ON GLOBAL W%’ ESTIMATES FOR THE MONGE-AMPERE
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ABSTRACT. We establish global W29 estimates, for all § < ﬁ, for convex solutions
to the Monge-Ampere equation with positive C%# right-hand side and zero boundary
values on general bounded convex domains in R™ (n > 2). We exhibit examples showing
that global W21 estimates fail in all dimensions, so the range of ¢ is sharp in two
dimensions.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

This note is concerned with global second derivative estimates for the convex Aleksan-
drov solution to the Monge-Ampere equation

{det D*uv =f inQ,

1.1
(1.1) u=>0 on 0f)

on general bounded convex domains @ C R" (n > 2), where f is bounded between two
positive constants A < A, that is,

(1.2) 0< A< f<A

Regarding interior second-order Sobolev estimates, building on the work of De Philippis—
Figalli [DPF], De Philippis-Figalli-Savin [DPFS] and Schmidt [Sc], independently, show
that D*u € LLT#(Q) for some constant ¢ = &(n, A\, A) > 0. If f is assumed additionally to
be continuous, then Caffarelli [C2] shows that u € W2P(Q) for all p € (1, 00).

Regarding global second-order Sobolev estimates, when € is uniformly convex with C3
boundary, Savin [S2] extends the above estimates all the way to the boundary by showing
respectively that D*u € L'*¢(Q2), and D*u € LP(Q2) when f € C(Q). The techniques in
[S2] are based on the Boundary Localization Theorem established in [S1]. In general, for
the Monge-Ampere equation with possibly nonzero boundary values, the uniform convexity
of the boundary and the C? regularity of the boundary and boundary data are crucial for
global WP estimates. In [W], Wang constructs explicit examples showing the failure of
global W23 estimates for the Monge-Ampere equation in two dimensions with positive
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constant right-hand side f when either the boundary data or the domain boundary failing
to be C3.

A natural question is to determine the optimal global integrability of the second deriva-
tives for the solution u to (1.1)—(1.2) when 2 is a general bounded convex domain. To
the best of our knowledge, this issue has not been studied before. On the other hand,
thanks to Caffarelli [C1], |u| is known to grow at most like [dist(-, 9Q)]*™ away from the
boundary. Therefore, by the convexity of u, |Du| grows like [dist(-, 99)]>/"~! away from
0. These growths are shown to be optimal in the author’s work [L3] for domains with
portions of (n — 1)-dimensional hyperplanes on their boundaries. Given these optimal
growths, it is reasonable to expect that || D?u|| grows like [dist(-, 9Q)]?/"2 away from the
boundary. This, in turn, indicates that the optimal global integrability for D?u should be
LH(Q) for all p < 31y We are able to confirm this expectation in two dimensions. For
higher dimensions, there is still a gap between our integrability result where D?u € L°(2)
for all 9 < ﬁ, and the non-integrability examples for the threshold exponent ﬁ This
is due to our method of proving the W?2? estimates; see Remark 2.4 and Lemma 2.5.

Our main result states as follows.

Theorem 1.1. Let u € C(Q2) be the convex Aleksandrov solution to the Monge-Ampére
equation (1.1) where Q is a bounded convex domain in R™ (n > 2), and f € C*°(Q)
satisfies (1.2) where 8 € (0,1). Then the following statements hold.

(i) For all 0 < § < -, we have D*u € L°()) with estimate

n—1’
/Q |DPull dr < C(m, .6\, A, | log e

(ii) If, in addition, Q is a rectangular boz, then D*u & LD (Q).

In the proof of Theorem 1.1(i), we use Pogorelov-type estimates which require u to be
C*. Therefore, it is natural to assume f € C*#(Q). It would be interesting to reduce the
regularity of f in Theorem 1.1(i), and to improve the range of § when n > 3.

The rest of this note is devoted to the proof of Theorem 1.1 and pertaining remarks.

2. PROOF OF THEOREM 1.1

Let u be as in Theorem 1.1. Then w is strictly convex; see Caffarelli [C1] and also Figalli
[F, Corollary 4.11]. Moreover, u € C*#(Q); see [F, Theorem 3.10)].

2.1. Global W?° estimates. We will establish the following pointwise Hessian estimates.

Lemma 2.1. Let Q,u, and f be as in Theorem 1.1(1). Let~ € (1,2). Then, in §2, we have

HD2U($)” < C’(n, 7,2, A A, || log f||C2(§))[diSt(Xa aQ)]i’y when n = 2,
| Cln, N A [ Tog fll ey [dist(x, 0] when n > 3.

Remark 2.2. Lemma 2.1 improves upon Theorem 3.9 in Figalli [F] and Theorem 4.1 in
Shi-Jiang [SJ], where the exponent in the Hessian estimate | D*u(z)| < C[dist(z, )"
was, respectively, —(3n + 2) and —(2n + 1) where T € (1,2), instead of min{—~,1 — n}.
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Clearly, the global W?2? estimates in Theorem 1.1(i) are a consequence of Lemma 2.1.
It remains to prove Lemma 2.1. One of our key tools is the following Pogorelov estimate,
due to Trudinger and Wang [TW, Lemma 3.6].

Lemma 2.3. Let v € C*(Q) be the convex solution to the Monge-Ampére equation
{det D*v =f in §Q,
v=_0 on 012,
where 2 is a bounded conver domain in R™ (n > 2), and f € C*(Q) with f > 0 in Q. Then
21 p@|ID*@)] < Cn, llv]le@), [og fllcz@) (L + [1Dv[lie ) in .

Proof of Lemma 2.1. We start with some general estimates for u. For the uniform estimate,
we have (see [LMT, Theorem 3.42])

(A n)l[ull}2 0y < 192 < COn)[lull 2 g,
where ¢(A,n) > 0 and C(\,n) > 0, so

(2.2) 0 < Mi(n,|Q,A) < |Jul|ze@) < Ma(n, |Q,A).
Since u is convex and u = 0 on 0f2, there holds
dist(x, 02
and
|u(z)]
2.4 D < ——+— forall Q.
(2.4) | u(x”_dist(az,Q) orall z €
We recall the following Holder estimate, due to Caffarelli [C1, Lemma 1],
(2.5) lu(z)] < Cy(n, a,diam (), A)[dist(z,0Q)]* for all z € ,
where
2 _

(2.6) o ;F—VG(O,l) when n = 2,

= when n > 3.

For h > 0 small, let
Qp = {z € Q:dist(x,00) > h} CC Q,
and
Ay i={r e Q:u(x) < —h} CcC Q.
From (2.3), we deduce that
(2.7)

Let v :=u+ h. Then, v € C*(A}), v < 0 in Ay, and v = 0 on JA;,. Applying (2.1) to v
in Ay, and recalling (2.2), we find that

(2.8) Sup (lu+ Al D*ull) < C(n, QL A, [[og fllca@) (1 + [ Dullfea,))-
h

An D Qdiam @yn/an -
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If x € Ap, then |u(x)| > h, and (2.5) gives
(2.9) dist(x,0Q) > cths, ¢ = c1(n, o, diam (), A) > 0.
Combining (2.4) and (2.5) with the above estimate, we obtain
(2.10) |Du(z)| < Cy[dist(z,09)]* " < Coh'™=  in Ay,
Thus, in Ay, where h is small, (2.8) and (2.10) imply that
(2.11) ID%u]l < OO+ [ DulfFa,))h ™ < Cn, |21, A, [[10g fllce@)h' ™=
It follows from (2.7) that

(2.12) [D?ull < C(n, |, A, [[og flloa@)h' ™= i Qogiam apm/a-

In view of (2.6), this easily concludes the proof of the lemma. O

Remark 2.4. In the proof of Lemma 2.1, we use both estimates (2.3) and (2.5). When
n =2, by choosing =y close to 1, we see that the lower bound and the upper bound for |u(x)|
are almost of the same order in dist(x,0)). This is responsible for the sharp range of § in
Theorem 1.1(i). However, for n > 3, the lower bound and the upper bound for |u(x)| in
(2.3) and (2.5) are not of the same order. Thus, to obtain an improved range for 6 when
n > 3 without further assumptions on the geometry of €2, one needs completely different
arguments.

We note that for n > 3, local improvements on the range of § are possible when the
boundary has flat portions. Due to Theorem 1.1 (ii), the exponent ﬁ in the next lemma
is sharp.

Lemma 2.5. Let u € C(Q) be the conver Aleksandrov solution to (1.1) where Q D
(—2,2)""1 x (0,2) is a bounded convex domain in R™ (n > 3) with (—2,2)"' x {0} C 99,
and f € C*P(Q) satisfies (1.2) where 8 € (0,1). Then for K := (—=1,1)"! x (0,¢) C Q
where ¢ = c¢(n, \,Q) € (0,1/4) is small, we have D*u € LK) for all u € (0, ) with
estimate

2(n111)

ID*ull ey < Cn, QA A, i, || 10g fll o)

Proof. We use the same notation as in the proof of Lemma 2.1. Our proof consists of
improving (2.7) and (2.12).

By [L3, Lemma 4.3], there exists ¢ = ¢o(n, A, Q) € (0,1/4) such that for Ky :=
(—1,1)" 1 x (0, cp), we have

lu(x)] > co[dist(x,ﬁQ)]% it xe K.
Therefore, for 0 < h < ¢2, we obtain the following local improvement of (2.7):
(213) AN Ky D Qc—n/2 N K.
0

Using (2.11), (2.6), and (2.13), we find
ID*ull < C(n, |92, A, [[log fllgz@)h' ™ in Qe

hn/2

N Ko.

hn/2
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Consequently,

(2.14) | D?*u(x)| < C(n,Q, A\ | log f||02(§))[dist(x,aﬂ)]%_2 in K,

for K := (—=1,1)""! x (0,¢;) C Q where ¢; = ¢;(n, )\, Q) € (0,1/4) is small. This gives the
conclusion of the lemma. 0

2.2. The rectangular box domain. In this section, we prove Theorem 1.1(ii) where 2 is
a rectangular box. By the affine invariance of the Monge-Ampere equation, we can assume,
without loss of generality, that

Q= (-1,1)""x(0,2).
Our main estimate, inspired by Wang [W], shows that for a fixed positive fraction of

' €Q, =[-1/2,1/2]"

2_
Dypu(2; z,) blows up like z7; ? when x, is small. This is the expected rate discussed in
Section 1.

For x € R", we write x = (zy,...,2,) = (2/,1,) where 2/ € R""!. Denote D; = %,
2 . . . .
and D;; = ﬁ. Let H® denote the s-dimensional Hausdorff measure. Below is our main
10T

measure-theoretic estimate.

Lemma 2.6. Let Q,u, and f be as in Theorem 1.1(1i). Then, for each 0 < z, < 1/2,
there exists an H" ™' measurable subset E,, C Q, such that the following statements hold.
(i) HY(E,,) >1/2.
(ii) There exists a constant ¢ = c¢(n, A\, A) > 0 such that for all 2’ € E,, we have

) c(zp|logz,|)™t  when n =2,
(2.15) Dyppu(x’, x,) > 2 4
cT when n > 3.

Proof. We fix x,, € (0,1/2) in this proof.
In view of the Hadamard determinant inequality (see (2.22)), to obtain (2.15), it suffices
to show that all the second pure derivatives Dyu(z’',x,) (i = 1,...,n — 1) are bounded

from above by Cz/™ when n > 3, and by Cz,|logz,| when n = 2. We will establish these
bounds using one-dimensional slicing arguments.

When n = 2, we can strengthen the Holder estimate (2.5) to the following global log-
Lipschitz estimate (see [L3, Proposition 1.4))
(2.16)  |u(x)] < C(diam (2), A)dist(x, 9Q)(1 + |log dist(x, 0)|) for all x € Q C R*.
Now, if 2’ € Q,,, then dist((z', x,,), Q) = x,, and thus (2.5) and (2.16) give
Co(n,N)z,|logz,| whenn =2,

2

Co(n, Ny when n > 3.

(2.17) lu(z', z,)| < {

Let
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Fix ) )

= (x9,...,p_1,%,) where —5 <z < 5 fori=2,...,n—2.
We show that there exists a set Sz C (—1,1) with H'(S;) > a for which Dyju(zy, %), where
x1 € S3, is bounded from above by C22™ when n > 3, and by Cx,|logx,| when n = 2.

Indeed, by the convexity of v and u = 0 on 0f2, we have

0=u(l,2) > u(1/2,2) + Diu(1/2,7)(1/2).
Hence,

Diu(1/2,%) < —2u(1/2,7) = 2|u(1/2, z)|.
Similarly,

—Diu(—1/2,%) < 2Ju(—-1/2, 7).
Therefore, invoking (2.17), we obtain a positive constant C; = 4Cy(n, A) such that
- . Ci(n,AN)x,|logz,| when n =2,

2.18 Dyu(1/2,z) — Dyu(—1/2 <

We first consider the case n > 3. Let

C’ «
S = {xl € (<1/2,1/2) : Dnu(a, &) < 7 12n }
—a
and
Then oo
Dllu(ml,i) Z 1 1 for X1 € L:E
—a
Consequently, (2.18) implies
1/2
Cll'g 2 D1U(1/2,i) — D1U(—1/2,i') = DHU(.%'l, j’) d$1
~1/2
2/ Dllu(:xl,i') dJ?l
Lz
le& 1
>N L3).
- 1- aH (Ls)
It follows that
Hl(Li‘) <1- a,

and hence
1
(2.19) H'(Sz) >a foreach ¥ = (z9,...,7,_1,7,) where |z;| < 5(2 =2,...,n—2).

Let

Chz¥ }

Eiw ::{/6 nDu /an<
o= {0 € Qo Dunlat ) <
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and

n—1
Then, by (2.19) and the Fubini Theorem, W; liave
(2.20) H'" By, > a.
Note that if A and B are two H" ! measurable subsets of Q,,, then

H Y ANB)=H" (A) +H" YB)—H" " (AUB) > H" (A +H"(B) - 1.

By induction, we then obtain from (2.20) that

n—1
(2.21) W (Ey) > Y H N (Eig,) — (n—2) > (n— La— (n—2)>1/2.
=1
For ' € E,, we have
Cf «
Diiu(l’,,xn) < 113:” for all : = 1,....,n—1.
—a

Thus, using the Hadamard determinant inequality

(2.22) det D*u(2', 2,,) < H Diu(a', x,),

i=1

together with det D?u(z’, z,) > ), we obtain

2_
(2.23)  Dpnu(r,2,) > A1 — @) 1O (e = \(1 — @) 'O ap T for o € B,

n

Due to (2.21) and (2.23), the set E,, satisfies the requirements of the lemma with ¢ =
M1 —a) o).
Finally, we consider the case n = 2. Then a = 1/2. As above, it suffices to choose

E,, :={x1 € (—1/2,1/2) : Dyyu(z1,x3) < 2C125|log 2|}
The lemma is proved. U

Completion of the proof of Theorem 1.1(ii). We can assume ) = (—1,1)""! x (0,2). Let
p > 0. Then, Lemma 2.6 tells us that

1/2
/ | D[P dx2/ / (Dl )P da' day,
Q 0 Ez,

1 12
= (c(zn|log z,|) 1P dx,, when n =2,
>{2Jo = +o0
- 1 1/2 2_2 I
5/ (cxy ")Pdxy, when n > 3
0
if p> ﬁ This proves Theorem 1.1(ii), and completes the proof of Theorem 1.1. O
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3. FURTHER REMARKS

The method of the proof of Theorem 1.1(ii) can be extended to singular and degenerate
Monge-Ampere equations. The following proposition is a representative.

Proposition 3.1. Let Q2 is a rectangular boz in R™ (n >2). Let f € C*8(Q) be such that

0< A< f<Awherep e (0,1). Let s € (—oo,n—2). Let u € C(2) be the nonzero convex
Aleksandrov solution to the Monge-Ampeére equation

(3.1) det D*u = flul®  in Q,
u=20 on O0f).

Then D*u & L2 (Q) if s <0, and D*u ¢ L2<“n—_5§—2+5(§2) for any e >0 if s > 0.

Proof. Following the proof of Proposition 2.8 in [L1], we have u € C*#(Q). The case
s = 0 follows from Theorem 1.1(ii) so we only consider s # 0. We assume that Q =
(—1,1)""1 x (0,2), and use the same notation as in Section 2.2. In particular, x,, € (0,1/2).
We consider two separate cases.

Case 1. We first consider the case s < 0. In Lemma 2.6, we replace (2.15) by

2—2(n—s)

(3.2) Dpu(a’ x,) > cap "

where ¢ = ¢(n, A, A, s) > 0, from which it follows that D?u ¢ L2a--2(1).
To prove (3.2), we make the following changes in the proof of Theorem 1.1(ii). Due to
[L2, Theorem 1.1 (i)], we can replace (2.17) by
2

(3.3) lu(z’, 2,)| < Co(n, A, 8)an .

We replace o by
2

n—s

Qg 1=

From (2.22) and
det D*u(2’, 7,) > Mu(2', z,)|* > MCoz2*)?,
we have, instead of (2.23),

2—2(n—s)
D& 2,) > A(Coa YOI (1 — a0 =

which is (3.2) where ¢ = A\C5C}"(1 — a)"* > 0.
Case 2. We next consider the case 0 < s < n — 2. Let

2
O< g < — < g <1.
n—s
In Lemma 2.6, we replace (2.15) by
(3.4) Dpnu(z, ) > castz= (=D

where ¢ = ¢(n, A\, A, s, 1, p2) > 0.
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Thus, given any € > 0, we can choose 1 and ps close to —= so that

2
n—2
n—s

TS <
2(n—s)—2+€)_ ’

(sp2 — (n — 1)pa)(

which shows that D?*u ¢ LQ("Z_S;—Q%(Q).
To prove (3.4), we make the following changes in the proof of Theorem 1.1(ii). Due to
[L2, Proposition 1], we can replace (2.17) by

(3.5)

lu(2', x,)| < Co(n, A, s, gkt

We replace o by

Og 1= 1.

By [L3, Theorem 1.1], we have

|U(ZL”7 l’n)| > <n7 S, 2, A)IZZ

From (2.22) and

det D*u(a’, z,) > Mu(a', 2,)F > Aeyah?)?,

we have, instead of (2.23),

Doz, 2,) > Meat2)*Cl (1 — a) o, (- Dm = ggsre—(n=lm

which is (3.4) where ¢ = A\c{C} (1 — a)"! > 0.
We have completed the proof of the proposition. O

Remark 3.2. [t would be interesting to establish an analogue of Theorem 1.1(i) for (3.1)
when s # 0. If we apply (2.1) as in the proof of Lemma 2.1, then in (2.8), the quantity
[1og fllc2@) has to be replaced by ||log(f|ul®)||c2@) which we do not have a priori control.
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