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ABSTRACT: Photoinduced enhancement of hydricity of palla-
dium hydride species enables unprecedented hydride addition-like
(“hydridic”) hydropalladation of electron-deficient alkenes, which
allows for chemoselective head-to-tail cross-hydroalkenylation of
electron-deficient and electron-rich alkenes. This mild and general
protocol works with a wide range of densely functionalized and
complex alkenes. Notably, this approach also allows for highly
challenging cross-dimerization of electronically diverse vinyl arenes
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Enhanced excited-state hydricity enables unusual hydropalladation

and heteroarenes.

B INTRODUCTION

Catalytic cross-dimerization of feedstock olefins is one of the
most powerful direct and atom- and step-economical
approaches toward value-added alkenylated products.’ Despite
substantial developments in homodimerization methods, more
significant cross-dimerization protocols of substituted alkenes
remain underdeveloped." One traditional approach involves
Bronsted- and Lewis acid-catalyzed protonation or Lewis acid
activation of alkenes (via intermediate A, Scheme 1a),
providing cross-dimerization of vinyl arenes, albeit with limited
scope.” For example, the employment of electron-rich alkenes,
such as 4-methoxystyrene, in this method leads to polymer-
ization, whereas electron-deficient heteroaryl arenes remain
unreactive.”" Existing transition-metal-catalyzed hydroalkeny-
lation approaches provide a partial solution to this problem."
These methods typically operate via protonation-like (“protic”)
hydrometallation (intermediate B, Scheme 1b) of electron-rich
or electron-neutral terminal vinyl arenes, dienes, or strained
alkenes with cationic hydrido complexes of transition metals,
such as Ni, Pd, Ry, Co, and Fe.®> Therefore, hydrometallation
of electron-deficient alkenes in the presence of electron-rich
alkenes is unfeasible. The existing examples of protic
hydrometallation of electron-deficient methyl acrylate, which
is achieved via coordination-assisted f-metalation (intermedi-
ate C, Scheme 1b), lead to regioisomeric mixtures of the head-
to-head homodimerization products.”® In general, the
transition-metal-catalyzed approach often requires high tem-
peratures (up to 160 °C) and employment of strong Lewis acid
additives, which limit the functional group tolerance.'® Thus,
the development of a mild, Lewis acid-free protocol engaging
hydridic hydrometallation of electron-deficient alkenes,
followed by coupling with electron-rich or electron-neutral
alkenes, which would unlock a new chemical space in cross-
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dimerization and allow hydroalkenylation of densely function-
alized and complex alkenes, is highly warranted.

Herein, we demonstrate visible light-induced hydricity
enhancement of Pd—H species, which enables hydridic
hydropalladation of electron-deficient alkenes (via intermedi-
ate D, Scheme Ic). Using this approach, various Michael
acceptors are efficiently alkenylated with electron-rich and
electron-neutral alkenes, such as vinyl arene, heteroarene, and
enyne, in a highly regio- and chemoselective fashion. Notably,
this approach also enables previously inaccessible chemo-
selective cross-dimerization of electronically diverse vinyl
arenes and heteroarenes.

B REACTION DESIGN

As discussed above, transition-metal-catalyzed hydroalkenyla-
tion relies on protic hydrometallation, which is favorable for
the electron-rich or electron-neutral alkenes or dienes over
their electron-deficient counterparts. Apparently, in order to
change the chemoselectivity of the hydrometallation step, it
would require accessing more hydridic metal-hydride species.
Recently, visible light-excited palladium catalysis became an
emerging area.’ Our group and others have shown that visible
light-induced homolysis of C(sp’)—Pd bond leads to the
generation of palladium(I) hybrid radical species, which are
capable of undergoing alkyl Heck-type transformations.”*
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Scheme 1. Hydroalkenylation of Alkenes
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Moreover, it was shown that palladium(I) hybrid radical
species could be generated upon the addition of palladlum
hydride across diazocompounds’® or strained systems’” and a
subsequent homolysis. However, neither the involvement of
light in the hydropalladation step nor the change of the nature
of the Pd—H species in this transformation has been validated.
Previously, the Miller group has shown dramatic hydricity
enhancement of [Cp*Ir(bpy)(H)]* complex upon visible light
excitation, which resulted in a striking rate enhancement of
hydride transfer to N-methylpyridinium species (Scheme 2a).”

Accordingly, we wondered whether photoexcitation can
enhance the hydricity of a phosphine-ligated palladium hydride
complex. If successful, it would allow us to switch the protic
hydropalladation of the ground-state Pd—H species with
electron-rich alkenes (E, Scheme 2b) to the hydridic
hydropalladation of the excited-state Pd—H with electron-
deficient alkenes (D, Scheme 2b). Thus, the anticipated
electrophilic'® hybrid radical species'' F is expected to
undergo chemoselective radical addition to the electron-rich
alkenes over the electron-deficient alkenes due to the polarity
matching,® thus leading to the previously inaccessible head-to-
tail cross-hydroalkenylation chemoisomers. The success of this
design hinges on overcoming several potential pitfalls, such as
uncontrolled regio- (G, Scheme 2b) and chemoselectivity (H)
of hydropalladation, as well as isomerization and polymer-

12225

ization (I) via further hydropalladation of the alkenylation
product. Moreover, uncontrolled radical reactivity could lead
to HAT reduction, homodimerization, or chain polymerization

@-

B RESULTS AND DISCUSSION

Reaction Optimization. First, cross-hydroalkenylation of
ethyl acrylate (1a) with styrene (1b) under photoinduced Pd-
catalyzed conditions in the presence of a Bronsted acid has
been examined (Table 1)."> Optimization studies indicated the
commonly employed palladium(II) precatalyst with xantphos
ligand to be the most efficient catalytic system (Table 1, entries
1—4)." It was found that a combination of pivalic acid and
N,N-dicyclohexylmethylamine (NCy,Me) as a proton source
and tetrabutylammonium iodide (TBAI) as an additive was
crucial for achieving highly selective and eflicient hydro-
alkenylation (entries 5—7)."”"> Under altered conditions, the
formation of notable amounts of several side products was
observed.'” Thus, the employment of a more polar reaction
media (entry 8) led to substantial isomerization of the product
(1c), whereas the use of an equimolar ratio of reactants (entry
9) produced detectable amounts of oligomerization products
(1d). Expectedly, under thermal conditions, the reaction was
not efficient, producing small amounts of styrene homodimer
le (entry 10). Control experiments indicated that both
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Scheme 2. Reaction Design
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Table 1. Optimization of Reaction Conditions”

Pd(OPiv), (10 mol%)
Xantphos (27.5 mol%)

TBAI (20 mol%) CO,Et
ZDCOEt + Zph _
PivOH (2.0 equiv) Me Ph
1a 1b NCy,Me (1.6 equiv) 1
PhH/1,4-dioxane (3:1, 0.1M)
427 nm LED, ~40 °C, 22 h
standard conditions
Side products
CO,Et EtO,C  COEt Ph
Me/§A Ph Mew\ Ph |v|e/K/A Ph
1c 1d 1e
entry deviation from standard conditions yield of 1 (%)
none 99(95)°
Pd(OPiv), (S mol %) 91
Xantphos (14 mol %)
3 DPEPhos as a ligand 6
4 dtbdppf as a ligand 0
S without PivOH 32
6 without TBAI 83
7 without NCy,Me 81
8 PhH/DMA (3:1) 427
9 la:1b = 1:1 70¢
10 no light, up to 160 °C 0
11 without Pd(OPiv), or Xantphos 0

90.2 mmol scale, 1a:1b = 1:2, 1:1¢ > 20:1.12 ®*GC-MS yields. “Isolated
yield. “1:1c = 1.3:1. ©14% of 1d was formed./10% of 1e was formed.

palladium catalyst and ligand were essential for this trans-
formation (entry 11).

Hydroalkenylation of Alkenes. With the optimized
conditions in hand, the generality of the hydroalkenylation
protocol, starting with the scope of the electron-deficient
alkenes, has been examined (Table 2). Differently substituted
Michael acceptors were found to be suitable substrates for this
transformation. Thus, terminal acrylates with different func-
tional groups, including the free hydroxyl group, reacted
efficiently with vinyl arenes to deliver hydroalkenylation
products 2—7 in a highly chemo- and regioselective manner.
Likewise, tertiary acrylamides provided good yields of cross-
dimerization products (8—11). More importantly, secondary
(12) and primary (13) acrylamides underwent this hydro-
alkenylation tolerating unprotected amide groups, which is
quite unusual for traditional palladium catalysis. Acrylonitrile
afforded the head-to-tail cross-dimerization product 14 in
reasonable yield. 1,1-Disubstituted electron-deficient olefins,
including acrylate, acrylamide, and a,f-unsaturated lactone,
were also efficient in this reaction, providing the corresponding
hydroalkenylation products 15—23 in moderate to good yields.
Expectedly, due to polarity mismatch, electron-rich vinyl ether
moiety did not interfere with the hydridic hydropalladation
step (17). Notably, the successful employment of this acid-
sensitive alkene, as well as precursor for 20 possessing an allylic
alcohol moiety, highlights the mildness of this Lewis acid-free
method. Additionally, this protocol can also be applied for
double alkenylation reaction (24). Markedly, more challenging
internal alkenes, including dimethyl fumarate, diethyl maleate,
and crotononitrile, underwent smooth hydroalkenylation with
vinyl arenes (25—36)."” Moreover, trisubstituted endo- and
exocyclic acrylates (37—39) were found to be capable
substrates for this hydroalkenylation reaction. It is worth
mentioning that due to the low availability of the
corresponding halides,'® accessing many of these highly
functionalized alkenylated products via the established alkyl
Heck-type transformations”® would be problematic.

Next, the scope of the electron-rich cross-dimerization
partner was evaluated. Differently substituted vinyl arenes were
found to be suitable substrates for hydroalkenylation with
acrylates. Thus, ortho-, meta-, or para-substituted vinyl arenes
(40—44) containing electron-donating groups underwent
smooth hydroalkenylation reaction, including the reaction at
a larger scale (40). It deserves mentioning that this method
tolerated various functionalities at the vinyl arene, including
pyrazole (45), free amide (46), and free benzyl alcohol (47).
Notably, a chemoselective cross-dimerization of electron-
deficient vinyl arenes with electron-deficient acrylates also
proved viable. Thus, differently substituted vinyl arenes,
containing chloro (48, 49), trifluoromethyl (50), and
pinacolboronate (51) groups, afforded hydroalkenylation
products 48—51 in moderate to good yields. Vinyl pyridine
derivative (52) also reacted well. Furthermore, 1,1-disubsti-
tuted vinyl arenes afforded cross-dimerization products (53—
56) in good yields. More challenging internal alkenes including
flavoring agent anethole delivered hydroalkenylation products
57—60 in moderate to good yields. Importantly, electron-rich
olefins beyond vinyl arenes can also be employed. Thus, enyne
(61), N-vinyl pyrazole (62), and even unactivated alkene (63)
all underwent chemoselective cross-dimerization reaction,
albeit in moderate efficiency.

Heterodimerization of Vinyl Arenes and Heteroar-
enes. Next, the feasibility of a more challenging cross-

https://doi.org/10.1021/jacs.3c02410
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Table 2. Cross-Hydroalkenylation Alkenes”

Pd(OPiv), (5—-10 mol%)
Xantphos (14—27.5 mol%)

ot C®
Z > Ewe e

(-3

equiv)

TBAI (0.2-2.0 equiv)

PivOH (2.0 equiv)
NCy,Me (1.6 equiv)

PhH/1,4-dioxane (3:1, 0.1M)
427 nm LED
scope of electron-deficient alkenes
CO,Me COyn-Bu CO,i-Pr CO,t-Bu OIO\A/\OMe OIO\A/\OH
ZEWG Me/K/\Ar MeM Ph Me/K/AAr MeM Ph o e N Me™ NP
2,93% 3,87% 4,91% 5,87% 6, 88% 7,97%
M Ph tB
ie ( (\ o I/\O Bu O _NH, o
¢} N‘Me 0. N. O._N O._N Oy NH
Me P> Me V\Ar
= - = = = Me Ar

Me Ar Me Ar Me Ar Me Ph Me Ar

8,91% 9, 80% 10, 81% 1, 64% 12, 65% 13, 63% 14, 28%
y 7@6\ y CO,n-Bu Oy 0z Ph  CO,Me MeO,C CO,Me
e = e = = \W\
i Mé Ph Mé Ar M'z\eA % Ph Mé Ar Me Ar
EWG e
15, 64% 16, 75% 17, 54% 18, 77% 19, 82%

HO COMe MeO,C ' o H\Me 0 Me_Me Q
W~ read we K o\ e e
Mé Me " Ar Ar o Me Me

e
20, 42% 21, 75%>¢ 22, 84% 23, 64% 24,61%
CO,Me CO,Me CO,Me Me CO,Me CO,Et
A~ Me\MAr Me/\MAr Me\/\)\/\Ar Me A ar WN
7 EWG
- 25,91% 26, 88% 27, 84% 28, 74% 29, 68%
CO,M
COMe COMe 2/e o CVCK%EA y NN o CN
PhV\/K/\ W KK/\ Al 2 e, N M
" MeO,C > ar ' Ar eN\Ar
MeO,C —
32, 40% 33,72% Ar
30, 74% 31,61% dimethyl fumarate diethyl maleate 34, 53% 35, 31%¢
N_ o CO,Me CO,Me CO,Me
TTA P
' EWG ©
7, 689 38, 60% 9
36, 50% (17 = 3.2:1) 37,68% o 39, 84%

CO,Et

5
@g

40, quant ( 94%)°

CO,Et
M
Me/V\©/O e
OMe

COEt  OMe

scope of electron-rich alkenes

Me

CO,n-Bu

3

COEt  Me CO?E
Me /K/\@ Me/KAQ\
Me

[

41,98% 42, 68% 43,79% 44, 82%° (E/Z=12.7:1) 45,80%
CO4Et CO,Et CO,Et CO,Et Cl CO,Et CO,Et
=
NHAG OH al Bpin
46, 68%° 47,76% 48, 82% 49, 78%°" 50, 64%° 51, 55%
CO,Et CO,Et
P EtO,C Et0,C Ph EI0,C OTBS EOC '
Me N Me ‘
| Me Ph Me/\/\Ph Me/\/\Ph Me Q O
N OMe
52, 80% 53, 53% 54,78% 55, 55% (E/Z=23:1) 56, 70% 57, 42%
CO,Et EtO,C CO,Et COLE /(LC)gi Me
. .N —
Me Me/\(t@ Mem Me/V\ Me N\\? MeO;C\/@)\Me
S - F
Me
o OMe Ph e Ve
60, 80% (E/Z=2.8:1) 63, 45%b.°
58, 56% 59, 55% e 61,51% 62,51% PPinene

12 b

#0.2 mmol scale, isolated yields, unless otherwise mentioned E/Z."* “3—S5 equiv of alkene coupling partner was used; THF was used as a solvent.

“No NCy,Me. 9Crotononitrile/ 4-vinylanisole (3:1), 0.25 (M) in PhH/1,4-dioxane. “Conducted on a 1 mmol scale.”0.11 (M) in PhH/1,4-dioxane
(5:1).
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Table 3. Heterodimerization of Vinyl Arenes(Heteroarenes)”

Pd(OPiv), (10 mol%)
Xantphos (27.5 mol%) H

/\GEWG + /\@O X Ay Ar:
X X PivOH (2.0 equiv) EWG-- 19 OMe
NCy,Me (1.6 equiv) = NN
(3 equiv) PhH/1,4-dioxane (3:1, 0.1M)

427 nm LED

Me

Me
P Me P FiC ar Me P CFs Me
Ph Z
/@/K/\AI’ /@/K/\Ar @(K/\Ar MZK/\AF | R
FoC NC F N~ -N

CFs NQ

64, 49% 65, 42% 66, 60% 67, 33% 68, 55% 69, 70%
Me Me Me Ph Me/ Me Me
- X N
N~ ) Z N N~ P
N~ Boin  N<A Z N~ > OMe
70, 67% 7, 30% 72, 40% 73, 43% 74, 5% 75, 55%

“0.2 mmol scale, isolated yields, unless otherwise mentioned, E/Z > 20:1."2

Table 4. Cross-Hydroalkenylation of Complex Alkenes®

Pd(OPiv), (10 mol%)
Xantphos (27.5 mol%)

TBAI (0.2-2.0 equiv) EWG -
O\i 79 PIVOH (2.0 equi Z A ;\©\
¥ EWG N , ivOH (2.0 equiv) OMe

T NCy,Me (1.6 equiv) H
(2-3 equiv)  PhH/1,4-dioxane (3:1, 0.1M)
427 nm LED
Me
(o] Me (@] Me Me (0] OAc
; o M /\)\/\/k M 2 \OA
Me o Me Me e o % Me e O/ . WOAC
e Me O H X N (¢} OAc
X XN :
Ph Me™ Ar Ar OAc
Ar
76, 74%" 77, 91%> 78, 61%" 79, 81%"
Isoborneol derivative Isopulegol derivative Citronellol derivative B-D-Glucose derivative
M (0] Me
e q
Me (6) Me
X Me
Ar
80, 80%° 81, 87%
Cholesterol derivative Isoborneol derivative Isoalantalactone
Me Me O EtO,C
XN
Me OMe Me
AN
Ar Me O
o/ b
_ 83,55%" 84, 919%b Estrone derivative 85, 48%"
Citronellal derivative

AR Ve
Me~y

o
“ C

86, 45%
+)-a-Tocopherol derivative Nortriptyline derivative 87, 64%

“0.2 mmol scale, isolated yields, unless otherwise mentioned, E/Z > 20:1.'2 bdr = 1:1. °dr > 20:1.
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Scheme 3. Mechanistic Studies”
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Ph”®Ph
o 1,4-dioxane (0.01M), 1h Ph™ "Ph
BF, 427 nm LED or dark, rt 95
94 under light : 55%

under dark : <1%
e >100 fold rate enhancement under photoirradiation

c. Reaction in presence of TEMPO

Me
TEMPO (1.0 equiv) , =
Pd(OAC), (20 mol%) Ar /K/\Ar
> Ar Xantphos (55 mol%) 64 0%
64a TBAI (1.5 equiv) . o
+ PivOH (2.0 equiv) Me Me
NCy,Me (1.6 equiv)
Z At PhHI 4-dioxane (3:1,0.1M) Ar’/kO’N
2b 427 nm LED, 18 h M e
97, 68%

d. Radical probe experiment

standard
conditions EtO.C

ZDCOEt + j
Ph Me

1a 98b

98, 30%

Et0,C

N/
' —_—
Me Q O Me
K

e. Deuterium labeling experiment

Pd(OPiv), (10 mol%)
Xantphos (27.5 mol%) CO,Et
TBAI (20 mol%) D \/K/A

2D COEt + Z Ph Ph

CD3CO,D (5.0 equiv)
PhH/1,4-dioxane (3:1, 0.1M)
427 nm LED, 18 h

1a 1b 1-D, 80%

87% D incorporation

“Standard conditions: Pd(OPiv), (10 mol %), Xantphos (27.5 mol %), TBAI (20 mol %), PivOH (2.0 equiv), NCy,Me (1.6 equiv), PhH/1,4-
dioxane (3:1, 0.1 M), 427 nm LED, 12—18 h; 0.2 mmol scale.'* 15 equiv of TBAI was used.

hydroalkenylation of electron-rich and electron-deficient vinyl
arenes (heteroarenes) has been examined (Table 3). Gratify-
ingly, it was found that this light-induced methodology can
also be applied toward highly chemoselective heterodimeriza-
tion of vinyl arenes (64—68). Moreover, vinyl heteroarenes,
such as vinyl pyridine derivatives, were capable substrates in
this cross-dimerization reaction with differently substituted
vinyl arenes (69—73). Remarkably, a highly chemoselective
cross-dimerization of two different vinyl pyridines is also
feasible (74, 75). Importantly, most of the vinyl arenes-
(heteroarenes) employed in this protocol are either incompat-
ible or unreactive under traditional Brensted- and Lewis acid-
catalyzed methods (vide supra).”*"

Hydroalkenylation of Complex Alkenes. Further, the
generality of this photoinduced hydroalkenylation protocol was
tested under a more complex setting (Table 4). Thus, acrylates
containing terpene (76, 77, 81), terpenoid (78), carbohydrate
(79), and steroid (80) derivatives furnished hydroalkenylation
products 76—81 in moderate to good yields. Due to the
involvement of the highly chemoselective hydridic hydro-
palladation process, terminal and internal alkenes in isopulegol
(77), citronellol (78), and cholesterol (80) were all tolerated
in this reaction. Besides, glucoside derivative 79 was also
tolerated under this mild protocol. Analogously, sesquiterpene
natural product isoalantalactone (82), terpenoid citronellal
derivative (83), estrone derivatives (84, 85), and a-tocopherol
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derivative (86) were also capable substrates. Besides, intra-
molecular hydroalkenylation of nortriptyline derivative led to
tetrasubstituted alkene 87 in reasonable yield.

Mechanistic Studies and Proposed Mechanism.
Involvement of hydridic hydropalladation via excited-state
hydricity enhancement was supported by the following
experiments (Scheme 3a).'” In the reaction of butyl acrylate
3a with styrene 1b, switching from light-induced to thermal
conditions led to a complete switch from the cross-alkenylation
(3) to homodimerization of styrene (le) product. A dramatic
switch of chemoselectivity of hydropalladation, and hence of
dimerization reaction, was also observed in the reactions of
electronically distinct vinyl arenes 64a and 2b. The reaction
under light-induced conditions led to exclusive cross-hydro-
alkenylation product 64 via the excited-state hydridic hydro-
palladation of electron-deficient vinyl arene 64a, whereas
thermal hydroalkenylation proceeding mostly via the ground-
state protic hydropalladation of electron-rich vinyl arene 2b led
to a chemoisomeric mixture of 64, 89, and 90. The hydridic
nature of the excited-state palladium hydride species was
further supported by its trapping with trityl cation (94)
(Scheme 3b)."” Thus, under light irradiation, a dramatic rate
enhancement of the hydride transfer (94 — 95) was
observed.” Involvement of radical intermediates in this
transformation was supported by the radical trapping and
radical probe experiments. Thus, the employment of TEMPO

https://doi.org/10.1021/jacs.3c02410
J. Am. Chem. Soc. 2023, 145, 12224—12232


https://pubs.acs.org/doi/10.1021/jacs.3c02410?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c02410?fig=sch3&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.3c02410?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of the American Chemical Society

pubs.acs.org/JACS

completely shut down the hydroalkenylation process to afford
the TEMPO-trapping adduct 97 in good yield (Scheme 3c).'®
In the radical probe experiment, cross-hydroalkenylation of
acrylate 1a with cyclopropane-containing vinyl arene 98b led
to dehydronaphthalene 98 apparently via the radical rearrange-
ment cascade (K > L — 98) (Scheme 3d). Finally, the
deuterium labeling experiments identified Bronsted acid as the
primary proton source for the formation of Pd—H species
(Scheme 3e).

Based on the results of the mechanistic studies'> and
literature precedents.,7’8 the following mechanism for this cross-
hydroalkenylation reaction is proposed (Scheme 4). First, Pd—

Scheme 4. Proposed Mechanism

L,Pd°
“HX
EWG L,Pd'"-H visible light
=
O\/\Ewe
EWG oL, EwG
Pd'L,
M H F
Z0

H species is generated upon the oxidative addition of Pd(0)
species'” with Bronsted acid (HX). Upon visible light
irradiation, the excited-state hydricity enhancement enables
chemoselective hydridic hydropalladation of electron-deficient
alkene, followed by the Pd—C bond homolysis, to form hybrid
Pd(I) alkyl radical species F. A subsequent selective polarity-
matched radical addition to electron-rich alkene generates
translocated radical species M, which upon $-H loss affords the
head-to-tail dimerization product and regenerates Pd—H
species.

B CONCLUSIONS

In conclusion, we report the novel head-to-tail cross-hydro-
alkenylation of electronically different alkenes. The unusual
chemoselectivity of this transformation relies on the umpolung
of the palladium hydride species, achieved by the visible light-
induced excited-state hydricity enhancement. This mild, Lewis
acid-free, chemo- and regioselective method exhibits broad
functional group compatibility and can be employed for cross-
hydroalkenylation of diversely substituted and complex
alkenes. Notably, this approach also allows for highly
chemoselective cross-hydroalkenylation of electronically di-
verse vinyl arenes(heteroarenes).
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