
30

DeepFlow: A Cross-Stack Pathfinding Framework for
Distributed AI Systems

NEWSHA ARDALANI, Meta, Inc., USA

SAPTADEEP PAL and PUNEET GUPTA, UCLA, USA

Over the past decade, machine learning model complexity has grown at an extraordinary rate, as has the scale

of the systems training such largemodels. However, there is an alarmingly lowhardware utilization (5–20%) in

large scale AI systems. The low system utilization is a cumulative effect of minor losses across different layers

of the stack, exacerbated by the disconnect between engineers designing different layers spanning across

different industries. To address this challenge, in this work we designed a cross-stack performance modelling

and design space exploration framework. First, we introduce CrossFlow, a novel framework that enables cross-

layer analysis all the way from the technology layer to the algorithmic layer. Next, we introduce DeepFlow

(built on top of CrossFlow using machine learning techniques) to automate the design space exploration and

co-optimization across different layers of the stack. We have validated CrossFlow’s accuracy with distributed

training on real commercial hardware and showcase several DeepFlow case studies demonstrating pitfalls of

not optimizing across the technology-hardware-software stack forwhat is likely themost importantworkload

driving large development investments in all aspects of computing stack.

CCS Concepts: • Hardware→ Application specific processors;

Additional KeyWords and Phrases: Distributed AI systems, hardware-software co-optimization, design space

exploration, performance modelling

ACM Reference format:

Newsha Ardalani, Saptadeep Pal, and Puneet Gupta. 2024. DeepFlow: A Cross-Stack Pathfinding Framework

for Distributed AI Systems. ACM Trans. Des. Autom. Electron. Syst. 29, 2, Article 30 (February 2024), 20 pages.

https://doi.org/10.1145/3635867

1 INTRODUCTION

Over the last decade, the demand on compute and memory resources for AI workloads has grown
by multiple orders of magnitude [1]. As AI models grow in size along with the volume of train-
ing data, distributed training on cutting-edge scale-out systems composed of a large number of
accelerators and processors has become the norm. However, it has often been noticed that large
scale AI training suffers from poor resource utilization. E.g., recent analysis reveals 5–20% utiliza-
tion across 1000s of GPUs [2]. Such poor utilization of resources is becoming a source of major

Newsha Ardalani is with Meta, Inc. This work was primarily done during her tenure at Baidu Research.

Authors’ addresses: N. Ardalani, Meta, Inc., 1 Hacker Wy, Menlo Park, CA 94025, USA; e-mail: new@fb.com; S. Pal and P.

Gupta, Department of Electrical and Computer Engineering, UCLA, 420 Westwood Plaza, Los Angeles, CA, 90095, USA;

e-mails: {saptadeep, puneetg}@ucla.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1084-4309/2024/02-ART30 $15.00

https://doi.org/10.1145/3635867

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

https://orcid.org/0000-0002-9975-4819
https://orcid.org/0000-0002-8777-8573
https://orcid.org/0000-0002-6188-1134
https://doi.org/10.1145/3635867
mailto:permissions@acm.org
https://doi.org/10.1145/3635867
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3635867&domain=pdf&date_stamp=2024-02-15

30:2 N. Ardalani et al.

concern. Inefficiencies across different layers of the compute stack [3, 4] (from hardware micro-
architecture to software parallelization strategies) and the design imbalance across different layers
are among a few factors that result in such low system utilization. Different layers of the stack,
technology nodes, hardware architecture, network topology, model architecture, and parallelism
strategy are designed across different organizations and retrofitted into large-scale systems. The
distributed nature of the design makes cross-layer optimization challenging if not impossible. For
example, high-level algorithmic choices like batch size, model architecture, and parallelism strate-
gies utilize the underlying hardware components (network, memory bandwidth or compute units)
in different ways. As a result, depending on these choices, different chip-level and system-level
architectural design decisions (e.g., network topologies, memory technology and the choice of
technology node) need to be made to ensure high system utilization.
Despite this, the distributed AI training hardware landscape often focuses on just a small set

of parallelism strategies for a fixed hardware design [3]. Exploring the trade-offs between par-
allelization strategy (e.g., data parallelism and model parallelism) and performance (run-time) is
often done in an ad-hoc manner. There is no methodical framework or research that explores the
trade-offs between low-level hardware technology details and high-level algorithmic design (such
as model architecture, parallelism strategy and batch size) on over performance and utilization of
compute and memory resources. As a result, we set out to develop a framework that could enable
across-the-stack analysis and allow us to look at the optimal points in the vast technology, system
and algorithm design space. Towards that goal, we develop CrossFlow, a performance model-
ing framework that enables “what-if” analysis across different layers of the stack, and DeepFlow
that builds on top of CrossFlow and uses machine-learning based techniques to automate the de-
sign space search. CrossFlow is an end-to-end performance modeling tool based on an analytical
model which takes the entire system-architecture into account and is more sophisticated than a
simple Roofline analysis and less time-consuming than simulation. The framework provides a tem-
platized interface for defining technology (minimum operating voltage, bitcell area, etc), chip (com-
pute cores, memory hierarchy, etc.), system-level architecture (node-level organization, intra-node
network, and inter-node network), machine-learning model’s compute graph, and parallelization
strategies and predicts run-time per iteration step. Key contributions of this work include:

—We develop the first open-source, full-stack pathfinding framework, DeepFlow,1 for large
distributed deep learning (DL) training: the driving workload for most future technology,
hardware and software development (Sections 3–7).

—We validate CrossFlow performance prediction against measurements on real commercial
hardware (NVIDIA P4, V100 and DGX-1) running kernels and DL application in both single
and distributed settings, observing near perfect correlation and 10%–16% error. Next we
show that large multi-chip integration and waferscale technologies would not be worthy
investments for large scale language models (Section 8).

—We conduct a variety of case studies looking at the impact of a variety of high-cost technol-
ogy innovations on the eventual performance of distributedDL training.We show that future
logic technology nodes alone would provide minimal performance gains, and advancement
in HBM and inter-node network technologies is needed to provide the next leap in perfor-
mance. Also, optimal parallelism strategy selection could provide more performance gains
than using naive parallelism strategies on next generation hardware (Section 9).

CrossFlow and DeepFlow can be used to bridge researchers across different layers of the stack
(often spanning across different industries) to communicate their needs.

1https://github.com/nanocad-lab/DeepFlow

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

https://github.com/nanocad-lab/DeepFlow
https://github.com/nanocad-lab/DeepFlow

DeepFlow: A Cross-Stack Pathfinding Framework for Distributed AI Systems 30:3

Fig. 1. Impact of parallelism on computation intensity.

2 MOTIVATION

High-level algorithmic design decisions such as batch size, parallelism strategy and degrees of
parallelism stress the underlying hardware components in different ways. One important metric
that guides a balanced systemdesign is computation intensity. Computation intensity is aworkload
property defined as the ratio of the number of computation flops to the number of accesses to main
memory.
Figure 1 (left) shows the computation intensity distribution across a different number of GPUs.

We performed this analysis for a GEMM (general matrix multiplication) problem of size
(64K , 64K , 64K) distributed across many GPUs. Depending on the parallelism strategy and num-
ber of available GPUs, each GPU gets a non-regular matrix shard for compute. Each boxplot shows
the spread of computation intensity for a different number of GPUs. For each level of parallelism,
we see a large spread of compute intensities, particularly for lower parallelism degrees. This is the
result of different parallelization strategies as well as different tiling strategies. It is clear from this
figure that computation intensity is much smaller at higher degrees of parallelism, implying the
need for a different system design.
There are a myriad of ways to parallelize a model across a large multi-node system. Figure 1

(right) shows the distribution of computation intensity across different parallelization strategies
for a fixed level of parallelism (64KGPUs). On the X-axis, we show various parallelization strategies
across 64K GPUs. RC or CR refers to Row-Column or Column-Row distributed GEMM (a.k.a.
kernel parallelism, more details in Section 3.3). As shown, optimal design point is different for
different parallelization strategies. Since designing new accelerator architectures (particularly in
advanced technology nodes) and developing new integration technologies such as interposers, 3D
integration, and the like often costs billions of dollars, it’s important to perform thorough design
space exploration which encompasses software, hardware design and technology selection. This
is essential to guide development of newer technologies and system architectures.
Moreover, large training workloads are rapidly becoming the applications driving large invest-

ments in semiconductor technology development all the way down to fabrication equipment,
making such a cross-layer pathfinding framework immensely valuable to ML engineers, system
architects and technology developers alike. In this work, we developed a cross-layer pathfinding

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

30:4 N. Ardalani et al.

Table 1. Features of DeepFlow Compared to Other Related Tools

TimeLoop[5] Maestro [6] Mind Mapping [7] FlexFlow [8] DayDream [9] Habitat [10] Astra-Sim [11] Astra-Sim2.0 [12] DeepFlow

Analytical Performance Modelling Y Y Y N N Y Y Y Y

End-to-End DL Network

Performance Modelling Support
N N N Y Y Y Y Y Y

Scale-out System Modelling N N N Y Y N Y Y Y

Advanced Network and

Communication Collective Modelling
N N N N N N N Y N

Technology (CMOS nodes,

Memory, Interconnect) Modelling
N N N N N N N N Y

Automated uArchitecture Generator N N N N N N N N Y

Model-to-Silicon Performance Validation Y N N Y Y Y N N Y

Algorithm-Hardware Co-optimization N N Y N N N Y Y Y

Algorithm-Hardware-Technology

Co-optimization and Design Space Exploration
N N N N N N N N Y

Fig. 2. DeepFlow overview.

framework, which unlike traditional performance simulator and hardware-software co-design
frameworks, allows us to evaluate the impact of the choice of technology, micro-architectural
design and software parallelization strategies on deep learning workloads. Table 1 shows the
features of DeepFlow and compares it to other state-of-the-art hardware-software co-design and
performance simulation tools. As shown, DeepFlow allows us to perform cross-stack pathfinding
and design space exploration. More details of how Deepflow compares against other related work
is provided in Section 10.

3 DEEPFLOWOVERVIEW

Figure 2 shows an overview of the DeepFlow framework. DeepFlow takes the following set of
inputs: (1) System design hierarchy (e.g., the number of accelerator nodes per device, the num-

ber of devices in the system, the network topology connecting nodes within a device and across
the devices), (2) Architecture template of each accelerator node which provides a high-level defini-

tion of its components and how those components fit together. The purpose of the template is to
provide a blueprint for the accelerator without committing to any specific hardware parameters.
(3) Technology parameters for each hardware component (e.g., energy per flop), (4) Design budgets

for each hardware component (area, power, perimeter), (5) Machine learning model specification

in the form of a high-level compute graph, parameters of each compute node (kernel type, tensor
dimensions), and (6) Parallelism strategy (data, model, kernel, and/or pipeline parallelism dimen-

sions) which distributes the compute graph across the entire system. (7) Device mapping strategy

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

DeepFlow: A Cross-Stack Pathfinding Framework for Distributed AI Systems 30:5

which defines mapping of parallel shards onto hardware nodes. Given these inputs, DeepFlow pre-
dicts the end-to-end performance of one iteration (i.e., single batch) of the model and finds an
optimal hardware-software-technology design point as output.
DeepFlow is composed of two major components. CrossFlow which operates in a stand-alone

mode and can predict performance for any input configuration; and a search and optimization

engine (SOE) which enables design space search.

3.1 CrossFlow Building Blocks

Micro-Architecture Generator Engine (AGE). AGE takes the following set of inputs:
(1) Design constraints (i.e., the power, area and perimeter budget and breakdown across micro-
architectural components such as cache, network, compute cores). This breakdown can be pro-
videdmanually by users or automatically by the Search andOptimization Engine (SOE, Section 3.2).
(2) Technology parameters such as energy per flop, energy per data bit transfer for each level of
memory and network hierarchy, threshold and maximum gate voltage, integration substrate pa-
rameters such as bump/interconnect pitch. We provide a wide range of standard and future tech-
nology libraries as baseline. (3) Architecture template which is a blueprint of the underlying ac-
celerator chip without committing to any specific hardware parameters. Given these inputs, AGE
performs a frequency-voltage-area scaling optimization to generate the following output param-
eters such that design budgets for all components are met: (1) Compute throughput. (2) Capacity
for different levels of memory hierarchy. (3) Bandwidth to each level of memory hierarchy.
(4) Inter-node as well as intra-node network bandwidth. These parameters are then utilized by
the performance prediction engine (PPE) to estimate the execution time of each kernel.

Compute Graph Transformation and Device Placement Engine (DPE). The parallelization
strategy and device mapping are critical in deciding the overall execution time. Here, we first
transform the model graph to a ‘super-graph’ to reflect the parallelization strategy provided by the
users manually, or SOE engine (Section 3.2) automatically. For example, to apply data parallelism,
the model graph is replicated and appropriate edges are added to model the gradient exchange.
After generating the transformed graph, DPE assigns the vertices of the transformed graph to the
system nodes following a heuristic approach to minimize the communication overhead.

Performance Prediction Engine (PPE). We use hierarchical roofline modeling to predict the
performance of each compute node. To calculate the overall end-to-end execution time, while
respecting scheduling constraints (e.g., one kernel at a time per GPU, or prioritizing one kernel
launch over another) we use event-driven simulation.

3.2 Search and Optimization Engine (SOE)

Co-optimizing micro-architectural parameters and the parallelization strategy that minimizes the
overall end-to-end execution time requires navigating a large space of design parameters. Search
and optimization engine (SOE) enables the automatic design space search and finds an optimal
design point which meets the design constraints and minimizes the overall execution time. SOE
takes inspiration from ML-assisted search algorithms, in particular gradient decent search with
momentum and builds on top of the CrossFlow modeling engine.

3.3 Parallelism Strategy Space

There are a myriad of ways to parallelize a model across a large multi-node system. Exploring the
parallelism space and finding the optimal strategy is critical to overall performance and system
utilization. DeepFlow explores kernel, data and layer parallelism. It uniquely identifies each paral-
lelism strategy by following notations: RC-{KP1}-{KP2}-d{DP}-p{LP} or CR-{KP1}-d{DP}-p{LP}

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

30:6 N. Ardalani et al.

depending on the choice of kernel parallelism. RC (Row-Column) and CR (Column-Row) refer
to different forms of kernel parallelism, i.e., distributed GEMM through inner-product or outer-
product implementation. KP1 and KP2 are the parameters of distributed GEMM. For Row-Column
(RC) or inner-product, KP1 and KP2 would refer to the number of ways we shard the first matrix
across rows and the second matrix across columns. For Column-Row (CR) or outer-product, we
would only need one parameter to specify the parallelization strategy; KP1 will refer to the num-
ber of wayswe cut the first matrix across columns and the secondmatrix across rows. DP represents
the number of model replicas and data shards assigned to each to exploit data parallelism. LP is
the number of ways we cut layers into stages to exploit pipeline parallelism.

4 MICRO-ARCHITECTURE GENERATOR ENGINE

The micro-architecture generator engine, AGE, takes three sets of inputs: (1) A technology com-
ponents library, where the characteristics of each component such as cores, different types of
memories, network interfaces, and so on are defined, (2) Architecture template, where the overall
high-level chip and system organization (such as compute and memory hierarchies) is provided,
(3) Hardware resource allocation, where area, power, and chip perimeter budgets are provided
for the different components of the system. Using this information, the AGE generates the final
micro-architecture parameters (such as overall compute throughput, memory bandwidths at dif-
ferent memory levels, network bandwidth) as shown in Figure 2.

4.1 Technology Components Library

A system is generally composed of many primitive components or building blocks such as the
compute units, SRAM banks, DRAM, interconnect network components (on-chip and off-chip),and
the like. A library of these components and their associated technology parameters are provided
as input to the tool through a tech_conf iд YAML file. We classify these components into three
primary categories: compute, memory and network.

4.1.1 Compute. Attributes for the minimal compute components such as matrix-multiplier
units, vector-matrix multiply units, or a dataflow architecture unit like systolic array are specified
under this category. When a compute component is added to the library, the compute attributes
listed in Table 2 will have to be defined for that component. The tool user can add any type of
compute component in the library ranging from a simple scalar unit to a complex unit compris-
ing of a bundle of systolic arrays and capture the micro-architectural characteristics in the final
architecture template file.

4.1.2 Memory. The memory components in a system can be built out of different technologies
(e.g., SRAM, DRAM, MRAM, RRAM, 3D-XPoint). Also, these memory components can be used in
two ways: on-chip memory and off-chip memory. A library of fine-grained memory components
can be created and stored under this category which is utilized to construct different levels of the
memory hierarchy. The characteristics of the on-chip components are described at the granularity
of a bank because the smallest on-chip memory unit available to a system designer is usually a
memory bank. The parameters of a memory bank such as capacity, bit area, periphery overhead,
among others, are taken as inputs. On the other hand, we model the off-chip memory components
such as DRAM, or 3D-XPoint at device level granularity, e.g., an HBM stack. This is because the off-
chip components are usually obtained at a device level granularity. For off-chip memories, other
parameters such as memory controller area, I/O bus width per device, and so on, need to be defined.
This information is then used to precisely model the capacity and throughput of different levels of
the memory hierarchy under the given area and power constraints.

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

DeepFlow: A Cross-Stack Pathfinding Framework for Distributed AI Systems 30:7

Table 2. Different Technology Components

Compute

Technology Node Nominal Area
Nominal Voltage Threshold Voltage
Nominal Frequency Minimum Voltage
Nominal OP rate Maximum Voltage

On-chip Memory

Technology Latency
Dynamic energy per bit Static energy per bit
Area per bit and total area overhead Bank Capacity
Controller area overhead per bank Controller power overhead per bank

Off-chip Memory

Technology Number of links per device
Dynamic energy per bit Nominal Voltage
Static power per bit Nominal Frequency
Device Capacity Minimum Voltage
Device Area Maximum Voltage
Memory Controller and I/O Area Access Latency

Network (intra-node

and inter-node)

Nominal Voltage Number of links per mm
Nominal Frequency Threshold Voltage
Nominal Energy per Link Minimum Voltage
Nominal Area per Link Link Latency

4.1.3 Network. The inter-chip network component is either intra-node or inter-node commu-
nication link. In the case of amulti-chipmodule (MCM)where multiple compute dies and mem-
ory devices are integrated on a 2.5D integration substrate within the same package, the inter-die
communication is done using high density and energy-efficient links on the 2.5D substrate. These
links are considered as intra-node links. On the other hand, the off-package communication links
between nodes are considered as inter-node links. The attributes that need to be defined for inter
and intra-die communication network components are provided in Table 2. In case of a waferscale
system, the entire wafer could be considered as a single node.

4.2 Architecture Template

Once all system components are instantiated from the technology library, the next step is to hi-
erarchically organize one or multiple components from each category to construct the overall
system. Distributed machine learning training is done on scale-out multi-node system, as shown
in Figure 3. Such a system consists of multiple individually packaged nodes which communicate
through off-package interconnects (such as NVLink, Infiniband, etc.) that form the inter-node net-
work. Inside each package, there can be multiple different accelerator nodes connected using an
intra-node network. Each accelerator within the package typically consists of one accelerator die
that is connected to its own off-chip main memory components (such as HBM, as shown in the
figure). Each accelerator die itself can be composed of smaller compute units.
DeepFlow provides a rich template that can be used to specify the overall architectural organi-

zation of such an accelerator system. Next we describe in detail how the template is organized and
how different system configurations can be achieved using this template.

4.2.1 Compute Unit. As shown in the accelerator die architecture in Figure 3, compute units
are often organized in hierarchies. E.g., in an NVIDIA GPU, multiple tensor cores are bundled in
a streaming multi-processor (SM) and the SM as a whole interacts with the cache hierarchy. In
DeepFlow one can express such hierarchy by definingminimal compute units (MCUs) andMCU

bundle. MCU is the smallest compute unit that we expose to the tool user. It defines the dataflow
model and layout (e.g., MCU can be a systolic array that its height and width are configurable

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

30:8 N. Ardalani et al.

Fig. 3. Architecture template: Overview of a hardware system whose characteristics can be configured in

DeepFlow.

as input) and interacts with the first level of memory hierarchy. Meanwhile, MCU bundle defines
the number of MCUs that are bundled together and are exposed to the second level of memory
hierarchy.
In dataflow architectures such as Eyeriss, TPU, and the like, data can flow directly between

different cores. Hence, the tool allows one to define the type of dataflowwithin anMCU. Currently
the performance model supports three types of dataflow: weight stationary, activation stationary

and output stationary. The tool can also find the best dataflow strategy among the three for any
given kernel.
Software runtime, scheduling overheads and the architecture of the cores often restrict the max-

imum compute utilization. For example, the tensor-cores in NVIDIA V100 incurs fill-drain related
under-utilization during tensor loading from the registers and therefore achieves a maximum uti-
lization of 85%. To account for such overheads, a maximum utilization value can be defined which
derates the core throughput by that factor.

4.2.2 Memory Hierarchy and Scope. The memory hierarchy is defined by initializing multiple
memory levels from the highest to the lowest level (i.e., registers to the main memory) as shown
in Figure 3. Each level of memory has two attributes: (1) Memory technology component from the

technology component library which defines the physical attributes of the memory as outlined in
Table 2, and (2) Scope defines the set of components from the next level of memory hierarchy that

are accessible from this level of memory hierarchy. For example, the ‘global’ scope indicates that
the memory level is accessible to all the components.

4.2.3 Network Topology. In DeepFlow , we support two levels of network hierarchy: intra-
package and inter-package. For each level, a different topology (e.g., mesh, torus, crossbar) can
be defined.

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

DeepFlow: A Cross-Stack Pathfinding Framework for Distributed AI Systems 30:9

Fig. 4. Resource breakdown example: This example is showing the area budget allocation and breakdown

across all micro-architectural components.

4.3 Hardware Resource Allocation

Hardware design under a limited area and power budget is a fine art of finding the right balance
(breakdown of resources) across different micro-architectural components. The area and power
allocation for each micro-architectural component, as well as the perimeter allocation for certain
components derive the design and specification of that component.
We define resource (area, power, perimeter) distribution across different components of the com-

pute chip, as input parameters. The input definition also includes the total area and power budgets
for the entire compute node. The total perimeter is inferred from area. The area budget is usually
dictated by packaging constraints. For example, if the compute and memory dies are assembled on
a 2.5D silicon interposer-based interconnect substrate, the total area of the node will be limited by
the maximum size of the interconnect substrate that can be fabricated. Compare this to a wafer-
scale system which houses an entire node on a wafer where the total area budget can be as large as
70,000mm2. A node’s power budget is determined by the cooling infrastructure that extract heat
from the node and the power delivery constraints.
We define budget distribution across different components of the compute graph as a percentage

breakdown. As shown in the YAML snippet in Figure 4, fractions of the total area is distributed
across cores, levels of memory hierarchy and network components. Similarly, the fraction of the
compute chip’s power and perimeter gets devoted to different hardware components.
Given the overall resource allocation and distribution, the AGE performs a series of optimiza-

tions (voltage-frequency scaling) to find an optimal parameter settings for eachmicro-architectural
component. An optimal parameter setting is one that utilizes themost of the allocated budget. Note
that an unbalanced resource allocation may leave some of the budget under-utilized. While we al-
low users to provide a manual breakdown of resources as input, we highly recommend to use
SOE (Search and Optimization Engine) to automatically find the best setting which maximizes the
overall resource utilization.

4.4 Micro-Architectural Parameter Generation

Next, the tool generates the micro-architectural parameters for each component of the architec-
ture. Given the architecture template, alongside the resource breakdown across the different com-
ponents, and the technology parameters, we find the maximum throughput for each component.
E.g., we find the maximum number of cores that can fit in the given area allocation and find the
voltage-frequency points to maximize compute throughput under the power budget. Similarly, for
on-chip caches, we find the memory capacity and memory bandwidth at each level that can fit
in the area budget while taking the network and controller overhead into account. For off-chip

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

30:10 N. Ardalani et al.

memories and network interfaces, we use the energy per bit information along with the physical
I/O transceiver area, bump pitch as well interconnect wiring pitch to determine the maximum
bandwidth that can be realized on the chip (using a model similar to [13]).
These architectural parameters, throughput, bandwidth, capacity, and so on, are then provided

as input to the performance prediction engine. Next, we discuss in detail how we model and cal-
culate these parameters.

4.4.1 Core. For deep learning models, the kernels are usually highly parallel in nature and
therefore, our goal is to maximize total compute throughput under the area and power budgets
allocated for compute. Given the area budget, we first compute the maximum number of MCUs
(minimal compute units, introduced in Section 4.2.1) that can fit within the area allocated. The
nominal frequency and voltage for each MCU is an input to the model, therefore the nominal
power for each MCU and the entire core can be derived very easily. If the nominal power exceeds
the power budget, we scale down the frequency and voltage. If we hit the minimum voltage limit
set in the component description, we reduce the number of MCUs till we satisfy the total power
budget allocated to the compute units. This explains a case where the core design is power-bound
and not area-bound.
Once we determine the total number of cores and the frequency of operation, we compute the

compute throughput by appropriately scaling the nominal flop rate, as shown in Equation (1).

Throughput = N × flopnominal ×
fop

fnominal
(1)

where N is the total number of cores, flopnominal is the nominal flop rate of each core, fnominal

is the nominal frequency corresponding to the technology node of the core and fop is the final
optimal operating frequency. We use standard Voltage-Frequency-Power scaling methodology to
obtain the operating voltage and frequency.

4.4.2 Register and Cache Memory. The total area and power budgets allocated to each level of
on-chip memory is split between the memory banks and the network circuitry that connects the
memory banks at each level to micro-architectural components at the next level that are under its
scope. We assume this interconnect to have a crossbar topology. The total number of components
under its scope and the number of banks in that memory level determine the area and power
overheads of the network. We iteratively determine the total number of banks possible at each
level of memory hierarchy such that the total area of the banks and the network at every level
satisfies the area budget allocation. Once we determine the number of memory banks, we calculate
total static power of all the banks (Equation (2)) and we allocate the remaining power budget to
dynamic access energy. The available dynamic energy budget determines themaximum achievable
throughput as shown in Equation (3).

Pstatic = Pstatic−per−bit × Nbanks × Capacitybank (2)

Throughput =
Pon−chip−mem − Pstatic
Energydyn−per−bit

(3)

4.4.3 Main Memory. Main memory has two major components that collectively control the
overall capacity and bandwidth but are housed in two different places. Memory controller which
is placed on the compute chip, and the memory devices are placed outside the compute die within
the same package. The area allocation to each component determines the maximum number of
memory devices that can be supported, which in turn determines the total memory capacity (see
Equation (4)).

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

DeepFlow: A Cross-Stack Pathfinding Framework for Distributed AI Systems 30:11

#Devices = min
(Node Area − Processor Chip Area

DeviceArea
,
Area budдet f or Memory Controllers

Memory Controller Area
,

Perimeter × #Links per mm
#Links per device

) (4)

Meanwhile power and perimeter allocation dictates the number of links (that can fit along the
compute die), and the frequency of each link which collectively determine the overall off-chip
memory bandwidth.

4.4.4 Network. The off-chip network links (intra and inter-package) consume both power and
area on the compute die. Moreover, the wires need to escape the periphery of the die which gets
determined by the interconnect density and the available chip perimeter. The maximum number
of links that can be accommodated in the compute die is limited either by the area available to fit
in the link I/O cells or the amount of perimeter available for the links to escape the die periphery.
Therefore, the tool uses the area per link, the available area budget, wiring density and the die
perimeter budget to find the maximum number of links that can fit in the chip. Next, the tool uses
the standard voltage-frequency scaling methodology to find the operating point for each link such
that the total network-related power is within the power budget allocated. The network bandwidth
is then calculated by multiplying the total number of links and the operating frequency of each
link. We perform this step for the intra-node network and inter-node network separately.

5 COMPUTE GRAPH TRANSFORMATION AND DEVICE MAPPING

Given the ML model description (in the form of a compute graph) and the distributed system topol-
ogy (in the form of a system graph), we find an optimal mapping from vertices and edges in the com-
pute graph to hardware nodes and network links in the system graph. However, before mapping,
we transform the compute graph into a super-graph to reflect the parallelism strategies specified
as input.

5.1 Compute Graph Structure Transformation

Each parallelism strategy is a form of graph transformation where the sub-graph to be replaced
is a single node, so essentially all nodes would be replaced with the same replacement graph. For
example, to model data parallelism (with the ring-all-reduce implementation) we would need to
replace each node in the original graphwith a ring of lengthN (for anN -data parallel strategy). The
new edges on the ring will be marked as cross-edge to capture the fact that they connect compute
nodes hosted on separate devices. To capture a kernel parallelism strategy (e.g., RC-{KP1}-{KP2}),
we would need to replace each node in the compute graph with a 2-dimensional torus of KP1×KP2
dimension (assuming the reduction algorithm along each dimension is ring-all-reduce). Similarly,
new edges on the torus would be marked as cross-edge. To capture a pipeline parallelism, no
node transformation is required. The pipeline parallelism slices the original graph into multiple
sub-graphs, each hosted on a separate hardware node. Edges connecting sub-graphs would be
marked as cross-edge. Figure 5 shows the composition of multiple parallelism strategies applied
in sequence (pipeline, data and kernel parallelism, respectively).G0 is the original compute graph
and G4 is the final transformed graph.

5.2 Device Mapping and Routing Engine

Data parallelism, kernel parallelism and pipeline parallelismwould require that each parallel shard
to be hosted on a separate physical device. Hence, device mapping happens at the granularity of a
parallel shard. We want parallel shards that are close in the parallel space to be mapped onto nodes
that are close in the physical space to minimize communication. However, the transformed graph

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

30:12 N. Ardalani et al.

Fig. 5. An example of a compute graph transformation, device mapping and routing, and end-to-end time

estimation: (top) Cross-edges are shown in red. To preserve readability, we only show a subset of cross-edges

for kernel parallelism. Blue solid borderlines indicates separate hardware nodes. At every parallelization

stage, we use black hashed lines to show graph replication along that dimension. A replica is a graph with a

similar structure, however the kernel size and/or data size could be different for each replica. For simplicity,

the original graph is a simple 3-layer feed-forward neural network that is divided into two sub-graphs (P2).

Then for each pipeline stage, batch size is distributed across three workers (D3). Then for each data shard

of each pipeline stage, the kernels are distributed in a row-column fashion across a 4×2 torus (RC-K4-K2).

(middle) Mapping a 4-D hyper-cube into a 2-D mesh: a greedy layout mapped in the following order: ker-

nel(R), kernel(C), pipeline and data. The bolded black edge in G4 is mapped onto a 4-hop path in the system

graph. (bottom) backward pass time estimation.

usually has higher dimension than the system graph. Figure 5 shows such example, where the final
transformed graph (G4) is 4-D hypercube and the system graph is a 2-D torus. Therefore, it will not
be possible to map all adjacent nodes in the compute graph to adjacent nodes in the system graph.
We adopt a greedy approach to conduct such mappings: We start with a parallel dimension, map
all parallel shards along that dimension to adjacent nodes in the hardware. If the number of shards
along the parallel dimension is larger than the hardware dimension we are mapping onto, we
wrap-around to the next immediate dimension. We continue this process along other dimensions
in a specific order, until all nodes are mapped. The order at which we walk along the parallelism
dimensions results in differentmappings. For four different parallelism strategies, we explore (4!) =
24 possible orderings to pick the best mapping. Once node mapping is determined, we take a last
step to map edges to physical links. An edge that connects to adjacent node in the compute graph
may map to a multi-hop path as shown in Figure 5. As a result, one physical link would be shared
across multiple edges. The number of logical edges sharing a physical link is an important factor
for effective bandwidth estimation. We use X − Y routing to map edges in the compute graph to
paths in the system graph. Overall, the whole transformation step followed by device mapping is
necessary to find an accurate estimation of edge timing.

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

DeepFlow: A Cross-Stack Pathfinding Framework for Distributed AI Systems 30:13

6 PERFORMANCE PREDICTION ENGINE

Once the mapping is decided for each node and each edge in the transformed graph, perfor-
mance prediction engine estimates timing for each node and each edge. We then use a resource-
constrained scheduling algorithm to find the end-to-end timing.

6.1 Hierarchical Roofline

We use hierarchical roofline analyses [14] to predict the timing of each node in the trans-
formed compute graph. For each node, we estimate the operational intensity (OIL =

#flops/#memory accessesL) to each level in the memory hierarchy. We search over the space
of possible tiling strategies at each level of memory hierarchy and estimate the number of mem-
ory accesses to each level. We explain this in more detail next.

6.2 Memory Hierarchy Modeling

The number of accesses to each level of memory hierarchy is a function of the underlying hardware
(memory capacity at each level) and the algorithmic implementation (loop ordering and tiling
strategies).
For any given input configuration, we explore N L random tiling strategies which meet the mem-

ory capacity requirement at each level. N is the number of tiling strategies at each level and L is
the number of levels of memory hierarchy. Empirically, we found that for L = 3, N ≈ 20 results in
a reasonably accurate estimation.
For a given tiling strategy, it is easy to find the number of times each tile needs to be re-streamed

from the next level of memory hierarchy. We start from the lowest level (main memory) and walk
upward to estimate the number of accesses. The number of memory accesses at each level is dic-
tated by the tiling strategy at current level and the higher level. For the highest level, the number
of accesses is determined by the dataflow strategy exploited at MCU units.

6.3 DataFlow Model

The number of accesses to the highest level of memory hierarchy (i.e., register file) will be deter-
mined by the number of instructions executed in the execution engine and the dataflow strategy
governing mapping and communication between those engines (e.g., weight stationary, activation
stationary and output stationary [5, 15]). The execution engine structure dictates how many times
a piece of data could be reused internally before accessing the register file. We refer to this number
as reuse factor (K). In a 2-D systolic array with size Nx and Ny , and an input GEMM with sizeT 0x ,
T 0y andT 0z at L0, each data element could be reusedT 0x/Nx orT 0y/Ny orT 0z/Nz times, depend-
ing on which matrix is stationary. Given the reuse factor, we estimate the number of accesses to
register files as follows:

#ReдAccess = #Flops ×
Nx .Ny + K .Nx + K .Ny

2.K .Nx .Ny
(5)

6.4 Inter/Intra-Package Communication Modeling

As discussed in Section 5, compute graph to system graph mapping captures logical edge to phys-
ical link mapping. The effective bandwidth for each link is downrated by the number of logical
edges sharing the link.

6.5 End-to-End Time Estimation

We use an event-driven simulation to estimate end-to-end timing. Event-driven simulation is basi-
cally a resource-constrained critical path analysis. Since multiple compute nodes can map into the

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

30:14 N. Ardalani et al.

same hardware node, event-driven simulation is necessary to avoid resource conflicts and respect
resource scheduling constraints (e.g., not more than k kernels can run in parallel on each hardware
node).
We apply event-driven simulation at the original compute graph where the only parallelism to

account for is pipeline parallelism: data parallelism and kernel parallelism would essentially create
replicas of the original graph (where the kernel size and/or data size would be different for each
node). Given that all replicas by definition are hosted on separate hardware nodes, they can all start
and stop at the same time (assuming a homogeneous distribution of data along model replicas and
homogeneous distribution of sub-kernels across data replicas) and their timing is deterministic.
Hence, there is no need for event-driven simulation at the super-graph granularity.
Figure 5 explains an example of an end-to-end time estimation of a backward pass for a simple

3-layer feed-forward neural network, with 2-level pipeline parallelism (p2), 3-level data parallelism
(d3), and 8-level kernel parallelism (R4-C2).

7 DESIGN SPACE EXPLORATION ENGINE

Wedenote the set of hardware parameters to explore asW = {{Ai }H−10 , {Pi }H−10 , {Ri }H−10 }, whereH
is the number of micro-architectural components in the hardware accelerator node, andAi , Pi and
Ri capture the percentage of the overall area, power and perimeter allocated to each component,
respectively.
Our objective is to find the optimal W ∗ that minimizes the total run time, f (W), such that∑H−1
i=0 Ai ≤ 1,

∑H−1
i=0 Pi ≤ 1, and

∑H−1
i=0 Ri ≤ 1. The objective function f does not have a closed

form, but we can calculate it by querying the performance model (CrossFlow). This problem is
an example of a constrained black-box continuous optimization. Since the objective function eval-
uation (i.e., querying CrossFlow) is considerably cheap (milliseconds), we use a variation of pro-
jected gradient descent (GD) optimization to solve forW ∗ (see 6). Empirically, we found that GD
with exponential averaging in the parameter space (rather than gradients) works the best for our
problem.

Wt =Wt−1 − ηgt Ŵt =
Wt

| |Wt | |
Mt = βMt−1 + (1 − β)Ŵt

Wt = Project(Mt) onto CA,CP ,CR

(6)

WhereWt and gt are the input parameters and gradients at time step t , η is the learning rate
and β is the discounting factor. We repeat the update steps shown above until convergence or
the maximum number of steps (T), whichever conditions happen earlier. The final result is very
sensitive to initialization. We repeat the steps above from S different starting points and return
the best result. Empirically, we found thatT = 100 and S = 10 are sufficient to find a near optimal
solution.

8 VALIDATION

We validate our performance prediction model against execution time measured on real systems
(Nvidia P4 with 1 GPU and an NVIDIA DGX-1 systemwith 8 V100 GPU cards), running distributed
GEMM as well as large-scale language models. In particular, we study (2-layer LSTM) language
models (LM) for validation and case study as it is deemed to be one of the most challenging
applications to scale [16], and is very costly to train [17]. All applications are implemented in Ten-
sorFlow 2.0. We use CrossFlow to predict the runtime, which can take anywhere frommilliseconds
to 20 seconds.

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

DeepFlow: A Cross-Stack Pathfinding Framework for Distributed AI Systems 30:15

Fig. 6. GEMM Validation on P4. Fig. 7. GEMM Validation on DGX. Fig. 8. LM Validation on V100.

For GEMM validation, we look at a space of more than 2,000 GEMM kernels of different shapes
and parallelism strategies, where input (m), output (n) and inner dimensions (k) varying from 4K
to 32K in steps of 4K, and parallelized across 1, 2, 4, or 8 GPUs, using both Row-Column and
Column-Row distributed parallelism strategies. Note that we particularly focus on a variety of
GEMM implementations as most modern machine learning workloads (BERT, Transformers, as
well as CNNs) are primarily composed (often greater than 85%) of GEMM kernels, and their per-
formance is determined by the performance of GEMMs and inter-kernel communication. For LM
validation, we look into a space of 125 configurations, where Batch Size, Hidden Dimension and
Vocab Size varying from 2K to 6K in steps of 1K. We report the correlation (corr), and also the
mean relative error (err) to quantify the quality of our predictions.
Figure 6 shows the validation results on Nvidia P4 GPU card. On the X-axis, we show the mea-

sured time (in log-scale), and on the Y-axis, we show the predicted time (in log-scale). As shown,
predictions and measurements are highly correlated (0.996) and the error is small (8.9%). Figure 7
shows that CrossFlow predictions on a DGX-1 system across 1, 2, 4 and 8 V100 GPU cards are
well correlated (0.98–0.99) and have low error (6%–18%). Figure 8 shows the performance of LM
on V100 GPU card. Similarly, we can predict performance with high correlation (0.996), and low
error (16%). A constant pattern visible across all results is the performance prediction deviation
from measurement on real hardware for small kernels. This is expected as TensorFlow 2.0 time
measurement hooks include all the software stack latency; while this overhead is negligible for
large kernels, it accounts for a large portion of total run-time if the kernel is very small. Also con-
trol flow overheads in hardware architecture introduces additional latency, which leads to higher
overhead and error between our model and hardware performance for smaller kernels. Therefore,
the tool outcome would be more reliable for large kernels and large models. Further improvements
in accuracy would require careful modelling of control overheads (e.g., SM scheduler, L2 intercon-
nect control flow and memory coalescer, etc.). However, such data is often proprietary and hard
to model.

9 CASE STUDIES

DeepFlow is a pathfinding framework with studies and use cases spanning semiconductor tech-
nology development, micro-architecture, neural network models, and algorithmic parallelization
techniques. In this section, we give a few example case studies for a large-scale language model
(hidden dim: 16K, global batch size: 16K, vocab size: 800K, number of layers: 2, sequence length: 20)
distributed across 512 hardware nodes. For future technology exploration, we study seven consec-
utive logic technology nodes (from 12nm (N12) to 1nm (N1). Based on the recent scaling trends for
logic technologies [18, 19], we assume area and power scale by 1.8× and 1.3× from one node to the

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

30:16 N. Ardalani et al.

Fig. 9. Technology scaling: scaling logic, memory and network technology.

next for iso-performance), four differentmemory technologies (HBM2 (1 TB/s), HBM2e (2 TB/s),
HBM3 (projected 2.6 TB/s [20]), and HBM4 (projected 3.3 TB/s)) and three different network tech-
nologies (Infiniband-NDR-x8 (100 GB/s), XDR-x8 (200GB/s) and GDR-x8 (3.3 TB/s)). The caveat
to these results (as with any pathfinding study with DeepFlow) is that if the system architecture
or dataflow or neural network is radically different (e.g., this study assumes that same node is
homogeneously replicated within the package), the conclusions may change.

9.1 Impact of Technology Scaling

The first question we seek to answer is where the performance bottlenecks are across the stack and
which technology could provide the maximum end-to-end performance benefit? Semiconductor
technology development decisions are increasingly driven by machine learning as the workload.
Many of these decisions trigger large, multi-year investments. Figure 9 shows the impact of scaling
logic, memory, and network technology for a large-scale language model using data-parallelism.
For these experiments, we assume that power/node = 300W and area/chip = 850mm2.

Logic scaling improves compute throughput, and also caching capacity and bandwidth, but only
to a smaller extent. Going from N12 to N7, we observe a jump in performance irrespective of
memory technology. This is because at N12, the performance of a significant number of kernels are
L2 bandwidth bound. At N7, the L2 bandwidth and capacity improve enough for HBM bandwidth
to become the new bottleneck. Therefore, with improvement in HBM bandwidth, the balance can
shift back again to caches and saturation point can be further improved with logic scaling, hence
saturation point shifts further to the right. This trend continues up to N3. Beyond N3, even at
very high memory bandwidth (3.3 TB/s) and network bandwidth (400 GB/s) performance stays
unchanged as cache capacity and bandwidth are the main bottlenecks. Since the on-chip network
connecting MCUs to cache and the cache controller overhead scale along with number of cache
banks and the number of MCUs (which scale at ∼1.8× per technology node), the cache capacity
as well as bandwidth increase only marginally at N2 and N1. These trends are well inline with
commercial examples fromNVIDIA andAMD,where jump to N7 node provided large performance
benefits and then, multiple high-end SKUs of the GPUs with higher bandwidth HBM memories
have been released for further performance improvements.
Network technology scaling is another big factor that determines overall end-to-end

performance of a distributed deep learning system. As logic and memory technologies scale
alongside the size of the models, more inter-node bandwidth is needed to accelerate the inter-node

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

DeepFlow: A Cross-Stack Pathfinding Framework for Distributed AI Systems 30:17

Fig. 10. Co-optimizing parallelism strategy and hard-

ware architecture design.

Fig. 11. Performance improvement frommulti-

node package.

communication collectives. Our analysis (Figure 9) shows that beyond N3, scaling networking
technology will provide much larger performance gains as opposed to logic scaling. This trend also
aligns with the recent efforts in the industry to push high bandwidth and low energy networking
technologies and architectures for inter-node and intra-node communication, targeted towards
deep learning systems [21–23].

9.2 Co-Optimizing Technology, Parallelism Strategy and Hardware Architecture

Design

Figure 10 shows the importance of co-optimizing technology with parallelism and hardware de-
sign in an incremental fashion. As shown: (1) Parallelism strategy optimization alone can offer∼2×
performance improvement. (2) Co-optimizing architecture and parallelism strategy offers mean-
ingful benefits for mature technology (12nm and 7nm) nodes. But for more advanced technology
nodes, only marginal benefits (20%–30%) can be gained on top of parallelism strategy optimization.
(3) For current and near-future technology nodes, co-optimizing for model architecture can pro-
vide as much benefit as scaling technology nodes (by almost two generations).

Next, we evaluate the performance improvement that multi-node packaged systems (e.g., MCM-
GPU [24], waferscale-GPU [25], Tesla Dojo [26]) can provide in a distributed training setup (see
Figure 11). We assumed 2TB/s link bandwidth for the intra-package links and performed both
parallelism and architecture search for each case.
A couple of key takeaways from these experiments were: (1) Increasing the number of nodes

in a package improves overall performance by roughly 32% at best. (2) Beyond 4-nodes per pack-
age, performance improvement is marginal. Since ultra-large packages or waferscale integration
dramatically worsens cost, we believe that such technologies may not be worthy investments for
scaling large language model training. These conclusions hold across multiple different batch sizes,
hidden dimension sizes and intra-node link bandwidths.

10 RELATEDWORK AND DISCUSSION

Related work can be broadly categorized into (1) performance modeling frameworks for spatial ar-
chitectures like TimeLoop and Maestro, (2) performance modeling frameworks for parallelism ex-
ploration such as FlexFlow, and (3) algorithm search and analysis tools like DayDream and Habitat.
Similar to TimeLoop [5] and Maestro [6], we use an analytical model to estimate performance,

however, the scope of DeepFlow is much broader. TimeLoop and Maestro model a single kernel
runtime on the spatial architecture like systolic array or Eyeriss. Similarly, Mind Mapping [7] is
a gradient based search tool that finds the best tiling and mapping strategy for a single compute
unit and is built on top of TimeLoop. In this regard, all these prior work are similar to analytical

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

30:18 N. Ardalani et al.

models that goes into DeepFlow’s MCU modeling. However, DeepFlow offers more than MCU
modeling. DeepFlow allows to capture not only the behavior of an MCU unit but also an entire
GPU (through modeling of communication across MCU units through shared layers of memory
hierarchy) as well as modeling a data center full of GPUs. Besides, prior work validates against
simulators on micro-kernels. We validate our model against SOTA GPU hardware on real-world
applications. Furthermore, DeepFlow models an entire compute graph, composed of many kernels
mapped and distributed across multiple GPU nodes, and allows the analysis of parallelism at this
level, including pipeline, data and kernel parallelism. Moreover, DeepFlow provides four degrees
of freedom to explore: model architecture, hardware architecture, technology configuration and
parallelism strategy.
FlexFlow [8] is an ML-based model for exploring the best parallelism strategy which relies on

the runtime profiling tools to measure kernel timings on the target hardware. While it provides a
very rich input for expressing different model architectures, it can only model existing hardware,
hence it is not suitable for parallelism-architecture-technology co-design exploration.
DayDream [9] is a what-if analysis tool that enables researchers to evaluate the efficacy of differ-

ent algorithmic optimizations for an existing hardware. However, it relies on fine-grain profiling
tools to construct dependency graph, hence it lacks the ability to predict individual kernel run-
time on non-existing hardware and cannot be used for architecture or technology co-design space
exploration. Similarly, Habitat [10] predicts deep learning workloads’ run-time across different
existing GPUs, using a combination of wave scaling and MLP predictors. Wave scaling can only
model simple μ-architectural modification, and MLP predictors are μ-architecture specific models
that require collecting a large set of runtime data on the baseline and target hardware for model
training, hence they cannot be applied to non-existing hardware.
ASTRA-sim [11] is a simulator for hardware-software co-design of distributed deep learning

systems. The focus of the paper is on detailed modelling of the inter-node network and they study
the effects of network topologies and architecture choices. ASTRA-sim doesn’t explore automated
technology and architecture exploration and may not be suited for across the stack design space
exploration because of the detailed and heavy-weight focus on network effects.
Finally, we discuss how DeepFlow and/or CrossFlow can be used for future architecture re-

search. The framework developed here can be extended to model other Von-Neumann and non-
Von-Neumann architectures, since the performance model is based on roofline modeling. On the
hardware modeling side, new technologies and nodes can be modeled similar to the existing ones
for rapid design-space exploration. For better fidelity of certain aspects, different portions of the
framework could be extended to replace the existing modules. We believe that DeepFlow is a
foundational framework for early and rapid exploration of technologies across the stack for deep-
learning workloads.

11 CONCLUSION

We proposed DeepFlow, a performance modeling framework that enables a cross-stack analysis
for hardware-software-technology co-design at-scale. We envision DeepFlow to be used by ML

practitioners (to decide what hardware to use to maximize their utilization, or simply predict their
hypothetical model architecture performance which might not be realizable in today’s hardware
for many reasons including capacity limitation), by system designers (to decide what hardware ac-
celerators they need to acquire or build from scratch to meet their application needs, what new
technologies to invest in, etc.), and finally by technology experts (to guide future technology de-
velopment by assessing its impact all the way across the stack, at scale). Our future work plans to
extend DeepFlow modeling to other applications beyond language models and GEMM kernels.

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

DeepFlow: A Cross-Stack Pathfinding Framework for Distributed AI Systems 30:19

REFERENCES

[1] OpenAI. AI and Compute. ([n. d.]). https://openai.com/blog/ai-and-compute/

[2] Kunle Olukotun. 2020. Accelerating Software 2.0. ScaledML (2020).

[3] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2018. Beyond data and model parallelism for deep neural networks. arXiv

preprint arXiv:1807.05358 (2018).

[4] Amazon AWS Inferentia. (accessed Sep. 10, 2021). Achieve 12x Higher Throughput and Lowest Latency for Py-

Torch Natural Language Processing Applications out-of-the-Box on AWS Inferentia. https://tinyurl.com/3mbuetmr

(accessed Sep. 10, 2021).

[5] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, Victor A. Ying, Anurag Mukkara, Rang-

harajan Venkatesan, Brucek Khailany, Stephen W. Keckler, and Joel Emer. 2019. Timeloop: A systematic approach to

DNN accelerator evaluation. In 2019 IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS). 304–315. DOI:http://dx.doi.org/10.1109/ISPASS.2019.00042
[6] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna, Michael Pellauer, and Angshuman Parashar. 2020.

MAESTRO: A data-centric approach to understand reuse, performance, and hardware cost of DNN mappings. IEEE

Micro 40, 3 (2020), 20–29. DOI:http://dx.doi.org/10.1109/MM.2020.2985963

[7] KartikHegde, Po-AnTsai, SitaoHuang, Vikas Chandra, Angshuman Parashar, andChristopherW. Fletcher. 2021.Mind

mappings: Enabling efficient algorithm-acceleratormapping space search. In Proceedings of the 26th ACM International

Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2021). Association

for Computing Machinery, New York, NY, USA, 943–958. DOI:http://dx.doi.org/10.1145/3445814.3446762
[8] Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, and Xiaowei Li. 2017. FlexFlow: A flexible dataflow ac-

celerator architecture for convolutional neural networks. In 2017 IEEE International Symposium on High Performance

Computer Architecture (HPCA). 553–564. DOI:http://dx.doi.org/10.1109/HPCA.2017.29
[9] Hongyu Zhu, Amar Phanishayee, and Gennady Pekhimenko. 2020. Daydream: Accurately estimating the efficacy of

optimizations for {DNN} training. In 2020 USENIX Annual Technical Conference (USENIX ATC 20). 337–352.

[10] X. Yu Geoffrey, Yubo Gao, Pavel Golikov, and Gennady Pekhimenko. 2021. Habitat: A {Runtime-Based} computational

performance predictor for deep neural network training. In 2021 USENIX Annual Technical Conference (USENIX ATC

21). 503–521.

[11] Saeed Rashidi, Srinivas Sridharan, Sudarshan Srinivasan, and Tushar Krishna. 2020. ASTRA-SIM: Enabling SW/HW

co-design exploration for distributed DL training platforms. In 2020 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS). 81–92. DOI:http://dx.doi.org/10.1109/ISPASS48437.2020.00018
[12] William Won, Taekyung Heo, Saeed Rashidi, Srinivas Sridharan, Sudarshan Srinivasan, and Tushar Krishna. 2023.

ASTRA-sim2.0: ModelingHierarchical Networks andDisaggregated Systems for Large-model Training at Scale. (2023).

arXiv:cs.DC/2303.14006

[13] Saptadeep Pal and Puneet Gupta. 2020. Pathfinding for 2.5D interconnect technologies. In System-Level Interconnect -

Problems and Pathfinding Workshop (SLIP ’20). ACM, New York, NY, USA, 8.

[14] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An insightful visual performance model

for multicore architectures. Commun. ACM 52, 4 (April 2009), 65–76. DOI:http://dx.doi.org/10.1145/1498765.1498785
[15] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2017. Eyeriss: An energy-efficient reconfigurable

accelerator for deep convolutional neural networks. IEEE Journal of Solid-State Circuits 52, 1 (2017), 127–138. DOI:
http://dx.doi.org/10.1109/JSSC.2016.2616357

[16] Joel Hestness, Newsha Ardalani, and Gregory Diamos. 2019. Beyond human-level accuracy: Computational challenges

in deep learning. In Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming. 1–14.

[17] Deep Learning’s Diminishing Returns. ([n. d.]). https://spectrum.ieee.org/deep-learning-computational-cost Ac-

cessed: 2021-10-15.

[18] Aaron Stillmaker and Bevan Baas. 2017. Scaling equations for the accurate prediction of CMOS device performance

from 180nm to 7nm. Integration 58 (2017), 74–81. DOI:http://dx.doi.org/10.1016/j.vlsi.2017.02.002
[19] Wikichip: Technology Node. ([n. d.]). https://en.wikichip.org/wiki/\technology_node Accessed: 2021-10-15.

[20] HBM3: Big Impact on Chip Design. ([n. d.]). https://semiengineering.com/hbm3s-impact-on-chip-design/ Accessed:

2021-10-15.

[21] Leon Poutievski, OmidMashayekhi, Joon Ong, Arjun Singh, Mukarram Tariq, RuiWang, Jianan Zhang, Virginia Beau-

regard, Patrick Conner, Steve Gribble, Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu, Karthik Nagaraj, Jason

Ornstein, Samir Sawhney, Ryohei Urata, Lorenzo Vicisano, Kevin Yasumura, Shidong Zhang, Junlan Zhou, and Amin

Vahdat. 2022. Jupiter evolving: Transforming Google’s datacenter network via optical circuit switches and software-

defined networking. In Proceedings of the ACM SIGCOMM 2022 Conference (SIGCOMM ’22). Association for Computing

Machinery, New York, NY, USA, 66–85. DOI:http://dx.doi.org/10.1145/3544216.3544265

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

https://openai.com/blog/ai-and-compute/
https://tinyurl.com/3mbuetmr
http://dx.doi.org/10.1109/ISPASS.2019.00042
http://dx.doi.org/10.1109/MM.2020.2985963
http://dx.doi.org/10.1145/3445814.3446762
http://dx.doi.org/10.1109/HPCA.2017.29
http://dx.doi.org/10.1109/ISPASS48437.2020.00018
http://arxiv.org/abs/cs.DC/2303.14006
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1109/JSSC.2016.2616357
https://spectrum.ieee.org/deep-learning-computational-cost
http://dx.doi.org/10.1016/j.vlsi.2017.02.002
https://en.wikichip.org/wiki/\technology_node
https://semiengineering.com/hbm3s-impact-on-chip-design/
http://dx.doi.org/10.1145/3544216.3544265

30:20 N. Ardalani et al.

[22] Ryohei Urata, Hong Liu, Kevin Yasumura, Erji Mao, Jill Berger, Xiang Zhou, Cedric Lam, Roy Bannon, Darren Hutchin-

son, Daniel Nelson, Leon Poutievski, Arjun Singh, Joon Ong, and Amin Vahdat. 2022. Mission Apollo: Landing Optical

Circuit Switching at Datacenter Scale. (2022). DOI:http://dx.doi.org/10.48550/ARXIV.2208.10041
[23] NVIDIA. 2022. NVLink and NVSwitch. https://www.nvidia.com/en-us/data-center/nvlink/ (2022).

[24] Akhil Arunkumar, Evgeny Bolotin, Benjamin Cho, Ugljesa Milic, Eiman Ebrahimi, Oreste Villa, Aamer Jaleel, Carole-

Jean Wu, and David Nellans. 2017. MCM-GPU: Multi-chip-module GPUs for continued performance scalability. In

2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA). 320–332. DOI:http://dx.doi.
org/10.1145/3079856.3080231

[25] Saptadeep Pal, Daniel Petrisko, Matthew Tomei, Puneet Gupta, Subramanian S. Iyer, and Rakesh Kumar. 2019. Archi-

tecting waferscale processors - a GPU case study. In 2019 IEEE International Symposium on High Performance Computer

Architecture (HPCA). 250–263. DOI:http://dx.doi.org/10.1109/HPCA.2019.00042
[26] Tesla Dojo. ([n. d.]). https://www.nextplatform.com/2022/08/23/inside-teslas-innovative-and-homegrown-dojo-ai-

supercomputer/ Accessed: 2022-10-15.

Received 27 June 2023; revised 29 October 2023; accepted 4 November 2023

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 2, Article 30. Pub. date: February 2024.

http://dx.doi.org/10.48550/ARXIV.2208.10041
https://www.nvidia.com/en-us/data-center/nvlink/
http://dx.doi.org/10.1145/3079856.3080231
http://dx.doi.org/10.1109/HPCA.2019.00042
https://www.nextplatform.com/2022/08/23/inside-teslas-innovative-and-homegrown-dojo-ai-supercomputer/

