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ABSTRACT: We report the first one-pot formal alkene carbor- F
adiofluorination reaction employing easily accessible alkenes as 7 alkene carbo(radio)fluorination JY\V

both prosthetic group precursors and coupling partners. The one pottwo steps

methodology features rapid sequential Markovnikov-selective '8F: 16 examples, 1-68% RCC
iodofluorination and photoinduced Pd(0/1/1I)-catalyzed alkyl '8F (NCA): 7 examples, 3-45% RCC
Heck reaction as a mild and robust fluorine-18 (**F) radiochemical up to 9.6 GBg/umol molar activity
approach for positron emission tomography (PET) imaging probe 1-20min [ F 19F: 34 examples, 20-78%
development. A new class of prosthetic groups for PET imaging { 4\(% P 30-45 min

probe synthesis was isolated as iodofluorinated intermediates in mild conditions
moderate to excellent yields. The one-pot formal alkenylfluorina-
tion reaction was carried out to produce over 30 analogues of a
wide range of bioactive molecules. Further application of the Pd(0/
I/II) manifold in PET probe development was illustrated by the direct carbo(radio)fluorination of electron-rich alkenes. The
methods were successfully translated to radiolabel a broad scope of medicinally relevant small molecules in generally good
radiochemical conversion. The protocol was further optimized to accommodate no-carrier-added conditions with similar efficiency
for future (pre)clinical translation. Moreover, the radiosynthesis of prosthetic groups was automated in a radiochemistry module to

[l Metrics & More | @ Supporting Information

easily accessible
starting materials

F~ source

18F: 19 examples, 8-92% RCC; '8F (NCA): 8 examples, 15-78% RCC
19F: 21 examples, 29-99%

facilitate its practical use in multistep radiochemical reactions.

1. INTRODUCTION

Methods for construction of carbon—fluorine bonds are in
increasingly high demand as the number of drug candidates
possessing fluorine atoms has considerably expanded over the
past several years. This is in part due to the enhanced physical,
chemical, and biological features of these compounds
compared to their hydrogen-containing bioisosteres.' The
incorporation of fluorine into a bioactive molecule may
favorably change its lipophilicity, cell membrane permeability,
and pharmacokinetic profile.” Another reason for the
prevalence of fluorine-containing molecules in the biomedical
sciences is their use as imaging probes for positron emission
tomography (PET). Fluorine-18 (**F) is the most commonly
used positron-emitting radionuclide for PET because of its
favorable decay characteristics, including a moderately long
half-life (¢, ~ 110 min), a high positron (f*) decay ratio of
97% compared to other radionuclides (i.e, **Cu 18%, **Ga
89%, and *Y 33%), and a low 8 energy (Ej", 0.635 MeV).”
Not surprisingly, a vast number of methods have been
developed to construct these valuable C—'°F bonds in
response to the necessity for target-specific '*F-PET imaging
probes.

Incorporation of *F into a molecule of interest is done by
either direct or prosthetic group approaches (Scheme 1a).
Direct approaches, such as electrophilic or nucleophilic
fluorination or halogen exchange, mainly rely on the synthesis
of precursors containing reactive groups like metal salts,
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boronic esters, iodonium-based, or other charged leaving
groups, which can be substituted by the employment of a
suitable '*F reagent.’® These methods have greatly advanced
the synthetic tools available in the past decades, but their
application to complex molecules for PET imaging still remains
challenging.2b

On the other hand, the direct C—H activation approach,
though highly appealing for its step and atom economy as it
obviates the requisite precursor synthesis, is inherently
substrate-controlled and often not selective. Moreover,
methods toward the synthesis of C(sp’)—F bonds have
become highly sought-after, in a departure from the broadly
applicable but limited Sy2 reactivity, which only applies to
primary or secondary C—F bond formation generally under
harsh conditions.’

A powerful alternative to direct '®F incorporation is the
prosthetic group (PG) approach, which involves the rapid and
selective synthesis of a typically small building block containing
the desired '*F and a synthetic handle. This PG is subsequently
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Scheme 1. (a) Radiofluorination Approaches; (b) Alkene
Carbofluorination; (c) This Work
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attached to a target molecule at the late stage of the synthetic
route.” This approach offers great opportunities for diversifi-
cation in terms of imaging probe development that are
unavailable by direct methods requiring dedicated precursor
syntheses. The implication of a synthetic handle enables the at-
will incorporation of PGs, in contrast to C—H activation
methods.* However, the two-step nature of the PG approach
adds urgency to its installation due to '°F decay. Consequently,
available protocols are limited to the most robust methods,
including click reaction, substitution, carbonyl condensation,
or reductive amination, with rare examples of aryl—aryl or
aryl—vinyl C—C coupling.*”’

Although one of the most potent methods to build
molecular scaffolds is by C—C bond formation, this tool has
yet to find a foothold in the scale- and time-restricted synthesis
of '®F-labeled PET imaging probes. Certainly, expanding the
toolkit for PG incorporation to include an operationally simple
C—C cross-coupling methodology would significantly expand
the catalog of PET imaging probes. Moreover, given the
abundance of aliphatic olefins in bioactive molecules, the
development of a C(sp*)—C(sp®) technology for this purpose
would allow unprecedented access to abundant and valuable
alkylvinyl C—C coupled products bearing the desired '°F label.

The most straightforward approach to address this radio-
synthetic problem would be the carbofluorination of alkenes,
where new C—C and C—F bonds are assembled onto simple
alkenes in a single operation (Scheme 1b). Although some
methods for direct alkene carbofluorination exist,’ most
require the use of electrophilic fluorine sources, which do
not feasibly translate to radiochemistry as they can generally
only be accessed from 'SF—'°F gas.**” Furthermore, current
carbofluorination methods are limited in alkene scope and

generally employ aryl, with only a handful of examples of
alkenyl carbon sources.” Recent reports featuring fluoride,
though as an excess reagent, do not have such an alkene scope
limitation.”™ However, they are restricted to aryl and alkyl
carbon sources, while alkenylfluorination remains elusive. To
the best of our knowledge, no general methods for alkene
alkenylfluorination or alkene carboradiofluorination exist.

Accordingly, we aimed at the development of a modular
prosthetic group approach to enable a formal alkene
carbofluorination while employing easily accessible and
commercially available alkenes as both the PG precursor and
cross-coupling partner (Scheme 1c). We hypothesized that the
Mizoroki—Heck reaction between alkyl halides and alkenes
would be the most promising cross-coupling candidate to
achieve this transformation. In recent years, our group and
others'! developed a visible-light-induced Pd(0/1/1I) manifold
to enable the mild, exogenous photosensitizer- and oxidant-
free C—C coupling of primary, secondary, and tertiary alk?/l
halides with electronically diverse alkenes,'” dienes, >
oximes,'* and hydrazones."> This robust technology thus fits
the profile for translation into a PG installation approach.

Here, we report the development of the first one-pot formal
alkene carboradiofluorination reaction as a blueprint for PET
imaging probe development. This general and modular
method features the photoinduced palladium-catalyzed alkyl
Heck reaction between a new class of '"F-PGs and easily
accessible alkenes.

2. RESULTS AND DISCUSSION

We began our efforts by examining the Markovnikov-selective
alkene iodofluorination reaction as a known rapid protocol for
PG synthesis, which innately requires the use of a nucleophilic
fluorine source instead of its less practical electrophilic
counterpart.'© We carried out a substrate mapping study,
normally employed in-house, to assess the functional group
compatibility of protocols under development.'” Expectedly,
this method is tolerant of a range of functionalities, from
aliphatic chains to drug-like fragments and heteroatom-
containing molecules (Schemes S1 and S2). To our surprise,
despite the long history of this reaction,'® it was scarcely used
to synthesize this class of iodofluorinated products.'’
Consequently, several new aliphatic PGs (2) were isolated
and characterized (Scheme 2). Employment of electronically
different styrene derivatives afforded benzylic fluorides (2a—j)
in good to excellent yields. Valuable fluorine- and nitrogen-
containing arenes (2k—2m) were also highly efficient.
Aliphatic alkenes containing moieties such as bromide (2n),
ester (20), and phosphonate (2p) worked well in this reaction.
Lastly, diversely substituted acyclic (2q—r) and cyclic (2s—u)
alkenes were shown to work in a regioselective manner.

Next, the translatability of the interhalogenation reaction
was explored for the development of new PET imaging
probes.” The most recent guidelines for radiosynthetic
methodology development were employed as benchmarks.
Here, radiochemical conversion (RCC) represents reaction
efficiency as determined by HPLC analysis of a reaction
aliquot, similar to analytical crude yields in organic
chemistry.”’

At the bench, screening of various commonly used
nucleophilic fluorine sources resulted in poor to moderate
efficiency, up to a 43% yield (Table S1). Since H'’F-pyridine
was the best working reagent but is not yet available as a
radiofluorination reagent, employment of ['*F]-tetraethylam-
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Scheme 2. PG Synthesis
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“Due to the instability of pure products 2, NMR yields were reported,
and an analytical sample was characterized.

monium fluoride (Et,N'*F) with charged organic additives was
chosen as a starting point for radiochemical translation (Table
1, entries 1-3). Excitingly, the reaction was most efficient

Table 1. Selected Screening Results for Prosthetic Group
Radiosynthesis

. DIH (14 mg) 18F o
Et,N'8F +\©/\ Heloy (58 uL) F\©/l\/' I‘N/ILN—I
DCM (250 L) Me-—
40 °C, 20 min Me O

19,3 L ['®F]-2g DIH

entry Change ["*F]-2g RCC (%)
1° Py-HOTf 86
2° Py-HOTs 79
3’ TBAI 0
4 no additive 100
S 3 min 56
6 S min 69
7 no carrier added 100

“Average of two reactions. 42 yumol additive was used.

without additives (entry 4). Furthermore, control and time
experiments showed that PG synthesis was fast and efficient
(entries 5—6), even without carrier added (entry 7)."”

With the PG radiosynthesis method successfully developed,
the scope of the reaction was examined (Scheme 3). In
anticipation of the subsequent C—C coupling, H'’F-pyridine
was employed to quench excess alkene starting material, as the
difference in scale between the '*F reagent and substrate leaves
a huge (several orders of magnitude) excess of alkene that
could lead to undesired cross-coupling side products in the
next step. Notably, this reaction occurred with an efliciency

similar to that of its '"F-isotopologue. Electronically diverse
styrenes (['®F]-2a—2y), even those possessing free carboxylic
acid and nitro groups (['*F]-2z and ['®F]-2a'), worked well in
this reaction. Disubstituted alkenes ['®F]-2b' and ['8F]-2r
were also efficient. Aliphatic alkenes bearing drug-like frag-
ments ([*®F]-2c'—2e') and those vicinal to heteroatoms
(['®F]-2f", ['*F]-2g") afforded PGs in good radiochemical
conversions. Furthermore, we demonstrated the automated
radiosynthesis of compound ['®F]-2a in an 11% activity yield,
which is a measure of the amount of a radioactive product
obtained from a starting amount of activity, indicating the
efficiency of a production process.*® Simple filtration of the
crude mixture with a C18-light cartridge afforded product in
>99% radiochemical purity, which further illustrates the utility
of the ['®F]-PGs for automated multistep reaction settings
(Figure SS). The remarkable functional group tolerance of this
iodoradiofluorination protocol validates the use of the '*F-PG
framework for PET imaging probe development for radio-
labeling of small organic drug molecules and potentially
theranostic drug conjugates,”' macromolecules, and peptide-
based tumor-targeting ligands.*”

Next, the operationally practical semi-one-pot and one-pot
strategies to access the homoallylic fluoride products were
examined, which required new reoptimization milestones from
previously reported protocols. This was not trivial, as the task
to reduce the total alkyl Heck reaction time from 6 to 24 h into
the benchmark 30—45 min (due to '*F decay) had to be done
without compromising its functional group tolerance (i.e., by
subjecting prosthetic groups to harsh conditions). Moreover,
the merger of polar iodofluorination and radical transition-
metal-catalyzed cross-coupling, which was challenging by itself,
had to be done under conditions that could be reproduced in a
radiochemical setting. Therefore, success had to be achieved
without rigorously degassed solvents or operationally compli-
cated processes, and under much more dilute or very scaled-
down conditions, to accommodate the pico—femtomolar scale
of '®F-fluoride in typical production.

After substantial optimization, the translatability of the
protocol to a semi-one-pot and one-pot reaction was
demonstrated.'” In the case of the interhalogenation reaction,
changing the solvent to dioxane and increasing the reaction
temperature to 80 °C resulted in a decrease in reaction time to
1—3 min (Table S9). The reaction profiles of the subsequent
alkyl Heck-type reaction were monitored for benchmark
compounds 4a and 4j under two 427 nm lamps without a
fan attached, with the temperature reaching up to 70 °C
(Figure S1). Full conversion of prosthetic groups 2a and 2g
into corresponding products 4a and 4j was observed within 30
and 20 min, respectively.'” The reaction was also efficiently
scaled down from 100 to 4 pumol scale and diluted to 20 mM
concentrations, which were positive indicators for radio-
synthetic translation (4a and 4j, Scheme 4).”"”

Substantial work has been carried out on earlier generations
of the alkyl Heck-type reaction, validating its application to a
broad range of functional groups.'” Nevertheless, its adaptation
to the one-pot, two-step formal alkenylfluorination reaction for
privileged PG substrates under reoptimized conditions was
examined next. Despite the scarce examples of homoallylic
fluorides in the literature,”® we found that even the benchmark
reaction to make product 4a from simple styrene resulted in
the ﬂuorine-tag§ed analogue of a retinoic acid receptor
(RARy) agonist,”* which is in line with the ubiquity of alkenes
and homoallylic C—H bonds in drug-like molecules. Thus, the
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Scheme 3. Carrier-Added PG Radiosynthesis
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“RCC = radiochemical conversion as determined by radio-HPLC analysis of an aliquot of the reaction mixture; “4070 MBq activity was used.

scope of the investigation was designed to include fragments or
analogues of several classes of bioactive molecules, illustrating
the (radio)synthetic utility of the strategy for PET imaging
probe development given the well- estabhshed use of fluorine as
a bioisostere of hydrogen (Scheme 4).!

Primary homobenzylic iodide PG 2a underwent the Heck
reaction efliciently with electronically diverse styrene deriva-
tives to form compounds 4a—4i. Styrene-derived prosthetic
groups reacted analogously in good yields (4j—40). The
modularity of the approach for the synthesis of RARy
analogues was demonstrated by varying the prosthetic groups
to include “magic methyls”>® in the benzylic (4p) and allylic
(4q) positions, inserting a carboxylate moiety vicinal to the
fluorine atom (4r), and by replacing the arene entirely with
cyclobutyl (4s) and linear (4t) aliphatic systems in moderate
to good yields, each of which would otherwise require a
dedicated synthetic route.

N-Methyl-p-aspartate receptor allosteric modulator*® ana-
logues 4u and 4v were synthesized in reasonable yields from
cyclohexene- and styrene-derived PGs, respectively. Piperidine-
containing prosthetic groups were well tolerated in this
reaction to produce GABA inhibitor analogue®’ with
medicinally relevant azobenzene styrene derivative 4w and
fluorine-tagged GPCR agonist™ 4x and its analogue 4y in good
yields. Free and protected vinyl resorcinols reacted smoothly
with cyclohexene-derived PG to produce compounds 4z—b’,
which are analogues of TRPA1 desensitizer’~ and TEAD
modulator.®® The free catechol motif is present in other
important radiopharmaceuticals, like E-DOPA,”" which gen-
erally requires a global protection and deprotection step before
and after radiofluorination.”” This example nicely illustrates the
utility of this methodology with respect to functional group
tolerance. Related DYRKIA inhibitor”® analogues 4c'—4e!
were also synthesized in good yields. Autotaxin inhibitor™*
analogue 4f', bearing a benzylic phosphonate, reacted
efficiently. Lastly, Janus kinase inhibitor’> fragment 4g' and

analogue 4h', synthesized from pyrazole and imidazole PGs,
respectively, were produced in good yields.

With this diverse catalog of fluorine-labeled bioactive
molecules in hand, we proceeded to investigate the radio-
carbofluorination reaction of alkenes. Gratifyingly, the method-
ology developed at the bench only had to be minimally revised
to yield the desired radiolabeled molecules in generally good
radiochemical yields (Scheme 5). We were excited to see the
great efficiency of the one-pot, two-step reaction using a small
amount of activity. Indeed, electronically diverse styrenes
readily underwent formal carboradiofluorination to afford '*F-
homoallylic fluorides ['*F]-4a—4m and ['*F]-4v. '*F at a
quaternary center (['®F]-4q and ['*F]-4s), as well as bearing
8F_q-to-heteroatom (['*F]-4r and ['®F]-4h"), proceeded with
a similar efficiency. Cyclic and secondary PGs reacted well with
good RCCs (['*F]-4e' and ['°F]-4p).

As mentioned earlier, the employment of carrier H'F-
pyridine in the one-pot, two-step protocol was rationalized by
the need to quench excess alkenyl starting material from PG
synthesis to prevent undesired side reactions in the following
step. However, this usually translates to low molar activity
(A,,), which is defined as the measured radioactivity per mole
of the compound at the end of synthesis.””*® In most cases,
low molar act1v1ty is a negative indicator of (pre)clinical
translation.*® Aiming to further improve our protocol to enable
its potential use in a (pre)clinical setting, a no-carrier-added
(NCA) method was developed to avoid diluting the '*F label
with the H'’F-pyridine carrier. First, the conditions for the PG
synthesis were modified. Expectedly, it was found that the
NCA reactions showed similar efficiency as before and
accommodated electronically diverse styrenyl (['*F]-2a—2w),
alkyl multisubstituted (['®F]-2za—2q), and cyclic ['*F]-2s
alkene starting materials (Scheme 6).

Encouraged by these results, the feasibility of the one-pot,
two-step NCA protocol was tested by removing the excess
alkene from the first step via evaporation rather than
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Scheme 4. Synthesis of Homoallylic Fluorides
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“Reaction was carried out using semi-one-pot conditions (see the Supporting Information for details). YReaction was carried out in a photoreactor
at 80 °C. “NMR yield using 4-chloro-2-fluorotoluene as an internal standard.

quenching with H'’F-pyridine. Indeed, it was found that the
NCA conditions afforded the corresponding radiofluorinated
products ['*F]-4a—40 with similar efficiency and moderate to
good molar activities (Scheme 7). These results are aligned
with our goals to develop a practical and translatable protocol
for (pre)clinical use, which would not require carrier addition.
The method is mild enough to be translated to a late-stage
synthesis, whereby the removal of excess alkene from the PG
synthesis step can be carried out by evaporation or other
purification methods, like filtration or HPLC."”

The C—C-bond forming step of this protocol combines the
robustness of transition-metal catalysis with the mildness and
high reactivity of radical reactions and is consequently tolerant
to a broad range of functional groups.’” Future development of
this transformation toward (pre)clinical uses is expected to

include the employment of a suitable photoradiochemical
module, as was recently developed and automated for ¥Zr*® or
other photoradiochemical setups.,39 which will significantly
improve the efliciency of the reaction.

The successful translation of this one-pot, two-step NCA
formal alkenylfluorination method to radiochemistry toward
[**F]-homoallylic fluorides also serves as a proof of concept for
the potential radiosynthetic utility of this modular PG
approach under transition-metal-catalyzed cross-coupling
conditions. The radiofluorinated PG can potentially be applied
in a variety of cross-coupling reactions like Stille, Sonogashira,
and Suzuki coupling, as well as noncatalytic reactions to
produce radiolabeled complex scaffolds.

Motivated by the successful radiolabeling of bioactive
molecules, we wondered whether the methodology could be
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Scheme 5. Carrier-Added Homoallylic [**F]-Fluoride Radiosynthesis
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“RCC = radiochemical conversion as determined by radioHPLC analysis of an aliquot of the reaction mixture.

Scheme 6. NCA PG Radiosynthesis
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“RCC = radiochemical conversion as determined by radioHPLC
analysis of an aliquot of the reaction mixture.

further developed to carry out the direct alkylcarbofluorination
of alkenes. Our group previously demonstrated the mechanistic
bifurcation of the photoinduced alkyl Heck reaction in the
presence of electron-rich substrates capable of stabilizing a
radical-polar crossover step to produce an oxocarbenium
species that could be trapg)ed by O-nucleophiles to yield mixed
acetals (Scheme $3)."2>!

We were delighted to see that this method could be used in
the presence of silver fluoride to produce alkylated a-
fluoroethers 8a and 8b (Scheme 8)! Furthermore, the method
was again easily translated to radiochemistry in a carrier-free
protocol that did not require the addition of silver fluoride

Scheme 7. NCA Radiosynthesis of Homoallylic ['*F]-

Fluorides”
>_< 18|:
Et;N'8F (1,1 uL), DIH (2-3 mg) J\(|
~1 GBq dioxane o?:ODrgil\: (200 uL) [18F)-2
2N (3,2 ul), PA(OAC), (0.14
18 18F (3, 2 uL), Pd(OAc); (0.14 mg),
[®F1-4, %RCC xantphos (1.5-2.5 mg)

(average of
n experiments)

Cs,CO3 (10 mg), dioxane (250 ul)
4 x 427 nm lamps, 45 min

18p

['8F]-4e, 45%, n = 2
An: 0.78 GBg/umol, n = 2

['8F]-4j, 6%, n =2
An: 0.09 GBg/umol, n =2

['8F]-40, 3%, n = 2

“RCC = radiochemical conversion as determined by radioHPLC
analysis of an aliquot of the reaction mixture.

additive®” to yield compound ['*F]-8a in 83% RCC. This
represents the first example of palladium-catalyzed direct
alkene alkylradiofluorination and a potential extension of this
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Scheme 8. Direct Alkyl(radio)fluorination of Phenyl Vinyl
Ether
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e
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4RCC = radiochemical conversion as determined by radioHPLC
analysis of an aliquot of the reaction mixture.

“RCC = radiochemical conversion as determined by radioHPLC
analysis of an aliquot of the reaction mixture.

methodology toward the synthesis of a-alkoxy organofluorine
compounds.

3. CONCLUSIONS

We disclose the first formal carboradiofluorination of
electronically diverse alkenes under mild one-pot, two-step
photoinduced conditions. The methodology was translated
from the first formal alkene alkenylfluorination employing a
nucleophilic fluorine source and easily accessible starting
materials. Furthermore, the direct alkyl(radio)fluorination of
electron-rich alkenes under a Pd(0/I/II) manifold was
demonstrated for the first time.

The potential (radio)synthetic utility of these approaches
was demonstrated by the incorporation of '”F and F into
several classes of bioactive molecules. In the process, several
new PGs were produced, and their radiosynthesis was
developed in an automated module for further elaboration in
multistep processes. This no-carrier-added methodology
toolkit is expected to serve as a prosthetic group blueprint
for PET imaging probe development and should find ample
application in the radiochemistry community.
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