Rev.* **2018**, 47, 2809–2836. (b) Wiedner, E. S.; Chambers, M. B.; Pitman, C. L.; Bullock, R. M.; Miller, A. J. M.; Appel, A. M. Thermodynamic Hydricity of Transition Metal Hydrides. *Chem. Rev.* **2016**, 116, 8655–8692. (c) Brereton, K. R.; Smith, N. E.; Hazari, N.; Miller, A. J. M. Thermodynamic and Kinetic Hydricity of Transition Metal Hydrides. *Chem. Soc. Rev.* **2020**, 49, 7929–7948.
- (18) Formation of possible TEMPO—H trapping product was not observed in this case. However, TEMPO trapping experiment with less reactive alkene 67a led to exclusive formation of TEMPO—H product.¹² For trapping Pd—H with TEMPO or BHT, see: Albéniz, A. C.; Espinet, P.; López-Fernández, R.; Sen, A. A Warning on the Use of Radical Traps as a Test for Radical Mechanisms: They React with

Palladium Hydrido Complexes. J. Am. Chem. Soc. 2002, 124, 11278–11279.

(19) Obviously, Pd(0) species can be generated via reduction of Pd(II) pre-catalyst by alkyl amine ¹⁴ or phosphine ligand. For reduction of Pd(II) species by phosphine ligands, see: (a) Amatore, C.; Jutand, A.; M'Barki, M. A. Evidence of the Formation of Zerovalent Palladium from Pd(OAc)₂ and Triphenylphosphine. Organometallics 1992, 11, 3009–3013. (b) Amatore, C.; Jutand, A.; Thuilliez, A. Formation of Palladium(0) Complexes from Pd(OAc)₂ and a Bidentate Phosphine Ligand (dppp) and Their Reactivity in Oxidative Addition. Organometallics 2001, 20, 3241–3249.

□ Recommended by ACS

Palladium-Catalyzed Oxidative Amination of Unactivated Olefins with Primary Aliphatic Amines

Mingda Li, Huanfeng Jiang, et al.

APRIL 13, 2023

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

READ 🗹

Photo- and Metal-Mediated Deconstructive Approaches to Cyclic Aliphatic Amine Diversification

David M. Soro, Richmond Sarpong, et al.

MAY 12, 2023

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

READ 🗹

Divergent Catalysis: Catalytic Asymmetric [4+2] Cycloaddition of Palladium Enolates

Kaylin N. Flesch, Brian M. Stoltz, et al.

MAY 15, 2023

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

READ 🗹

Expanding Reaction Profile of Allyl Carboxylates via 1,2-Radical Migration (RaM): Visible-Light-Induced Phosphine-Catalyzed 1,3-Carbobromination of Allyl Carboxylates

Gaoyuan Zhao, Ming-Yu Ngai, et al.

APRIL 05, 2023

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

READ 🗹

Get More Suggestions >