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Information flow control (IFC) provides confidentiality by enforcing noninterference, which ensures that
high-secrecy values cannot affect low-secrecy values. Prior work introduces fine-grained IFC approaches that
modify the programming language and use nonstandard compilation tools, impose run-time overhead, or
report false secrecy leaks—all of which hinder adoption.

This paper presents CocooN, a Rust library for static type-based IFC that uses the unmodified Rust language
and compiler. The key insight of Cocoon lies in leveraging Rust’s type system and procedural macros to
establish an effect system that enforces noninterference. A performance evaluation shows that using Cocoon
increases compile time but has no impact on application performance. To demonstrate CocooN’s utility, we
retrofitted two popular Rust programs, the Spotify TUI client and Mozilla’s Servo browser engine, to use
CocooN to enforce limited confidentiality policies.
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1 INTRODUCTION

Confidentiality is a fundamental property of secure computing systems. Confidentiality, or secrecy,
is usually achieved through access control, which regulates which entities may access which data,
but not what happens to the data after it is accessed, resulting in a large trusted computing base.
As a robust alternative to access control, information flow control (IFC) ensures that high-secrecy
values cannot flow to (i.e., cannot affect) low-secrecy values [Denning 1976; Rotenberg 1973].!
IFC is especially valuable as a fine-grained mechanism that protects the flow of data values
within applications, ensuring they do not misuse privileges. Consider, for example, a virus checker

FC generally ensures not only confidentiality but also integrity, by ensuring that low-integrity values cannot flow to
high-integrity values, but this paper handles only confidentiality.
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application with privileges to both read data from the user’s disk and send data to a remote server
(to request software updates). However, the virus checker should not be allowed to send the contents
of the user’s disk to the remote server—a confidentiality policy that fine-grained IFC can enforce.
As a result, the virus checker does not need to be trusted by the user. In general, fine-grained IFC
reduces the trusted computing base from the entire application to the relatively few operations
that explicitly violate IFC by declassifying secret values.

Fine-grained IFC can be supported either dynamically at run time, which incurs run-time
costs [Austin and Flanagan 2009; Roy et al. 2009; Xiang and Chong 2021], or statically at compile
time. Static IFC can use whole-program analysis or modular type-based analysis. Whole-program
static analysis conservatively models the flow of values through expressions and variables and
ensures that high-secrecy values do not flow to low-secrecy sinks [Balasubramanian et al. 2017;
Hammer et al. 2006; Hedin and Sabelfeld 2012; Zanioli et al. 2012]. However, whole-program
analysis is non-compositional, so it scales poorly and supports incremental deployment poorly. A
recent analysis called Flowistry leverages Rust ownership constraints to compute relatively precise
function summaries without analyzing the functions’ bodies [Crichton et al. 2022]. In contrast,
static type-based analysis uses types to represent the security labels of variables and expressions,
and a correctly typed program guarantees IFC [Chapman and Hilton 2004; Chong 2008; Gregersen
et al. 2019; Kozyri et al. 2016; Myers 1999; Myers and Liskov 1997; Myers et al. 2006; Russo 2015;
Sabelfeld and Myers 2003; Simonet 2003; Smith and Volpano 1998; Volpano et al. 1996]. While
type-based analysis allows for modular checking and incremental deployment, existing solutions
rely on a modified language and compiler,” impeding adoption.

Why must prior work on type-based analysis modify the language and compiler? Because the
language’s type system is not expressive enough to ensure noninterference statically. The key
technical challenge is how to allow programs to define and use functions on secret data without
permitting unchecked side effects that might violate noninterference. In theory, an effect system for
encoding the side effects of a computation would constrain the behaviors of functions on secret
data [Nielson and Nielson 1999]. While effect systems have been implemented in Haskell for type-
based IFC [Abadi et al. 1999; Gregersen et al. 2019; Russo 2015], effect systems are not supported
by mainstream imperative languages including Java, C, C++, and Rust.

Contributions

This paper introduces Cocoon, the first static type-based IFC for a mainstream imperative language.
CocooN is a Rust library for the unmodified Rust language that works with the standard Rust
compiler (although Cocoon relies on some Rust features that are not yet part of stable Rust).
CocooN ensures that a program compiles only if it does not leak secrets, except by explicitly
declassifying secrets or explicitly using unsafe Rust code. Cocoon provides a rudimentary effect
system for noninterference that limits computations’ side effects using a novel approach leveraging
Rust features including ownership, traits, and procedural macros.

We evaluated CocooN'’s effectiveness and efficiency by retrofitting two popular Rust applications,
a Spotify client and the Servo web browser engine, to enforce a confidentiality policy for a single
secret value in each program. These case studies demonstrate that Cocoon’s approach works in
real applications and can be incrementally deployed. The evaluation also shows Cocoon does not
affect application run time or memory usage, although it can affect compile time if a substantial
fraction of the program code handles secret values.

CocooN thus advances the state of the art in fine-grained IFC support by demonstrating a
novel approach that requires no language or compiler modifications. The current design has

2An exception is type-based IFC analysis in Haskell (§6).
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several limitations, including supporting only static secrecy labels and placing restrictions on the
programming model (§4.5).
This paper makes the following contributions:

o a fine-grained IFC approach that is the first to provide static type-based IFC for a mainstream
imperative language without language or compiler modifications;

e novel support for a rudimentary effect system that captures side effects that could leak secrets;

e two case studies on real Rust programs that demonstrate that Cocoon works for real programs
and adds negligible or nonexistent run-time and compile-time overheads; and

e a performance evaluation showing that Cocoon has no detectable run-time impact, and its
impact on compile time is commensurate with how much code that deals with secret values.

2 MOTIVATING EXAMPLE

Fig. 1 shows example Rust code that computes the number of overlapping days of availability on two
calendars, belonging to Alice and Bob. Each calendar is a map from a day of the week, represented
as a string, to a boolean indicating whether Alice or Bob is available on that day. Suppose that Alice
and Bob’s calendars are secret. Specifically, the values (booleans) in their calendars are secrets,
although the keys (strings) are not. For simplicity we assume that the calendars have identical key
sets. The example computes and reveals only the number of overlapping days in Alice and Bob’s
availability.

The syntax for (day, available) in alice_cal iterates over all key-value pairs in Alice’s calendar.
Note that the types of day and available are &String and &bool, meaning that they are actually
(immutable) references to the values. The expression bob_cal.get(8day) calls HashMap: :get(&self,
8String) -> Option<&bool>, which is a method that takes a reference to a String as a parameter. Rust
allows an unlimited number of immutable references, or a single mutable reference, to a value at a
time. The get method returns a value of type Option<&bool>, which represents a reference to a boolean,
or an error if the key was not found in bob_cal. The call to Option: :unwrap(self) -> &bool returns the
reference to the inner boolean, or fails otherwise. Since unwrap() returns type &bool (i.e., reference to
a boolean), the code uses the x operator to dereference (and implicitly copy) unwrap()’s return value.

To ensure that the code in Fig. 1 does not leak more information about Alice or Bob’s schedule
than the number of overlapping days, one must trust the code or audit it carefully. Alternatively,
fine-grained IFC provides a way to ensure that code cannot leak secrets to untrusted entities, by
disallowing high-secrecy values from flowing to low-secrecy values.

Information flows can be explicit or implicit. In an explicit flow, a data dependency exists between
the two values. In Fig. 1 the return value of bob_cal.get(&day) flows to Option::unwrap()’s parameter
via an explicit flow. An implicit flow is a flow that involves control dependence. In Fig. 1, an implicit
flow exists from available’s value (and from the return value of bob_cal.get(&day)) to count’s value.

Consider Fig. 2, which has the same functionality as Fig. 1, but it ensures IFC using this paper’s
approach, CocooN. The booleans in Alice and Bob’s calendars are wrapped in a Secret type and have
labels {a} and {b}, where a and b are policies (also called tags) corresponding to secrecy privileges
of Alice and Bob, respectively. A label L, is at least as secret as label L, if and only if L; 2 L.

Applications can read and write secret values only inside of lexically scoped regions called secret
blocks, denoted by the secret_block!® macro call. Before the loop, the code uses a secret block to
create a new secret value o (zero) with label {a, b}, which is assigned to count. The secret block

3In Rust, all macro names end with the ! character.
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let alice_cal: HashMap<String, bool> = /* { "Monday" -> true, ... } %/
let bob_cal: HashMap<String, bool> = /x { "Monday" -> false, ...} */
let mut count = 0;
for (day, available) in alice_cal {
if available && *bob_cal.get(&day).unwrap() {
count += 1;
3

}
println! ("Overlapping days: {}", count);

Fig. 1. Rust code that computes the overlapping number of days in two calendars.

1 let alice_cal: HashMap<String, Secret<lat::A,bool>> = /% { "Monday" -> Secret(true), ... } */
2 let bob_cal: HashMap<String, Secret<lat::B,bool>> = /x { "Monday" -> Secret(false), ...} */
3 let mut count = secret_block!(lat::AB { wrap_secret(@) });

4 for (day, available) in alice_cal {

5 secret_block! (lat::AB {

6 if unwrap_secret(available) &&

7 *unwrap_secret_ref(::std::option::0Option::unwrap(

8 ::std::collections: :HashMap: :get(&ob_cal, &day))) {

9 *unwrap_secret_mut_ref(&mut count) += 1;

10 3}

11 s

12 3}

13 println!("Overlapping days: {}", count.declassify());

Fig. 2. Rust code that has the same functionality as Fig. 1 but uses CocooN to ensure IFC.

inside the loop4 has label {a, b}; Cocoon ensures that the block’s inputs must be no more secret
than {a, b}, and its output(s) must be no less secret than {a, b}, thus preventing illegal flows.

The block uses calls to unwrap_secret, unwrap_secret_ref, and unwrap_secret_mut_ref to access secret
values. CocooN ensures that these calls are only allowed if the unwrapped value’s label is no more
secret than the secret block’s label. unwrap_secret_mut_ref() gets mutable access to a secret value,
allowing both read and write access, requiring the value to have the same label as the secret block.

The secret block uses fully qualified calls to Rust Standard Library functions (e.g., : :std: :option: :
Option::unwrap(...)), which Cocoon requires in order to check that the callee cannot leak secrets.

After the loop completes, the program explicitly declassifies the secret value count in order to
print its value. Declassifications are part of the trusted computing base and must be audited.

3 REQUIREMENTS AND ASSUMPTIONS

Fine-grained information flow control (IFC) is not used widely in practice because it is not practical.
We argue that a practical solution must provide IFC for programs written in a mainstream imperative
language without modifying the language or its compiler.

3.1 Assumptions and Nonrequirements

This paper focuses on achieving fine-grained IFC for static secrecy labels using an off-the-shelf
language and compiler. This work does not aim to support integrity labels, dynamic labels, or OS

4One could instead wrap the whole loop in a single secret block, but in the spirit of minimizing code in secret blocks—and
to showcase more of CocooN’s programming model—the code wraps only the loop’s body in a secret block.
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integration.’ It does not protect side channels such as termination and timing channels. Finally,
although the programming model is pure Rust, it has several restrictions, a challenge we leave for
future work. §4.4 and §4.5 describe Cocoon’s guarantees and limitations in more detail.

Our work aims to provide termination-insensitive noninterference (explained below), but we
do not present a proof of correctness, which would be a notable research contribution by itself.
Other work has presented correctness proofs, but only for small, toy languages [Myers et al. 2004;
Surbatovich et al. 2023; Zdancewic and Myers 2000; Zheng and Myers 2005]. As Zheng and Myers
point out, “[p]roofs for noninterference exist for numerous security-typed languages, but not for
any language as expressive as Jif” [Zheng and Myers 2005]. The authors of Viaduct (a compiler for
secure distributed programs) note that “a full correctness proof for the Viaduct compiler would be

»

a significant research achievement ...” [Acay et al. 2021].

3.2 Requirements

Here we motivate and describe the requirements that our IFC approach needs to meet.

Widely Used, High-Performance Language. A drawback of many prior static IFC solutions is that
they require the use of an academic language that inhibits their adoption (§6). Thus, we aim to
develop an IFC solution that uses a popular, high-performance language: Rust. Rust was designed
by Graydon Hoare at Mozilla Research in 2010 and had its first stable release in 2015 [Mozilla
Research 2020; Noel 2010]. Since then it has had 95 releases, over 3,500 contributors, and has held
the title of Stack Overflow’s “most loved language” by developers every year since 2016 [Stack
Overflow 2022]. Rust is commonly used in large-scale applications; for example, many core features
of Mozilla Firefox are primarily written in Rust [The Rust Foundation 2022].

Off-the-Shelf Language and Compiler Support. In contrast to prior solutions that extend a language
and modify the compiler or rely on a custom compiler (§6), we aim to enforce IFC without requiring
a customized language or compilation tools. In the context of the Rust language, we aim to provide
IFC entirely through a library. Programs are written in unmodified Rust using the IFC library and
compiled with the unmodified Rust compiler, although our design relies on some language features
that are not yet part of stable Rust. The library is trusted (i.e., is part of the trusted codebase) along
with the Rust compiler and standard library. The application is untrusted, except for unsafe and
declassify operations, which must be trusted or audited. In Rust, unsafe operations already forgo
guarantees of memory and type safety.

Soundness. We aim to provide termination-insensitive noninterference: In the absence of explicit
declassification or explicitly unsafe code, high-secrecy values cannot affect low-secrecy values but
may affect whether the program terminates [Abadi et al. 1999; Askarov et al. 2008]. This model
handles explicit and implicit flows, but it does not address side channels created by timing or
microarchitectural states.

Incremental Deployment. A goal is for the library to be incrementally deployable: Developers only
need to modify parts of their code that deal with secret values. These modifications may still be
time consuming and burdensome, a challenge we leave for future work.

Run-Time Performance. Programs using the IFC library should perform indistinguishably from
otherwise equivalent programs that do not. The Rust compiler should be able to “optimize away”

5Since OS integration is outside our scope, the programming model assumes that every OS-level entity is an untrusted
entity. It is the programmer’s responsibility to identify secrets coming from OS-level entities such as files and sockets, and
the program must declassify a secret value before sending it to any OS-level entity.
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the typing and scaffolding introduced by the application’s use of the IFC library, reducing the
compiled code so it performs the same as an otherwise equivalent program.

4 COCOON: STATIC INFORMATION FLOW CONTROL IN RUST

CocooN is a static IFC approach that meets §3.2’s requirements. §4.1 explains how application
developers use CocooN to ensure noninterference. §4.2 describes how Cocoon ensures that the
program will not compile unless it enforces noninterference, and §4.3 gives implementation details.
§4.4 and §4.5 discuss guarantees, threats, and limitations.

4.1 CocooN’s Programming Model

An application uses CocooN’s programming model to represent secret values and secrecy labels,
to access secret values, and to declassify secret values. Fig. 3 overviews the programming model,
and Fig. 2 (introduced in § 2) shows example application code that uses most elements of the
programming model.

Secret Values and Secrecy Labels. Our work follows the decentralized IFC model introduced by
Myers and Liskov [1997]. A secrecy label, which describes the permissions for data, is a set of secrecy
policies (also called tags). For example, a label L = {a, b} contains the policies a and b. These policies
correspond to entities with different secrecy privileges, such as users of a system. Labels form a
partial order on these policies, in which label L, is at least as secret as label L, if and only if L; 2 L.

Every expression and variable has a static secrecy label determined by its static type. By default,
expressions and variables have the empty secrecy label (lowest secrecy). An expression or variable
with higher secrecy is represented by wrapping it in a CocooN-provided type Secret<Type,Label>,
presented in Fig. 3a. Secret values are opaque and must be accessed through an interface provided
by Cocoon, discussed shortly. Note that wrapping values in Secret incurs no run-time cost; a
Secret<Type,Label> instance has the same run-time representation as a Type instance.

Fig. 3b shows that labels are implemented as structs, and trait implementations® help enforce
legal flows. Specifically, a trait MoreSecretThan<M> is implemented for label L if and only if M C L.

In Fig. 2, alice_cal and bob_cal are hash maps whose values are secret boolean values with labels
{a} and {b}, respectively.

Accessing Secrets in Secret Blocks. To help restrict illegal flows and to limit the annotation burden,
secret-wrapped values may be accessed only inside of lexically scoped blocks of code called secret
blocks, as shown in Fig. 3c. A secret block is a macro call that specifies a static label that restricts
the values the block’s body may read and write—the body may only read values with lower or same
secrecy, and may only write values with higher or same secrecy—prohibiting illegal explicit and
implicit flows. The block evaluates to a secret value with the the same label as the block. Fig. 2 has
two secret blocks (line 3 and lines 5-11), each with secrecy label {a, b}.

The secret block’s body can call unwrap_secret(e) on an expression e with type Secret<Type, label>,
as long as label is no more secret than the block’s secrecy label. Cocoon also provides variants
of unwrap_secret that take and return references instead of values, called unwrap_secret_ref and
unwrap_secret_mut_ref. (§ 2 explained immutable and mutable references briefly.) Fig. 2’s second
secret block (lines 5-11) calls unwrap_secret and its variants to access secret values with labels {a},
{b}, and {a, b}—all of which are no more secret than the block’s label {a, b}.

Note that code outside of a secret block cannot call unwrap_secret() or its variants because they
are not defined functions—they are recognized only by secret_block!, as described in §4.2.1.

Rust’s traits are analogous to Java’s interfaces and C++’s abstract methods, but traits allow more expressive type constraints.
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struct Secret<Type: SecretValueSafe, SecrecylLabel: Label>

(a) Secret expressions and variables with non-empty secrecy have type Secret<T,L>. The trait SecretValueSafe,
defined in §4.2.2, restricts what values can be wrapped in Secret.

Struct Traits implementing struct

Label_Empty | Label, MoreSecretThan<Label_Empty>

Label_A Label, MoreSecretThan<Label_Empty>, MoreSecretThan<Label_A>

Label_B Label, MoreSecretThan<Label_Empty>, MoreSecretThan<Label_B>

Label_AB Label, MoreSecretThan<Label_Empty>, MoreSecretThan<Label _A>,
MoreSecretThan<Label_B>, MoreSecretThan<Label_AB>

(b) All possible labels for two policies, a and b, and traits defining a partial order of labels

secret_block! (label { body })

(c) Secret block, which executes body with secrecy label label

Type
Operation Evaluates to constraint
unwrap_secret(ov: Secret<T,L>) -> T Inner value Lclp
unwrap_secret_ref(v: 8Secret<T,L>) -> &T Immutable ref. to inner value | L C Ly
unwrap_secret_mut_ref(v: &mut Secret<T,L>) -> &mnut T | Mutable ref. to inner value L=1Lg
wrap_secret(v) Secret<_,Lg>: :new(v) N/A

(d) Operations on Secret values in a secret block with secrecy label L
#[side_effect_free_attr]
fn func(params) -> retType { body }
(e) Annotation for side-effect-free functions. Secret blocks may (transitively) call only side-effect-free functions.
#[derive(InvisibleSideEffectFree)]
struct s { ... }

(f) Annotation for application types that are used in secret blocks

Operation Evaluates to
Secret<T,L>::declassify(self) -> T Inner value
Secret<T,L>::declassify_ref(&self) -> &T Immutable reference to inner value
Secret<T,L>::declassify_ref_mut(&nut self) -> &mut T | Mutable reference to inner value

(g) Declassify operations on Secret values

Fig. 3. CocooN’s programming model.
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A secret block calls wrap_secret(e) to create a new Secret value with the same secrecy label as the
block. Fig. 2’s first secret block (line 3) evaluates to a secret value created by a call to wrap_secret.
The second secret block (lines 5-11) has no return value.”

A secret block can call application-defined functions only if they have been annotated as side
effect free using a Cocoon-provided attribute macro, #[side_effect_free_attr] (Fig. 3e). Side-effect-
free functions in turn can only call other side-effect-free functions.

To use a custom type in secret blocks, an application must annotate the type as side effect free
by annotating it with #[derive(InvisibleSideEffectFree)] (Fig. 3f).

The running example in Fig. 2 does not define any side-effect-free functions or types, but Figs. 12—
14 in §5.3 do.

Declassification. CocooN allows high-secrecy values to flow to low-secrecy values through the
declassify() method and its variants (Fig. 3g), which return the unwrapped value. Line 13 in Fig. 2
declassifies the secret value of count. Declassification is a trusted operation and should be audited
by developers.

4.2 How CocooN Ensures Noninterference

To ensure noninterference, Cocoon restricts the behavior of secret blocks. Given a secret block
secret_block! (L, body), COCOON restricts the expression body in the following ways:

e body must conform to IFC rules, e.g., it cannot read a value with higher secrecy than the
block. §4.2.1 describes how Cocoon enforces IFC rules.

e body must not have side effects such as sending data to a socket or writing to a variable
visible outside of the block. §4.2.2 and §4.2.3 describe how CocoonN enforces side effect
freedom, essentially providing a rudimentary effect system.

To enforce these restrictions, Cocoon leverages Rust procedural macros, which are procedures that
operate on compiled code at compile time. Type information is not available at macro expansion
time, and so the procedural macro operates on an untyped abstract syntax tree (AST).

Throughout §4.2.1-§4.2.3, we describe and refer to Figs. 4 and 5, which provide details of the
procedural macros’ transformations.

4.2.1 Restricting the Flow of Secret Values. CocooN enforces IFC rules on the flow of secret values
using transformations by the secret_block! procedural macro.

secret_block! expands unwrap_secret(e) to a call to a function that requires e’s label to be no more
secret than the block’s label L (similarly for unwrap_secret_ref(e)). For unwrap_secret_mut_ref(e), the
type constraint requires e’s label to be equal to L because mutable references allow both writing
and reading the referent. Fig. 5a shows details of these transformations, by defining the function
(e, isExec) for when e is an unwrap_secret (or wrap_secret) expression. In general, the text uses
(e, isExec) to define compile-time transformations performed by the macros on expression e (the
isExec parameter is explained later).

To ensure that a secret block returns a secret with the same label as the block, the macro trans-
formation of secret_block! (L { body }) ensures that body returns a Secret value with label L. Fig. 4a
shows how this works: The macros transform the secret block to a call to Cocoon: :call_closure(),
which must have type Secret<T,L> (or a tuple of secrets with label L). Note that the macros generate
both executed and nonexecuted versions of the code (hence the if true {...} else {...} in Fig. 4a)
for reasons explained in §4.2.3.

"Technically, the block’s body’s return type is the empty type, (), which implements SecretTrait<L>, as required by the
secret block (Fig. 4a).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 100. Publication date: April 2024.



Cocoon: Static Information Flow Control in Rust 100:9

Application code:

secret_block! (L, body)

Macro-transformed code:

if true {
::Cocoon::call_closure::<L,_, >(|| -> _ {
::std::panic::catch_unwind(::std::panic::AssertUnwindSafe(|| {
7(body, F)
1))
}.unwrap_or_default())
} else {

::Cocoon: :call_closure::<L,_, >(|| -> _ { z(body,T) })
}

Definition of call_closure:

fn call_closure<L, F, R>(clos: F) -> R
where F: FnOnce() -> R + VisibleSideEffectFree, R: SecretTrait<L>
{ clos() }

Note: SecretTrait<L> is a trait implemented by Secret<T,L> and tuples of Secret<T,L>, allowing secret blocks
to return multiple secret values.

(a) How the secret_block! macro expands secret blocks. As the text explains, the macro generates both executed
(if true) and nonexecuted (else) versions of the block’s body.

Application code:

#[side_effect_free_attr]
fn f(params) -> r { body }

Macro-transformed code:

fn __f_secret_trampoline_unchecked(params) -> r { z(body, T) }
fn __f_secret_trampoline_checked(params) -> r { z(body,F) }
#[inline(always)]
unsafe fn f(params) -> ::Cocoon::Vetted<r> {
::Cocoon: :Vetted: :<r>: :wrap(__f_secret_trampoline_unchecked(args))

3

(b) How the #[side_effect_free_attr] macro expands a side-effect-free function f. As the text
explains, the macro generates both executed (__f_secret_trampoline_unchecked) and nonexecuted
(__f_secret_trampoline_checked) versions of f.

Fig. 4. Outer transformations performed by CocooN’s procedural macros on secret blocks and side-effect-free
functions. r(expr, isExec) generates transformed code for expression expr at macro expansion time, where
isExec is a boolean indicating whether the transformation is for the executed or nonexecuted version of
generated code. Fig. 5 details how t(expr, isExec) is defined for various kinds of expressions.
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expr 7 (expr, isExec)

unwrap_secret(e) { let tmp = z(e,isExec); unsafe { Secret::unwrap::<L>(tmp) } }
unwrap_secret_ref(e) { let tmp = z(e,isExec); unsafe { Secret::unwrap_ref::<L>(tmp) } }
unwrap_secret_mut_ref(e) | { let tmp = z(e, isExec); unsafe { Secret::unwrap_mut_ref::<L>(tmp) } }
wrap_secret(e) { let tmp = 7(e,isExec); unsafe { Secret::new::<_,L>() } }

(a) Transformations performed by CocooN’s procedural macros on secret blocks only (i.e., not on side-effect-
free functions). L is the secret block’s label. Secret is an abbreviation for : :cocoon: : Secret.

expr 7 (expr, isExec)

callee(e;, ez, ...) let tmpl = 7(eq, isExec); let tmp2 = z(ey, isExec); ...

if callee is not allowlisted | unsafe { callee(tmpl, tmp2, ...) as ::cocoon::Vetted<_> .unwrap() }
callee(e;, ez, ...) check_ISEF (callee(z(es, isExec), t(ez,isExec), ...))

if callee is allowlisted

(b) Transformations performed by CocooN’s procedural macros on calls.

expr 7 (expr, F) 7(expr, T)
literal (constant) | literal literal

path (var. name) { let tmp = &path; unsafe { check_ISEF_unsafe(tmp) } } | path

el + e ::Cocoon: : SafeAdd: :safe_add(z(eq, F), 7(ez, F)) (e, T) + (e, T)
e; && e 7(e1, F) && t(ey, F) (e, T) && (e, T)
e = e *check_not_mut_secret(&mut z(ej, F)) = 7(es, F) (e, T) = (e, T)
&e check_ISEF(&(z(e, F) )) &z(e, T)

*e *x(7(e, F)) *7(e, T)

e.field 7(e, F).field (e, T).field

if e; { e3 } if (e, F) { 7(ey, F) } else { 7(es, F) } if r(e;, T) { 7(es, T) 3
else { e3 } else { 7(es, T) 3}

(c) Transformations performed by CocooN’s procedural macros on secret blocks and side-effect-free functions.

Fig. 5. Expression-level transformations performed by Cocoon’s procedural macros on secret blocks and
side-effect-free functions. t(expr, F) and t(expr, T) represent syntactic expansions for the nonexecuted and
executed code paths, respectively. check_ISEF stands for “check invisible side effect free”

4.2.2 Restricting Syntactically Visible Side Effects. To ensure that a secret block’s body has no side
effects that could violate noninterference, CocooN’s procedural macros perform transformations
on the body. Here we describe how the macros handle side effects that are syntactically visible to
the macros, and §4.2.3 describes how the macros handle side effects that are syntactically invisible
to the macros.

Restricting Mutation-Based Side Effects. To ensure that a secret block cannot perform writes
visible outside of the block—except for writes to mutable Secret values, which are allowed—Cocoon
leverages Rust’s ownership and mutability constraints. CocooN prevents a secret block from
modifying non-Secret variables in its surrounding environment by forbidding the secret block’s
body, which is implemented as a closure, from capturing non-secret variables by mutable reference.
Cocoon introduces the trait visibleSideEffectFree (Fig. 6) to denote that the block does not capture
variables in its environment by mutable reference. (In Rust, a closure implements a trait only if all
the variables it captures implement that trait.) Cocoon leverages Rust’s auto traits and negative
implementation features to define visibleSideEffectFree so that every type automatically implements
it except for types that (transitively) contain non-secret mutable references (&nut T except for

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 100. Publication date: April 2024.



Cocoon: Static Information Flow Control in Rust 100:11

Trait Description Definition
VisibleSide- Limits mutably captured values of se- | (Immutable V (&nut Secret<_,_>)) A
EffectFree cret blocks &InvisibleSideEffectFree

SecretValueSafe Restricts T in Secret<T,L> to im- | Immutable A InvisibleSideEffectFree
mutable, block-safe types

Immutable Types without interior or regular mu- | =(UnsafeCell<_>) A =(&nut _)

tability
InvisibleSide- Types that can be used in secret blocks | Implemented individually for built-in and ap-
EffectFree plication types

Fig. 6. Traits used by CocooN to enforce programming model restrictions to ensure side effect freedom.

&mut Secret<_,_>) or interior-mutable cells (types that implement Unsafecell, e.g., Refcell<T>).8 Asa
result, a closure that implements VisibleSideEffectFree cannot mutably capture non-Secret values.
The only possible side effect of mutation is through secret values, which Cocoon mediates.

To prevent a secret block from assigning to a mutable Secret variable without going through
unwrap_secret_mut_ref (potentially leaking a more-secret value through an implicit flow), secret_block!
transforms every assignment expression e, = e, by wrapping e; in a call to Cocoon function
check_not_mut_secret(), as Fig. 5¢ shows. The call requires statically that e;’s type is (transitively)
not Secret, by using Rust auto traits and negative implementations.

CocooN must limit mutation in secret blocks, but not in functions called (transitively) by secret
blocks: In Rust, functions (unlike closures) cannot mutate memory accessible outside of the function
except through parameters to the function.

CocooN must also ensure that values of type T wrapped in a Secret<T, Label> are not interior
mutable to avoid, for example, a secret block that reads high-secrecy data using unwrap_secret()
instead of unwrap_secret_mut() to modify an interior-mutable value with low secrecy. Cocoon
disallows interior-mutable types in a Secret by requiring that T implement a Cocoon-defined trait
SecretvValueSafe (Fig. 6) that disallows mutable types.

Prohibiting Calls to Functions with Side Effects. To ensure side effect freedom, CocooN must
ensure that every function called (transitively) by secret blocks is side effect free. Applications
can annotate side-effect-free functions with the #[side_effect_free_attr] macro (introduced in §4.1
and Fig. 3e), which causes the function’s body to be transformed to ensure side effect freedom,
as Fig. 4b shows. However, it is not straightfowrard to ensure that every function called from a
side-effect-free context (i.e., a secret block or side-effect-free function) is side effect free, because
type information is not available at macro expansion time.

To address this challenge, the procedural macro #[side_effect_free_attr] transforms the re-
turn type of the annotated function from R to Vetted<R>, a CocooN-provided type. COCOON’s
procedural macros also rewrite all function calls within side-effect-free contexts from f(...) to
(f(...) as Vetted<rR>).value, mandating that f return vetted<rR>. As a result, every callee function
must have been marked side effect free. Fig. 5b shows how the macros transform calls in side-effect-
free contexts.

Note that unverified functions cannot get around this requirement by directly returning vetted<r>.
First, a function cannot simply construct a Vetted value and return that function’s return value
because the constructor of Vetted is marked as unsafe to prevent unverified code from creating
Vetted return values. Second, a function cannot call another function that has been transformed by

8 Attempting to construct a custom “unsafe cell” type would require unsafe (and would be undefined behavior), thus
forgoing Cocoon’s guarantees.
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the #[side_effect_free_attr] macro to obtain a Vetted value, because the macro marks each function
it generates as unsafe to disallow calling the vetted function directly (without using unsafe).

Since the #[side_effect_free_attr] macro generates a function marked unsafe, the untrusted
function body could contain expressions that are only permitted in unsafe Rust, although the original
function was not marked unsafe. The #[side_effect_free_attr] macro prevents this by generating a
second function that contains the function body. This second function omits the unsafe modifier
(assuming the original function did the same), thus preventing safety violations. Fig. 4b shows how
the the macro transforms an annotated function.

In addition to allowing calls to functions marked side effect free in side-effect-free contexts, the
procedural macro allows calls to Rust Standard Library functions that the Cocoon developers
(i.e., we) have “allowlisted” as being side effect free. Cocoon’s procedural macro includes a list of
functions that we have determined to be side effect free. Because the procedural macro operates
on tokens and has no type information, calls to allowlisted library functions from side-effect-free
contexts must be fully qualified (e.g., : :std: :string: :String: :1en()) to prohibit calls to same-named
functions with side effects. Allowlisting of library functions adds to the trusted codebase and could
be fragile (§4.4).

Thus, applications can mark any function as side effect free, and the compiler will check that the
function is side effect free and that side-effect-free contexts call only side-effect-free functions. In
order for a secret block to have a side effect, e.g., by sending data to a socket, it must (transitively)
call a function not marked side effect free, which cannot pass the procedural macros’ checks.

4.2.3  Restricting Syntactically Invisible Side Effects. So far we have described how Cocoon prohibits
side effects that are visible to procedural macros. However, Rust provides a few syntactically invisible
ways to call functions—through overloaded operators, deref coercion, and custom destructors—
which are impossible for procedural macros to detect.

To prohibit syntactically invisible side effects in side-effect-free contexts, CocooN’s procedural
macros transform every expression in a way that ensures that it cannot compile if it has a syn-
tactically invisible side effect. The procedural macros actually generate two versions of code in
side-effect-free contexts: one that executes and one that does not. In the executed version, over-
loadable operators and expressions are not transformed by the procedural macro (but unwrap_secret
and wrap_secret calls are still expanded). This version is the code that actually executes. In the
nonexecuted version, the procedural macro does transform operators and expressions as described
below, but the generated code is unreachable. As such, the expanded version causes compiler errors
if CocooN’s requirements are violated, but it never executes. Fig. 4 shows the transformations
performed on secret blocks and side-effect-free functions to generate the executed and nonexecuted
versions. The executed code and nonexecuted code are generated by r(expr, isExec), which Fig. 5
provides details of.

CocooN generates executed and nonexecuted versions for two reasons. First, transforming a path
expression (i.e., use of a variable) requires violating borrowing rules: The transformation inserts a
call to check_ISEF_unsafe, which needs to take a reference to the path but return the expression, as
Fig. 5¢’s path row shows. It is generally unsafe to allow this generated code to execute; generating
it in the nonexecuted version means it only affects whether the code compiles. Second, avoiding
most transformations in the executed version may reduce compile- and run-time costs of the
transformations.

Restricting Overloaded Operators. Rust allows applications to overload certain operators (e.g., +
and <) by defining custom functions for their behavior. For example, if an application overloads the
+ operator for certain types, the expression a + b might no longer be side effect free, depending on
the types of a and b. CocooN’s procedural macro cannot detect whether a + b invokes an overloaded
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operator because it operates on a parse tree without type information. To address this problem,
CocooN'’s procedural macro replaces all calls to overloadable operators with a call that implements
the default operator behavior.

Specifically, Cocoon provides a series of internal traits (e.g., cocoon: : SafeAdd to replace std: :ops::
Add) that are essentially copies of the standard Rust traits for each overloadable operator. Cocoon
implements these traits for all applicable standard Rust types. Cocoon’s procedural macros replace
er + e; With ::Cocoon: :SafeAdd: :safe_add(e;, e;) in side-effect-free contexts. In this way, Cocoon
allows the use of overloadable operators only on standard Rust types, for which the behavior is
the original, Rust-standard side-effect-free behavior. Any use of these operators on application-
defined types within a side-effect-free context results in a compilation error. Fig. 5¢ shows this
transformation for e; + e;; the transformation is analogous for other overloadable operators.

Code cannot circumvent this restriction by overloading operators on built-in Rust types (e.g.,
numeric types): Overloadable operators are defined by built-in Rust traits, and Rust does not permit
a crate to implement a trait for a type unless the crate defines the trait or the type (or both).

Restricting Deref Coercion and Custom Destructors. One of Rust’s features is that, in attempt-
ing to find a match for a function or struct signature, the Rust compiler performs deref coercion,
automatically inserting dereference calls until it finds a match for the signature or cannot deref-
erence any further. For example, the compiler automatically converts s.area() to s.deref().area()
if s has type &shape and method Shape::area() exists. Likewise, the compiler converts b.area() to
b.deref().deref().area() if b has type &Box<sShape> and method Shape::area() exists. This situation
presents a challenge because a call to s.area() can implicitly invoke s.deref() or s.deref().deref() in
away that is invisible to Cocoon’s procedural macro. While Deref: : deref () and DerefMut: : deref_mut ()
have no side effects for built-in types, an application could define a deref() or deref_mut() method
that has side effects.

Another problematic Rust feature is that applications can define custom destructor behavior. The
compiler inserts a drop (i.e., deallocation) of a value in the code where the value dies. The application
can provide custom behavior on drop by implementing the Drop trait on an application type and
providing an implementation of Drop: :drop()—which could have a syntactically invisible side effect.

To handle these operations, the procedural macros insert code to ensure that every value used
by or created in a side-effect-free context does not provide a custom implementation of Deref,
DerefMut, or Drop. COCOON provides a trait InvisibleSideEffectFree that can be implemented by any
type that (1) does not provide a custom implementation of Deref: :deref(), DerefMut: :deref_mut(),
or Drop: :drop() and (2) contains only InvisibleSideEffectFree values (Fig. 6). CocooN implements
InvisibleSideEffectFree for conforming Standard Rust types. For example, CocooN implements
InvisibleSideEffectFree for i64, for Box<T: InvisibleSideEffectFree>, and for many other types. Con-
forming application types do not automatically implement InvisibleSideEffectFree, but an applica-
tion can annotate a type definition with #[derive(InvisiblesideEffectFree)] (Fig. 3f), which invokes
a procedural macro that transforms the type’s definition to ensure that (1) it does not implement
Deref, DerefMut, or Drop (by generating negative implementations of these traits) and (2) all of the
type’s contained values have types that implement InvisibleSideEffectFree (by generating type
constraints on the contained values).

To ensure that side-effect-free contexts only use and create InvisibleSideEffectFree values, Co-
CcooN’s procedural macro in general transforms every expression e to check_ISEF(e) as Figs. 5b and
5¢ show. The expression check_ISEF(e) simply returns the value e evaluates to, but e’s type must
implement InvisibleSideEffectFree to compile.
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Expansion of 'secret_block!(lat::AB { wrap_secret(@) }) :

if true {
/* Expansion by z(e, T) =*/
::cocoon::call_closure::<lat::AB, _, _>(
ar->_{
let result = ::std::panic::catch_unwind(::std::panic::AssertUnwindSafe(]|| {

/* Expansion of wrap_secret(@) =*/
let tmp = @; unsafe { ::cocoon::Secret::<_, lat::AB>::new(tmp) }
1)) .unwrap_or_default();

result
1))
} else {
/* Expansion by z(e,F) */
::cocoon::call_closure::<lat::AB, _, _>(
ar->_{

/* Expansion of wrap_secret(@) =*/
unsafe { ::cocoon::Secret::<_, lat::AB>::new(@) }

19D

Fig. 7. The secret block at line 3 of Fig. 2, after expansion by CocooN’s procedural macro secret_block!.

Not every kind of expression needs to be wrapped in check_ISEF (), as Fig. 5¢ shows. For example,
the field expression e.field does not need to be wrapped because it is InvisibleSideEffectFree as
long as e is InvisibleSideEffectFree (e still needs to be wrapped in check_ISEF() in general).

Note that secret blocks are not prevented from capturing non-InvisibleSideEffectFree types.’
However, it is sufficient for macro transformations to prevent secret blocks from creating or using
such types.

Handling Exceptional Flow. To avoid illegal implicit flows, a secret block must have a single static
exit. Note that even if the block’s body executes return, continue, or break, control always continues
immediately after the block, since a secret block’s body is wrapped in a closure (Fig. 4a).

A remaining problem are panics, which Rust generates for unexpected or unrecoverable errors. By
default, a panic aborts the execution, creating a termination channel if a secret block (or code it calls)
panics. Worse yet, the application might catch a panic outside of a secret block, creating an implicit
flow. To avoid this, every secret block catches any panics within it (using std: :panic: :catch_unwind).
The secret block handles a caught panic by returning a Secret-wrapped default value (Secret-
wrapped types must implement std: :default: :Default) and continuing execution after the block
normally, as Fig. 4a shows.

4.2.4 Example Transformation. Figs. 7 and 8 show how the secret_block! procedural macro trans-
forms Fig. 2’s first and second secret blocks, respectively.

9Specifically, VisibleSideEffectFree, which defines types that can be captured by secret blocks, does not negatively
implement all InvisibleSideEffectFree types (because this does not seem possible due to limitations of auto traits
and negative implementations). Instead, VisibleSideEffectFree excludes implementation of all &T where T does not
implement InvisibleSideEffectFree (Fig. 6), which disallows captures of non-InvisibleSideEffectFree variables by
reference, but not by value.
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if true {
/* Expansion by z(e,T) */
::cocoon::call_closure::<lat::AB, _, _>(
ar->_{
let result = ::std::panic::catch_unwind(::std::panic::AssertUnwindSafe(]|| {

if /% Expansion of unwrap_secret(available) =*/

{ let tmp = available;
unsafe { ::cocoon::Secret::unwrap::<lat::AB>(tmp) } } &&

/* Expansion of unwrap_secret_ref(::std::option::Option::unwrap(
::std::collections: :HashMap: :get(&bob_cal, &day))) =*/
*{ let tmp = ::std::option::Option::unwrap(
::std::collections: :HashMap: :get(&bob_cal, &day));
unsafe { ::cocoon::Secret::unwrap_ref::<lat::AB>(tmp) } }

{
/* Expansion of *unwrap_secret_mut_ref(&mut count) += 1; =x/
*{ let tmp = &mut count;
unsafe { ::cocoon::Secret::unwrap_mut_ref::<lat::AB>(tmp) } } += 1;
}
)
.unwrap_or_default();
result
1)
)
} else {
/* Expansion by z(e,F) */
::cocoon: :call_closure::<lat::AB, _, _>(
I =>_{

if /x Expansion of unwrap_secret(available) =*/
unsafe {
::cocoon: :Secret: :unwrap: :<lat: :AB>(
{ let tmp = &(available); unsafe { ::cocoon::check_ISEF_unsafe(tmp) } }) } &&
/* Expansion of unwrap_secret_ref(::std::option::Option::unwrap(
*unsafe {
::cocoon: :Secret: :unwrap_ref::<lat::AB>({
::cocoon: :check_ISEF(::std::option::Option::unwrap({
::cocoon: :check_ISEF(::std::collections: :HashMap::get(
{ ::cocoon::check_ISEF_ref(&bob_cal) },
{ ::cocoon::check_ISEF_ref(&day) })) })) }) }

/* Expansion of xunwrap_secret_mut_ref(&mut count) += 1; =x/
::cocoon: : SafeAddAssign: :safe_add_assign(

&mut *(unsafe { ::cocoon::Secret::unwrap_mut_ref::<lat::AB>(
{ ::cocoon::check_ISEF((&mut count)) })

B, 1;

H

Fig. 8. The secret block at lines 5-11 of Fig. 2, after expansion by CocooN’s procedural macro secret_block!.
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4.3 Implementation Details

Our prototype implementation of CocoonN is divided into two Rust crates—one that defines the
procedural macros and another that provides all other Cocoon functionality—since procedural
macros must be defined in their own crate. The implementation depends on a nightly version of Rust
(1.69.0-nightly) since it uses a few Rust features that are not yet stable: auto traits, negative traits,
function traits, and unboxed closures. The implementation’s source code is publicly available.!’

4.4 Security Guarantees and Threats

Cocoon'’s general guarantee (which we have not proved) is termination-insensitive noninterference
in the absence of declassify operations and unsafe Rust code (§3.2). Here we discuss a few caveats
of CocooN’s guarantees.

Trusted Codebase. Since we have not proved that allowlisted Rust Standard Library functions are side
effect free, allowlisted functions must be trusted to be side effect free (just like Cocoon’s codebase
must be trusted). Identifying library functions as side effect free can be tricky. For example, vec: :sort
should not be allowlisted because it calls an implementation of ord::cmp passed as a parameter,
which could be an application-defined function with side effects. As another, hypothetical example,
a function with a side-effect-free specification might have side effects internally (and perhaps only
in a future implementation of the library).

In general, every component of an application (whether part of the application’s crate or an
external crate) must be ported to Cocoon, or it must be explicitly trusted by declassifying secret
data before sending it to the component. Porting components to CocooN provides an incremental
mechanism for reducing the trusted codebase.

Programmers must audit not only any declassify operations or unsafe Rust code in their applica-
tions, but also the application’s Cargo. toml file, which specifies the names and locations of external
crates including CocooN and the Rust Standard Library.

Macros. What if application code calls an application macro that transforms a secret block (e.g.,
evil_macro! (secret_block!(...)))? Fortunately, the Rust compiler’s macro expansion algorithm itera-
tively expands macros, starting from the outermost macro. The resulting expansion is repeatedly
expanded, until no macros are left in the expansion. If an application macro expands to contain a
call to Cocoon’s macro, CoCOON’s macro’s expansion is opaque to the application macro.

CocooN requires all accesses to secret values to occur in macros—except for calls to declassify()
methods, which could be transformmed by an application macro as described above. However, this
security hole is mitigated by the fact that declassify() calls must already be audited. Alternatively,
one could modify CocooN’s programming model so that declassification uses a macro instead of a
method.

4.5 Limitations

CocooN’s design has some drawbacks that limit its practicality as a fine-grained IFC approach. It
may be possible to remove these limitations in future work.

CocooN’s design supports only static secrecy labels, not integrity labels or dynamic labels (i.e.,
labels as run-time values).

The current design does not allow the use of overloaded operators in secret blocks. Likewise, the
current design disallows application types that implement custom dereference (Deref and DerefMut)
and destructor (Drop) operations. We believe that this is not very restrictive because these traits

Ohttps://github.com/PLaSSticity/Cocoon-implementation
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are most useful for implementing abstract data types (ADTs). In fact, the Rust documentation!!
emphasizes that Deref should only be implemented by programmers when defining smart pointers.
As a result, only a few “kernel” ADTs are needed for most software.

Secret blocks cannot use macros. Due to the Rust compiler’s macro expansion algorithm, which
expands the outermost macro first and iteratively works its way through the resulting expansion
(§4.4), Cocoon cannot inspect a macro’s expansion within a secret block and thus cannot certify that
it is side effect free. It may be possible to extend Cocoon’s macro to recognize known macros such
as vec! and generate code using the appropriate macro expansion, but we have not implemented this.

Secret blocks and side-effect-free functions cannot use interior mutability. In our experience,
interior mutability is common, but is not typically necessary: In the evaluated programs, we were
able to refactor the code in all side-effect-free code to not use interior mutability.

Calls from side-effect-free code to allowlisted Rust Standard Library functions must be fully qual-
ified (§4.2.2). As an alternative that we have not implemented, Cocoon’s procedural macros could
rewrite every non-fully qualified call that syntactically appears to be a call to a Rust Standard Library
function, to a fully qualified call. For example, s.trim() would be rewritten as : :std::string::String::
trim(). To avoid ambiguity of function names, Cocoon could disallow side-effect-free application
functions from having the same name as any allowlisted library function.

5 EVALUATION

This section evaluates the usability and performance of Cocoon. We integrated Cocoon with
two applications (Spotify TUI and Servo) and also wrote Cocoon and non-Cocoon versions of
a Battleship program. These case studies show the usability of Cocoon: Cocoon can be used by
real applications to enforce security policies, with modifications commensurate with the amount
of code that deals with secret values. A performance evaluation shows no detectable impact on
executable size or run-time performance, and modest compile-time overheads for real applications.

All experiments were executed on a quiet machine with a 16-core Intel Xeon Gold 5218 at 2.3 GHz
with 187 GB RAM running Linux.

5.1 Case Study: Spotify TUI

Spotify TUI (text-based user interface) is a Spotify client written in Rust that allows an end user to
interact with Spotify from a terminal. We chose it as a case study because it is a popular project on
GitHub'? with over 13,000 “stars.”

We modified Spotify TUI to use CocooN to protect a value called the client secret, which is
akin to a user password. The client secret is a 32-digit hexadecimal string that Spotify TUI uses to
authenticate with the Spotify API server. Leaking the client secret to an adversary would allow the
adversary to make Spotify API calls on behalf of the victim user.

Spotify TUI receives the client secret from the command line, or from a file that a previous
execution of Spotify TUI wrote the client secret to. We modified these code locations to wrap the
client secret as a Secret<sString,Label_A>. (For this application we use a simple label scheme in which
{a} and 0 are the only labels, representing secret and non-secret values, respectively.) Spotify TUI
supports sending the client secret outside of the application in two ways: (1) writing the client
secret to a file; and (2) sending the client secret to two external Rust libraries, RSpotify (a Rust
wrapper for the Spotify Web API) and Serde (a Rust serialization library).

By retrofitting the Spotify TUI application to use Cocoon, we implicitly treat Spotify TUI as
untrusted (except for its declassify calls and any unsafe blocks). Spotify TUI must declassify the

Mhttps://doc.rust-lang.org/1.23.0/std/ops/trait. Deref html
2https://github.com/Rigellute/spotify-tui
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1 fn validate_client_key(key: &str) -> Result<()> {

2 if key.len() != EXPECTED_LEN {

3 Err(Error::from(std: :io::Error::new(

4 std::io::ErrorKind: :InvalidInput,

5 format! ("invalid length: {} (must be {})", key.len(), EXPECTED_LEN,),
6 »N)

7 } else if l!key.chars().all(|c| c.is_digit(16)) {

8 Err(Error::from(std: :io: :Error::new(

9 std::io::ErrorKind: :InvalidInput,

10 "invalid character found (must be hex digits)",
11 »N)

12 } else {

13 Ok(()

14 3

15 %}

Fig. 9. Spotify TUI code that validates that the client secret is a 32-digit hexadecimal string.

1 fn validate_client_key(key: &Secret<String, Label_A>) -> Result<()> {
2 const EXPECTED_LEN: usize = 32;

3 let sec_error_string = secret_block! (Label_A {

4 let u_key = unwrap_secret_ref(key);

5 let mut is_hex = true;

6 for ¢ in ::str::chars(&u_key) {

7 if !::char::is_digit(c, 16) {

8 is_hex = false;

9 3

10 3

11 let mut error_string = ::std::string::String::from("");

12 if ::std::string::String::len(&u_key) != EXPECTED_LEN {

13 error_string = /x create string "invalid length: {key.len()} (must be {EXPECTED_LEN})" =*/;
14

15 } else if lis_hex {

16 error_string = ::std::string::String::from("invalid character found (must be hex digits)");
17 }

18 wrap_secret(error_string)

19 s

20

21 let error_string = sec_error_string.declassify();

22 if lerror_string.is_empty() {

23 Err(::std::error::Error::from(::std::io::Error::new(

24 ::std::io::ErrorKind: :InvalidInput,

25 error_string,

26 »)

27 } else {

28 Ok()

29 3}

30 3}

Fig. 10. Modified version of Fig. 9’s that uses Cocoon.

client secret in order to write it to a file and to send it to RSpotify and Serde (because we have not
integrated these components with Cocoon), implicitly treating the OS, RSpotify, and Serde as part
of the trusted codebase. Removing RSpotify and Serde from the trusted codebase would require
retrofitting them with Cocoon by annotating their side-effect-free functions (§4.4).

As an example, Fig. 9 shows a Spotify TUI function that validates that the client secret is 32
hexadecimal digits, returning a Result with value ok or Err. Fig. 10 shows how we changed the code
to account for the client secret being a Secret value.

To perform the validation logic, the modified code creates a secret block to check that each digit
within the client secret is a hexadecimal character. Note that we had to manually implement the
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Table 1. Programmer burden for integrating three applications with CocooN, in terms of lines of code modified,
and number of calls to declassify methods.

Lines of source code

Program Original CocooN Inserted Deleted | Declassify calls
Spotify TUI 12,169 12,282 167 54 17
Servo 397,141 397,174 77 44

Battleship 383 410 47 20 2

Table 2. Comparison of performance costs for applications without Cocoon and versions that use Cocoon.
Execution times include 95% confidence intervals based on multiple trials.

Compile time (s) Run time Executable size (bytes)
Program Original CocooN Original CocooN| Original  CocoonN
Spotify TUI| 14.395 + 0.031 14.395 + 0.053|2868.711 £ 5.612ns 2822.784 +5.662ns| 15,779,320 15,779,088
Servo 312.579 +4.354 309.983 £4.262| 183.817 +0.540s  184.086 + 0.5295|403,548,416 403,547,984

Battleship 2.068 £ 0.003  2.321 £ 0.002| 30.240 + 0.254ms 29.490 + 0.272ms| 6,727,464 6,740,248

string formatting and hexadecimal character check, as opposed to using |c| c.isdigit(16), since
the Cocoon implementation does not support closure calls within secret blocks.

The secret block populates an error string, which it leaves empty in the event of no error, and
the retrofitted code declassifies the error string because, in the event of an error, it must report the
error. Declassifying the error string is acceptable leakage because knowing whether the client secret
is correctly formatted is not security sensitive. The retrofitted code in Fig. 10 ultimately returns
a Result, just as in Fig. 9. Thus, Fig. 10 achieves the same behavior for the client secret without
declassifying the secret—but rather by declassifying only whether the input client secret is not in
the correct format, which is not exploitable information.

Empirical Results. Table 1 shows that the annotation burden of protecting the client secret with
Cocoon is small: To retrofit Spotify TUIL, we inserted 167 lines of code and removed 54 lines in a
codebase of over 12,000 lines.

Table 1’s last column shows how many times a call to a Secret: :declassify method appears in the
retrofitted code of Spotify TUL In 14 out of 17 cases, the code declassifies secret data because the
data needs to be sent outside of the Spotify TUI codebase. In these cases, the client secret leaves the
codebase to be passed to RSpotify or Serde, or to be written to the configuration file, all as intended.
In the other 3 out of 17 cases, the code declassifies values that do not consitute a secrecy leak. For
example, revealing the Result in Fig. 10 does not present a security risk.

Table 2 shows the performance cost of retrofitting Spotify TUI to use CocooN. We compiled
Spotify TUI 10 times, without and with integration with Cocoon, using the “release” optimization
level. According to the results, Cocoon has no detectable impact on compile time. Cocoon has a
modest impact on the size of the compiled binary; in fact, Cocoon’s code size is actually smaller
than the original’s by 232 bytes, for reasons that are unclear to us. In theory, the compiled code
should be identical, but the additional code generated by Cocoon’s macros could affect compiler
decisions such as how aggressively to inline.

To measure run time, we timed just the part of the code—configuration and authentication—that
deals with the client secret, in both the original and retrofitted Spotify TUIL As the results show, the
measured time is around 3 ps. We ran and timed this part of the code 100,000 times for each version
of Spotify TUI to account for high run-to-run variability. The CocooN version actually outperforms
the original version by about 1%. We are unsure of the reason for this (statistically significant and
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pub struct Response {
- pub body: Arc<Mutex<ResponseBody>>,
+ pub body: Arc<Mutex<Secret<ResponseBody,Label A>>,

pub fn get_body(&self) -> Arc<Mutex<ResponseBody>> {
if self.response_type == ResponseType: :0Opaque {

1

2

3

4 .
5 %

6

7

8

9 Arc::new(Mutex: :new(ResponseBody: :Empty))

10 } else {

11 self.body.declassify_transmute()
12 3}

13 3}

14

Fig. 11. Servo’s response structure. We modified the structure to use CocooN to enforce the same-origin policy.

repeatable) performance difference. Like the executable code size differences, the performance
difference could be the result of compiler decisions impacted by the extra code generated by
CoCOON’s macros.

5.2 Case Study: Servo

Servo is Mozilla’s browser engine written in Rust [Linux Foundation 2022]. We selected Servo
as an evaluation subject for two reasons. First, Servo is the sixth-most popular Rust project on
GitHub, with over 20,000 “stars.” Second, Servo is an influential project, e.g., Rust’s early design was
informed by Mozilla’s experiences creating Servo. We modified Servo to use CocooN to help enforce
a security policy that prevents different JavaScript programs from reading each others’ user data.

To make an HTTP request, JavaScript programs call the Fetch API, which the JavaScript engine
implements by calling into Servo’s implementation to perform the request and return a response.
Critically, JavaScript programs are only allowed to read HTTP responses if the programs share
the same origin web server, unless the response explicitly allows cross-origin sharing. Otherwise
a malicious JavaScript program such as a malicious advertisement could read sensitive user data
such as a password field from a login form from a trusted JavaScript program originating from a
different web server. This policy is called the same-origin policy. Responses from different origin
servers are considered opaque and cannot be read by JavaScript programs.

Fig. 11 shows how we modified Servo to use Cocoon. First, we modified the Response type, which
is instantiated after the client receives an HTTP response from an origin server following an HTTP
request, to use COCOON’s Secret type to protect the response body from being read except by using
declassification (lines 2 and 3).

Following this change, the application can read the response body only by declassifying it.
To implement the same-origin policy, the code should only return the declassified value if the
response type is not opaque, as shown in lines 8-12 of Fig. 11. If the response is opaque, the
code returns an empty body (line 9), in accordance with the Fetch API specification. To return
an Arc<Mutex<ResponseBody>>, the code calls a declassify_transmute() method (line 11) provided by
the CocoonN implementation; it is like other declassify methods but returns a T<Secret<u>> value
as a T<U>. CocooN implements declassify_transmute() safely without creating new data because
T<Secret<U>> is guaranteed to have the same layout as T<U>.

Instead of adding this same logic at the dozens of locations in Servo’s source code that read
Response: :body, we changed all such locations to instead call Response: : get_body () (line 7).
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Following this change, an opaque response’s body is not readable without a declassify operation
(or an unsafe block). Our changes explicitly reflect developers’ intentions and prevent future changes
from accidentally allowing reads when the response body is opaque.

Empirical Results. Table 1 (page 19) shows the effort to integrate Servo with Cocoon to protect the
response body. We modified dozens of lines of code to integrate Servo with CocooN. A significant
number of the lines we modified reside in Servo’s test suite (55). Many edits were made by our IDE’s
search-and-replace feature. At other source code locations, we had to introduce temporary variables
because of Rust’s lifetime analysis: Normally, the value returned by get_body immediately dies (i.e., it
is not usable by expressions later in the program). Storing the return value in a temporary variable
keeps the value alive while the response body is read.

Table 2 compares performance before and after integration with Cocoon. As for Spotify TUI, we
compiled Servo 10 times, with and without integration with Cocoon. We observe that there is no
statistically significant compile-time overhead imposed.!*> We ran Servo’s provided tests 20 times,
with and without integration with Cocoon. We find that Cocoon imposes no run-time burden
that is statistically significant (the confidence intervals overlap). The executable code sizes differ by
432 bytes; as for Spotify TUIL the exact reasons are unclear to us because of the substantial amount
of code involved and the complexity of the compiler.

5.3 Case Study: Battleship

Battleship is a classic game in which two players place ships at secret locations on a grid. The
object of the game is to sink the opponent’s ships by correctly guessing their locations. A player
wins by sinking all of the other player’s ships first.

JRIF and Jif each employed Battleship as a case study [Kozyri et al. 2016; Myers et al. 2006]. It is
interesting as a case study not only because it requires confidentiality, but also because secret data
(ship placements) are revealed throughout the game. An implementation of Battleship should not
reveal any of the locations of a player’s ships unless the opponent correctly guesses it first. We wrote
a multithreaded implementation of Battleship that uses Cocoon to enforce this secrecy policy.

Fig. 12 shows the data structure that represents each player’s game state. Line 1 uses the
#[derive(InvisibleSideEffectFree)] macro to assert that the data structure is safe to use from within
side-effect-free contexts. The struct uses a generic secrecy label (line 2) so that the player data
structure can represent both players using distinct labels. Line 3 shows how the ship_positions field,
which stores secret ship placement values, has Secret type. The player’s guesses are low-secrecy
values since they are announced to their opponent, and thus the value of guesses is not wrapped in
Secret.

Fig. 13 shows the Player initialization routine, which preserves the confidentiality of Player: :ship_
positions. Line 4 begins the secret block that initializes a player’s ship placements. The secret
block iterates through the ships in the game and places them onto a grid. The secret block
calls random_placement, which is annotated with #[side_effect_free_attr], demonstrating CocOON’s
effect system. Note that random_placement calls more application functions (legal_placement and
random_maybe_illegal_placement) whose definitions are not shown.

The main game logic is shown in Fig. 14. The players communicate over the channel chan. This
code prints Player A’s guesses (public information), then prompts Player A to make a new guess
(public information). The code then sends the guess to Player B over chan. Player B uses the same
channel to communicate whether the guess hit a ship or ended the game. Next, Player A receives

3For Servo, compile time includes the time for compiling all dependent crates because Servo does not use the standard Rust
build tools. For all of our other evaluated programs, compile time includes only the time to compile the target application.
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1 #[derive(InvisibleSideEffectFree)]
2 struct Player<L: Label> {
3 ship_positions: Secret<Grid<bool>, L>,
4 guesses: Grid<CellStatus>,
5 3
Fig. 12. Data structure representing each Battleship player’s game state.
1 impl<L: Label> Player<L> {
2 fn new() —-> Player<L> {
3
4 let ship_positions = secret_block! (L {
5 let ships = [Ship::Carrier, Ship::Battleship, Ship::Cruiser, Ship::Submarine, Ship::Destroyer];
6 let mut ship_positions: Grid<bool> = [[false; GRID_SIZE]; GRID_SIZE];
7 for ship in ships {
8 let placement: Placement = random_placement(&ship_positions, &ship);
9 place_ship(&mut ship_positions, &ship, &placement);
10 3
11 wrap_secret(ship_positions)
12 s
13
14 Player {
15 ship_positions,
16 guesses: [[CellStatus::Unguessed; GRID_SIZE]; GRID_SIZE],
17 }
18 }

}
20 #[side_effect_free_attr]
21 fn random_placement(grid: &Grid<bool>, ship: &Ship) -> Placement {

22 let mut ship_placement: Placement = random_maybe_illegal_placement(grid, ship);
23 while !legal_placement(&grid, ship_placement) {

24 ship_placement = random_maybe_illegal_placement(grid, ship);

25 3}

26 ship_placement

27 %}

Fig. 13. Battleship player initialization routines.

1 fn game_loop_a(mut player: Player<lat::Label_A>, chan: session_types::Chan<(), PlayerA>) {

2 let mut ¢ = chan.enter();

3 let mut player_b_guesses = [[CellStatus::Unguessed; GRID_SIZE]; GRID_SIZE];

4 loop {

5 // Not shown: Display user's previous guesses, prompt user to make new guess, send guess to opponent.
6

7 // Receive opponent's guess.

8 let (c3, guess) = c.recv();

9

10 // Decide if the opponent hit our ship.

11 let is_hit: bool = secret_block!(lat::Label A {

12 wrap_secret(is_occupied(unwrap_secret_ref(&player.ship_positions), guess.@, guess.1))
13 }) .declassify();

14

15 // Not shown: Update opponent's guesses. Exit loop if guess won the game.

16 }

17 }

18

19  #[side_effect_free_attr]
20 fn is_occupied(grid: &Grid<bool>, row: usize, col: usize) -> bool { (&grid[row])[col] }

Fig. 14. Main Battleship game loop.
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Player B’s guess (line 8). The game loop uses a secret block on line 11 to decide if Player B scored a
hit. This is necessary because the player’s ship placements are secret.

Empirical Results. Table 1 compares two versions of our Battleship implementation: one with
CocooN, and one without it. The CocooN changes affect a significantly larger fraction of the code
than for Spotify TUI and Servo. There are two calls to declassify in Battleship. Both occur in a
player’s game loop to decide if their opponent correctly guessed a ship location.

Table 2 shows the effect of Cocoon on compilation times, run times, and executable sizes, using
the same methodology as for Spotify TUI and Servo. Cocoon slows compilation time by 12%—
more than for Spotify TUI and Servo, which makes sense because a larger fraction of Battleship’s
code is in secret blocks and side-effect-free functions. Cocoon adds no run-time overhead—in fact,
as for Spotify TUIL, it decreases run time inexplicably, perhaps as a result of different compiler
optimization decisions—showing that the compiler effectively optimizes away the type-checking
scaffolding added by Cocoon. Finally, CocooN increases executable size by 0.1%, for unknown
reasons, possibly again due to compiler optimization decisions.

5.4 Performance-Focused Evaluation

To measure the worst-case performance impact of CocooN, we evaluated wrapping entire programs
in secret blocks. We used benchmarks from The Computer Language Benchmarks Game [Debian
benchmarksgame-team 2022], for which developers create the most efficient implementations pos-
sible, in order to compare the performance of different programming languages. We evaluated 9 out
of 10 available benchmarks [Debian benchmarksgame-team 2022], excluding reverse-complement
because it concurrently modifies a shared mutable buffer, which constitutes an inherent side effect.

To wrap entire programs in secret blocks, we placed the functions that perform the benchmark’s
primary calculations inside of a secret block, and annotated the blocks’ transitive callees as side-
effect-free functions. We refactored all functions’ code to adhere to CocooN’s programming model
constraints. We directed CocooN’s procedural macros to ignore calls to functions in external crates,
by wrapping them in unsafe blocks, which the procedural macro does not transform.

Table 3 shows results of each benchmark with and without our modifications to use Cocoon. We
observe that there are few statistically significant differences in run time (wall clock time) between
the original and Cocoon versions, and confidence intervals are tight enough that we can conclude
with high confidence that Cocoon adds negligible (< 1%) or nonexistent overhead—and it speeds
up programs as often as it slows them down, suggesting that statistically significant run-time
differences are due to indirect effects such as compiler inlining decisions or microarchitectural
sensitivities. (We also measured run-time memory usage, i.e., maximum resident set size, but
omitted the results from the table for brevity. The results show that space overhead is negligible or
nonexistent for all programs, i.e., confidence intervals are consistently small and overlapping.)

CocooN increases compile time because its procedural macro adds significant “scaffolding” code
for type checking, which is generally optimized away, so it does not translate to an increase in
run time. The table shows that compile-time overhead ranges from 7% to 16% for all programs
except n-body, which has 53% compile-time overhead. These overheads represent an extreme case
in which all code is transformed by Cocoon’s procedural macros. In practice, only a program’s
computations on secret values need to be transformed, which is why the compile-time overheads
for Spotify TUI and Servo are significantly lower (Table 2).

6 RELATED WORK

In the mid-1970s, Lampson first discussed information confinement as preventing even the partial
leak of confidential information [1973], while Rotenberg introduced a mechanism to constrain
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Table 3. Performance of nine benchmarks whose entire computation is wrapped in a secret block, compared
with the originals. Performance results include the mean and a 95% confidence interval from at least 10 trials.

Run time (s) Compile time (s) Executable size (bytes)
Benchmark Original CocooN Original CocoonN Original ~ Cocoon
binary-trees 0.364 + 0.023 0.365 + 0.023 | 0.608 +£0.010 0.647 = 0.003 | 4,560,608 4,560,640
fannkuch-redux 1.828 £ 0.027 1.821 £0.011 | 0.489 +0.147 0.545 £ 0.002 | 4,488,712 4,489,800
fasta 1.116 + 0.070 1.093 +£0.049 | 0.417 +£0.008 0.468 = 0.004 | 4,339,184 4,339,640
k-nucleotide 1.539 £ 0.007 1.559 £ 0.007 | 0.464 = 0.003 0.503 + 0.003 | 4,355,808 4,360,544
mandelbrot 0.352 + 0.003 0.352 £ 0.003 | 0.603 £0.030 0.699 + 0.006 | 4,546,848 4,548,456
n-body 46.657 £ 0.008 46.335 + 0.005 | 0.386 +0.007 0.591 + 0.007 | 4,305,872 4,318,312
pidigits 0.554 + 0.005 0.556 + 0.004 | 0.334 +£0.004 0.382 +0.002 | 4,528,080 4,529,800
regex-redux 0.957 £ 0.003 0.967 £ 0.003 | 0.644 +£0.005 0.686 +0.010 | 6,114,664 6,115,904
spectral-norm 0.111 + 0.002 0.112 £ 0.003 | 0.426 +£0.005 0.477 +£0.005 | 4,514,568 4,515,176

systems from allowing secret data to flow to untrusted entities [1973]; these works became the
concept of information flow control (IFC). Denning first defined a lattice structure for applying
information flow policies [1976], and Denning and Denning and later observed that static analysis
can be used for IFC [1977]. Building on the static analysis models of the 1970s, Myers and Liskov
introduced a decentralized model in which applications declassify their own data as opposed to
relying on a third-party authority to do so [1997].

Prior systems have provided coarse-grained IFC between processes, sockets, files, and other
OS-level entities using dynamic tracking [Krohn et al. 2007; Zeldovich et al. 2008]. In contrast,
fine-grained IFC at the level of variables and expressions presents unique challenges. First, com-
munication within a process, which involves the flow of data and control between program-level
elements such as values and expressions, is less explicit than the flow between processes and
other OS-level entities, making it difficult to track information flow soundly and precisely. Second,
fine-grained flow has higher bandwidth, so the cost of tracking it at run time can be substantial.

Existing fine-grained IFC operates either dynamically at run time or statically at compile time.

6.1 Dynamic IFC

Dynamic IFC tracks and checks labels of variables and values at run time. Austin and Flanagan
showed how to speed up dynamic tracking of labels for JavaScript programs, but their approach
still adds significant run-time overhead [2009]. Laminar tracks labels at run time for Java programs
and handles implicit flows by consigning secret operations to lexically scoped regions, but still adds
up to 56% run-time overhead [Roy et al. 2009]. Co-Inflow provides dynamic coarse-grained IFC for
Java programs through the use of implicitly inserted labels [Xiang and Chong 2021]. Converting a
Java program to use Co-Inflow requires few annotations and achieves relatively high precision, but
introduces an average run-time overhead of 15%.

6.2 Static IFC

Static IFC can be provided by whole-program analysis or modular type-based analysis.

Whole-Program Static Analysis. Whole-program static analysis computes information flow conser-
vatively by abstracting data and control flow across program expressions and variables [Balasubra-
manian et al. 2017; Hammer et al. 2006; Hedin and Sabelfeld 2012; Zanioli et al. 2012]. It minimizes
programmer effort by eschewing the need for type annotations, but it is non-compositional: Preci-
sion loss analyzing one part of the program affects precision analyzing other parts of the program.
Non-compositionality makes it hard to scale to large programs and hard to deploy incrementally.
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Recent work introduces whole-program static analysis for information flow in Rust called
Flowistry [Crichton et al. 2022]. Flowistry leverages Rust’s ownership constraints to compute
relatively precise function summaries without actually analyzing the functions’ bodies. As such,
Flowistry is scalable enough to use interactively, and it naturally handles calls to functions for which
source code is unavailable. However, Flowistry is inherently intraprocedural; Crichton et al. suggest
that future work “could build an interprocedural analysis by using Flowistry’s output as procedure
summaries in a larger information flow graph” [Crichton et al. 2022]. As an intraprocedural analysis,
Flowistry is not applicable to checking for illegal flows in our evaluated programs, which have
secret values that flow interprocedurally.

As a static analysis approach, Flowistry may report false flows, which are hard for program-
mers to deal with. In contrast, CocooN uses static type-based analysis, which requires program
modifications but provides a way to eliminate false illegal flows.

Flowistry and Cocoon are potentially complementary: Because Flowistry targets Rust and is
fairly precise, it could potentially be adapted to infer some labels in applications using Cocoon.

Modular Static Type-Based Analysis. Static type-based approaches extend the type system with IFC
labels, so the static type of every expression and variable includes an IFC label. In contrast with
whole-program static analysis, static type-based analysis is compositional because typing rules
can be checked locally (i.e., one expression at a time) instead of globally. As a result, type-based
analysis offers the potential to allow large programs to provide IFC without false leak reports or
run-time overhead. A downside of type-based analysis is that it creates extra work for programmers
to express types, although this burden can be limited to parts of the program that touch data
with non-empty labels. A key drawback of type-based analysis is that mainstream imperative
languages such as Java, C, C++, C#, and Rust do not provide type systems that are expressive
enough to ensure that operations on secret values do not have unchecked side effects. As a result,
existing solutions either use a functional language [Gregersen et al. 2019; Russo 2015] or extend
an imperative language [Chapman and Hilton 2004; Chong 2008; Kozyri et al. 2016; Myers 1999;
Myers and Liskov 1997; Myers et al. 2006; Simonet 2003; Smith and Volpano 1998; Volpano et al.
1996], as described in the following paragraphs.

MAC is a static type-based IFC library for Haskell that leverages the fact that operations in pure
functional languages are side effect free [Russo 2015]. Likewise, DepSec is a dependently typed
static IFC library for Idris [Gregersen et al. 2019], a dependently typed language influenced by
Haskell [Brady 2007]. High-performance programs are typically not written in these languages.

Flow Caml extends Objective Caml with a type system to track variable secrecy levels without
requiring programmers to annotate the source code [Simonet 2003]. Chapman and Hilton similarly
extended SPARK Ada and the SPARK Examiner to include variable annotations [2004]. This exten-
sion does not support concurrency, and their declassification mechanism requires hiding the body
of the declassifying subprogram from the Examiner.

To add static type-based IFC to an imperative language, prior work extends the language and
requires a modified or custom compiler. Jif is an extension of Java that provides static type-based
IFC [Myers 1999; Myers and Liskov 1997; Myers et al. 2006]. It introduces types that represent
secrecy and integrity labels, which programs use to annotate variables and expressions. Jif provides
a compiler for the Jif language that checks types and flows, including implicit flows, and produces
pure Java code with the same functionality as the original program. Jif includes a variety of features
such as support for dynamic labels and automatic inference. Follow-on research has extended Jif
to solve a wide variety of IFC-related problems, such as erasure policies and reactive information
flow [Chong 2008; Kozyri et al. 2016]. The key drawback of Jif is that it requires programs to be
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written in a nonstandard language and to be processed with a nonstandard compiler, hampering
adoption.

Volpano, Smith, et al. developed a model for IFC type systems in imperative languages that they
later extended to support multithreading and non-interference, but (as far as we know) this model
has not been implemented [1998; 1996].

RLBox is an approach for sandboxing libraries to prevent cross-library leaks [Narayan et al.
2020]. It uses a combination of static type-based analysis and run-time isolation to prevent data and
control from transferring between libraries. RLBox, which targets C++ libraries, cannot provide
a guarantee of side effect freedom, but rather requires programmers to write a validation check
when handling tainted values. RLBox adds run-time and space overheads, unlike CocooN. Another
difference is that CocooN’s secrecy labels allow a hierarchy of labels, while RLBox has only binary
labels: A value is “tainted” or it is not.

In concurrent work, Curricle provides a type system for ensuring noninterference, in order
to ensure region idempotence for intermittent programs [Surbatovich et al. 2023]. Like Cocoon,
Curricle employs Rust procedural macros to ensure that only well-typed programs can compile.
Unlike CocooN, Curricle uses procedural macros to perform type analysis at the syntactic level; in
contrast, CocooN transforms the region’s code so that the compiler performs the type analysis. As a
result, Curricle requires idempotent regions to be functions, and it cannot support unbounded loops
or recursion in idempotent functions. Furthermore, Curricle is unsound with respect to syntactically
invisible side effects such as implicit destructor calls, dereference operations, and overloaded
operator calls (§4.2.3) since it operates at the syntactic level. The paper proves noninterference
with respect to a formal model, not the Rust language or the Curricle implementation [Surbatovich
et al. 2023].

7 CONCLUSION

CocooN is the first static type-based IFC approach for an imperative language that uses the
standard language and compiler. The key technical contribution of CocooN is its establishment of
an effect system that tracks whether Rust functions have side effects. As a result, Cocoon allows
programmers to define and perform arbitrary operations on secret data while ensuring that these
operations do not violate IFC rules, all in pure Rust. CocooN can be incrementally deployed on
existing systems without significantly affecting performance.
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