ON GLOBAL $W^{2,\delta}$ ESTIMATES FOR THE MONGE-AMPÈRE EQUATION ON GENERAL BOUNDED CONVEX DOMAINS

NAM Q. LE

Dedicated to Professor Dang Duc Trong on the occasion of his 60th birthday

ABSTRACT. We establish global $W^{2,\delta}$ estimates, for all $\delta < \frac{1}{n-1}$, for convex solutions to the Monge-Ampère equation with positive $C^{2,\beta}$ right-hand side and zero boundary values on general bounded convex domains in \mathbb{R}^n $(n \geq 2)$. We exhibit examples showing that global $W^{2,\frac{n}{2(n-1)}}$ estimates fail in all dimensions, so the range of δ is sharp in two dimensions.

1. Introduction and statement of the main result

This note is concerned with global second derivative estimates for the convex Aleksandrov solution to the Monge-Ampère equation

(1.1)
$$\begin{cases} \det D^2 u = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

on general bounded convex domains $\Omega \subset \mathbb{R}^n$ $(n \geq 2)$, where f is bounded between two positive constants $\lambda \leq \Lambda$, that is,

$$(1.2) 0 < \lambda \le f \le \Lambda.$$

Regarding interior second-order Sobolev estimates, building on the work of De Philippis–Figalli [DPF], De Philippis–Figalli–Savin [DPFS] and Schmidt [Sc], independently, show that $D^2u \in L^{1+\varepsilon}_{loc}(\Omega)$ for some constant $\varepsilon = \varepsilon(n, \lambda, \Lambda) > 0$. If f is assumed additionally to be continuous, then Caffarelli [C2] shows that $u \in W^{2,p}_{loc}(\Omega)$ for all $p \in (1, \infty)$.

Regarding global second-order Sobolev estimates, when Ω is uniformly convex with C^3 boundary, Savin [S2] extends the above estimates all the way to the boundary by showing respectively that $D^2u \in L^{1+\varepsilon}(\Omega)$, and $D^2u \in L^p(\Omega)$ when $f \in C(\overline{\Omega})$. The techniques in [S2] are based on the Boundary Localization Theorem established in [S1]. In general, for the Monge-Ampère equation with possibly nonzero boundary values, the uniform convexity of the boundary and the C^3 regularity of the boundary and boundary data are crucial for global $W^{2,p}$ estimates. In [W], Wang constructs explicit examples showing the failure of global $W^{2,3}$ estimates for the Monge-Ampère equation in two dimensions with positive

²⁰²⁰ Mathematics Subject Classification. 35J25, 35J96, 35B45.

Key words and phrases. Monge-Ampère equation, global second derivative estimate, Pogorelov estimate. The research of the author was supported in part by NSF grant DMS-2054686.

constant right-hand side f when either the boundary data or the domain boundary failing to be C^3 .

A natural question is to determine the optimal global integrability of the second derivatives for the solution u to (1.1)–(1.2) when Ω is a general bounded convex domain. To the best of our knowledge, this issue has not been studied before. On the other hand, thanks to Caffarelli [C1], |u| is known to grow at most like $[\operatorname{dist}(\cdot,\partial\Omega)]^{2/n}$ away from the boundary. Therefore, by the convexity of u, |Du| grows like $[\operatorname{dist}(\cdot,\partial\Omega)]^{2/n-1}$ away from $\partial\Omega$. These growths are shown to be optimal in the author's work [L3] for domains with portions of (n-1)-dimensional hyperplanes on their boundaries. Given these optimal growths, it is reasonable to expect that $||D^2u||$ grows like $[\operatorname{dist}(\cdot,\partial\Omega)]^{2/n-2}$ away from the boundary. This, in turn, indicates that the optimal global integrability for D^2u should be $L^{\mu}(\Omega)$ for all $\mu < \frac{n}{2(n-1)}$. We are able to confirm this expectation in two dimensions. For higher dimensions, there is still a gap between our integrability result where $D^2u \in L^{\delta}(\Omega)$ for all $\delta < \frac{1}{n-1}$, and the non-integrability examples for the threshold exponent $\frac{n}{2(n-1)}$. This is due to our method of proving the $W^{2,\delta}$ estimates; see Remark 2.4 and Lemma 2.5.

Our main result states as follows.

Theorem 1.1. Let $u \in C(\overline{\Omega})$ be the convex Aleksandrov solution to the Monge-Ampère equation (1.1) where Ω is a bounded convex domain in \mathbb{R}^n $(n \geq 2)$, and $f \in C^{2,\beta}(\overline{\Omega})$ satisfies (1.2) where $\beta \in (0,1)$. Then the following statements hold.

(i) For all $0 < \delta < \frac{1}{n-1}$, we have $D^2u \in L^{\delta}(\Omega)$ with estimate

$$\int_{\Omega} \|D^2 u\|^{\delta} dx \le C(n, \Omega, \delta, \lambda, \Lambda, \|\log f\|_{C^2(\overline{\Omega})}).$$

(ii) If, in addition, Ω is a rectangular box, then $D^2u \notin L^{\frac{n}{2(n-1)}}(\Omega)$.

In the proof of Theorem 1.1(i), we use Pogorelov-type estimates which require u to be C^4 . Therefore, it is natural to assume $f \in C^{2,\beta}(\overline{\Omega})$. It would be interesting to reduce the regularity of f in Theorem 1.1(i), and to improve the range of δ when $n \geq 3$.

The rest of this note is devoted to the proof of Theorem 1.1 and pertaining remarks.

2. Proof of Theorem 1.1

Let u be as in Theorem 1.1. Then u is strictly convex; see Caffarelli [C1] and also Figalli [F, Corollary 4.11]. Moreover, $u \in C^{4,\beta}(\Omega)$; see [F, Theorem 3.10].

2.1. Global $W^{2,\delta}$ estimates. We will establish the following pointwise Hessian estimates.

Lemma 2.1. Let Ω , u, and f be as in Theorem 1.1(i). Let $\gamma \in (1,2)$. Then, in Ω , we have

$$\|D^2u(x)\| \leq \begin{cases} C(n,\gamma,\Omega,\lambda,\Lambda,\|\log f\|_{C^2(\overline{\Omega})})[\operatorname{dist}(\mathbf{x},\partial\Omega)]^{-\gamma} & \text{when } n=2,\\ C(n,\Omega,\lambda,\Lambda,\|\log f\|_{C^2(\overline{\Omega})})[\operatorname{dist}(\mathbf{x},\partial\Omega)]^{1-\mathbf{n}} & \text{when } n\geq 3. \end{cases}$$

Remark 2.2. Lemma 2.1 improves upon Theorem 3.9 in Figalli [F] and Theorem 4.1 in Shi–Jiang [SJ], where the exponent in the Hessian estimate $||D^2u(x)|| \leq C[dist(x,\partial\Omega)]^{-\kappa}$ was, respectively, -(3n+2) and $-(2n+\tau)$ where $\tau \in (1,2)$, instead of $\min\{-\gamma, 1-n\}$.

Clearly, the global $W^{2,\delta}$ estimates in Theorem 1.1(i) are a consequence of Lemma 2.1. It remains to prove Lemma 2.1. One of our key tools is the following Pogorelov estimate, due to Trudinger and Wang [TW, Lemma 3.6].

Lemma 2.3. Let $v \in C^4(\overline{\Omega})$ be the convex solution to the Monge-Ampère equation

$$\begin{cases} \det D^2 v = f & \text{in } \Omega, \\ v = 0 & \text{on } \partial \Omega, \end{cases}$$

where Ω is a bounded convex domain in \mathbb{R}^n $(n \geq 2)$, and $f \in C^2(\overline{\Omega})$ with f > 0 in $\overline{\Omega}$. Then

$$(2.1) |v(x)| ||D^2 v(x)|| \le C(n, ||v||_{L^{\infty}(\Omega)}, ||\log f||_{C^2(\overline{\Omega})}) (1 + ||Dv||_{L^{\infty}(\Omega)}^2) in \Omega.$$

Proof of Lemma 2.1. We start with some general estimates for u. For the uniform estimate, we have (see [LMT, Theorem 3.42])

$$c(\Lambda,n)\|u\|_{L^{\infty}(\Omega)}^{n/2} \leq |\Omega| \leq C(\lambda,n)\|u\|_{L^{\infty}(\Omega)}^{n/2},$$

where $c(\Lambda, n) > 0$ and $C(\lambda, n) > 0$, so

$$(2.2) 0 < M_1(n, |\Omega|, \lambda) \le ||u||_{L^{\infty}(\Omega)} \le M_2(n, |\Omega|, \Lambda).$$

Since u is convex and u = 0 on $\partial \Omega$, there holds

(2.3)
$$|u(x)| \ge \frac{\operatorname{dist}(x, \partial\Omega)}{\operatorname{diam}(\Omega)} ||u||_{L^{\infty}(\Omega)} \quad \text{for all } x \in \Omega,$$

and

(2.4)
$$|Du(x)| \le \frac{|u(x)|}{\operatorname{dist}(x,\Omega)} \quad \text{for all } x \in \Omega.$$

We recall the following Hölder estimate, due to Caffarelli [C1, Lemma 1],

$$(2.5) |u(x)| \le C_1(n, \alpha, \operatorname{diam}(\Omega), \Lambda) [\operatorname{dist}(x, \partial \Omega)]^{\alpha} \text{for all } x \in \Omega,$$

where

(2.6)
$$\alpha := \begin{cases} \frac{2}{1+\gamma} \in (0,1) & \text{when } n = 2, \\ \frac{2}{n} & \text{when } n \ge 3. \end{cases}$$

For h > 0 small, let

$$\Omega_h := \{x \in \Omega : \operatorname{dist}(x, \partial\Omega) > h\} \subset\subset \Omega,$$

and

$$A_h := \{x \in \Omega : u(x) < -h\} \subset\subset \Omega.$$

From (2.3), we deduce that

$$(2.7) A_h \supset \Omega_{\operatorname{diam}(\Omega)h/M_1}.$$

Let v := u + h. Then, $v \in C^4(\overline{A}_h)$, v < 0 in A_h , and v = 0 on ∂A_h . Applying (2.1) to v in A_h , and recalling (2.2), we find that

(2.8)
$$\sup_{A_h} (|u+h| \|D^2 u\|) \le C(n, |\Omega|, \Lambda, \|\log f\|_{C^2(\overline{\Omega})}) (1 + \|Du\|_{L^{\infty}(A_h)}^2).$$

If $x \in A_h$, then $|u(x)| \ge h$, and (2.5) gives

(2.9)
$$\operatorname{dist}(x,\partial\Omega) \ge c_1 h^{\frac{1}{\alpha}}, \quad c_1 = c_1(n,\alpha,\operatorname{diam}(\Omega),\Lambda) > 0.$$

Combining (2.4) and (2.5) with the above estimate, we obtain

$$(2.10) |Du(x)| \le C_1 [\operatorname{dist}(x, \partial \Omega)]^{\alpha - 1} \le C_2 h^{1 - \frac{1}{\alpha}} \quad \text{in } A_h.$$

Thus, in A_{2h} where h is small, (2.8) and (2.10) imply that

$$(2.11) ||D^2u|| \le C(1 + ||Du||_{L^{\infty}(A_h)}^2)h^{-1} \le C(n, |\Omega|, \Lambda, ||\log f||_{C^2(\overline{\Omega})})h^{1-\frac{2}{\alpha}}.$$

It follows from (2.7) that

In view of (2.6), this easily concludes the proof of the lemma.

Remark 2.4. In the proof of Lemma 2.1, we use both estimates (2.3) and (2.5). When n=2, by choosing γ close to 1, we see that the lower bound and the upper bound for |u(x)| are almost of the same order in $dist(x, \partial\Omega)$. This is responsible for the sharp range of δ in Theorem 1.1(i). However, for $n \geq 3$, the lower bound and the upper bound for |u(x)| in (2.3) and (2.5) are not of the same order. Thus, to obtain an improved range for δ when $n \geq 3$ without further assumptions on the geometry of Ω , one needs completely different arguments.

We note that for $n \geq 3$, local improvements on the range of δ are possible when the boundary has flat portions. Due to Theorem 1.1 (ii), the exponent $\frac{n}{2(n-1)}$ in the next lemma is sharp.

Lemma 2.5. Let $u \in C(\overline{\Omega})$ be the convex Aleksandrov solution to (1.1) where $\Omega \supset (-2,2)^{n-1} \times (0,2)$ is a bounded convex domain in \mathbb{R}^n $(n \geq 3)$ with $(-2,2)^{n-1} \times \{0\} \subset \partial \Omega$, and $f \in C^{2,\beta}(\overline{\Omega})$ satisfies (1.2) where $\beta \in (0,1)$. Then for $K := (-1,1)^{n-1} \times (0,c) \subset \Omega$ where $c = c(n,\lambda,\Omega) \in (0,1/4)$ is small, we have $D^2u \in L^{\mu}(K)$ for all $\mu \in (0,\frac{n}{2(n-1)})$ with estimate

$$||D^2 u||_{L^{\mu}(K)} \le C(n, \Omega, \lambda, \Lambda, \mu, ||\log f||_{C^2(\overline{\Omega})}).$$

Proof. We use the same notation as in the proof of Lemma 2.1. Our proof consists of improving (2.7) and (2.12).

By [L3, Lemma 4.3], there exists $c_0 = c_0(n, \lambda, \Omega) \in (0, 1/4)$ such that for $K_0 := (-1, 1)^{n-1} \times (0, c_0)$, we have

$$|u(x)| \ge c_0 [\operatorname{dist}(x, \partial \Omega)]^{\frac{2}{n}}$$
 if $x \in K_0$.

Therefore, for $0 < h \le c_0^2$, we obtain the following local improvement of (2.7):

$$(2.13) A_h \cap K_0 \supset \Omega_{c_0^{-n/2}h^{n/2}} \cap K_0.$$

Using (2.11), (2.6), and (2.13), we find

$$||D^2u|| \le \bar{C}(n, |\Omega|, \Lambda, ||\log f||_{C^2(\overline{\Omega})})h^{1-n}$$
 in $\Omega_{2c_0^{-n/2}h^{n/2}} \cap K_0$.

Consequently,

$$(2.14) ||D^2u(x)|| \le C(n,\Omega,\Lambda,\lambda, ||\log f||_{C^2(\overline{\Omega})}) [\operatorname{dist}(x,\partial\Omega)]^{\frac{2}{n}-2} \quad \text{in} \quad K,$$

for $K := (-1,1)^{n-1} \times (0,c_1) \subset \Omega$ where $c_1 = c_1(n,\lambda,\Omega) \in (0,1/4)$ is small. This gives the conclusion of the lemma.

2.2. The rectangular box domain. In this section, we prove Theorem 1.1(ii) where Ω is a rectangular box. By the affine invariance of the Monge-Ampère equation, we can assume, without loss of generality, that

$$\Omega = (-1, 1)^{n-1} \times (0, 2).$$

Our main estimate, inspired by Wang [W], shows that for a fixed positive fraction of

$$x' \in Q_n := [-1/2, 1/2]^{n-1},$$

 $D_{nn}u(x',x_n)$ blows up like $x_n^{\frac{2}{n}-2}$ when x_n is small. This is the expected rate discussed in Section 1.

For $x \in \mathbb{R}^n$, we write $x = (x_1, \dots, x_n) = (x', x_n)$ where $x' \in \mathbb{R}^{n-1}$. Denote $D_i = \frac{\partial}{\partial x_i}$, and $D_{ij} = \frac{\partial^2}{\partial x_i \partial x_j}$. Let \mathcal{H}^s denote the s-dimensional Hausdorff measure. Below is our main measure-theoretic estimate.

Lemma 2.6. Let Ω, u , and f be as in Theorem 1.1(ii). Then, for each $0 < x_n < 1/2$, there exists an \mathcal{H}^{n-1} measurable subset $E_{x_n} \subset Q_n$ such that the following statements hold.

- (i) $\mathcal{H}^{n-1}(E_{x_n}) \ge 1/2$.
- (ii) There exists a constant $c = c(n, \lambda, \Lambda) > 0$ such that for all $x' \in E_{x_n}$, we have

(2.15)
$$D_{nn}u(x',x_n) \ge \begin{cases} c(x_n|\log x_n|)^{-1} & \text{when } n=2, \\ \frac{2}{n}-2 & \text{when } n \ge 3. \end{cases}$$

Proof. We fix $x_n \in (0, 1/2)$ in this proof.

In view of the Hadamard determinant inequality (see (2.22)), to obtain (2.15), it suffices to show that all the second pure derivatives $D_{ii}u(x',x_n)$ ($i=1,\ldots,n-1$) are bounded from above by $Cx_n^{2/n}$ when $n \geq 3$, and by $Cx_n|\log x_n|$ when n=2. We will establish these bounds using one-dimensional slicing arguments.

When n = 2, we can strengthen the Hölder estimate (2.5) to the following global log-Lipschitz estimate (see [L3, Proposition 1.4])

 $(2.16) \quad |u(x)| \le C(\operatorname{diam}(\Omega), \Lambda)\operatorname{dist}(x, \partial\Omega)(1 + |\log \operatorname{dist}(x, \partial\Omega)|) \quad \text{for all } x \in \Omega \subset \mathbb{R}^2.$

Now, if $x' \in Q_n$, then $\operatorname{dist}((x', x_n), \partial \Omega) = x_n$, and thus (2.5) and (2.16) give

$$(2.17) |u(x',x_n)| \le \begin{cases} C_0(n,\Lambda)x_n|\log x_n| & \text{when } n=2, \\ C_0(n,\Lambda)x_n^{\frac{2}{n}} & \text{when } n \ge 3. \end{cases}$$

Let

$$\alpha := \frac{2}{n}, \quad a := \frac{1}{n-1}(\frac{1}{2} + n - 2).$$

Fix

$$\tilde{x} = (x_2, \dots, x_{n-1}, x_n)$$
 where $-\frac{1}{2} \le x_i \le \frac{1}{2}$ for $i = 2, \dots, n-2$.

We show that there exists a set $S_{\tilde{x}} \subset (-1,1)$ with $\mathcal{H}^1(S_{\tilde{x}}) \geq a$ for which $D_{11}u(x_1,\tilde{x})$, where $x_1 \in S_{\tilde{x}}$, is bounded from above by $Cx_n^{2/n}$ when $n \geq 3$, and by $Cx_n|\log x_n|$ when n = 2. Indeed, by the convexity of u and u = 0 on $\partial\Omega$, we have

$$0 = u(1, \tilde{x}) \ge u(1/2, \tilde{x}) + D_1 u(1/2, \tilde{x})(1/2).$$

Hence,

$$D_1 u(1/2, \tilde{x}) \le -2u(1/2, \tilde{x}) = 2|u(1/2, \tilde{x})|.$$

Similarly,

$$-D_1 u(-1/2, \tilde{x}) \le 2|u(-1/2, \tilde{x})|.$$

Therefore, invoking (2.17), we obtain a positive constant $C_1 = 4C_0(n, \Lambda)$ such that

(2.18)
$$D_1 u(1/2, \tilde{x}) - D_1 u(-1/2, \tilde{x}) \le \begin{cases} C_1(n, \Lambda) x_n |\log x_n| & \text{when } n = 2, \\ C_1(n, \Lambda) x_n^{\alpha} & \text{when } n \ge 3. \end{cases}$$

We first consider the case $n \geq 3$. Let

$$S_{\tilde{x}} := \left\{ x_1 \in (-1/2, 1/2) : D_{11}u(x_1, \tilde{x}) < \frac{C_1 x_n^{\alpha}}{1 - a} \right\},$$

and

$$L_{\tilde{x}} := (-1/2, 1/2) \setminus S_{\tilde{x}}.$$

Then

$$D_{11}u(x_1, \tilde{x}) \ge \frac{C_1 x_n^{\alpha}}{1 - a}$$
 for $x_1 \in L_{\tilde{x}}$.

Consequently, (2.18) implies

$$C_{1}x_{n}^{\alpha} \geq D_{1}u(1/2, \tilde{x}) - D_{1}u(-1/2, \tilde{x}) = \int_{-1/2}^{1/2} D_{11}u(x_{1}, \tilde{x}) dx_{1}$$

$$\geq \int_{L_{\tilde{x}}} D_{11}u(x_{1}, \tilde{x}) dx_{1}$$

$$\geq \frac{C_{1}x_{n}^{\alpha}}{1 - a} \mathcal{H}^{1}(L_{\tilde{x}}).$$

It follows that

$$\mathcal{H}^1(L_{\tilde{x}}) \le 1 - a,$$

and hence

(2.19)
$$\mathcal{H}^1(S_{\tilde{x}}) \ge a$$
 for each $\tilde{x} = (x_2, \dots, x_{n-1}, x_n)$ where $|x_i| \le \frac{1}{2}(i = 2, \dots, n-2)$.

Let

$$E_{i,x_n} := \left\{ x' \in Q_n : D_{ii}u(x',x_n) < \frac{C_1 x_n^{\alpha}}{1-a} \right\}$$

and

$$E_{x_n} = \bigcap_{i=1}^{n-1} E_{i,x_n}.$$

Then, by (2.19) and the Fubini Theorem, we have

$$\mathcal{H}^{n-1}(E_{i,x_n}) \ge a.$$

Note that if A and B are two \mathcal{H}^{n-1} measurable subsets of Q_n , then

$$\mathcal{H}^{n-1}(A \cap B) = \mathcal{H}^{n-1}(A) + \mathcal{H}^{n-1}(B) - \mathcal{H}^{n-1}(A \cup B) \ge \mathcal{H}^{n-1}(A) + \mathcal{H}^{n-1}(B) - 1.$$

By induction, we then obtain from (2.20) that

(2.21)
$$\mathcal{H}^{n-1}(E_{x_n}) \ge \sum_{i=1}^{n-1} \mathcal{H}^{n-1}(E_{i,x_n}) - (n-2) \ge (n-1)a - (n-2) \ge 1/2.$$

For $x' \in E_{x_n}$, we have

$$D_{ii}u(x',x_n) \le \frac{C_1 x_n^{\alpha}}{1-a}$$
 for all $i = 1, ..., n-1$.

Thus, using the Hadamard determinant inequality

(2.22)
$$\det D^2 u(x', x_n) \le \prod_{i=1}^n D_{ii} u(x', x_n),$$

together with det $D^2u(x',x_n) \geq \lambda$, we obtain

$$(2.23) \quad D_{nn}u(x',x_n) \ge \lambda(1-a)^{n-1}C_1^{1-n}x_n^{-(n-1)\alpha} = \lambda(1-a)^{n-1}C_1^{1-n}x_n^{\frac{2}{n}-2} \quad \text{for } x' \in E_{x_n}.$$

Due to (2.21) and (2.23), the set E_{x_n} satisfies the requirements of the lemma with $c = \lambda (1-a)^{n-1} C_1^{1-n}$.

Finally, we consider the case n=2. Then a=1/2. As above, it suffices to choose

$$E_{x_2} := \{ x_1 \in (-1/2, 1/2) : D_{11}u(x_1, x_2) < 2C_1x_2 | \log x_2 | \}.$$

The lemma is proved.

Completion of the proof of Theorem 1.1(ii). We can assume $\Omega = (-1,1)^{n-1} \times (0,2)$. Let p > 0. Then, Lemma 2.6 tells us that

$$\int_{\Omega} \|D^{2}u\|^{p} dx \ge \int_{0}^{1/2} \int_{E_{x_{n}}} [D_{nn}u(x', x_{n})]^{p} dx' dx_{n}$$

$$\ge \begin{cases} \frac{1}{2} \int_{0}^{1/2} (c(x_{n}|\log x_{n}|)^{-1})^{p} dx_{n} & \text{when } n = 2, \\ \frac{1}{2} \int_{0}^{1/2} (cx_{n}^{\frac{2}{n}-2})^{p} dx_{n} & \text{when } n \ge 3 \end{cases} = +\infty,$$

if $p \ge \frac{n}{2(n-1)}$. This proves Theorem 1.1(ii), and completes the proof of Theorem 1.1.

3. Further remarks

The method of the proof of Theorem 1.1(ii) can be extended to singular and degenerate Monge-Ampère equations. The following proposition is a representative.

Proposition 3.1. Let Ω is a rectangular box in \mathbb{R}^n $(n \geq 2)$. Let $f \in C^{2,\beta}(\overline{\Omega})$ be such that $0 < \lambda \leq f \leq \Lambda$ where $\beta \in (0,1)$. Let $s \in (-\infty, n-2)$. Let $u \in C(\overline{\Omega})$ be the nonzero convex Aleksandrov solution to the Monge-Ampère equation

(3.1)
$$\begin{cases} \det D^2 u = f|u|^s & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

Then $D^2u \notin L^{\frac{n-s}{2(n-s)-2}}(\Omega)$ if $s \leq 0$, and $D^2u \notin L^{\frac{n-s}{2(n-s)-2}+\varepsilon}(\Omega)$ for any $\varepsilon > 0$ if s > 0.

Proof. Following the proof of Proposition 2.8 in [L1], we have $u \in C^{4,\beta}(\Omega)$. The case s=0 follows from Theorem 1.1(ii) so we only consider $s\neq 0$. We assume that $\Omega=(-1,1)^{n-1}\times(0,2)$, and use the same notation as in Section 2.2. In particular, $x_n\in(0,1/2)$. We consider two separate cases.

Case 1. We first consider the case s < 0. In Lemma 2.6, we replace (2.15) by

(3.2)
$$D_{nn}u(x',x_n) \ge cx_n^{\frac{2-2(n-s)}{n-s}}$$

where $c = c(n, \lambda, \Lambda, s) > 0$, from which it follows that $D^2u \notin L^{\frac{n-s}{2(n-s)-2}}(\Omega)$.

To prove (3.2), we make the following changes in the proof of Theorem 1.1(ii). Due to [L2, Theorem 1.1 (i)], we can replace (2.17) by

(3.3)
$$|u(x',x_n)| \le C_0(n,\Lambda,s)x_n^{\frac{2}{n-s}}.$$

We replace α by

$$\alpha_s := \frac{2}{n-s}.$$

From (2.22) and

$$\det D^2 u(x', x_n) \ge \lambda |u(x', x_n)|^s \ge \lambda (C_0 x_n^{\alpha_s})^s,$$

we have, instead of (2.23),

$$D_{nn}u(x',x_n) \ge \lambda (C_0 x_n^{\alpha_s})^s C_1^{1-n} (1-a)^{n-1} x_n^{-(n-1)\alpha_s} = c x_n^{\frac{2-2(n-s)}{n-s}},$$

which is (3.2) where $c = \lambda C_0^s C_1^{1-n} (1-a)^{n-1} > 0$.

Case 2. We next consider the case 0 < s < n - 2. Let

$$0 < \mu_1 < \frac{2}{n-s} < \mu_2 < 1.$$

In Lemma 2.6, we replace (2.15) by

(3.4)
$$D_{nn}u(x',x_n) \ge cx_n^{s\mu_2-(n-1)\mu_1}$$

where $c = c(n, \lambda, \Lambda, s, \mu_1, \mu_2) > 0$.

Thus, given any $\varepsilon > 0$, we can choose μ_1 and μ_2 close to $\frac{2}{n-2}$ so that

$$(s\mu_2 - (n-1)\mu_1)(\frac{n-s}{2(n-s)-2} + \varepsilon) \le -1,$$

which shows that $D^2u \notin L^{\frac{n-s}{2(n-s)-2}+\varepsilon}(\Omega)$.

To prove (3.4), we make the following changes in the proof of Theorem 1.1(ii). Due to [L2, Proposition 1], we can replace (2.17) by

$$|u(x', x_n)| \le C_0(n, \Lambda, s, \mu_1) x_n^{\mu_1}.$$

We replace α by

$$\alpha_s := \mu_1.$$

By [L3, Theorem 1.1], we have

$$|u(x', x_n)| \ge c_1(n, s, \mu_2, \lambda) x_n^{\mu_2}.$$

From (2.22) and

$$\det D^2 u(x', x_n) \ge \lambda |u(x', x_n)|^s \ge \lambda (c_1 x_n^{\mu_2})^s,$$

we have, instead of (2.23),

$$D_{nn}u(x',x_n) \ge \lambda (c_1 x_n^{\mu_2})^s C_1^{1-n} (1-a)^{n-1} x_n^{-(n-1)\mu_1} = c x_n^{s\mu_2 - (n-1)\mu_1},$$

which is (3.4) where $c = \lambda c_1^s C_1^{1-n} (1-a)^{n-1} > 0$.

We have completed the proof of the proposition.

Remark 3.2. It would be interesting to establish an analogue of Theorem 1.1(i) for (3.1) when $s \neq 0$. If we apply (2.1) as in the proof of Lemma 2.1, then in (2.8), the quantity $\|\log f\|_{C^2(\overline{\Omega})}$ has to be replaced by $\|\log (f|u|^s)\|_{C^2(\overline{\Omega})}$ which we do not have a priori control.

4. Declarations

Conflict of Interest Statement: There is no conflict of interest.

Data Availability Statement: All data generated or analyzed during this study are included in this article.

References

- [C1] Caffarelli, L. A. A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity. *Ann. of Math.* (2) **131** (1990), no. 1, 129–134.
- [C2] Caffarelli, L. A. Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation. Ann. of Math. (2) **131** (1990), no. 1, 135–150.
- [DPF] De Philippis, G.; Figalli, A. $W^{2,1}$ regularity for solutions of the Monge-Ampère equation. *Invent.* Math. **192**(2013), no.1, 55–69.
- [DPFS] De Philippis, G.; Figalli, A.; Savin, O. A note on interior $W^{2,1+\varepsilon}$ estimates for the Monge-Ampère equation. *Math. Ann.* **357**(1) (2013), 11–22.
- [F] Figalli, A. The Monge-Ampère equation and its applications. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2017.
- [L1] Le, N. Q. The eigenvalue problem for the Monge-Ampère operator on general bounded convex domains, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18 (2018), no. 4, 1519-1559.

10

- [L2] Le, N. Q. Optimal boundary regularity for some singular Monge-Ampère equations on bounded convex domains. *Discrete Contin. Dyn. Syst.*. **42** (2022), no. 5, 2199-2214.
- [L3] Le, N. Q. Remarks on sharp boundary estimates for singular and degenerate Monge-Ampère equations. *Commun. Pure Appl. Anal.* **22** (2023), no. 5, 1701-1720.
- [LMT] Le, N. Q.; Mitake, H.; Tran, H. V. Dynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampère equations-VIASM 2016. Edited by Mitake and Tran. Lecture Notes in Mathematics, 2183. Springer, Cham, 2017.
- [S1] Savin, O. Pointwise $C^{2,\alpha}$ estimates at the boundary for the Monge-Ampère equation. J. Amer. Math. Soc. **26** (2013), no. 1, 63–99.
- [S2] Savin, O. Global $W^{2,p}$ estimates for the Monge–Ampère equations. *Proc. Amer. Math. Soc.* **141** (2013), no. 10, 3573–3578.
- [Sc] Schmidt, T. $W^{2,1+\epsilon}$ -estimates for the Monge-Ampère equation. Adv. Math. **240** (2013), 672–689.
- [SJ] Shi, J. H.; Jiang, F. Pogorelov estimates for the Monge-Ampère equations. *Proc. Amer. Math. Soc.* **147**(2019), no.6, 2561–2571.
- [TW] Trudinger, N. S.; Wang, X. J. The Monge-Ampère equation and its geometric applications. Handbook of geometric analysis. No. 1, 467–524, Adv. Lect. Math. (ALM), 7, Int. Press, Somerville, MA, 2008.
- [W] Wang, X. J. Regularity for Monge-Ampère equation near the boundary. *Analysis* **16** (1996), no. 1, 101–107.

DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON, IN 47405, USA. *Email address*: nqle@indiana.edu