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REMARKS ON EIGENSPECTRA
OF ISOLATED SINGULARITIES

BEN CASTOR, HAOHUA DENG, MATT KERR AND GREGORY PEARLSTEIN

We introduce a simple calculus, extending a variant of the Steenbrink spec-
trum, to describe Hodge-theoretic invariants for smoothings of isolated
singularities with relative automorphisms. After computing these ‘“‘eigenspec-
tra” in the quasihomogeneous case, we give three applications to singularity
bounding and monodromy of variations of Hodge structure (VHS).

Introduction

Recent work of M. Kerr and R. Laza on the Hodge theory of degenerations [Kerr
et al. 2021; Kerr and Laza 2023] reexamined the mixed Hodge theory of the
Clemens—Schmid and vanishing-cycle sequences, with an emphasis on applications
to limits of period maps and compactifications of moduli. When a degenerating
family of varieties has a finite group G acting on its fibers, these become exact
sequences in the category of mixed Hodge structures with G x pg-action, where k
is the order of Ty (the semisimple part of monodromy). These kinds of situations
often show up in generalized Prym or cyclic-cover constructions; for instance,
instead of using the period map attached to a family of varieties, one may want to
use the “exotic” period map arising from a cyclic cover branched along the family
(e.g., [Allcock et al. 2002; 2011; Casalaina-Martin et al. 2012; Deligne and Mostow
1986; Dolgachev and Kondo 2007]).

In this note we explain how to encode the contributions of isolated singularities
with G-action to the vanishing cohomology in terms of G-spectra (Definition 1.11).
These are formal sums (with positive integer coefficients) of triples in Z x Q x *R,
where R is the set of irreducible representations of G. The term eigenspectrum
(Definition 1.12) refers to the specific case of a cyclic group (g) with fixed generator.
(At the end of Section 3 and in most of Section 5 a larger group G nontrivially
permutes the singularities; G always denotes a subgroup stabilizing them.)

In Section 1 this formalism emerges naturally from the general setting of a
proper morphism of 1-parameter degenerations over a disk, by specializing the
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morphism to an automorphism g € Aut(X/A) fixing a singularity x € Xo. The
eigenspectrum af . simply records the dimensions of simultaneous eigenspaces
of g* and T in the (p, g)-subspaces of V, (Definition 1.12). We give a general
computation in Section 2 of dﬁx in the case of a quasihomogeneous singularity, in
terms of a monomial basis for the associated Jacobian ring (Corollary 2.7).

In the remaining sections, we give three applications. The first, in Section 3, is to
bounding the number of nodes on Calabi—Yau hypersurfaces in weighted projective
spaces (Theorem 3.6) by passing to cyclic covers. There is already a large literature
on node-bounding, including [Jaffe and Ruberman 1997; Kerr and Laza 2023;
Miyaoka 1984; Schoen 1985; Varchenko 1983; van Straten 2020]. In the case
of P"*!, our approach does not improve Varchenko’s bound (e.g., 135 nodes for
a quintic hypersurface in P*), but does yield a simpler proof. However, we do
obtain the interesting result (in Theorem 3.11) that a CY hypersurface in P"*!
with isolated singularities and symmetric under G,,, cannot contain a node whose
&,,2-orbit has cardinality (n 4+ 2)! (i.e., trivial stabilizer).

The other two applications concern codimension-one monodromy phenomena
for VHSs over moduli of configurations of points and hyperplanes. In Section 4,
the moduli space is Mo 2,, with the VHS arising from cyclic covers of P! branched
along the 2m ordered points. Propositions 4.5—4.6 and Example 4.7 describe
the eigenspectra, LMHS and monodromy types along boundary strata of certain
compactifications 1\7163’2” due to Hassett [2003], generalizing a computation of
[Gallardo et al. 2021]. The cases m =2, 3, 4, and 6 go back to work of Deligne
and Mostow [1986] and feature a period map (isomorphism) to an arithmetic ball
quotient. While the global/extended period map is not as elegant in the remaining
cases, the point is that the codimension-one boundary behavior can be dealt with
uniformly and efficiently using our calculus.

Our other main example, treated in Section 5, is the VHS ‘H — S on the moduli
space of general configurations of (2n + 2) hyperplanes in ", arising from the
middle (intersection) cohomology of a 2 : 1 cover X — P” branched along these
hyperplanes. These are singular Calabi—Yau n-folds admitting a crepant resolution,
and have been studied in [Dolgachev and Kondo 2007; Gerkmann et al. 2007a;
2013; Sheng et al. 2015]. By passing to a smooth complete intersection 22"-cover
of X and applying the Cayley trick (see [Kerr 2003, Section 4.5]), we replace X by
a smooth hypersurface

Y C P(Opais1 (2)®0+D)

with automorphisms by a group of order 2%*. In codimension-one in moduli,
Y acquires nodes, and a variant of Schoen’s [1985] result ensures that these produce
nontrivial symplectic transvections for H when n is odd. This gives an easy proof
that the geometric monodromy group of A is maximal (for all n), and the period
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map “nonclassical”, a fact first proved by Gerkmann et al. [2013] for n = 3 and by
Sheng et al. [2015] in general.

Notation. In this paper MHS stands for Q-mixed Hodge structure. We shall make
frequent use of the Deligne bigrading on a MHS V [Deligne 1971]. This is (by

definition) the unique decomposition Ve = € p.gez V74 with the properties that

F*ve=@vre, w,Ve = @ VP4, and V@P = VP4 mod @ V.
s <
5zqk p+q<€ Z<5

We shall make free use of standard multiindex notation (for n-tuples of variables or
field-elements) to simplify formulas, viz. z = (z1, ..., z,), Clz] =Clz1, ..., z,4],
=[Lz" mw=>,mw;, [ml=Y;m;, e =i-th standard basis vector, etc.

1. G-spectra and eigenspectra
Morphisms and mixed spectra. We begin in the general setting of a proper morphism

y— T  x
(1.1) \ /

of complex analytic spaces over a disk, which we assume is the restriction to A of a
proper morphism of quasiprojective varieties over an algebraic curve. (In particular,
at the level of fibers we have that 7, : Y; — X, is a proper algebraic morphism of
quasiprojective varieties.) Let K* € D” MHM(X) and £* € D? MHM()) be given,
with a morphism p : K* - Rm, L°. Writing 1 : Xg < X for the inclusion, the
vanishing cycle triangle

(1.2) 2 Y S ¢y

consists of functors from D? MHM(X) to D? MHM(X), with natural transforma-
tions between them; also, monodromy 7 = Ty e induces natural automorphisms
of ¥y and ¢ . By proper base-change and faithfulness of rat : D" MHM(X() —
Df,’ (Xo), Rm,: D’ MHM(Y;) — D” MHM(X) intertwines the corresponding
triangle (and monodromy actions) for (), f’). Taking hypercohomology on X
yields:

1.3. Proposition. We have the commutative diagram

can

— HE (X, 1%K7) o HE (X, ¥ pK7) <2 HE (Xo, ¢ K7) —— HEFL(Xg, 1%K7) —

| | | |

— HE (Yo, 1#L%) s HK (Yo, ¥ prL7) S5 HE (Yo, ¢4 £7) —— HEFL(Yg, 1 L7) —
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with rows the vanishing-cycle (long-exact) sequences, in which all arrows are
morphisms of MHS. Moreover, the diagram intertwines the actions of Ts (by
automorphisms of MHS) and N (by nilpotent (—1, —1)-endomorphisms of MHS),
which are trivial (Id resp. 0) on the end terms.

1.4. Remark. If f, f’ are themselves projective (hence proper), and K*, £* semisim-
ple with respect to the perverse z-structure (e.g., K* = ZC?%, L* =1CY), then the
decomposition theorem applies, yielding Clemens—Schmid sequences (see [Kerr
et al. 2021, Section 5]) which are then automatically compatible under p. The main
consequence is that the local invariant cycle theorem holds, i.e., sp surjects onto
the T -invariants.

Next, assume X, Y, {X;};-0, and {Y;},+0 are smooth, and take £* = Qy and
K* = Q; then the diagram in Proposition 1.3 becomes

Sp

(15) ln* ln* ln* ln*

sp
— H*(Yo) —— HE_(v) = HE (Y,) —— H*(Yp) >

Now if n = dim X and ¥ := sing(Xyg) is finite, then Van(X,) = {0} for k # n and,
defining V, := Hozjtﬁf@x[n],

(1.6) Hin (X)) = D Vi

xex
as MHS. We have of course 7~ 1(Z) C T = sing(Yy), and if dim Yy = n and
| 2| < oo then, writing V, := Hol;k, ¢ Qyln] for y € X, ™ restricts to morphisms

(1.7) [ Vi> DV

yer~l(x)
of T-MHS —i.e., morphisms of MHS intertwining T (hence Ty and N). These
are local invariants.

Recall that T acts through finite cyclic groups on each V, (and \7 ), and let «
be the least common multiple of their orders. Write ¢, := ¢>"#/* and pr eq( a/k) for
the e(a/k) := e2milali) — ¢&-eigenspace of Ty in vl c Ve.c. The explicit choice
of ¢, € C is needed to make the following.

1.8. Definition. The mixed spectrum o, of the isolated singularity x € X is

the element Y ww ma "w(a, w) of the free abelian group Z(Q x Z), where we put
VLO!J W= Laj) 1

ma » = dim( o)

'Here | - | is the greatest integer (floor) function; note also that e(«) is equivalent to taking the
fractional part {o} := o — |o¢] of .
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Evidently (1.7) must be compatible with the decompositions recorded by the
mixed spectra.

Automorphisms and eigenspectra. Now let G < Aut(X'/A), with X and {X,};.0
smooth and |X| < co. Applying the foregoing results with ) = X, f = f’, and
= g € G, together with [Kerr et al. 2021, Proposition 5.5(i)], yields:

1.9. Corollary. The vanishing-cycle sequence

can

(1.10) 0— H"(Xo) > HJ\ (X)) <> @ Ve —> HA (X0) > 0

xex
is an exact sequence of G X -MHS.* where the (Tss) = p-action on the end
terms is trivial. If X/ A is proper, then H;‘JI(XO) :=ker(sp) € H"(Xy) is pure
of weight n + 1.

The decomposition of terms in (1.10) into irreducible representations for G x
only becomes useful if we understand the action on the vanishing cohomology
D, 5 V« for a given collection of singularities. In particular, if gx = x then we
need to further refine the spectrum under the resulting automorphism g* : V, — V,
of T-MHS.

1.11. Definition. Write G <stab(x) <G, and R¢ for the set of complex irreducible
representations of G. The G-spectrum o*fx of x is the element

x,G
> mg’fu’u(a, w, U)
(a,w,U)

of the free abelian group Z{Q x Z x R¢), where (for each («, w))

la],w—la,] ~ @mi“;’G
Vx,e(a) - @ U wy
UeRg
as G-representations.

In the special case where G = (g) = u, is cyclic, the C-irreps are characters
indexed by the power ¢; = e?7i1/0 of £, to which g is sent.

1.12. Definition. The eigenspectrum of an isolated singularity x with automor-
phism g is the element
Gﬁ,x = m{f:jj;f,(a, w,y) €EZ(QxZxQ/Z),
(o, w,y)
where mb’:f,i;jg’y is the dimension of the eigenspace (thij(&u))_wj)e(”) - VX%J(&“)’_L“J
for g* with eigenvalue e(y) = ™7

2Again, this means that the action of G and Tss on the MHSs (as automorphisms of MHS) commute
with each other and with sp, can, and §.
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1.13. Remark. For X'/ A proper (with hypotheses as in Corollary 1.9), H"(X;) is
a VHS on A* whose automorphism group contains G. For any field extension K/Q,
this decomposes as K-VHS into a direct sum of G-isotypical components, cor-
responding to K-irreps of G. The G-action on and decomposition of H! (X;)
obtained by taking limits are the same as those arising from the G-MHS structure
on Hj (X;) in Corollary 1.9.

We now turn to the explicit computation of these eigenspectra in the simplest case.

2. Quasihomogeneous singularities with automorphism

Let F € Clz1, ..., Zu+1] (With n > 0) be a quasihomogeneous polynomial with
an isolated singularity at the origin 0. That is to say, choosing a weight vector
w=(W,..., Wyp1) € @':61 and setting

My = {m € 24 |m-w =1},

we have

2.1 F= Y a,7"
meMy,

for some a,, € C. We recall that the degree «r of F is the least integer such that
krpw; eNfori=1,...,n+1; define w; := kg w; and set k := (k1, ..., Kpt1)-

Next recall the setting of Definition 1.8, where f : X — A is a holomorphic
map with quasiprojective fibers and smooth total space, with X; smooth for ¢ # 0
and sing(Xo) =: X finite. A singularity x € ¥ C X is quasihomogeneous if f can
be locally analytically identified with (2.1) for some w. In that case, Vy and o,
identify with the vanishing cohomology

(2.2) Vr := H%1§ ¢r Qe

of F:C'"! — C at 0, and its mixed spectrum or. These were first computed by
Steenbrink [1977], and we briefly review the treatment from [Kerr and Laza 2023,
Section 2] before passing to eigenspectra.

Writing
I = (3_’78_‘7) cclz)
0z1 0Znt1 -

for the Jacobian ideal, let B C Z';gl be chosen so that the monomials {;g} peB
provide a basis of C[z]/Jr. Write wr := |B| for the Milnor number of F, and

0B =2 Y (B 1 = Y0 wi (B + 1.

2.3. Proposition. We have pp = dim Vg for the Milnor number and

or = Y (@(B), w(B)) € Z(Q x Z)

BeB
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for the mixed spectrum, where a(é) =n+1-— E(é) and w(é) =n (resp. n+ 1) if
a(é) ¢ 7 (resp. € 7).
Sketch. Perform a base-change followed by weighted blow-up at 0:

Cn—H x @

(2.4) | | /

C+—A

HPF +—t
with exceptional divisor £ = {T*F = F(Z)} C WP[1 : k] =: P (in weighted
homogeneous coordinates T, Zy, . . ., n+1) The singular ﬁber Yo := F~ 10) is
the union of € and the proper transform X of Xg := F~1(0) = £~1(0), meeting in

E=6nXo={F(Z)=0}C H :={T =0} (ZWP[«]) C P.

The claim is then that Vy = H"(E \ E), which can be checked using (1.5) with
7 = Bl,. Since E [resp. 0] is a deformation retract of Yy [resp. Xp], while Y, =X,
fort #0, and ¢ Qy =~ 1EQE(—=1)[—1] (see [Kerr et al. 2021, 6.3 and 8.3-8.4]),
the diagram becomes

1

0—— Hl (X)) ——— Vr 0

P

(Y)) — H" N(E)(=1) — H"T(€)

H" 2(E)(—1) — H"(§) — H,

11m

whence the result.
Next, one constructs a basis of H" (€ \ E) from B, using residue theory. Writing
(with T := Zy)
n+1

Qp=3(=1)IZ;dZon---NAZ; N+ NdZys1,
j=0

for each B € B we set (with zP = Z'fl . ij:rll)

2.5) g, . Twziar
' B T (F(z) — Ter) 0P

and wp 1= ReSg\E([ng]) € H"(E\ E). See [Kerr and Laza 2023, Theorem 2.2] for
the proof that this has (p, g)-type (Lo B, LB, and [Steenbrink 1977, Theo-
rem 1] for the assertion that the {wg} give a basis. Note that [ (8) ]+ [£(B)] =w(B).

Finally, the action of Ty is computed by T +— ¢ T, or equi;alently (in WeightEd
projective coordinates) by Z; > ¢ “Z; = e~2mivi 7, Clearly the effect of this
on (2.5) is to multiply it by e X wi 4D = 7B a5 desired. (]

e Q"Y(P\ENH)




36 BEN CASTOR, HAOHUA DENG, MATT KERR AND GREGORY PEARLSTEIN

Now given a finite group G < Aut(X/A) fixing x € £, we can always choose
local holomorphic coordinates on which the action is linear [Cartan 1954]. So for
a given g € G, we can choose coordinates to make the action diagonal, through
roots of unity. Accordingly, we shall compute the eigenspectrum in the case where
g € Aut(C"*!, 0) is given by

(26) g(Zla’Zn+1) = (QL]ZI, s{£n+lzn+1)

and F € C[z]!®) is a g-invariant quasihomogeneous polynomial. In fact, taking
BC Z':gl as above, we have:

2.7. Corollary. The eigenspectrum 6;‘: is given by

3 (@(B), w(B), ¥ (B)) € Z(Q x Z x Q/Z),

BeB

where y(B) := Z:Hrll ci(Bi +1).

Proof. We only need to compute the action of g* on wg, which is to say the effect
of Z; +> ¢'Z; on ZE Q. This is just multiplication by ;ZC’(ﬁ'+l) 2B O

2.8. Example. For a Brieskorn—Pham singularity F' = Zl"JrllzlA , Ai=1/w; =«kFr/ki,

we have B = x;’:ll {ZN[0, d; —2]}. Hence, writing T, = ijl J/m] in the group
ring Z[Q] (with product *), we have

Z [a(é)] = FM E I 3 F)Ln-H‘

BeB
This extends to

in the group ring Z[Q x (Q/Z)] if we write Fm(%) = Z;f’:_ll [(%, JTC)]
2.9. Example. As a specific example, consider F = z% + z% + z§"+1 + zi, with
g(z1, 22, 23, 24) := (21, 22, 23, {3 24). Applying Example 2.8 to compute the eigen-

spectrum gives .
[ 2 ] 26+ 9]

j=1

We can interpret this scenario as a local snapshot of a 3 : 1 cover of [P* branched
over a cubic surface acquiring an A,, singularity. So the {3-eigenspace of the
(1, 2)-part of vanishing cohomology has rank equal to the number of j’s for which
% + j/(m + 1) < 2. Since the {3-eigenspace of the general fiber (= cubic 3-fold)
has Hodge numbers 4> = 1 and h>! = 4, from % + % < 2 we see that m cannot
be > 6. This bound is sharp, since A5 can occur on a cubic surface in the form
zf + Zg —-22 z% (see, for example, [Sakamaki 2010]).
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Applying the vanishing-cycle analysis directly on a cubic surface, without passing
to a triple cover and using eigenspectra, does nof rule out Ag. It was this sort of
phenomenon that motivated this paper.

2.10. Remark. The eigenspectrum of a p-constant (semiquasihomogeneous) de-
formation of (F, y) remains constant. Even in the more general case of [Kerr and
Laza 2023, Section 5.2], one can in principle still use the action of y* on the (local)
Jacobianring O, /JF torefineor too 1‘5. But Corollary 2.7 (and quasihomogeneous
deformations of Example 2.8) will suffice for our purposes below.

3. Bounding nodes on Calabi-Yau hypersurfaces

It is a classical problem to bound the number of nodes (ordinary double points)
on a projective hypersurface, especially for Calabi—Yau (CY) varieties. In this
section, we use eigenspectra to produce such a bound for hypersurfaces in many
weighted projective spaces (Example 3.8). Though our emphasis is on CY varieties
for illustrative purposes, it is not limited to them. In the special case of projective
space, our formula recovers the bound conjectured by Arnol’d [1981] and proved
by Varchenko [1983] (see also [van Straten 2020]) by applying his semicontinuity
theorem to the Bruce deformation. This includes the famous bound of 135 for a
quintic threefold; see Examples 3.10.

Let W=WRPl[eg : - - - : e,+1] be a weighted projective (n + 1)-space with finitely
many singularities.> Suppose we want to bound (numbers and types of) singu-
larities on a hypersurface Xo = {Fo(W) = 0} C W of degree d, where a smooth
such hypersurface would have Hodge numbers & = (B0, pn=U1 RO, Wrrite
di=d/ejfori=0,...,n+1.

We shall assume that the singularities of X are all isolated. Taking a general
deformation F; = Fy+tG to produce a family of f : X — A with smooth total
space, the vanishing-cycle sequence

3.1) 0— H"(Xo) = Hilty (X)) > @ Vi —> H (Xo) > 0

xXex

offers a naive such bound: first, by Schmid’s nilpotent orbit theorem, the rank
of Gr‘;_ remains constant in the limit, giving the second equality of

(32) PP = B (X)) = SR (X0) 2 SR e ).

Moreover, the mixed spectrum o, tells us the hp 1(Vy) = dim(V), q) (for each
eigenvalue ¢ of T), and only the Vp "H17P can map nontrivially under 8. Since

3We may assume (without loss of generality) that no n + 1 of the ¢; have a common factor.
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the hyperplane class also has T-eigenvalue 1, equation (3.2) forces

> > dim(VE) < hBP
q ¢#1

. . 1 .. .
When x is anode, i.e., f < Z?:llziz, Proposition 2.3 gives Vy ¢ = Vx(”_/ ?’(”/ 2 for

n even and Vx("lH)/ 201+D/2 g1 1 odd. In the latter case, (3.2) yields no immediate
bound on the number of nodes (though one does have results like [Kerr and Laza

2023, Theorem 2.9 and Corollary 2.11]). For n = 2m even, (3.2) yields4
(33)  AW2-0(X,) = coefficient of ['21 + 1] in gy # Ty %% Ty

n+1
as a bound, which while better than nothing is rather weak.

3.4. Example. The simplest nontrivial case is given by W = P3 (n = 2) and
(d() = d] = dz = d3) d= 4, where

(3.5) FI4 = ([éll] + [%] + [%])*4
= [1]+4[3] + 10[3] + 16[ 1] + 19121 + 16[2] + 10[3] + 4[ L] + [3]

correctly gives 19 = hllj;l (X;). This is also a poor bound for the number of nodes
on a quartic surface (see Example 3.8).

However, a simple trick can improve the bound while also giving one for odd n:

3.6. Theorem. The number of nodes on X is bounded by the coefficient, in
Cgo Ty x---%xTq,,, of [% + ﬁ] if n is even and d is odd, or of [% + %]
otherwise.

Proof. Let Y, = {F, (W) + WZZ+2 =0} Cc WP[e: 1] =: W be the cyclic d : 1-cover
of W branched over X;, with g : W, 15 > {4 W, 15 the cyclic automorphism. By
Dolgachev’s extension of the Griffiths residue theorem [Dolgachev 1982], a basis
for the g*-eigenspace H{fr_qH’q (Yt)fcf (t #0, 0 < j <d) is given by the Poincaré
residue classes

k=1 ywd—i—1 o
Resy (‘i/ Wi QW)
‘\ (F+ W2 yat!

with k; e ZN (0, d;) fori =0, ..., n+1 and weights of numerator and denominator
equal, that is, Z:’;Lol eiki+(d—j)=(g+1)d, or equivalently (dividing by d)
n+1 ki ]
— = q + —.
ig) d; d
Hence dim Gr'}p_qul HI?JI(Y,)@; = h”“/“’q(Yt)gj is given (for 0 < j < d) by the

coefficient of [¢ + j/d] in Ty *---xTy

n+1°

“This is by the same residue theory as used in the proof of Theorem 3.6 below. The notation * is
from Example 2.8.
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Each node x € X( becomes an A,_; singularity y € Yy, with eigenspectrum
Z;l_}((n +1)/2+j/d,n+1, —j/d) unless n is even and d is even (in which case
the middle entry is n+2 at j =d/2). If r is the number of nodes, applying equatlons
(3.1)—(3.2) to Y and refining by g*-eigenspaces therefore yields h?/-%i (Y,)fd >r
(for0 < j <d), where pj =|(n+1)/2+j/d] andg; =n+1— p;. Taking j =1
if nisodd and j = [(d +1)/2] if n is even (so that p; = (n+1)/2 resp. n/2 + 1)
yieldsg;+j/d = (n+1)/2+1/d resp. n/2+ (1/d)[(d + 1) /27, hence the claimed
bound. ]

3.7. Remark. As mentioned above, when W = P"*! this recovers Varchenko’s
[1983] bound. While Varchenko also uses the “cyclic-cover trick”, our approach
avoids the use of deformations and semicontinuity.

3.8. Example. For CY hypersurfaces in P"*! (d = n + 2), Theorem 3.6 yields
the bounds 3, 16, 135, 1506, and 20993 for n = 1, 2, 3, 4, 5, the first two of which
are sharp.” (This is also better than what (3.3) yields for n =2 and 4, namely 19
and 1751.) It is still not known whether 135 is sharp for quintic 3-folds. The well-
known Fermat pencil has fiber Wy +- - -+ W7 = 5W; - - - Wy, with 125 = [(Z/52)3|
nodes, while the example of van Straten [1993] with 130 nodes remains the record.

3.9. Remark. For n =2, the following bound by Miyaoka [1984] sometimes yields
better results. If X is any smooth projective surface which is smooth except at
r nodes, and Ky is nef, then r < 8y (Ox) — gK)z(.

(a) For X ¢ P3 a surface of degree d, this yields the bound
$d—1)(d—2)(d—3)+8—3d(d—4)*=3d(d—1)°,

which is better than Theorem 3.6 for d > 6 even or d > 15 odd. A case in point is
d = 6, where we get 85 by (3.3), 68 by Theorem 3.6, and 66 by [Miyaoka 1984];
this was further reduced to 65 (which is sharp) by a clever use of coding theory
[Jaffe and Ruberman 1997]. Another is d = 8, where we get r < 174.

(b) As a weighted projective example, one can consider surfaces X of degree 10 in
WP[1:1:1:2]. We have x(Ox) = 1 +h*(Ox) =35 and

_ 1010-5)

(Kx-Kx)x = (X - (X + Kw)H)w 112

=125,

and hence r < Ll%ﬁj = 168.

3.10. Examples. We consider some CY 3-fold hypersurfaces with r nodes in
weighted projective 4-folds.

5The union of 3 lines in P2 has 3 nodes, and a Kummer quartic K3 in P* has 16 nodes. The

02 e.g., 16 s the coefficient of [ 7] in (3.5).

bounds here are the coefficients of ["+1 + = +2] inT,
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(1) Xo CWP[1:1:1:1:2]of degree 6: Theorem 3.6 yields r < 137, while
the “Fermat pencil” type example Wg’ + -4 W36 + W‘f’ =3.223W,--- Wy has
|((Z/6Z) x Z/37)/(Z/6Z)| = 108 nodes.

(i) Xo CWP[1:1:1:1:4] of degree 8: the Theorem yields » < 180, while Wg +
R W38 + W2 =4W,--- Wy has |((Z/82)% x Z/27)/(Z/8Z)| = 128 nodes. Here
we can improve both the bound and example, since X is (by the quadratic formula)
a double-cover of P? branched along an r-nodal octic surface. So Remark 3.9(a)
gives r < 174, while the Endrass [1997] example has r = 168.

(i) Xo CWP[1:1:1:2:5] of degree d = 10: Theorem 3.6 yields r < 169, but
because these are double covers of WP[1 : 1 : 1 : 2] branched along an r-nodal
dectic surface, Remark 3.9(b) reduces the bound to 168. The standard example is
W0+ W0+ W0 + W3 + W} = 24552 W, - .- Wy, but this has only 100 nodes.
One can do somewhat better by taking the preimage of a Togliatti quintic [Beauville
1980] (with 31 nodes avoiding the coordinate axes) under

WPIL:1:1:2] 22 WP[1: 1:2:2] 22 WP[1:2:2:2] = P3,
toget4-31=124.

In the case of a symmetric hypersurface Xo C P"+!, cut out by Fy € C[W]®"+
(homogeneous of degree d), one can consider the family ) — A of d-fold cyclic
covers branched along an &,,4,-invariant smoothing X — A. A full accounting
of this story gets into G-spectra (G = g X stabg,,,(x)) of the resulting A;z_;
singularities of Y. This leads to constraints, via character theory of G,1,, on how
Y can be built out of &,,4,-orbits. (However, it does not, for example, rule out the
possibility of 135 nodes on an G5-symmetric quintic threefold.) Here we shall only
give the simplest result in this direction:

3.11. Theorem. A symmetric CY hypersurface in P"*! (of degree d = n +2) with
isolated singularities cannot contain a node with trivial stabilizer in G,, 1.

Proof. Suppose otherwise; then Yy has a set of (n 4+ 2)! A, 4| singularities with
eigenspectra

n+1 . .
n+1 j —])
—,n 17_ )
E]( 2 +n+2 + n+2

contributing a subspace V of dimension (n+2)! to the g*-eigenspace® Hﬁ;;l (Y;)on+2,
It is closed under the action of &,,4,, and the triviality of the stabilizers of these
Ap+1 singularities means that the trace of any o € &,,45 \ {1} is zero. So V is a

copy of the regular representation of &,,4,, which belongs to
ker(8) C Hv(g’rfl)/z’(”“)ﬂ(Yz){”“.

6As before, g : W42 — &n42Wy42 denotes the cyclic automorphism of Y;.
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By the compatibility’ of the vanishing-cycle sequence for ) with g* and &,
this forces a copy of the regular representation in ngan)/ 2+ 1)/ 2(Y,)§"+2, hence
HOHD/2.04D/2(y )2 for t £ 0 (as &,,12 acts on the VHS, compatibly with taking
limits, see Remark 1.13).

Now U := H#+D/2.(+D/2(y,) &2 hag a basis of the form

WEL Qpia )

+3)/2
(Fo(w) + wr2)" >/

Nk i= ResYt<

where 0 <k; <n+2 (fori =0, ..., n+1) and (for equality of weights of numerator
and denominator) (Zl";rol ki) +1= #(n +2). Here &, acts trivially on the
denominator, through the sign representation x on Qps+2, and by permutations of
the W; on W51, We claim that U contains no copy of the trivial representation,
a fortiori of the regular representation, furnishing the desired contradiction.

Clearly it is equivalent to show that the representation of &,,4, on the C-span
U (2 U ® x) of the monomials {11/'—‘}/5 as above contains no copy of x. Suppose
0:=&,,2.Wk is an orbit and U, C U its span. By Burnside’s lemma,

1 g —
(n+2)! gegmlo =1

On the other hand, k = (ko, ..., k,4+1) contains a repeated entry since there are
only n + 1 choices for each k;; hence for some transposition 7, |0*| # 0. Since
sgn(t) = —1, this forces

1
—— > sgn(g) |of],
n+2)! o, .

which computes the number of copies of x in U,, to be zero. U

For n =1 or 2 this result is obvious (since 6 > 3 and 24 > 16), but for n = 3, 4,
or 5 itis less so (as 120 < 135, 720 < 1506, and 5040 < 20993). In particular, since
the examples of quintic 3-folds with 125 and 130 nodes are G5-symmetric, and the
latter has a 60-node orbit, it is interesting that a 120-node orbit is impossible.

4. Cyclic covers of P!

In the final two sections we turn to “codimension-one” monodromy phenomena for
period maps arising from cyclic covers. We begin with a story that generalizes ellip-
tic curves and goes back to Deligne and Mostow [1986] (see also [Moonen 2018]).
Given distinct points 11, . . ., t», € P! (with projective coordinates [S; : 7;]), define

2m
C, = {[zo L Z1: ZaleP[1:1:2]] 20 = ] (S: Zy —T,-ZO)},
i=1

TThis is nothing but Corollary 1.9 with G = (g) x &,,1».
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with automorphism g([Zo : Z1 : Z2]) :=[Zo: Zy : {m Z2]. Form =2, 3,4, or 6,
the sum of g*-eigenspaces H' (Cl)gm ®H' (Cz)gm produces a Q-VHS over M(),z,,,,8
and hence a period map to an arithmetic ball quotient I"\B,,,_3. This turns out to
be injective,’ and extends to an isomorphism between GIT resp. Hassett/KSBA
compactifications of My 2, and Baily—Borel resp. toroidal compactifications of the
ball quotient [Deligne and Mostow 1986; Gallardo et al. 2021].

So what if m # 2, 3,4, or 6? In the discussion that ensues, we will not be
concerned with ball quotients or even the period map per se, but only with

« the Q-VHS V over M »,, arising from HI(CE),
o its sub-C-VHSs Vi :=ker(g* — ¢ 1) (1< j <m — 1), and

o their limiting behavior along the boundary of the Hassett compactifications
Mo,[(1/m)+e), (see below).

The point is that these can be considered uniformly for all m > 2, not just m =2, 3, 4,
and 6. Moreover, using eigenspectra, we can easily compute LMHS and monodromy
types along the Hassett boundary strata, as we demonstrate in Propositions 4.5-4.6
and Example 4.7. This is the first step toward a global study of the extended period
map for this series of examples, which will necessarily go beyond the arithmetic ball
quotient setting (see Remark 4.8). We also refer the reader to [Deng and Gallardo
2023], where global partial compactifications of the period maps for some other
non-Deligne-Mostow cases are constructed.

To begin with, in affine coordinates x = Z1/Zy, y = Z»/Zy, C, takes the form

2m
"= fi@ =Tl -

[resp. [ ], £ (x —1;) if t; = oo]. While there are three possibilities for the Newton
polytope A, they all have the same interior integer points

(A\IMNZ2={G, ) 1<j<m—1, 1<i<2m—j)—1},

which provide a basis of Q!(C 1) via

i=lyi=ldx /\dy)

X

Since g*wq;, j) = g,{;a)(,-,.,-), we find that

KOV =2(m — j)—1, th(VmO! =2/ — 1
@ {r(v> (m—j)—1, th(Vino!l=2j—1,

rk Vor = 2m — 2, tkV =2(m — 1)2.

SMO) n parametrizes ordered n-tuples of distinct points on P! modulo the action of PSLy(C).
9For m = 6 one has to quotient My 12 by &15; see [Gallardo et al. 2021].
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For example, if m =5, then C; has genus 12; and V¢ decomposes into four C-VHSs
{V§5/ }‘]‘.:1 with respective Hodge numbers (7, 1), (5, 3), (3,5), and (1, 7).

4.2. Definition [Hassett 2003]. A weighted stable rational curve for the weight
= (W1, -+ i) €{(0, 11N QY™ is a pair'® (C, Y p; p;) with:

» C anodal connected projective curve of arithmetic genus 0.
» Each p; a smooth point of C.
e If pjy=---=p;,then p;, +---4+p; <1.

o The Q-divisor K¢ + Y _, i; pi is ample (i.e., on each irreducible component,
the sum of weights plus number of nodes is > 2).

We will write (u, ..., u) =: [u], for repeated weights.

4.3. Theorem [Hassett 2003]. (i) There exists a smooth projective fine moduli
space My, parametrizing p-weighted stable rational curves, and containing Mo,,
as a Zariski-open subset.

(ii) Given weights pp = (@1, ..., uy) and o = (fi1, ..., An) with w; < j; (¥i),
there exists a birational reduction morphism 7, ;. : : My i M u contracting all
components which violate the ampleness property in Definition 4.2 for the weight ji.

4.4. Remark. (a) M 1}, reproduces the Deligne-Mumford—Knudsen compactifi-
cation Mo ,.

(b) Although the ampleness property forces ) u; > 2, if for |u| = 2 we define
M, u to be the GIT quotient (Ph "//M SL,, then Theorem 4.3(ii) extends to this
case; and if we take fi; = u; +€ (e € Q, 0 < e « 1) then Tjiu is Kirwan’s partial
desingularization which blows up the strictly semistable locus.

Our interest henceforth is in the equal-weight Hassett compactification

. =
M 5 = Mo1(1/m)+elon

and its morphism 7 to M OGIZTm := M [1/m]»,- As the reader may check, the irreducible

components of M, \ My, are of two types, parametrizing'! stable weighted
curves as shown (up to reordering of the {p;}):

1ODespite the sum notation, the order of points with equal weights is retained.
HMore precisely, it is a dense open subset of each component that parametrizes the displayed
objects.
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type (A) type (B)

It is also clear that 7 preserves the type (A) strata whilst contracting the type (B)
ones to a (strictly semistable) point parametrizing the object

P1='""=DPnm Pm+1=""*= Pom

The C-VHSs V‘L'z' admit canonical extensions across the smooth part of M 61, 2 \M0,2m
and we and we shall now compute the LMHS types there.

4.5. Proposition. Along type (A) strata:

. Vliﬁl is pure of weight 1, with h'" = 2m —2j — 1 and h®' = 2j — 1, unless
j=m/2.

* If j =m/2, then AT =p%0 =1, RO =p0l —py — 1, and T = eV (with N an
isomorphism from the (1, 1) to (0, 0 part).

e If j > m/2 (resp. < m/2), then we have the decomposition

lim lim, 1

Jj
@ Vé-m oy

lima g”'l

into T = Ty-eigenspaces, where V{,’{' _y; 15 1-dimensional of type (0, 1) (resp. (1, 0)).

llmﬁglﬂ

Proof. Begin by locally modeling (the effect on C; of) the collision of two points
by y" 4+ z?> =, as s — 0. This has eigenspectrum

"y

JE:I (E - Za UJ(J), Z)y

where w(j) =2 if j =m/2 and 1 otherwise. Next, we apply the vanishing-cycle
sequence (with H;h ={0} since the degenerate curve remains irreducible) to compute
the LMHS. Finally, we perform a base-change by s — s to preserve ordering of
points, which squares the eigenvalues of the 7s-action; in other words, we replace
2Ly {2(3-2L)}+]3 - <] ({-} denoting the fractional part), which gives the

result. 0
4.6. Proposition. Along the type (B) strata, for each 1 < j <m — 1, Vg'ﬁ’ has

lim

Hodge numbers h''' =h%0 =1, h'0=2m —2j —2, and h®' =2j —2; N is an
isomorphism from the (1, 1) to (0, 0) part, and T = " is unipotent.
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Proof. In the GIT compactification for unordered points, the degeneration is locally
modeled by two copies of y" + x™ = s, each with eigenspectrum

m—1 . m—1 j—1 m—2 m—1
2(121)+Z Z(k+mflf)+2 Z(k+m111)
j=1 j=2 k=1 m j=1 k=j+1 m m

At this point one applies the vanishing-cycle sequence to deduce the form of the
LMHS, notlng that the degenerate curve is a union of m P!’s and H 2h =Q(—1)®n-1,
For MH 0.2m> ON€ then applies the base-change by s > s Wthh trivializes T,
allowing the extension class to vary along the type (B) stratum. ([

4.7. Example. Combining (4.1) with the two propositions, Vén has Hodge-Deligne
diagrams

TsszgiC’,IOOZm—4 2m —3
(—

lim lim

type (A) type (B)

For m =4 (resp. 6), the monodromy in type (A) is thus given by a complex reflection
(resp. “triflection”).

4.8. Remark. For any m, we have that % (@V*n) induces a map from the universal
cover 1\71(‘)1“2," to a ball B,,,_3. Moreover, both LMHS types have 2m — 4 complex
moduli. However, for m different from 2, 3, 4, or 6, this does not lead to a tidy
extended period map: as the projection of the monodromy to U (1, 2m — 3) is not
discrete [Mostow 1988], the quotient of B;,,_3 by this is not Hausdorff.

To circumvent this problem, we must replace B,,,—3 by its product with other
(nonball) symmetric domains, which receives the image of the period map for the
Q-VHS & j,m):ﬂ)f'{’. For instance, if m = 5 then the real points of the generic
Mumford-Tate group of V take the form U (1, 7) x U (3, 5), and the full period map
lands in a discrete quotient of the product B; x I3 s.

5. Hyperplane configurations and Dolgachev’s conjecture

Both differential and asymptotic methods in Hodge theory can be used to establish
that a VHS is “generic” in some sense. In [Gerkmann et al. 2013], differential
methods (characteristic varieties and Yukawa couplings) were employed to show
that the period map for the family of CY 3-folds X 2L, P3 branched over 8 planes
does not factor through a locally symmetric variety of the form I"'\SU(3, 3)/K.
Indeed, the geometric monodromy and Mumford-Tate groups of the corresponding
VHS turn out to be as large as they can be (with both equal to the symplectic
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group Sp,g). This was later extended to similarly constructed CY n-fold families
[Sheng et al. 2015], see below. Our goal here is to quickly deduce these results
using eigenspectra and local monodromy, demonstrating the effectiveness of the
asymptotic approach.

Let Lo, ..., Ly,+1 C P" be hyperplanes defined by linear forms ¢;, in general
position in the sense that | J L; is a normal crossing divisor. Consider the 2 : 1 cover
X = P" branched along (J L;, and the rank-1 @-local system L on

U=pP"\(UL;) <> P"

with monodromy —1 about each L;. Since X has finite quotient singularities, we
have ICy = Qx/[n] and'?

H'(X) N
5.1 H := Hj(X) .=W=H"(P",J*[L)=IH"(P”,[L)
is a pure HS of weight n. By [Dolgachev and Kondo 2007, Lemma 8.2], it has
Hodge numbers

(52) B (X) = (Z)Z:hgr()():(zn”).

It is polarized by the intersection form Q, which presents no difficulties as X has a
smooth finite cover.

Taking S C ([Ii’")z"”/ PGL, 4 (C) =: S to be the (n*>-dimensional) moduli space
of 2n 4 2 ordered hyperplanes in " in general position, this construction yields a
Z-PVHS H — S of CY-n type with H as reference fiber. Let

p:mi(S) = Aut(H, Q)° =: Mpax

be the monodromy representation of #,'3 IT its geometric monodromy group,
and M its Hodge (special Mumford-Tate) group. Here IT is the identity connected
component of = p (T (S))@'Zar, and [T < M < Muax- A conjecture attributed by
[Sheng et al. 2015] to Dolgachev states that the period map for H factors through a
locally symmetric variety (also n>-dimensional) of type 1, ,,'* which would imply
that mg = su(n, n). This is equivalent to saying that,

up to finite data (i.e., after passing to a finite cover),

(5:3) H is the n-th wedge power of a VHS of weight 1 and rank 2n.

128ee [Hotta et al. 2008, Proposition 8.2.30] for the statement that IC?,, L = ;. L[n].

13Here (-)° means the identity component as algebraic group (i.e., SO(H) instead of O(H) if n is
even).

14Note that the “tautological VHS” over I 5 is already geometrically realized by the n-th primitive
cohomology of a universal family of Weil abelian 2n-folds.
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The conjecture does hold for n =1 and n = 2, but this merely reflects exceptional
isomorphisms of Lie groups in low rank, namely

SU(1, 1) = SL,(R) and SU(2,2) = Spin(2, 4)*.

That is, in both of these cases we also have [1 = My, (= SL, resp. SO(2, 4)). For
n > 3, in contrast, the conjecture would have [T < M.« a proper algebraic subgroup.
In [Sheng et al. 2015, Proposition 8.2.30] (and earlier works [Gerkmann et al. 2007a;
2007b; 2013]), it was shown via quite computationally involved differential methods
that in fact the monodromy is maximal for all n, and the conjecture fails for n > 3:

5.4. Theorem. [I=M=Mpy. forall n>1.

In the remainder of this section, we explain how asymptotic methods provide
a much simpler approach to these results. First we will give a careful argument
disproving the conjecture for n > 3 odd, which a priori is a weaker statement than
the Theorem in that case. (The relation to the main theme of his paper — specifically,
to the setting of Corollary 1.9 —enters when we pass to the smooth finite cover X
of X.) Then we sketch a proof of Theorem 5.4 using a more topological and
monodromy-theoretic approach.

Disproof of (5.3) for n odd. Most of the analysis that follows works for all r,
though the last step is inconclusive for even n.

To begin, consider a pencil P! <> S of hyperplane configurations given by fixing
Lo, ..., Ly, (in general position) and letting L,,+; := L vary along a line in P
(chosen to avoid linear spans of any n —2 L; in P").!5 Writing & =~ 1(5\ S),
we have |Z| = (Z"H); and degenerations X,, — A, of our double-covers at o € X

n

are locally modeled (with t = s — o) by

(5.5) W2 = xp ey (F— Xy — - — )
loc

after a PGL,,41(C)-action. Accordingly, writing Xy, ..., X, for projective coor-
dinates on P”, we take ¢; = X; for 0 <i <n and {,4 = tXg — Z?:]Xi, and
nio, ..., lopy1 “general”.

Let £ : P"* — P?"*! denote the linear embedding

[Xo:---: Xnlt> [Lo(X) : -+ opp1(X)]
and ¢ : P>t — P?"*! denote the map sending

(Zo:-w: Zoppt > [Z5 - 25,01 )

151¢ already follows from Zariski’s theorem [Voisin 2003, Theorem 3.22] that p (77} ([P’] \X) =
p(1(S)) but we won’t need this.
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Then the variety X:= ¢~ 1 (L(P")) c P>+ is a smooth complete intersection on
which!® A:=(Z/27)*"*% (Z/2Z) acts via e +— {Z; — —Z;}, with quotient P";
explicitly, we have
~ n
(5.6) X=0=FuZ):=—Zy 11 +luri1(Z5. ... Z)).
k=0
Write x € X*(A) for the character sending each ¢ — —1, A°:=ker(x) < A,

and g : X — X for the quotient by A°; then H = ¢*H (X) = H"(X)*. Since

) n+1 B
Fo(2)=tZy— ) Z;,
i=1

we have thus replaced our original non-isolated degeneration (5.5) by a nodal one.
Next, we use the “Cayley trick” to replace the complete intersection X by a
hypersurface

(5.7) Y = {0 =F:= 2 Yka(Z)} C P(Op2r1 ()" =: P
k=0

of dimension 3n. We have an A-equivariant isomorphism H (Y)(n) = H" ()A( ) of
HSs, so that H = H3"(Y)X(n). In affine coordinates (21, ..., Zon+1; Y15+ -» Yn)s
notice that F = 0 becomes!’

n
(58) O0=t—z1—---— Z,%H + > vk (bk — Znk+1) Bk + Znk1) +hooot,,
k=1

where b :=  F; (1,0, ...,0). So at t =0, the singular fiber Y, has 2" nodes at
(5.9 (Zo;Z1, ... Zutt; Zng2s -+ Zony1s Yo Yiu oo, V)
= (1; 0,...,0, (=D%by, ..., (—=1D*b,; 1,0, ..., 0), ac(2/27)",

and the degeneration ), — A, has smooth total space. The mixed spectrum of
each node is [((3n+1)/2,3n+ 1)] for n odd and [((3n + 1) /2, 3n)] for n even; so
T, acts through multiplication by (—1)"*! on

(5.10) H (v, = @(—L%J)w.

Moreover, since the summands of (5.10) are represented by
ng = (=D¥dzi A~ Adzappr Adyr A= Ady,) [FTED2]

near the nodes (5.9) (in the sense of [Kerr and Laza 2023, Section 2]), it has a 1-
dimensional subspace (generated by 1, := S (=1l na) on which A acts through .

16Here A denotes the diagonal embedding.
17Here “h.0.t” means terms vanishing to order 3 at the nodes.
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Taking x-eigenspaces of the vanishing-cycle sequence for J, — A, and twisting
by Q(n) now yields

G.11) 0= H*(¥,)*(n) ¥

n n 1 n
H3 (Y% (n) 2 @(—L”JZF J) s HIH (V)% (m) — 0.
=Hiim

We claim that § = 0. For n even, this is clear, since T, acts trivially on HS]:’“ (Ys)
and by —1 on Q(—|(n + 1)/2]). So we conclude that 7, acts on Hj, via an
orthogonal reflection. This doesn’t factor through /\" of any automorphism of C",
but because it is finite (of order 2), this does not (yet) disprove the conjecture.

On the other hand, for n odd, it is not automatic that § = 0. (This is a well-
known problem with nodal degenerations in odd dimensions, see [Kerr and Laza
2023, Section 2.2]; and as we saw in the proof of (5.5), our degenerations are
finite quotients of nodal ones.) But if we can show § = 0, then the conjecture is
immediately disproved (for odd n > 3). Here is why: by (5.6), Hjiy, then has a class
of type (n+ 1, n+ 1), which must go to an (n, n) class by N,

q 4

1.‘/\’.0

forcing tk(N,) = 1 (rather than 0). (In different terms, each T, is a nontrivial
symplectic transvection.) But this is impossible for /\" of a nilpotent endomorphism
of C?".

To complete the (dis)proof, then, we apply [Kerr and Laza 2023, Theorem 2.9]:
for a nodal degeneration Y ~~ Y, of an odd-dimensional hypersurface of a smooth
projective variety P satisfying Bott vanishing, the rank of § is the number m of
nodes minus the rank of the map

ev: HO(P, Kp(3n;—1 YJ)) — C"

given by evaluation at the nodes. The proof in [loc. cit.] is equivariant in .4, and so
we find that §* = 0 <= ev is nonzero on H°(P, KP(MT“YG))X, which can be
checked at any node. Writing

n 0 2n+1 0

ep: =Y Yi—, e:= ) Zi— —2e, and Q:= (e, (e;,dZAdY)),
= oy = oz;
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one checks that

(5.12) YoZ2Q2/(Fimg) 172

is a well-defined section of Kp(3”2+ 1Y,) (see [Kerr 2003, Section 4.5]); and evi-
dently A acts on it through y. Clearly, it is nonzero on the fiber of Kp (3”2+ ! Y(,) at
any of the nodes (5.9).

Sketch of proof of Theorem 5.4. Returning to the local picture (5.5), we now seek
a more concrete topological description of the orthogonal reflections (n even) and
symplectic transvections (rn odd) through which T, acts on H. So let Uy C A"
be the complement of the hyperplanes x; =0, ...,x, =0and x; +---+x, =1,
and Ly the rank-1 local system on Uy with monodromies —1 about each of them.
While the singularity x, <% X, “at 0” in (5.5) isn’t isolated, the vanishing-cycle
complex ¢; Qy is nothing but 17 V[—n], where V :=IH" (A", Lo) (as MHS). We
begin with a local analogue of the covering argument just seen.

5.13. Lemma. (i) IH"(A",Ly) EQ(—|(n+1)/2)).
(i1) Local monodromy T, acts on V through multiplication by (=1t
(iii) The canonical map can, : Hyiy, — V is onto.
Proof. Define maps

o fo: A" A" by x > (x,1—Y7_ x;) and

o ¢ : A" — A" by squaring all coordinates z;.
Then X := ¢0 (fo(A")) c A"t is the quadric hypersurface ) " +1z2 = 1. The
group Ag := (Z/27)"*" acts on Xo (multiplying coordinates by £1), with quo-
tient A”. The quotient g : Xo — X by the augmentation subgroup Aj yields the
obvious 2 : 1 branched cover of A", with H" (X)) = IH" (A" s Lo).

By the localization sequence for )20 (relative to its closure X C P"*1) and weak
Lefschetz, one easily shows that H/(X() = 0 for j # n,'® and

H" (X0) = Q- L”J;J)

(Writing 8Xo = Xo \ Xo, this is H"(R0)/H"~2(3X0)(—1) for n even, and for n
odd ker{H"~! (Bf(o)(—l) — H" ()A(O)}.) A generator for the dual group H! (}20)
is given by the real (vanishing) n-sphere S} := {Z zl.z = 1} NR"*!, whose class is
invariant under Aj hence comes from H'(Xo). This gives (i).

The degeneration is modeled by replacing ) zl.z =1by ) zl.z =t; as the spectrum
of ) zl.z is [(n + 1) /2], the monodromy is as described in (ii). Finally, (iii) follows
from the last subsection since can, identifies with canX in (5.11). O

18This simply recovers perversity of ¢ r Qxlnl.
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The vanishing sphere S} := {Z zl.z = t} NR**! in X, has image in Xy (by go)
given by the double cover of ((/_;{x; > 0}) N {>_x; < r}. Let its image in X
(essentially via can* : H(X¢) — H"(X)) be denoted by v, ; this is the vanishing
cycle at o, a “double simplex” branched along H; and n additional hyperplanes.
It follows from (iii) that 7, is a transvection/reflection in v,. More precisely,
rescaling Q to have Q (v, vy) = %(1 + (=",

(5.14) Ty (u) = u —2Q(u, vy) Vs

forue H.
Now consider the general setting where Ly, = L, Lo = {Xo = 0}, and the
remaining L; are in general position. An easy extension of (5.1) gives

H=TH'(A", 1) = H"(X \ Lo),

whence Hj (X) is spanned by double simplices branched along n + 1 of the Lixo.
Obviously all of these can be rewritten as Z-linear combinations of double simplices
branched along L and n of the {L;}<;<2,; call these vy, where I C {1, ..., 2n}
with || = n. Since rk H = (*") and there are (*") of these vanishing cycles, they
form a Q-basis of H = Hy(X). Write T; for the corresponding monodromies,
and I' < Aut(Hc, Q) for the smallest C-algebraic group containing them; clearly
< ﬁ@. Moreover, we note that if |/ N I'| =n—1, then Q(v;, vy/) = %1 (rescaling
as above, compatibly with (5.14)).

Suppose then that [INI'|=n—1. If nis odd, then T} (v;)) =v; tvp = iTITI (vp),
whence vy is in the I"-orbit of v;; so all the v, are in the I'-orbit of v;. If n is
even, then reasoning as in [Deligne 1980, Section 4.4] (see the paragraph after
Lemme 4.4.3%), T, TIjF1 is a transvection and its Zariski closure a G, including
transformations which send v; — vy and vice versa; once again, all the v; are in
the I"-orbit of a single v;.

Let R :=T".v; denote this orbit. Obviously it spans Hg¢. Furthermore, for any
8 € R, we have that I' contains the transvection/reflection 73: writing § = y.v;
(y €T’), wehave Ts =T,,, = yT; y‘l e I'. So I is in fact the C-algebraic
closure of the {Ts}scg, and we are exactly in the situation of [Deligne 1980,
Lemme 4.4.2]. Conclude that I' = Aut(Hg, Q), and hence = Aut(H, Q), and
thus I1 = Aut(H, Q)°, proving Theorem 5.4.

5.15. Remark. After writing this paper we encountered the article [Xu 2018] which
treats the more general setting of r-covers of P" branched along hyperplanes by
considering local monodromies (as we have just done). The argument is necessarily
more complicated and technical than ours. However, in the case r = 2 (i.e., our
setting) it appears to be incomplete.

If r =2 and » is odd, Proposition 3.4 of [Xu 2018] does not actually establish that,
in the notation of [loc. cit.], e(1) is nonzero; this is exactly the issue regarding possible
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nonvanishing of § dealt with above. One could read [Xu 2018, Proposition 4.2] as
confirming this in retrospect, but this makes the argument quite convoluted.

If r =2 and n is even, the proof of [Xu 2018, Proposition 4.2] is wrong, as
it makes use of the (false) statement that Sp,,, (R) “does not admit any nontrivial
one-dimensional invariant subspace” in its action on /\" R?".

Acknowledgements

We thank P. Gallardo and R. Laza for valuable discussions related to this paper,
and the referee for helpful expository suggestions. This work was partially sup-
ported by Simons Collaboration grant 634268 and NSF grant DMS-2101482 (Kerr).
Pearlstein’s work was partially supported by the following grants: MIUR Excel-
lence Department Project awarded to the Department of Mathematics, University
of Pisa, CUP 157G22000700001 and Progetti di Rilevante Interesse Nazionale
(PRIN), Geometry of Algebraic Structures: Moduli, Invariants, Deformations. Kerr
and Pearlstein would also like to thank the Isaac Newton Institute for Mathematical
Sciences for support and hospitality during the program “K -theory, algebraic cycles,
and motivic homotopy theory” (supported by EPSRC grant number EP/R014604/1)
when work on this paper was undertaken.

References

[Allcock et al. 2002] D. Allcock, J. A. Carlson, and D. Toledo, “The complex hyperbolic geometry of
the moduli space of cubic surfaces”, J. Algebraic Geom. 11:4 (2002), 659-724. MR Zbl

[Allcock et al. 2011] D. Allcock, J. A. Carlson, and D. Toledo, The moduli space of cubic threefolds
as a ball quotient, Mem. Amer. Math. Soc. 209, 2011. MR Zbl

[Arnol’d 1981] V. Arnol’d, “On some problems in singularity theory”, Proc. Indian Acad. Sci. Math.
Sci. 90:1 (1981), 1-9. MR Zbl

[Beauville 1980] A. Beauville, “Sur le nombre maximum de points doubles d’une surface dans pP3
(u(5) =31)”, pp. 207-215 in Journées de Géometrie Algébrique d’Angers (Angers, 1979), Sijthoff
and Noordhoff, 1980. MR Zbl

[Cartan 1954] H. Cartan, “Quotient d’une variété analytique par un groupe discret d’automorphismes”,
Séminaire Henri Cartan 6:12 (1954), 1-13. Zbl

[Casalaina-Martin et al. 2012] S. Casalaina-Martin, D. Jensen, and R. Laza, “The geometry of the
ball quotient model of the moduli space of genus four curves”, pp. 107-136 in Compact moduli
spaces and vector bundles, Contemp. Math. 564, Amer. Math. Soc., Providence, RI, 2012. MR Zbl

[Deligne 1971] P. Deligne, “Théorie de Hodge, 11, Inst. Hautes Etudes Sci. Publ. Math. 40 (1971),
5-57. MR Zbl

[Deligne 1980] P. Deligne, “La conjecture de Weil, 11", Inst. Hautes Etudes Sci. Publ. Math. 52
(1980), 137-252. MR Zbl

[Deligne and Mostow 1986] P. Deligne and G. D. Mostow, “Monodromy of hypergeometric functions
and nonlattice integral monodromy”, Inst. Hautes Etudes Sci. Publ. Math. 63 (1986), 5-89. MR Zbl

[Deng and Gallardo 2023] H. Deng and P. Gallardo, “Eigenperiods and the moduli of points in the
line”, preprint, 2023. Zbl arXiv 2311.09352


http://dx.doi.org/10.1090/S1056-3911-02-00314-4
http://dx.doi.org/10.1090/S1056-3911-02-00314-4
http://msp.org/idx/mr/1910264
http://msp.org/idx/zbl/1080.14532
http://dx.doi.org/10.1090/S0065-9266-10-00591-0
http://dx.doi.org/10.1090/S0065-9266-10-00591-0
http://msp.org/idx/mr/2789835
http://msp.org/idx/zbl/1211.14002
http://dx.doi.org/10.1007/BF02867012
http://msp.org/idx/mr/653941
http://msp.org/idx/zbl/0492.58006
http://msp.org/idx/mr/605342
http://msp.org/idx/zbl/0445.14016
http://www.numdam.org/item/SHC_1953-1954__6__A12_0/
http://msp.org/idx/zbl/0084.07202
http://dx.doi.org/10.1090/conm/564/11153
http://dx.doi.org/10.1090/conm/564/11153
http://msp.org/idx/mr/2895186
http://msp.org/idx/zbl/1260.14032
http://dx.doi.org/10.1007/BF02684692
http://msp.org/idx/mr/498551
http://msp.org/idx/zbl/0219.14007
http://dx.doi.org/10.1007/BF02684780
http://msp.org/idx/mr/601520
http://msp.org/idx/zbl/0456.14014
http://dx.doi.org/10.1007/BF02831622
http://dx.doi.org/10.1007/BF02831622
http://msp.org/idx/mr/849651
http://msp.org/idx/zbl/0615.22008
http://msp.org/idx/zbl/1394.14024
http://msp.org/idx/arx/2311.09352

REMARKS ON EIGENSPECTRA OF ISOLATED SINGULARITIES 53

[Dolgachev 1982] I. Dolgachev, “Weighted projective varieties”, pp. 3471 in Group actions and
vector fields (Vancouver, B.C., 1981), Lecture Notes in Math. 956, Springer, Berlin, 1982. MR Zbl

[Dolgachev and Kondd 2007] 1. V. Dolgachev and S. Kondd, “Moduli of K 3 surfaces and complex
ball quotients”, pp. 43—100 in Arithmetic and geometry around hypergeometric functions, Progr.
Math. 260, Birkhduser, Basel, 2007. MR Zbl

[Endrass 1997] S. Endrass, “A projective surface of degree eight with 168 nodes”, J. Algebraic Geom.
6:2 (1997), 325-334. MR Zbl

[Gallardo et al. 2021] P. Gallardo, M. Kerr, and L. Schaffler, “Geometric interpretation of toroidal
compactifications of moduli of points in the line and cubic surfaces”, Adv. Math. 381 (2021),
art.id. 107632. MR Zbl

[Gerkmann et al. 2007a] R. Gerkmann, S. Mao, and K. Zuo, “Disproof of modularity of moduli space
of CY 3-folds of double covers of P3 ramified along eight planes in general positions”, preprint,
2007. Zbl arXiv 0709.1051

[Gerkmann et al. 2007b] R. Gerkmann, M. Sheng, and K. Zuo, “Computational details on the disproof
of modularity”, preprint, 2007. arXiv 0709.1054

[Gerkmann et al. 2013] R. Gerkmann, M. Sheng, D. van Straten, and K. Zuo, “On the monodromy
of the moduli space of Calabi—Yau threefolds coming from eight planes in P3”, Math. Ann. 355:1
(2013), 187-214. MR Zbl

[Hassett 2003] B. Hassett, “Moduli spaces of weighted pointed stable curves”, Adv. Math. 173:2
(2003), 316-352. MR Zbl

[Hotta et al. 2008] R. Hotta, K. Takeuchi, and T. Tanisaki, D-modules, perverse sheaves, and
representation theory, Progress in Mathematics 236, Birkhduser, Boston, MA, 2008. MR Zbl

[Jaffe and Ruberman 1997] D. B. Jaffe and D. Ruberman, “A sextic surface cannot have 66 nodes”, J.
Algebraic Geom. 6:1 (1997), 151-168. MR Zbl

[Kerr 2003] M. D. Kerr, Geometric construction of regulator currents with applications to algebraic
cycles, Ph.D. thesis, Princeton University, 2003, available at https://www.proquest.com/docview/
305317544. MR Zbl

[Kerr and Laza 2023] M. Kerr and R. Laza, “Hodge theory of degenerations, (II): vanishing cohomol-
ogy and geometric applications”, preprint, 2023. Zbl arXiv 2006.03953v2

[Kerr et al. 2021] M. Kerr, R. Laza, and M. Saito, “Hodge theory of degenerations, (I): consequences
of the decomposition theorem”, Selecta Math. (N.S.) 27:4 (2021), art.id. 71. MR Zbl

[Miyaoka 1984] Y. Miyaoka, “The maximal number of quotient singularities on surfaces with given
numerical invariants”, Math. Ann. 268:2 (1984), 159-171. MR Zbl

[Moonen 2018] B. Moonen, “The Deligne-Mostow list and special families of surfaces”, Int. Math.
Res. Not. 2018:18 (2018), 5823-5855. MR Zbl

[Mostow 1988] G. D. Mostow, “On discontinuous action of monodromy groups on the complex
n-ball”, J. Amer. Math. Soc. 1:3 (1988), 555-586. MR Zbl

[Sakamaki 2010] Y. Sakamaki, “Automorphism groups on normal singular cubic surfaces with no
parameters”, Trans. Amer. Math. Soc. 362:5 (2010), 2641-2666. MR Zbl

[Schoen 1985] C. Schoen, “Algebraic cycles on certain desingularized nodal hypersurfaces”, Math.
Ann. 270:1 (1985), 17-27. MR Zbl

[Sheng et al. 2015] M. Sheng, J. Xu, and K. Zuo, “The monodromy groups of Dolgachev’s CY
moduli spaces are Zariski dense”, Adv. Math. 272 (2015), 699-742. MR Zbl

[Steenbrink 1977] J. Steenbrink, “Intersection form for quasi-homogeneous singularities”, Compositio
Math. 34:2 (1977), 211-223. MR Zbl


http://dx.doi.org/10.1007/BFb0101508
http://msp.org/idx/mr/704986
http://msp.org/idx/zbl/0516.14014
http://dx.doi.org/10.1007/978-3-7643-8284-1_3
http://dx.doi.org/10.1007/978-3-7643-8284-1_3
http://msp.org/idx/mr/2306149
http://msp.org/idx/zbl/1124.14032
http://msp.org/idx/mr/1489118
http://msp.org/idx/zbl/0957.14022
http://dx.doi.org/10.1016/j.aim.2021.107632
http://dx.doi.org/10.1016/j.aim.2021.107632
http://msp.org/idx/mr/4214398
http://msp.org/idx/zbl/1466.14044
http://msp.org/idx/zbl/1260.14048
http://msp.org/idx/arx/0709.1051
http://msp.org/idx/arx/0709.1054
http://dx.doi.org/10.1007/s00208-012-0779-z
http://dx.doi.org/10.1007/s00208-012-0779-z
http://msp.org/idx/mr/3004580
http://msp.org/idx/zbl/1260.14048
http://dx.doi.org/10.1016/S0001-8708(02)00058-0
http://msp.org/idx/mr/1957831
http://msp.org/idx/zbl/1072.14014
http://dx.doi.org/10.1007/978-0-8176-4523-6
http://dx.doi.org/10.1007/978-0-8176-4523-6
http://msp.org/idx/mr/2357361
http://msp.org/idx/zbl/1136.14009
http://msp.org/idx/mr/1486992
http://msp.org/idx/zbl/0884.14015
https://www.proquest.com/docview/305317544
https://www.proquest.com/docview/305317544
http://msp.org/idx/mr/2704216
http://msp.org/idx/zbl/1037.19004
http://msp.org/idx/zbl/1478.14024
http://msp.org/idx/arx/2006.03953v2
http://dx.doi.org/10.1007/s00029-021-00675-w
http://dx.doi.org/10.1007/s00029-021-00675-w
http://msp.org/idx/mr/4292232
http://msp.org/idx/zbl/1478.14024
http://dx.doi.org/10.1007/BF01456083
http://dx.doi.org/10.1007/BF01456083
http://msp.org/idx/mr/744605
http://msp.org/idx/zbl/0521.14013
http://dx.doi.org/10.1093/imrn/rnx055
http://msp.org/idx/mr/3862120
http://msp.org/idx/zbl/1411.14041
http://dx.doi.org/10.2307/1990949
http://dx.doi.org/10.2307/1990949
http://msp.org/idx/mr/932662
http://msp.org/idx/zbl/0657.22014
http://dx.doi.org/10.1090/S0002-9947-09-05023-5
http://dx.doi.org/10.1090/S0002-9947-09-05023-5
http://msp.org/idx/mr/2584614
http://msp.org/idx/zbl/1200.14080
http://dx.doi.org/10.1007/BF01455524
http://msp.org/idx/mr/769603
http://msp.org/idx/zbl/0533.14002
http://dx.doi.org/10.1016/j.aim.2014.12.017
http://dx.doi.org/10.1016/j.aim.2014.12.017
http://msp.org/idx/mr/3303246
http://msp.org/idx/zbl/1341.14013
http://www.numdam.org/item?id=CM_1977__34_2_211_0
http://msp.org/idx/mr/453735
http://msp.org/idx/zbl/0347.14001

54 BEN CASTOR, HAOHUA DENG, MATT KERR AND GREGORY PEARLSTEIN

[van Straten 1993] D. van Straten, “A quintic hypersurface in P* with 130 nodes”, Topology 32:4
(1993), 857-864. MR Zbl

[van Straten 2020] D. van Straten, “The Spectrum of Hypersurface Singularities”, preprint, 2020.
Zbl arXiv 2003.00519

[Varchenko 1983] A. N. Varchenko, “Semicontinuity of the spectrum and an upper bound for the
number of singular points of the projective hypersurface”, Dokl. Akad. Nauk SSSR 270:6 (1983),
1294-1297. MR Zbl

[Voisin 2003] C. Voisin, Hodge theory and complex algebraic geometry, II, Cambridge Studies in
Advanced Mathematics 77, Cambridge University Press, Cambridge, 2003. MR Zbl

[Xu 2018] J. Xu, “Zariski density of monodromy groups via a Picard-Lefschetz type formula”, Int.
Math. Res. Not. 2018:11 (2018), 3556-3586. MR Zbl

Received November 8, 2022. Revised December 21, 2023.

BEN CASTOR

DEPARTMENT OF MATHEMATICS
KENYON COLLEGE

GAMBIER, OH

UNITED STATES

castor]l @kenyon.edu

HAOHUA DENG
MATHEMATICS DEPARTMENT
DUKE UNIVERSITY
DURHAM, NC

UNITED STATES

haohua.deng@duke.edu

MATT KERR

DEPARTMENT OF MATHEMATICS AND STATISTICS
WASHINGTON UNIVERSITY IN ST. LOUIS

ST. Louils, MO

UNITED STATES

matkerr @wustl.edu

GREGORY PEARLSTEIN
DIPARTIMENTO DI MATEMATICA
UNIVERSITA DI PISA

PisA

ITALY

greg.pearlstein @unipi.it


http://dx.doi.org/10.1016/0040-9383(93)90054-Y
http://msp.org/idx/mr/1241876
http://msp.org/idx/zbl/0801.14015
http://msp.org/idx/zbl/0801.14015
http://msp.org/idx/arx/2003.00519
http://msp.org/idx/mr/712934
http://msp.org/idx/zbl/0537.14003
http://dx.doi.org/10.1017/CBO9780511615177
http://msp.org/idx/mr/1997577
http://msp.org/idx/zbl/1032.14002
http://dx.doi.org/10.1093/imrn/rnw342
http://msp.org/idx/mr/3810226
http://msp.org/idx/zbl/1407.14006
mailto:castor1@kenyon.edu
mailto:haohua.deng@duke.edu
mailto:matkerr@wustl.edu
mailto:greg.pearlstein@unipi.it

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

Matthias Aschenbrenner
Fakultit fiir Mathematik
Universitit Wien
Vienna, Austria
matthias.aschenbrenner @univie.ac.at

Atsushi Ichino
Department of Mathematics
Kyoto University
Kyoto 606-8502, Japan
atsushi.ichino@gmail.com

Dimitri Shlyakhtenko
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
shlyakht@ipam.ucla.edu

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius @math.ucla.edu

Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu

Robert Lipshitz
Department of Mathematics
University of Oregon
Eugene, OR 97403
lipshitz@uoregon.edu

Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang @math.princeton.edu

PRODUCTION

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135
chari @math.ucr.edu

Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu

Ruixiang Zhang
Department of Mathematics
University of California
Berkeley, CA 94720-3840
ruixiang @berkeley.edu

Silvio Levy, Scientific Editor, production@msp.org

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2023 is US $605/year for the electronic version, and $820/year for print and electronic.

Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department
of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at
Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O.
Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY
:I mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2023 Mathematical Sciences Publishers


http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:matthias.aschenbrenner@univie.ac.at
mailto:balmer@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:atsushi.ichino@gmail.com
mailto:lipshitz@uoregon.edu
mailto:liu@math.ucla.edu
mailto:shlyakht@ipam.ucla.edu
mailto:yang@math.princeton.edu
mailto:ruixiang@berkeley.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/

Prime spectrum and dynamics for nilpotent Cantor actions 107
STEVEN HURDER and OLGA LUKINA

A note on the distinct distances problem in the hyperbolic plane 129
ZHIPENG LU and XIANCHANG MENG

The algebraic topology of 4-manifold multisections 139
DELPHINE MOUSSARD and TRENTON SCHIRMER

Approximation of regular Sasakian manifolds 167
GIOVANNI PLACINI



	Introduction
	1. G-spectra and eigenspectra
	2. Quasihomogeneous singularities with automorphism
	3. Bounding nodes on Calabi–Yau hypersurfaces
	4. Cyclic covers of P1
	5. Hyperplane configurations and Dolgachev's conjecture
	Acknowledgements
	References
	
	

