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Abstract—Task offloading with Mobile-Edge Comput-
ing (MEC) is envisioned as a promising technique to prolong
battery lifetime and enhance the computational capacity of
mobile devices. In this paper, we consider a multi-user MEC
system with a Base Station (BS) equipped with a computation
server that assists users in executing computation-intensive tasks
via offloading. Exploiting approximate computing in MEC, we
can trade the output accuracy over a subset of offloading data
instead of the entire dataset. We formulate the Energy-Latency-
aware Task Offloading and Approximate Computing (ETORS)
problem, aiming to optimize the trade-off between energy
consumption and latency. Due to the mixed-integer nature of
this problem, we employ the Dual-Decomposition Method (DDM)
to decompose the original problem into three subproblems—
namely the Task-Offloading Decision (TOD), the CPU Frequency
Scaling (CFS), and the Quality of Computation Control (QoCC).
Our approach consists of two iterative layers: in the outer layer,
we adopt the duality technique to find the optimal value of
the Lagrangian multiplier associated with the primal problem;
and in the inner layer, we formulate the subproblems that
can be solved efficiently using convex optimization techniques.
Simulation results coupled with real-time experiments on a
small-scale MEC testbed show the effectiveness of our proposed
resource allocation scheme and its advantages over existing
approaches.

Index Terms—Mobile Edge Computing; Resource Allocation;
Testbed; Computer-vision applications; Convex Optimizations.

I. INTRODUCTION
A. Motivation

In the past decade, there has been a significant surge in
the adoption of mobile devices, including mobile phones,
tablets, and wearable devices. These devices, characterized
by their compact sizes, have experienced substantial growth
worldwide. However, their computational capabilities and bat-
tery capacities are inherently limited, which poses challenges
in effectively handling computationally demanding tasks [2].
Applications that involve complex functionalities, such as
Virtual Reality (VR), Augmented Reality (AR), and object
tracking and recognition, require greater computing power,
memory, and battery longevity on mobile devices [3]. At the
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same time, with the development of wireless communication
technologies such as Wi-Fi and Beyond 5G (B5G), Mobile
Edge Computing (MEC) has been proposed as a promising
framework design to tackle such challenges. Specifically, MEC
servers are installed directly at the Base Stations (BSs) or
at the local wireless Access Points (APs) and managed by
the mobile network operator. Hence, MEC provides a cloud
computing store for the resource-limited end devices to offload
their computation tasks to the BSs/APs, where the offloaded
tasks can be executed efficiently. This substantially helps
reduce the task completion delay and releases the burden
on the backhaul networks [4]. The MEC can improve the
performance of mobile devices by: (i) selectively offloading
tasks of an application (e.g., object/gesture recognition, im-
age/video editing, and natural language processing [5]) onto
the cloud, and (ii) carefully scheduling local task executions
on the mobile devices with the anticipation of remote task
executions in the cloud while taking into account the task-
precedence requirements.

Enabling task offloading technology at MEC significantly
improves the performance of mobile devices, as the edge
servers in MEC are equipped with much higher computation
resources compared to end users’ devices. In general, the
component responsible for making the task offloading decision
at each mobile device is called the fask scheduler. To achieve
the optimal decision, the task scheduler should consider the
service latency and the transmit power consumption demanded
to establish uplink wireless connections between the end users
and the edge servers. Besides, in a complex application with
multiple tasks, the reduction of computation workload at the
edge server has a significant impact on the task execution
latency [6]. For instance, real-time gaming applications have
a preferred response time between 45 to 75 ms latency to
enjoy a higher Quality of Experience (QoE) [7]. This might
be achieved by trading off between game’s graphical quality
and performance.

In general, in some scenarios, processing the arrived data
at MEC servers would require more than the accessible
computing resources to satisfy the preferred metrics (e.g.,
latency and throughput). For instance, the traditional pro-
cessing and analysis of a massive amount of data—collected
from IoT devices and transmitted an MEC server—would be
prohibitively expensive for handling real-time stream analytics.
Moreover, the distributed MEC servers usually are restricted
by computing capacity and service latency. Therefore, deploy-
ing approximate computing, in which the collected raw data at
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MEC servers is processed over a representative sample instead
of the entire dataset, to meet the MEC constraints would
be an efficient method. For example, applying approximate
computing to machine learning-based applications such as
object detection has emerged as an effective approach to min-
imize hardware complexity, service latency, and computation
energy [8], [9].

B. Our Vision

One of the key challenges is how to fulfill an energy-
latency computation offloading policy. To achieve the potential
benefits of MEC in terms of service latency and energy
saving for end users, the following key aspects need to be
considered: (i) end-user computation task type, (i.e., which
computation tasks of a users’ application require offloading
to the MEC server?) (ii) computing capacity (i.e., how much
CPU resources should be assigned to each computation task in
end-user devices?) and (iii) energy-latency system awareness
(i.e., how much processing, transmitting, and management can
be saved through approximate computing, with an acceptable
loss in accuracy?) In this paper, we seek to answer the
above-mentioned questions by studying the Energy-Latency-
aware Task Offloading and Approximate Computing (ETORS)
problem.

Generally, there are two main types of offloading schemes in
the MEC systems: binary and partial offloading [10]. In binary
offloading, each computation task is either computed locally
or offloaded remotely to the MEC server. On the other side,
in partial offloading, each computation task can be partially
executed both locally and remotely at the MEC servers. In
this article, we consider binary computational offloading since
it is widely adopted in real-time low-latency B5G applica-
tions [11]. However, in both of these offloading schemes, the
computational cost and latency constraints present additional
challenges when designing task offloading algorithms in MEC
systems. Furthermore, there is a limited understanding of the
relationship among approximate computing, computing la-
tency, and energy consumption. Such understanding is crucial
for designing cost-efficient computation offloading in MEC
networks—indeed the target of this article.

Hence, in this context, the approximate computing tech-
nique could be leveraged to maximize the utilization of
the available computing resources at the MEC servers by
balancing the trade-off between result accuracy and overall
performance. Specifically, our aim is to optimize the trade-
off between the total energy consumption in a mobile device
for executing an application, which can be improved by em-
ploying the Dynamic Voltage and Frequency Scaling (DVFS)
technique [12], and the application completion time resulting
from uploading and downloading data to and from the cloud.
We design a task-offloading assignment and approximate-
computing framework and implement a MEC testbed to
demonstrate our vision for an energy-latency offloading and
approximate computing scheme. Specifically, We implemented
a programmable 5G testbed that consists of a local server
acting as a user and an MEC server functioning as an edge
cloud server to create a practical environment for modeling the

ETORS problem. Specifically, we generated a real-time Traf-
fic Lane Detection (TLD) application, which involves video
streaming and computer vision computation tasks. We then
executed several real-time experiments under various scenarios
to analyze and evaluate aspects such as data framework size,
storage utilization, network latency, and the impact of different
quality computation levels.

C. Contributions

This article is an extended version of our earlier work in [1].
Our article presents a substantial enhancement through the im-
plementation of a practical 5G testbed, effectively overcoming
the sophisticated system implementation challenges outlined
in [1]. The comprehensive analysis presented in this article,
Specifically in Sect. V, not only reaffirms the findings from
the short version but also provides novel perspectives on the
setups of real-time performance evaluation and the nuanced
exploration of approximate computing. With a detailed exam-
ination of functional splitting, data input profiling, memory
utilization, and average processing, this work significantly
augments the scope and depth of understanding presented
in [1], thus contributing to the evolving landscape of 5G
network research. The main objective of this paper is to
design the ETORS algorithm, optimizing the trade-off between
energy consumption and application completion time. The
main contributions of this paper can be summarized as follows:

o Taking into account task dependencies and completion
processing time, we formulate the offloading utility of
each user by considering the weighted sum of energy
consumption and computation latency in both local and
remote computing schemes.

o We formulate the ETORS problem as a Mixed-Integer
Programming (MIP) problem, which aims to jointly opti-
mize the task offloading decisions, local CPU frequency,
and approximate computing accuracy. The objective is to
minimize the system offloading utility while considering
the trade-off between these variables.

o« To solve the optimization problem, we propose
a distributed ETORS algorithm consisting of
three subproblems—namely the Task Offloading

Decision (TOD), CPU Frequency Scaling (CFS),
and Quality of Computation Control (QoCC). The
ETORS algorithm effectively addresses the optimization
challenge by tackling these subproblems in a coordinated
manner. More importantly, we have identified that CPU
CFS is primarily dependent on several factors, including
the computing workload, latency, CPU frequency, and
transmission power of the user device. These factors
play a crucial role in determining the optimal CPU
frequency scaling strategy within the context of the
ETORS algorithm.

o We implement our MEC network with a local server that
can be Commercial Off-The-Shelf (COTS) user equip-
ment, such as a mobile phone, while the MEC server
acts as an edge cloud server and has the computing
capacity to perform the ETORS algorithm. Since we
assume the radio link between the end user and the
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MEC is a 5G connection, we have implemented the 5G
programmable testbed. Our testbed can be deployed in
the MEC server and is “programmable” since all the
PHY and MAC layers are generated by virtual software
using OpenAirInterface (OAI) [13], Docker, and USRP
Software Defined Radio (SDR) boards.

o Using the real-time Traffic Lane Detection (TLD) ap-
plication, which involves video streaming and computer
vision computation tasks, we conducted several real-time
experiments under various scenarios. These experiments
allowed us to analyze and evaluate aspects such as data
framework size, storage utilization, network latency, and
the impact of different quality of computation levels.

o We conducted numerical simulations to evaluate the per-
formance of the proposed distributed ETORS algorithm.
In comparison to existing baseline methods, the ETORS
method effectively minimizes system cost-utility. This
cost-utility is defined by the trade-off between energy
consumption and network latency.

The remainder of this article is organized as follows. We
present the related previous works in Sect. II. In Sect. III, we
introduce the system model; the ETORS problem is formulated
in Sect. IV, followed by the decomposition of the problem
itself; in Sect. V, we present the experiment results as well
as numerical simulation; finally, we conclude the article in
Sect. VL.

II. RELATED WORK

Cloud-based wireless networks have garnered significant in-
terest in academia and industry in recent years. As an example,
in 2013, Nokia introduced the first real-time MEC frame-
work [14]—a notable development that has further emphasized
the growing importance of cloud-based wireless networks.
Recently, CloudLab [15] was introduced as a cloud-based
research infrastructure that provides a platform for conducting
large-scale experiments in the field of computer science and
networking.

The cloud framework, as well as the radio sections, were
fully realized with the Flexi Multiradio BS. In recent times,
AT&T MEC has introduced MEC to bring cloud computing
capabilities to end-users [16]. The integration of AT&T MEC
offers various potential benefits, including low latency, im-
proved connectivity and coverage, and enhanced data security.

Meanwhile, several academic efforts have been directed
towards MEC architectures and their applications, such as
single-user single MEC server [17] and multi-user single-
MEC server [18]. Simultaneously, the problem of computation
task offloading has emerged as a common topic and has
been extensively investigated in the field of cloud computing.
In recent years, researchers have made significant efforts to
develop full and/or binary computation offloading schemes
aimed at minimizing execution costs in cloud computing.
For instance, in a study conducted by Chen et al. [19], an
online Task Offloading and Frequency Scaling for Energy
Efficiency (TOFFEE) approach was introduced. The TOFFEE
framework aimed to minimize energy consumption while
ensuring a bounded queue length for applications. In the work

in [20], the objective was to minimize execution delay using
a one-dimensional search algorithm. This algorithm aimed
to find an optimal offloading decision policy based on the
application buffer queuing state and the characteristics of the
channel between the user and the MEC server. In the work
by Wei et al. [21], the authors formulated the optimization
problem for task offloading in edge servers, focusing on
saving energy on mobile devices. They specifically addressed
divisible tasks and employed a greedy approach to tackle the
problem.

In [22], the authors proposed a low-complexity Lya-
punov Optimization based Dynamic Computation Offload-
ing (LODCO) algorithm, which aimed to reduce the latency
for offloaded applications. The problem of computation of-
floading decisions that minimize energy consumption at the
user while satisfying the application’s execution delay has been
addressed in prior works [23], [24]. The optimization problem
in [23] was formulated as a Constrained Markov Decision
Process (CMDP). On the other hand, in [24], the decision on
computation offloading was made periodically in each time
slot. During this process, all users were divided into two
groups: the first group was permitted to offload computation
to the MEC server, while the second group had to perform
computation locally due to the unavailability of computation
resources at the MEC server.

Furthermore, in terms of MEC and IoTs, the work in [25]
introduced an efficient and secure multi-user multi-task com-
putation offloading model to minimize the weighted sum of en-
ergy consumption for mobile IoT devices. The authors in [26]
presented an innovative framework that utilizes blockchain
technology to ensure secure task offloading in MEC systems.
The proposed framework guarantees performance in terms
of execution delay and energy consumption. By introduc-
ing blockchain technology as a platform, the authors aim
to achieve data confidentiality, integrity, authentication, and
privacy for task offloading in the MEC environment. Besides,
in [27], the authors offered a novel approach to offload-
ing decisions by combining parallel Deep Neural Networks
(DNNs) with Q-learning. This integration allows for fine-
grained decision-making based on the deep learning models’
perception, reinforcement learning’s decision-making capabil-
ities, and meta-learning’s ability to quickly adapt to changing
environments. As a result, the algorithm enables the rapid and
flexible identification of the most optimal offloading strategy
in dynamic settings. The objective of the study in [28] was to
tackle the issue of dynamic slice scaling and task offloading in
a multi-tenant edge computing system, focusing on the profit
aspect for service providers. The proposed approach involved
a Deep Q-learning-based network slicing framework, which
enables the dynamic reconfiguration of radio and computing
resources allocated to a specific slice reserved for a target
service provider.

On the other hand, several existing works [29]-[31] have
investigated the trade-off between energy consumption and
execution delay for users offloading their applications to
the cloud. In [32], the authors proposed an energy-efficient
offloading-decision algorithm based on Lyapunov optimiza-
tion. This algorithm aimed to solve the task offloading as-
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Fig. 1. (a) Ilustration of MEC system with multiple mobile devices; (b) A
directed acyclic task graph of a task graph.
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signment problem, wherein the application’s tasks would be
executed either locally or remotely based on the available
wireless network resources. The authors in [30] considered the
computation offloading decision in a multi-user multi-channel
environment, taking into account the weighting parameter. The
authors in [31] formulated the trade-off between energy saving
and computing performance problem as as a non-convex
Quadratically Constrained Quadratic Program (QCQP). Subse-
quently, they proposed an efficient three-step algorithm, which
consisted of semidefinite relaxation, alternating optimization,
and sequential tuning.

In terms of machine learning and task offloading, several
recent works have demonstrated significant potential in ad-
dressing task offloading in MEC systems. The authors in [33]
introduced an optimal computation offloading policy for MEC
in an ultradense system. The proposed policy was based on a
Deep Q-network (DQN) and did not require prior knowledge
of dynamic statistics. The work presented in in [34] proposed
a deep reinforcement learning approach that leveraged a
DNN technique to train and improve task offloading schemes
based on experimental outcomes. This approach effectively
addressed the challenge of dealing with high complexity in
optimization problem analyses, as it eliminated the need for
intricate optimization procedures. However, these previous
works make the assumption of non-adjustable processing
capabilities of the CPUs in mobile devices. This assumption
is not energy-efficient, as it disregards the fact that CPU
energy consumption increases super-linearly with the CPU-
cycle frequency [35]. By overlooking the potential energy-
saving benefits of adjusting the CPU-cycle frequency, these
works may not fully optimize the energy consumption aspect
of task offloading strategies. Furthermore, the previous works
on energy and time-aware mobile cloud offloading did not
propose dynamic offloading algorithms that take into account
resource scheduling and approximate computing in the context
of real-time applications. The lack of such dynamic offloading
algorithms limits the ability to effectively optimize resource
allocation and leverage approximate computing techniques to
meet the requirements of real-time applications. To address
this gap, this paper proposes a novel approach that incorporates
dynamic offloading, resource scheduling, and approximate
computing to optimize the energy and time efficiency of
mobile cloud offloading for real-time application scenarios.

TABLE I
SUMMARY OF KEY NOTATIONS.

Symbol  Description

N set of mobile users

K set of computational tasks

Tik achievable offloading rate for task k of user ¢

Bk bandwidth available for user 7 of offloading task k

Dik transmission power for user 3 of offloading task &

hik channel power gain from user ¢ transmitting task k to the BS
dik data input size for task k of user 4

Cik computing workload required for completing task k of user 4
fik CPU-clock frequency of mobile user 4 on task k

Tl.l,C local execution time for task k of mobile user ¢

Ef k local energy consumption for task k of user ¢

Tfk’” transmission time of user 4 offloading task k

Ef,’gtr transmitted energy for user i of offloading task k

T:;°"®  computation execution time of task k of user i on the MEC serve
CTilm completion time of local execution of task m of user ¢

CT itm wireless task transmission time from user ¢ to the MEC serve
cTy, MEC server execution time of task m of user ¢

Ty wireless reception time of task m from the MEC server to user ¢
RTilk locally completed execution time for task k of user ¢

0% computation time weight for user ¢ of task k

0% energy weight for user ¢ of task k

III. SYSTEM MODEL

In this section, we first describe the network setting, com-
munication scheme, and scheduling model; then, we present
the task-precedence requirements in the MEC network. Table I
summarizes the key notations used in this article.

A. Network Description

We consider a general MEC network consisting of one
BS/AP equipped with a MEC server, which provides computa-
tion offloading services to a set of N' = {1,2, ..., N} resource-
constrained mobile users. Each user has a computation-
intensive application that needs to be executed. We assume
that the end-user application can be divided into a set of K
computation tasks, denoted by K = {1,2,..., K}. Further-
more, each computation task can be carried out either on the
end-user device or offloaded to the MEC server, as illustrated
in Fig. 1(a). In addition, we utilize a directed acyclic graph
G(V, E) to depict the relationship among computation tasks
within an application. Each node ¢ € V in G represents a
task and a directed edge e(i,j) € E indicates the precedence
constraint such that task (node) ¢ should complete its execution
before the task (node) j starts execution. There are a total
number of K tasks (nodes) in the task graph (application).
Typically, K is smaller than 100, e.g., in computer-vision
applications, K often falls within the range of 10 ~ 30 [36]. In
our assumption, we classify tasks into two different categories:
(1) approximable, tasks that can be approximated to achieve
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significant savings in energy and/or execution time. However,
this approximation may result in a potential loss of accuracy
in the final outcome; and (ii) non-approximable, tasks require
exact execution without any form of approximation for the
application to succeed. In other words, if any approximation
technique were applied to these tasks, the application would
not produce meaningful results.

We refer interested readers to our recent work [6], which
introduces a lightweight online algorithm that selects between
these tasks to enable real-time distributed applications on
resource-limited devices. The random Layer-by-Layer rela-
tions among 10 computation tasks of an application are
depicted in Fig. 1(b). In this illustration, tasks 2, 4, and 6
are the immediate predecessors of task 8, while task 10 is the
successor/descendant of task 8.

B. Wireless Link Model

We consider that each user can establish a cellular link
with the BS. Moreover, we assume that the locations of users
remain unchanged and that wireless channels are invariant dur-
ing each decision-making procedure. We denote a;;, € {0,1}
to represent the offloading indicator of task %k of end-user <.
Thus, a;; = 1 indicates that user ¢ decides to upload the
computation of task k to the MEC server via wireless network
channel, while a;; = 0 denotes that user 7 chooses to execute
task k& on its local device. The achievable offloading rate
ri,[bps] for task k of user 7 is given by,

rie = Bi log, <1 + p““h““) VieNkek, (1)
Yo?

where B;; and p;; denote the transmission bandwidth and
power of user ¢ offloading task k to the BS, respectively, h;x
indicates the effective channel power gain from user ¢ to the
BS when transmitting task k, o2 is the noise power at the
receiver of the BS, and ¥ > 1 is a constant accounting for
the gap from channel capacity due to a practical coding and
modulation scheme. For simplicity, we assume T = 1.

C. Computation Model

We denote d;; as the size of input data (including system
configurations, program codes, and profiling parameters) of
user ¢ with task k, while the c¢;; represents the workload, i.e.,
the amount of CPU computation demanded for performing the
task.

1) Local Computing: We denote f;;, as the CPU-clock
frequency of mobile user ¢ on task k. In addition, we assume
that user devices have several computation capacities, where
each task of mobile users requires a different CPU-clock
frequency to be executed. The local execution time of task &
of mobile user ¢ can be expressed as,

Th = cir/ fin, Vi € Nk € K, )

3

while the related local computing energy can be determined
by,
El = ecafi,Vie NkeK, 3)

where ¢€; is the energy coefficient depending on the chip
architecture. From (3), we conclude that the local computing

energy significantly increases as CPU frequency increases.
Therefore, applying the optimization to the DVFS technique,
in which the CPU core is enabled to perform at several
frequency values, can efficiently reduce the overall computing
cost.

2) Approximate Computing: We denote q;;, as the approx-
imate computing level assigned to task k of user ¢. In our
proposed framework, we allow each user ¢ to select different
q;x values to exploit the trade-off between processing cost and
latency. We consider g7, and y;; as the highest achievable
accuracy and the actual accuracy, respectively, that can be
attained through exact and approximate computing for task
k of user i.

Then, g = 1 — _ € [0,1], where ¢;x = 0 when
the the result from task 7 is fully approximated, whereas
q¢;rx = 1 when the result from task ¢ is exactly processed.
In practice, the set of measuring metric ¢;; for an application
is calculated for each application domain. For instance, let
task k of mobile user ¢ be a part of an object recognition
application with identifying exact accuracy being 98% (i.e. on
average only 1 object is falsely identified out of the 50 objects
by the exact algorithm). With approximate computing, if the
accuracy is 90% (i.e., on average 45 out of the 50 objects
are correctly identified), then g;;, is measured by normalized
accuracy as 90%/98% = 0.9184.

3) Cloud Computing: In case user i offloads its task k to the
MEC server, the execution process of task k in the MEC server
comprises three sequential time periods: (i) transmitting time
to transmit the configuration and input workload of task k to
the MEC server via uplink cellular channel, (ii) task execution
time in the MEC server, and (iii) receiving time to return the
processing workload from the MEC server to end-users via
downlink cellular channel. We can compute the transmission
time of user ¢ offloading task k by,

TS = (qindik) /it €]

while the related cloud computing energy can be calculated
by,

*
Yir —Yik
Iy —

EG" = pu Ty (5)

3

Moreover, we can model the computation execution delay of
task k£ of user ¢ on the MEC server as linearly increasing
function of ¢;i, expressed as,

T3 = (cinp(qir)) / fe, (6)

where ¢(g;x) is defined in detail in Theorem 1 and Sect. V-A.
fe denotes the CPU-clock frequency assigned on the MEC
server. In this work, f. is assumed to be given and static
throughout the execution cycle. In practice, the MEC servers
can exchange multiple key parameters, such as CPU clock
frequency of the servers and network settings, by Request-To-
Send (RTS)/Clear-To-Send (CTS) packages [37].

D. Task-Precedence Requirements in MEC
We use CT} , CT: , CT¢,, CT!, , ¥Ym € prd(k), where

m? m? m? m?

prd(k) represents the sequence of immediate predecessors
of task k, to denote the local completion time, the task
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transmission time from user’s device to the MEC server via
the wireless channel, the task execution time in the MEC
server, and the reception time of the executed result of task m
from the MEC server to end-user ¢ via the wireless channel,
respectively. If the task m of user ¢ is scheduled locally, we
set CTY, = CT¢, = CT}, = 0; otherwise, if the task m of
user i is offloaded onto the MEC server, we set CT}, = 0.
Before we schedule a task k, all its immediate predecessors
must have already been scheduled.

1) Local Scheduling: Suppose that task k is to be scheduled
locally. Then the ready time, earliest time when all immediate
predecessors of the task have completed execution, of task &
can be calculated as,

RT}, = maxmax{CT},,,CT; },Vi € Nym € prd(k). (7)

From (7), it can be noted that if an immediate precedent task m
of task k is locally performed, then max{CT}, ,CTr } =
CT!,,. In this case we have RT}, > CT!,, which means
that task & will begin local performance only after the lo-
cal processing of task m has finished. Otherwise, task m
can be executed remotely onto the MEC server and, then
max{CT},,,CTr } = CT;. . In this case, we have RT}; >
CT},,, which means that task £ can begin local performance
only after the output result of task m completely transmitted
to user ¢ via the downlink wireless channel. Therefore, RT}k
can be reformulated as,

RT!, > (1 — aim)CT},, + aimCT,

m?

VYm € prd(k). (8)

Since the size of the output is generally much smaller than
the input, and the downlink data rate is much higher than
that of the uplink, we omit the time and energy consumption
for transferring the output in our computation, as also done
in [38], [39]. Accordingly, (8) can be rewritten as,

RT). > (1 — a;n)CT),, + aimCTE,,,¥Ym € prd(k),

m?

€))

From (9), it can be observed that if not accounting for the data
receiving time of task m, task k can begin performance only
after task m has finished its process. The local completion
time to carry out task k on user device ¢ can be modeled as
the sum of the local computation time and the ready time in
local processing as,

CT}, = T}, + RT},. (10)

2) Cloud Scheduling: If task k is offloaded to the MEC
server, the ready time of task k of user ¢ on the server can be
calculated as similar to Sect. III-D1, which can be modeled
as,

RTf, = max{CT},, max CTE, },Vi € N,m € prd(k),
m

1D
where max,, C'T},, is the required time for all immediate
predecessors of task k offloaded to the MEC server to be
completely executed remotely.

Besides, it can be noted that the MEC server can begin
performing task k only after the task has been completely
uploaded remotely or all the immediate predecessors of task m
have been completely performed on the server, i.e., RTS >
CT}., RTS, > max,, CTY,,. Basically, in case of disregarding

m

the receiving time of data output of task k, the completion
time of task k of user 7 in the MEC server can be formulated
as the sum of the execution time of task %k of user ¢ and its
ready time on the server, i.e.,

CT, = T4 + RTj. (12)

IV. PROBLEM FORMULATION

We present here the completed details about the ETORS
problem (P1), which is cast as a Mixed-Integer Program-
ming (MIP) problem to optimize the trade-off between energy
consumption and the task completion delay while offload-
ing tasks in the MEC server. Due to the intractability of
the problem and the need for a practical solution, we then
present a step-by-step distributed solution based on the Dual-
Decomposition Method (DDM) [40], which is employed to
decouple the original problem into three subproblems. Our
framework can be summarized as follows.

e In Sects. IV-A and IV-B, we formulate the ETORS
problem P1 as a MIP, which is NP-hard and complex
to solve.

e In Sect. IV-C, to deal with the complexity in P1, we
use the features of the DDM method, in which the
primal problem can be divided into equivalent opti-
mization subproblems—namely the Task-Offloading De-
cision (TOD), the CPU Frequency Scaling (CFS), and the
Quality of Computation Control (QoCC).

« Finally, in Sect. IV-D, we introduce a dual form-based al-
gorithm to solve each subproblem and update the relevant
Lagrangian multipliers.

A. Energy-Completion Time Utility

Given the offloading decision profile A = {a;x|i € N,k €
K}, the local CPU frequency F = {fir|t € N,k € K}, and
the approximate computing level Q@ = {q;x|i € N,k € K},
the energy-completion time utility of user ¢ is defined as,

Ui(A, F, Q) = 65, [(1 — aw) Bl + aun G|

(13)
+ 85 [(1 — ay)CT), + aiC ﬁf} )

where 0 < 65, < 1 and 0 < 65, < 1 represent the weights
of energy consumption and execution completion delay for
device user ¢ carrying out task k, respectively.

Note that we define the energy-completion time utility of
user ¢ as a linear combination of the two metrics because both
of them can concurrently reflect the energy-latency trade-off
of performing a computation task. In other words, increasing
network energy consumption and computation completion
delay produce prohibitive total costs. To satisfy the mobile
device requirements, we model the utility function to let each
end-user choose various weights, which are denoted by J7;. and
05, in the ETORS problem. For instance, a mobile device with
low energy capability would prefer selecting a high value of
05, to save more energy. Otherwise, the mobile device would
select a high value of J5, to reduce the latency, when it is
running a latency-aware application.
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B. The ETORS Problem

We define the total system cost as the weighted sum of total
network energy, the cost to process a task in local computing
and the cost to offload a task in the MEC server, and the
execution completion time of running a computation task
locally or remotely. Then, we aim to formulate our problem to
assign the computation tasks required to be offloaded on the
MEC server, as well as determine the CPU clock frequency
of each computation task in the case of performing locally on
a mobile device, such that the total system cost is minimized.
Accordingly, the main optimization problem can be formulated
as follows,

P1: min, Zie v ZM Uir(A, F, Q) (14a)
st:Vie N ke K,m € prd(k),

Zk K (1 = ai)CT)y, + aiCTS] < T, (14b)

(1-— alm)CT,lm + i CTE, < RTY,, (14c)
CT}, < RT, (144d)
max CTfm < RT}, (14e)
Ak € {07 1}7 fik: € [07 Fzmaw]v qik S [sztna 1}7 (14f)

where F/% and Q™" denote the maximum CPU frequency,
and the minimum approximate computing level that is ac-
ceptable to mobile user i, respectively. In practice, both CPU
frequency f;; and approximate computing level g;; can only
be integers chosen from finite sets. However, such integer
variables may make the design problem a mixed-integer one,
which is NP-hard in general. To avoid this, we model f;
and ¢;; as continuous variables to provide an upper-bound
performance for the practical cases with discrete CPU fre-
quencies and approximate computing levels. The constraints
of optimization problem P1 can be explained as follows:
constraint (14b) guarantees that the total completion time
of all the tasks of an application of user ¢ cannot exceed
required maximum time deadline, 7;"**; Constraint (14c)
implies that task &k can only begin execution after all its
immediate predecessors have been completed.

constraints (14d) and (14e) represent the MEC server task-
precedence specific constraints, i.e., task k can only begin
execution on the MEC server after the computation task has
been completely uploaded to the server.

Next, we propose a distributed approach to solve P1 based
on DDM, as described in P2-(a ~ c¢). The complete process
of transforming the original ETORS problem to obtain its
suboptimal solution is shown in Fig. 2.

C. Our Distributed Solution

From Equation (14), it can be observed that the key chal-
lenge to achieve the optimal solution of P1 is the variable
indicator a;;, € {0, 1}, which makes the problem a non-convex
MIP problem and NP-complete [41].

To this end, as in [12], [42], we first relax the binary
computation offloading indicator a;j to a real number between
0 and 1, ie., 0 < a;; < 1. Further discussion regarding the

Depending on Duality, 22 is

generated.
{A} Depending on DDM,
i | P2is decoupled into
O {F} P2 (a-c).
{AF,Q} {Q}

Fig. 2. The complete process to solve the ETORS optimization problem P1
via decoupling into P2(a ~ c).

convexity of P1 with the relaxed variable a;;, will be presented
later in the next sections. The Lagrangian associated with P1

is given as,
‘C(Aaj:aQ7>‘7N :ZzENZk ’CUik Av]:7Q)
DN [ = ai)OTh + anCT5] (45

= D ONT 4+ Y > walCT, - RTG,

1EN iEN kEK

where A = {\;|Vi € N} and p = {p|Vi € N,k € K} are
the Lagrangian multipliers.

Accordingly, the primal problem P1 can be addressed
through two layers of optimization, an outer layer for updating
dual variables and an inner layer for determining the optimiza-
tion variables [43]. Specifically, the dual problem is expressed
as,

P2 r;]iZ(Ar}lflleE(A, F, QA ) (16a)
st. (14c), (14e), (14f). (16b)

In the inner minimization layer, we will solve three sub-
problems to achieve the optimal variables (A*, F*, OQ*) by
following the Karush-Kuhn-Tucker (KKT) conditions [44].
In the outer maximization layer, we will update the dual
parameters using the subgradient method. In the following, we
describe the three distributed subproblems—namely the Task
Offloading Decision (TOD), CPU Frequency Scaling (CFES),
and Quality of Computation control (QoCC).

1) Task Offloading Decision (TOD): In this subproblem,
our objective is to determine the computation tasks of an ap-
plication that should be executed at the MEC server. The goal
is to reduce the energy-latency cost of the application process
while satisfying the task-precedence constraint. Consequently,
the TOD optimization problem can be formulated as follows:

P2-a : mfi‘n (1- am)‘l’ék + aix Vi

s.t. (14c), (14e), (14f)

(17a)
(17b)

where W!, = 66 Bl + (65, + \)CTY, and U, = 65 EG" +
(05, + Ai)CTS, can be considered local and the MEC server
cost, respectively. Obviously, the objective function in P2-a
can be cast as a linear function on indicator a;;. Hence, we
can formulate the task-offloading selecting policy as,

: l
if We, < Wl

1
;= . Vie N, ke K.
0 otherwise.

(18)
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Eq. (18) implies that when the energy-latency cost on the
MEC server is less than on the local device, it is profitable
to execute task k£ remotely; otherwise, it should be processed
locally.

2) CPU Frequency Scaling (CFS): In this subsection, we
aim to formulate the CFS subproblem to optimally adjust the
CPU clock frequency of the user device so that the local energy
consumption of performing an application can be minimized.
Obviously, the CFS subproblem is active when it is decided
to locally execute the computation task (i.e., a;; = 0). Thus,
the CFS subproblem is formulated as,

P2-b : m1n 6 Ezlc + 05 CTzk + N\ (CTilk _ Ti'max)
(19a)
+ pa(CTYy, — RTS)
s.t. (14¢), (14e) (19b)

Proposition 1. The optimization problem P2-b is convex with
respect to the optimization variable set JF.

Proof Since the o = 2 (05 + CBPD) > 0, vi =k,
ik ik

= 0,V7 # k. Hence, the Hessian matrix is positive
semldeﬁmte and thus the objective function of P2-b w.r.t op-
timization variable f;; is convex [44]. Since constraints (14c)
and (14e) are affine, we can state that P2-b is convex. The
proof is complete. ]

It is known that T/"*®, RT},, CT}, and RT}, are inde-
pendent of f;;. Then, the solution of P2-b can be achieved
by exploiting standard convex techniques and the KKT con-
ditions [44]. Hence, the CPU frequency scaling policy can be
calculated as,

fit = /(05, + Xi)/2€;05,

We can see from (20) that the CPU frequency of the mobile
device i executing task k£ depends on the weight parameters,
05, and 65, and the price factor for the required application
completion deadline, A;.

3) Quality of Computation Control (QoCC): The objective
of this subproblem is to determine the optimal setting of the
approximate computing level, ¢;;, for the MEC server. This
optimization aims to minimize the energy cost of the MEC
server and the response time required for task execution. It is
important to note that the QoCC subproblem is applicable only
when the mobile device decides to execute the computation
task at the MEC server (i.e. a;r = 1).

Hence, it can be formulated as,

NVie N ke k. (20)

DikGik ik
P2- g, ——— + 305, i RT:
R (fc #lai) ’“) 2la)

+ Xi(CTH, — ™) + par(CTy, — RTS,)

s.t. (14¢), (14e). (21b)

We denote J(g;x) as the objective function in P2-c. Ac-
cording to (4)—(6), (11), and (12), we can model J(g;;) of
two forms depend on two various values of RT} as follows.

Case 1: RTS, = CT}, ie., CT} > CT¢

m*

max After

meprd(k)
assigning CT, = CT;'"" + RTY, where RT! represents the

ready time of task k being offloaded on the wireless channel
to ensure the task-precedence requirement, which can be given
as constant for task k. Then, J(g;;) can be formulated as,

( 2 (Qm)) A

where £, = 05, + X, £, = &5, D05, and 17 is constant.

J(qix) = (22)

Case 2: RT5 = max CT¢,, ie, CT} < max CTg,.
meprd(k) meprd(k)
Since Inax( )CT is the time when all the immediate
meprd(k

predecessors of task k that are transmitted to the MEC server
have accomplished their performance on the server, the RT}
can be considered as a constant. Hence, .J(g;;) can be written
as,

'Ldl
T(g) = i ( : <qm>) P Oy

where 75, = 05, + A; and 1§, = 05.pik + ik

It can be observed from (22) and (23) that the objective
function J(g;;) has the same form for the two cases, but
with different weight factors. Next, we give the approximate
computing policy for these cases.

Theorem 1. In the two cases (1 and 2), the objective function
J(gir) is convex with respect to q;;; when ©(qix) = T5,qik+75
for some constants 15, 75.,YVi € N,k € K. The parameters

75, and T3, can be estimated by offline profiling of the MEC
testbed, as detailed in Sect. V-A, Table II.

Proof. Based on the experimental simulations from Figs
Figs. 5(a), 5(b), and 5(c), significant variations in memory,
CPU, and latency can be observed corresponding to dif-
ferent levels of computation quality. We can conclude that
the function ¢(g;;) can be modeled as a linear equation,
©(gix) = 75,9k + 75, Where the constant parameters 75, and
75, can be estimated by fitting the data from Figs. 5(a), (b),
and (c¢) for memory and CPU utilization, as well as latency
time. The values used for estimation are provided in Table II.
To prove that the function J(g;;) in (23) is convex, we need to
show that the second derivative of J(g;i) with respect to g;i, is
non-negative for all g;;. First, let’s find the second derivative
of J(gix) with respect to ¢;. Using the power rule and chain
rule, we have:

2 d

q;kdzk
= i) ) + 1 (24)
dg?,  dgix ( ( fe ol k)) ik Tik )
Simplifying the expression, we get:
dzJj cik do dik
=5 . 25
dq?k < fc qik > N ik Tik ( )

Since cik, feo ©(qik)s N5rs diks Tk, and 1, are all non-negative
constants, the only term that may vary with g;; is %. And
since ddq% > 0Vq;;. Hence J(g;x) is convex. Since constraints
(14c¢) and (14e) are affine, we can state that P2-c is convex.

The proof is complete.
|

Since P2-c is convex, then we can use a standard optimiza-
tion solver such as MOSEK to solve the problem.
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D. Lagrangian Multiplier Update

We can employ the subgradient method to solve the master
problem in (16). Specifically, a subgradient of the problem for
A; can be written as,

Zz)\ = Z [(1 — aik)CTilk + aikCTfk] - Tinmx’ (26)

kex

and for p; is,
=Y _[CT, — RTS). 27)

ke

Then, we can update \; and p;i as,

= 1] ) = [ul] 925" )
where T)[\t], T,E] are the step length at iteration step [t], and
[z]T = max{0,2} denotes the projection function to the
nonnegative orthant. Then, we can utilize the new Lagrange
multipliers in (28) for updating the computation offloading
policy in P2(a ~ c¢). The proposed ETORS algorithm is
summarized in Algorithm 1, in which the time complexity of
the algorithm for user ¢ is O(K I 40 1ac), where 1,4, denotes
the maximum number of iterations of the algorithm for a task,
and [,. indicates the number of iterations for approximate
computing convergence. Subsequently, the updated Lagrange
multipliers as specified in (26), (27), and (28) can be effec-
tively utilized to iteratively optimize the resource allocation
problems (18), (20), (22), and (23).

Theorem 2. The convergence of the ETORS algorithm is

guaranteed, when the iteration step sizes, T>[\t] and T,[ﬂ, satisfy,

T;t] — 0, ZT)[\t] — 00, Z(T)[\t])Q
t=1 t=1

TE] — 0, ZTE] — 00, Z(Tiﬂf
t=1 t=1

Proof. To prove that the update iterations of a;, fir and
J(gir;) will converge to the optimal solution under the given
conditions on the step sizes and Lagrange multipliers, we
can apply the method of Lagrangian multipliers and the
subgradient method for optimization. The Lagrangian function
for the optimization problem is defined in (15). The update
equations for a[tH] fin 1) and J(gs)t+Y can be calculated
by (18), (20), (22) and (23), respectively. To establish con-
vergence, we need to show that the a [t+1] s fik U+ and J (qix)
are monotomcally decreasing. From the update equations for

t“ and thH by observing the update equation for )\[HH
in (28), we can see that )\Etﬂ] is decreasing. Thus, W', and
v¢, in (18) are also decreasing Slmllarlty, nzk [t in (20) are
also decreasing. As a result, a and f;, (1] g monotonically
decreasing. Similarly, we can prove that, since J (qik)[tﬂ] is
bounded below and monotonically decreasing, it converges to
a limit, denoted as J*. By following the KKT conditions [44].
Therefore, under the conditions of diminishing step sizes and
the convergence of Lagrange multipliers, we can see that the
update iterations of a;, fir and J(g;x) will converge to the
optimal solution. |

(29)

Algorithm 1 Iterative ETORS algorithm for mobile user ¢
1: Initialize: K, prd(k), Lnae> diks Ciks 05 05 Ais
Wik, T/[\],T,[f], F, Q, infinitesimal number w and iteration
index t < 1,Vie N,k e K
2: for k=1: K do
3:  while ¢t < I,,,., and |ulk(t +1) — pir(t)|< w do
4: Compute 7, le, Elk by (1)~ (3), respectively,
CTY. by (10), TS, EG', TS by (4)~(6), re-
spectively, CT}, = T + RT}]

5: if prd(k) == () then

6: RT, =0, RTY =0, RTS, = T3

7 else

8: Compute RT}, by (7), RT[{ = max CT},
méeprd (k)

9: end if

10: Compute a;;, by (18)

11: if a;;, == 0 then

12: Compute f;r by (20)

13: else

14: Compute &7y, £, My and 73,

15: if RTS, =CT, fk then Solve problem (22)

16: else Solve problem (23) end if

17: end if

18: Update Lagrangian multipliers ); and p; by (28)

19: t=t+1

20:  end while

21: end for

V. PERFORMANCE EVALUATION

In this section, we present the experimental performance and
numerical results to demonstrate the efficiency of the ETORS
algorithm.

A. Testbed Experiment

We introduce our 5G MEC testbed, which encompasses the
architecture, setup, and experimental performances. Addition-
ally, we record the quality of computation patterns in terms of
CPU processing time and service latency.

1) Testbed Setup: In this part, we establish the Non-
standalone (NSA) 5G RAN testbed to implement a realistic
end-to-end 5G infrastructure at the MEC. The MEC testbed,
along with the necessary software, is described in Fig. 3.
Our proposed testbed primarily consists of the following main
components:

o Commercial Off-The-Shelf (COTS) User equipment (UE):
For end-users, we utilize a Samsung Galaxy S8 smart-
phone operating on Android 9.0 a representative COTS
UE. This smartphone is capable of exchanging data via
WiFi or cellular connections within the RAN network.

e Remote servers: We employ a Dell Laptop running
Ubuntu 18.04 as the edge server in our setup. On the other
hand, the remote cloud is deployed using a desktop PC
equipped with an Intel Xeon E5-1650 processor, featuring
12 cores operating at 3.5 GHz, and 32 GB of RAM.

e RAN Network: As a component of the 5G RAN network,
the 3rd Generation Partnership Project (3GPP) has put



SUBMITTED FOR IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT (TNSM), JANUARY 2024. 10

EPC: oai-epc-fed

IP:172.16.87.2

1

1P 172.16.86.2 s

1 £ d

1P 172.16.86.3 |

}

! :

Vb P 172.16.86.4 ! % @
. T OPEN AIR

: g- < I == INTERFACE Ubuntu

1 |§IP: 172.16.86.5 :

1 o spew R &

I & S <(,) docker

8 - - P ~ docker

|1 IP: 172.16.86.6 !

)

1

11 |IP: 172.16.86.7 | USB 3 [ l D

' B—

I R - .,

L - ! USRP B210 Phone

gNB: OAI

Fig. 3. 5G OAl-based testbed setup and configuration.

forward eight different functional split options, outlined
in 3GPP TR 38.801, which specify the division of func-
tionalities between the Distributed Unit (DU) and the
Central Unit (CU) [45]. Therefore, in our testbed imple-
mentation, we assume that the functional split technique
is integrated into the gNodeB (gNB).

Enabling a functional split in 5G RAN brings several sig-
nificant benefits. These include traffic load balancing and
minimizing latency and fronthaul costs. Furthermore, to
establish our 5G NSA MEC testbed, we utilize OpenAir-
Interface (OAI), an open-source platform developed by
EURECOM. OALI is specifically designed for deploying
the MAC/PHY layers at high levels in real-time 5G RAN
systems.

As illustrated in Fig. 3, we have implemented a RAN,
gNB, consisting of two containers: CU and DU. These
containers are deployed using Docker, a widely-used
containerization platform [46]. Additionally, in our MEC
testbed, we employ the openair-epc-fed software to emu-
late the core network functionality. This software enables
us to simulate the operations of the core network within
the MEC environment.

The main components of openair-epc-fed are Mo-
bility Management Entity (MME), Home Subscriber
Server (HSS), and PDN Gateway (SPGW). As shown
in Fig. 3, to establish the radio transmit links between
the gNB and the UE, we use USRP B210, which is an
SDR board that offers a frequency range from 70 MHz
to 6 GHz.

2) Real-time Profiling: To perform the approximate com-
puting, we select a real-time traffic lane detection (TLD)
application. The main reason for choosing such an application
in our case is that it has computing-intensive processing
tasks, which can be performed at different levels of quality.
Besides, applying the TLD application at MEC could be
appropriate to exhibit the experimental results that can lead to

improving the system model since the application composes
several computation and communication tasks, including the
capturing, extracting, and matching tasks. TLD first captures a
real-time image of the road at different required frames. Then,
the image is converted to grayscale, smooths, detects edges
and selects a region of interest (ROI) to generate sloped lines
on the traffic lanes. We perform the TLD application on two
Dell Workstations each with two Xeon E6-1650 processors,
32 GB of RAM, and running on Ubuntu 18.04. In our case,
we stream a one-minute video between the two workstations
by using ffinpeg, a software tool used to process multimedia
content to various resolutions. On the other end, we utilize
a ffplay as a media player to receive and process the video
stream.

Testbed Performance. In this experiment, we record the
CPU utilization percentage by employing the docker stats
command in Ubuntu. This command provides a real-time
data stream that captures the CPU utilization of the running
containers.

To simulate the experiment, we initiate the transmission
of downlink UDP traffic from the SPGWU located in the
core network to the UE. We conduct this transmission using
different Physical Resource Block (PRB) values within two
functional split settings: F1 and IF4.5 [45].

The percentage of the CPU usage has been measured
for functional split Options F1, and IF4.5 in Fig. 4(a), and
Fig. 4(b), respectively.

Besides, we motivate and study the performance of ap-
proximate computing via a widely recognized and extensively
applied recognition algorithm known as Scale Invariant Fea-
ture Transform (SIFT) [47]. Fig. 4(c) shows the results of
percentage loss in accuracy obtained when different levels of
speed up are achieved by applying approximation transfor-
mation to the application. The percentage loss in accuracy
of the output when applying approximation with respect to
exact computation is calculated as T' = 9=4 % 100, where
q represents the accuracy of the output obtained through
exact implementation of the application, while ¢ represents
the accuracy of the output obtained through approximate
implementation.

The speed-up obtained from the task’s approximate version
is calculated by dividing the makespan (i.e., the time required
to execute the workflow) of the task’s approximate version by
the makespan associated with its exact implementation.

It is observed that the speedup is 5 times when the per-
centage accuracy loss is 2.6% for the Dell Precision machine,
equipped with a 2.66 GHz Intel i5 processor and 8 GB of
RAM. A similar trend is observed for the other devices as
well. Specifically, for the Toshiba device with a 2.13 GHz
Intel i3 processor and 4 GB of RAM, and the Acer Aspire
device with a 1.60 GHz Intel processor and 2 GB of RAM.

Computation Resources and Quality of Computation
tradeoff.

To propose an efficient design of resource allocation algo-
rithms in MEC, it is crucial to comprehend the computational
resources available on MEC servers, such as CPU, memory,
and processing time, in order to handle real-time task offload-
ing requests.



CPU Utilization (%)

SUBMITTED FOR IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT (TNSM), JANUARY 2024. 11

100 100 . < 5
[ I PRB 100 o
—— 80 I PR 50 G, | | N Do Precision
80 _ 34l :
[__JPRB25 S C__JPRB25 € 41 | NN Toshiba
~ 8 [ Acer Asprire
5 < al
60 S 60 <3
2 3
40 4 5 40 B 2F
at g
O c 1 |-
20 ] 20 3
[0
)
0 0 1 2 3 4 5
o °v v Speed up
(@) (b) ©

Fig. 4. Fully containerized 5G OAl-based testbed experimental results for different configurations; (a) CPU utilization of functional split Option F1 for
downlink traffic; (b) CPU utilization of functional split Option IF4.5 for downlink traffic, (c) Percentage loss in accuracy versus speed-ups achieved by

applying approximate computing techniques on SIFT algorithm.

: 3.4 :
14 A 25fps A 25fps 800F| A 25fps
. *  20fps 32+ % 20fps *  20fps
Q\i O 15fps| | S O  15fps 750 O 15fps il
< 1.3 O 10fps & 4l O 1ofps = O 10ips
= S g7
N T H
£ 12 % S28 3 650 |
) = * S
- S 26¢f © H
E > © 600
5 1.1 D O 24t m 550 f ¥
22¢ 500 |
1 3 : : ¢ ‘
1 2 3 4 1 2 3 4 1 2 3 4
Video Quality Level Video Quality Level Video Quality Level

) (@)
Fig. 5.

(©)

(c) Average Memory Utilization for various quality of computation levels in video streaming; (b) Average CPU utilization for various quality of

computation levels; and (c) Average processing time for various quality of computation levels.

In our case, we conducted multiple real-time experiments
on the MEC testbed with various setups to establish the
relationship between CPU, memory, processing time, and the
quality of computation. As depicted in Figs. 5(a), 5(b), and
5(c), we collected data on CPU and memory usage, as well
as network latency, for various quality levels after executing
the TLD application between two nodes, namely the UE and
the gNode B (gNB).

By utilizing the “top” tool with 1-second intervals, we
measured the CPU and memory usage, along with network
latency, of the TLD application, which includes the video
processing layer, on the cloud server.

Remark: Based on Figs. 5(a), 5(b), and 5(c), significant
variations in memory, CPU, and latency can be observed
corresponding to different levels of computation quality. Con-
sequently, the function ¢(q;r) can be modeled as a linear
equation, p(qii) = T5.dik+T5,, wWhere the constant parameters
75, and TS, can be estimated by fitting the data from Figs. 5(a),
(b), and (c) for memory and CPU utilization, as well as latency
time. The values used for estimation are provided in Table II.

B. Numerical Simulations

We present simulation results to evaluate the performance
of our proposed ETORS algorithm. The simulations are con-

TABLE II
VALUES OF PARAMETERS 7/}, AND 77 .

o(qir) Tik Tik
Memory Utilization (%) | —0.13 | 1.5
CPU Utilization (%) —0.42 | 3.7
Processing Cost (ms) 120.6 | 347

ducted using a MATLAB implementation with optimization
solvers (e.g., MOSEK).

1) Setup: We consider a MEC system consisting of
100 m x 100 m cell with a BS in the center. The mobile
devices, N = 10, are randomly located inside the cell. The
channel gains are generated using a distance-dependent path-
loss model given as L[dB] = 140.7 + 36.7 log  djim], Where
d is the distance between the mobile device and the BS, and
the log-normal shadowing variance is set to 8 dB. In most
of the simulations, unless otherwise specified, we assume that
the users’” maximum transmit power is set to p;x = 20 dBm,
and the initial decision weights are d5, = 65, 0.5.
Furthermore, the network transmit bandwidth is chosen as
Bk B 20 MHz, while the additional noise power
is set to o —100 dBm. For the computing resources

2



SUBMITTED FOR IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT (TNSM), JANUARY 2024. 12

A A
=X

Total cost

A _ A .
90 ’A-—-—A"‘A"'m £x 5ol 3—Lco
80 g gogom-o-s-w TR
7o
70t ,./ . ) —¥—ETORS
- ) ,/I-T *g 40 [|--@--- Exhaus.
geor /@ —&— WDR=5.1 O35t &
< A - -3 - - WDR=8.2 8
550 & N © 301
= e A WDR=11.05 -
40+ /4 1 2545
4
/ I
30 4 20}
iy :
& ‘ ‘ ‘ ‘ 58— ‘
0 20 40 60 80 100 4 6
Number of iterations

(a)

Number of tasks

Number of users
©

Fig. 6. Comparison of total cost against: (a) Different number of WDRs, evaluated with ten-user scenarios; (b) Different number of tasks, evaluated with

(b)

two-user scenarios; and (c¢) Different number of users, evaluated with two-task scenarios.

140 100
3 C
-{i\kzo's’éik:O'z
120 ™
5 52 -05.52-05 2 sl
= 100} [ 5025508 >
2 D g0l
g sof a
3 S
S 60 = L
S g. 40
S a0 o
3 2
LIC.I o 201
20 o
0 0
1 2 3 4 5 1 2
Task
(@)

‘ : ‘ 300 ‘ ‘
Il 08502
K ik
6; o ch o —$—s5-08,55-0.2
[ 55-05.55=05 | % 2507 |- &--52-05,5-05
e c 3
[ ]5=025=08 z - A 52202,02-08
| 3 200
[}
a
5 150
g
5 100
(2}
c
o
© 50
0
3 4 5 10 20 30 40 50
Task Number of Users
(b) ©
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configuration, the CPU clock frequency of the MEC server
is set to f. = 20 GHgz, and the energy coefficient is set
to ¢; = 107!! based on empirical measurements presented
in [48]. For the computation task, we consider the TLD
application for security and surveillance

This particular application stands to significantly benefit
from the collaborative capabilities offered by the integration
of mobile devices and the MEC platform.

Unless otherwise specified, we adopt the default values for
the settings: d;; = 420 KB and ¢;; = 1000 Megacycles, Vi €
N,k € K. We evaluate the system utility performance of
the ETORS strategy by comparing it with the following four
approaches.

i) Exhaustive: This approach utilizes a brute-force method
to identify the optimal offloading scheduling solution by
exhaustively searching through 25 possible decisions.
Due to the significantly high computational complexity
associated with this method, we limit the evaluation of
its performance to a small-scale network.

Local Computing Only (LCO): Each user i € N
performs its computation task exclusively through local
computing. This scheme corresponds to solving P1 with
a;r, =0 forall i € N and k € K.

iii) Edge Computing Only (ECO):

Each user i € A/ completes its computation task by fully
offloading the computation input to the MEC server.
This scheme corresponds to solving P1 with a;;, = 1
forall i € A and k € K.

Local-Cloud Random Offloading (LCRO): Each task is
processed either at the local device or the edge cloud
server with equal probability. The offloading decision is
made independently by each user [49].

iv)

2) Complexity Analysis: In this section, we examine the
convergence of the proposed ETORS algorithm concerning the
number of iterations, computation tasks, and users. In terms of
total cost, we evaluate our algorithm by numerical simulations
conducted on a local workstation, Intel Xeon E5-1650. We
define the Workload-input Data Ratio (WDR) to quantify
the computational cost of user tasks, i.e., WDR = (CTI; We
consider three scenarios where the values of the three tasks
are selected as {5.1,8.2,11.05}. For comparison purposes, we
assume that the computation tasks can be executed both locally
and remotely. After running the ETORS algorithm using these
task values, we monitor the convergence pattern and record the
total cost for different values of the WDR.

From Figure 6(a), several key points can be concluded:
(i) The proposed ETORS algorithm converges after approx-
imately 70 — 80 iterations for all tasks.
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TABLE III
AVERAGE RUN-TIME OVER MULTIPLE RUNS FOR DIFFERENT SCHEMES.
LCO | ECO | LCRO | ETORS | Exhaustive
Runtimes [ms] 3.1 3.5 15.5 23 2,300

(i) The computation task with a higher WDR value exhibits
a lower number of iterations. This is due to the increased
probability of offloading the task to the remote server as
the complexity of the computation task rises, resulting in a
higher WDR value. (iii) The Computation task with a higher
WDR value tends to have higher total costs. This is due
to the increased complexity associated with higher WDR
values, leading to higher total costs. Consequently, it can be
inferred that selecting an appropriate WDR setting for tasks
can enhance complexity while reducing the total cost.

3) Algorithm Comparison: In this part of the section,
we compare the system utility performance of our proposed
ETORS strategy with two scenarios: task offloading baselines
and several existing state-of-the-art heuristic joint task offload-
ing schemes.

i) ETORS algorithm versus task offloading baseline
schemes. To characterize the suboptimality of our proposed
ETORS solution, we compare its performance with the best
solution obtained by the Exhaustive method, and then with the
three other described baselines. Since the Exhaustive method
searches through all possible offloading scheduling decisions,
its runtime becomes significantly long when dealing with a
large number of variables.

Hence, we conduct the comparison in a small network
setting where N = 5 users are uniformly distributed within
the coverage area of a single BS.

Figure 6(b) presents a comparison of the performance of dif-
ferent schemes as the number of tasks K varies. In this figure,
the parameter c;; follows a controlled uniform distribution. It
is evident that the proposed ETORS algorithm exhibits per-
formance closely aligned with that of the Exhaustive method,
while significantly outperforming the other baselines.

Additionally, Table III provides the average run-time per
simulation iteration for different algorithms, executed on a
Windows 7 desktop equipped with a 3.6 GHz CPU and 16 GB
RAM.

It can be seen that the Exhaustive method takes a very
long time, about 100x longer than the ETORS algorithm
for such a small network. The LCRO algorithm runs slightly
faster than ETORS while ECO and LCO require the lowest
runtimes. Figure 6(c) assesses the total cost performance as
it varies with the number of users seeking to offload their
tasks. It can be observed that ETORS consistently delivers the
best performance, while the cost of all schemes noticeably
increases as the number of users rises.

4) Impact of Parameters 05, and §5;.: In Fig. 7 (a), and (b),
we examine the impact of computation weights, d5,. and d5;,
on the computation energy and execution latency of five tasks
with varying data sizes and CPU cycles.

The setting value of the data size and the CPU cycles of 5
tasks are given by [91.05,189.95,96.12,266.76,130.05] KB

and [890,985,1090,791,1150] Megacycles, respectively. It
can be noticed from Fig. 7(a) that, for a given task, the
computation energy increases as 05, decreases. On the other
hand, the trend of computing delay increases as J5, decreases.
This is reasonable since a large ¢, puts more emphasis on
the energy consumption. As a consequence, all tasks are more
likely to be processed remotely. Furthermore, as shown in
Fig. 7(b), when J7, decreases, the delay time cost becomes
significant, and all tasks become more likely to be processed
locally. The comparison between latency and the number of
UEs for different settings of d5,, and d), is illustrated in Fig. 7
(c). It can be observed that selecting appropriate values for
these parameters positively affects the overall latency of the
task. In the case of latency-sensitive applications, a larger value
of df, is advantageous for enhancing the QoS for the users.

it) ETORS algorithm versus existing task offloading
schemes.

o Task Offloading and Resource Allocation based Greedy
technique (TORSG): Similar to the approach in [21], we
consider that all computation tasks (up to the maximum
number that can be admitted by the BS) are offloaded
to the edge server. In each BS, the offloading tasks are
greedily assigned to sub-bands with the highest channel
gains until all tasks are admitted or all the sub-bands are
occupied. We then apply joint resource allocation and
across the BSs as proposed in Section IV-2.

o Task offloading and resource allocation based Lyapunov
optimization technique (TORSL): It is used in several
existing work such as [19], [22]. According to Lyapunov
optimization theory, we transform the objective function
in Problem (14a) into the deterministic optimization prob-
lem in each slot. Then, similar to the approach presented
in [19], the Lyapunov function can be defined as follows,

1
Li(t) = 5 ZkeKi Qi (1), Vi e N.

where Q(t) denotes the queue function of the unac-
complished tasks and can be defined as, Q;r(t + 1) =
max[Q;x(t) — (Gikrik), 0] + dix, where (i is represent
slot length of each task k of user .

(30)

The total cost system utility of the three competing schemes
are plotted in Fig. 8 It can be observed that the total costs of all
schemes increase with the number of computational tasks. This
implies that applications with high workloads benefit more
from offloading than those with low workloads. Furthermore,
we observe that the performance gains of the TORSG and
TORSL algorithms also follow a similar trend, indicating an
increase in task workloads. However, our proposed algorithm
outperforms the others because it is designed based on the
DDM approach.

VI. CONCLUSION

We proposed a holistic strategy for the Energy- Latency-
aware Task Offloading and Approximate Computing (ETORS)
problem, which aims to optimize the trade-off between energy
consumption and application completion time in a Mobile-
Edge Computing (MEC) network. The underlying optimiza-
tion problem is formulated as a Mixed-Integer Program-
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Fig. 8. Comparison of the total cost for various task offloading algorithms
across different numbers of tasks, assessed using two-user scenarios.

ming (MIP) problem, which is NP-hard. Our approach de-
composed the original problem into Task-Offloading Decision
(TOD), the CPU Frequency Scaling (CFS), and the Quality
of Computation Control (QoCC) problems; we then addressed
these subproblems using convex optimization techniques.

Furthermore, we designed and implemented a pro-
grammable MEC testbed comprising a client-server and a
MEC server. Finally, we implemented a real-time Traffic De-
tection (TLD) to study the benefits of computation offloading
in an MEC server in terms of quality of computation and speed
trade-off, system latency, and energy consumption. Simulation
results show our algorithm approaches the optimal solution
and significantly improves the total system offloading utility
over traditional approaches.
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