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ABSTRACT
In this paper, we propose a lightweight explainable machine learn-
ing approach that is device and attack-type agnostic and can detect
IoT devices that are victims of low-intensity direct and reflective vol-
umetric DDoS attacks launched in an ON-OFF manner. Specifically,
our approach is based on a parameterized bio-inspired information-
theoretic model that can capture small and subtle volumetric dif-
ferences between attack versus benign byte volumes exchanged
between IoT devices and the rest of the internet. Our approach
has four main phases: (1) Feature Engineering involving a simple
compression to achieve a universally reduced feature space for vol-
umetric attacks; (2) Model Parameterization: identify appropriate
parameters of a bio-inspired information-theoretic model and their
appropriate pruned search spaces. (3) Parameter Learning: take a
supervised approach for learning the optimal parameters of the
explainable model using a local search. (4) Testing: We apply the
learned parameters in the test set. To validate our approach, we
use real datasets from 4 different types of IoT devices containing
seven different kinds of attacks and varying DDoS attack volumes.
Furthermore, we employ strategies to counter the inherent biases
in attacked datasets to ensure unbiased evaluation.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems.
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1 INTRODUCTION
Smart home IoT devices are vulnerable to direct and reflective DDoS
attacks [4]. In direct attacks, the IoT device itself is the target, while
in reflective DDoS, the IoT device acts as an intermediate (e.g., a
Botnet Member) used by an attacker to reflect DDoS traffic onto
target servers on the internet. In [1], malware reportedly found
vulnerabilities in millions of IoT devices that were used to source
DDOS traffic to bring down servers of various popular web servers.
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1.1 Related Work
Prior approaches to IoT device attack detection are broadly classi-
fied into network-level data flow [10], attack-specific features [2],
network segmentation [3], IoT network or device components clas-
sification [5], or adopt known machine learning techniques for
anomaly detection [4], rate limiting at the victim side networks.
Note that IoT devices for reflective DDoS can be used as a moving
target to take down any server. Hence, rate limiting does not ad-
dress the root cause; i.e., detecting the SH IoT devices reflecting
DDoS traffic. However, IoT device-level detectors try to detect at-
tacks at the source SH IoT network. If successful, it can prevent the
spread of the attacks at the source IoT network’s edge, like taking
the IoT devices offline.

1.2 Key Challenges and Motivation
At the IoT device level, different variations in the attack strengths
are possible. Some DDoS attack volumes could be very low. For
example, [4] observes that low volumes of DDoS attacks from 10
pps to 30 pps are sufficient to make many (if not all) IoT devices
unresponsive. Thus, reflective DDOS attacks using compromised
IoT devices to reflect traffic will not be able to reflect traffic to the
intended target if attack volumes are higher than 30pps. Hence,
even though the amount of traffic per compromised IoT device is
small, the sheer scale of the compromised IoT devices is enough
to cripple target servers on the internet [1]. Therefore, we need to
focus on low-strength DDoS attacks.

Second, every IoT device has widely different legitimate traffic
patterns and drastically different ranges of traffic volume even
under benign conditions. Since the amount of increase in the traffic
per IoT device can be small, subtle variations between the legitimate
and attack traffic make it difficult for detection systems to detect
and isolate DDoS attacks.

Third, DDoS attack is an umbrella term that exploits vulner-
abilities in several protocols. Current approaches look into the
protocol-specific flows on each port per attack type, which creates
the problem of too many features (e.g., 115 features in [11]) and
increases the anomaly detection model’s complexity. This in turn
requires bulkier detection models such as autoencoders [11], and
deep neural networks [4], which are also not explainable.

Fourth, every attack dataset comes with a specific implementa-
tion strategy. In reality, the attack strategymay be different from the
one implemented in a dataset. The implications of such variations
on the robustness of learning classifiers are untested.

1.3 Contributions
In this paper, we propose an explainable machine learning-based
approach based on bio-inspired information theory for IOT device-
level detection of direct and reflective DDoS attacks of various
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attack strengths that generalize well across IoT device types. Specif-
ically, we first convert IoT device-generated .pcap files to CSV that
summarize the per-second traffic conversation of IoT devices with
the rest of the internet (both local and remote). Due to the high
dimensionality of the conversations, we calculate a reduced feature
set that only takes the sum of the total number of bytes exchanged
between the IoT device and the rest of the internet, over a strategic
time window length.

Then, we construct a detection model architecture based on bio-
inspired ecological information theory, which takes as input our
reduced feature set and is parameterized by three parameters. We
identify the importance of the time window parameter and the
binning width parameter choices which affect the shape of the
probability distributions of the feature set under attack and benign
labels. Additionally, we identify a diversity order parameter that
affects the accuracy of our explainable ML model. We discuss why
the above can detect low-strength DDoS attacks injected in an ON-
OFF manner, by being able to quantify subtle changes in the shape
of the distributions of the feature set with and without attacks.

Finally, we take a supervised approach to learning the optimal
parameters of our explainable model as a mixed integer problem
which has a brute force exact solution. Then, we also discuss vari-
ous pruning strategies to correctly reduce the search space of model
parameters. To further enable an efficient solution to parameter
learning, we implement a heuristic local neighborhood search tech-
nique to find a quick approximation of the optimal parameters.

For validation, we apply the learned parameter values of our
model in a test set containing benign and attack datasets for four
different IoT device types. We also ensure the test set attack datasets
are not biased by randomly sampling and mixing different attack
strengths and durations. We find that our model fitted with the
learned parameters can readily distinguish benign versus attack.
Specifically, our model produces a diversity index score in the test
set, where the diversity score is significantly high under attacks
compared to under benign , even when the attack dataset contains
a mix of both benign and attack traffic.

2 SYSTEM AND THREAT MODELS
Here we describe smart home IoT, followed by the dataset/testbed
details, reasons why we chose this dataset, steps we took to ensure
unbiased evaluation, and discuss different attacks in the dataset.

2.1 Architecture and Operations
A typical smart home IoT network contains the following types of
components: (1) IoT devices (e.g., Smart Light Bulb, Smart Thermo-
stat) and IoT Hub devices (Samsung Smart Things, Hub, Amazon
Echo) ; (2) non-IoT devices (laptops, tablets, smart phones); (3) smart
home edge gateway router.
IoT Devices: An IoT device (e.g. Smart Camera) is one that is con-
nected to a internet and runs an IP-protocol. Each IoT device’s goal
is to offer some services to customers (e.g., smart surveillance).
Smart Home Gateway (SHG): Each smart home has a gateway router
(SHG), that connects the IoT devices to the rest of the internet. SHG
can also host security middleware services by mirroring IoT traffic
to a Raspberry Pi. Thus, SHG will be able to monitor SH network
activity originating from a given smart home, where our proposed

Figure 1: Smart Home Network Architecture
framework can be deployed for IoT device-level detection at the
source IoT network.
2.2 IoT Device and Dataset Details
We use the UNSW dataset [4] that contains labeled benign and
attacked traffic collected from a smart home IoT testbed contain-
ing various IoT devices and some non-IoT devices. We chose this
dataset because (1) this is one of the only datasets which contain
varying DDoS attack volumes (ranging from as low as 1 pps, 10 pps,
to some higher volumes (e.g. 100 pps). This allows us to test the
sensitivity and specificity of detection to very low volume DDoS;
(2) the attacks are implemented in an ON-OFF manner; (3) times-
tamps that correspond to an attack are also given, apart from just
the attack and benign dates helping us to create and test different
combinations of attack possibilities. In this way, we avoid sampling
bias in the original experiments used to create the attacks.

The dataset is available as daily .pcap files captured by mirroring
the traffic at smart home gateway. The traffic contains the flow-
specific source and destination IP, port nos, MAC addresses for
local sources and destinations, and the number of packets and bytes
per second per flow. We filtered the traffic using wireshark to study
four different IoT devices; (i) Netatmo Welcome camera, (ii) Belkin
Wemo Powerswitch, (iii) Dropcam, and (iv) Samsung Smart camera.
We chose these devices because the previous works [4] reported that
IoT devices with video/audio streaming applications have highly un-
predictable traffic patterns. Therefore, device-level anomaly-based
attack detection is more challenging in these devices.
2.3 Attack Types, Strengths, Durations
In this section, we briefly enumerate each device’s attack types and
briefly describe the attack types, attack strengths, attack strategies.

We collect the benign and attack datasets from [4]. Various spec-
ification compliant DDoS attack types on smart home IoT testbed
is reported in [4].

Direct attacks: The direct attack types included in our labeled
attack dataset for the devices include well-known attacks such as
(1) Fraggle, (2) Ping-of-Death, and (3) TCP-SYN Flood, (4) UDP-
Flood [1], (5) NTP amplification [4]. The direct attacks incapacitate
the IoT device itself.

Reflective DDoS attacks: In reflective DDoS attacks, the attacker
uses the compromised SH IoT device as an intermediate to source
traffic attacking victims. The attack path is indicated with origin-
intermediate IoT device-victim. In such a case, the attacker uses
the IoT device as a weapon intermediate for targeting a victim
- which could be another device/server in the local network or
outside on the web. Such attacks have been on the rise due to
the growing proliferation of millions of vulnerable IoT devices
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which can generate the required amplification volumes necessary

to overwhelm target victims. The devices we picked contained TCP

SYN Reflection and SNMP Reflection attacks.

Three variations in DDoS attack strengths: (i) 1 packet per second

(pps) (2) 10 pps (3) 100 pps (for direct attacks), which capture various

low volume DDoS attack strengths. The attacks are implemented

in an episodic manner (ON-OFF) where a a certain attack type and

strength pair lasts for 10 minutes.

2.4 Attack Type to Device Mapping

Below we enumerate which of our chosen devices contain what

kind of attacks:

Samsung Smart Camera: The attacks launched included TCP-SYN

flood, UDP Flood, SNMP reflection, TCP-SYN-reflection, PING-of-

Death, and SMURF.

NetAMO Welcome Camera: The attacks launched included TCP-

SYN-reflection, TCP-SYN Flood.

Belkin Wemo Power Switch: The attack launched included TCP-

SYN-reflection, TCP-SYN Flood, Ping-of-Death

Dropcam: The attacks launched was NTP amplication.

2.5 Removing Bias from Attack Dataset

Note that it is not necessary that all attackers will create attack

episodes that last 10 minutes. Additionally, the attack volume per

episode need not be constant. Hence, security evaluation will be

biased because just using this attack dataset is not representative

of various possible attack behaviors. This is an often overlooked but

important aspect of security research; i.e., since the actual attacker’s

strategy may be different from the strategy intent manifested in

the authors of a specific attack dataset and testbed. To avoid this

problem, we created different "sampled" (removing/replacing parts)

versions of the original attacked dataset, in the following manner:

Given that attack and benign samples are labeled at the timestamp

level in our chosen dataset (with full details on attack type, strength,

start, and stop times), we could reliably remove and replace parts of

the attack samples and benign samples randomly such that there

is no fixed pattern to the ON-OFF periods of each attack episode,

and also no fixed pattern in the attack volume given one attack

episode. Through the above, we created a more representative mali-

cious dataset that contains different possibilities of attack strengths

and attack-durations. This ensures that our method’s success (or

failure) is not dependent on the specifics of the attack episode as

implemented by the dataset’s authors. While sampling, we ensure

that within one attack episode, the attack type and strength do not

change for a given IoT device to preserve the intended impact of

each attack episode.

3 TECHNICAL FRAMEWORK

In this subsection, we provide a theoretical intuition of why our

framework is required and at a high level why it works, followed by

the model architecture, parameters involved, search space pruning,

and finding optimal values of the parameters.

3.1 Reducing Feature Space and Pre-processing

In the actual dataset, for every IoT device, there is a multitude of

features such as source IP, list of all destination IPs with which there

was communication in the given duration of the dataset, the source

port, destination port, sourceMAC addresses, and destinationMACs

in the local network. For each of these, the traffic dataset contains

packet/byte numbers.

However, there is scope to be smart in understanding what is

it that we want to learn. i.e. whether the IoT device is under the

influence of a direct or reflective volumetric DDoS attack. In that

regard, whether local or remote destinations or a wide area botnet

is involved in orchestrating the attack, looking at the ports and

flows separately is not necessary. What is relevant is that is there an

anomalous change in the total traffic volume exchanged between

the IoT device and the rest of the internet (including both local and

remote web). Tracking the total traffic volume exchanged rather

than tracking volumes per destination and per port is the model

that is simplest and has the most reduced complexity. The above

is aligned with Occam’s razor and a very fundamental but often

ignored aspect of machine learning. It says that amongst all the

information available, picking the simplest or most reduced model

is the best way to achieve high prediction accuracy.

Now, the term traffic volume in itself is vague and requires fur-

ther elucidation. Using Wireshark software, we extracted the total

byte volume per second exchanged between an IoT device (by fil-

tering via its MAC address) and the rest of the internet. Formally,

let us denote this by 𝑏 ( 𝑗 ) (𝑡); which is the total number of bytes

exchanged between the 𝑗-th device and the rest of the internet at
the 𝑡-th time slot (slotted as per second).

Note that DDoS detection will be easy near the periphery of

a victim network, due to a tangible increase in the DDoS traffic

that is enough to take down the victim server. However, the same

IoT reflectors can be used to target many other victim servers.

Therefore, detecting the IoT devices used to reflect DDoS traffic is

equally important at the source IoT network. At the IoT device level

though, the differences in byte volume distributions are very subtle

in low-intensity DDoS attacks (See Fig. 2 for a Dropcam device).

Figure 2: Subtle Differences in Byte Volume 𝑏 ( 𝑗 ) (𝑡)

3.2 Analogy with DDoS Attacks and Ecological

Disruption

Now, we relate our problem of detecting small-volume attacks

at the IoT device level with ecological information theory. Some

information theoretic models in ecology study the relative level

of abundance/rarity of a certain species over all the species (i.e.,

probability of a species given all numbers of organisms) across

different time frames. It helps to detect subtle events that disrupt
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ecological balance and uncover underlying causes. Importance is
provided on rarer and endangered species, to quickly understand
the true impact of an underlying cause on the species diversity.

Our intuition is that a change in the rarer bins will be seen
when comparing the correctly constructed byte volume probability
distributions. This is because DDoS attacks are volumetric attacks.
Hence, asymmetric and exponentially more importance given to
the rarer bins in the probability distributions will enable reliable
detection of low-intensity attacks. This intuition can be verified
from Fig. 2, where a minor change is seen in low probability bins,
while high probability bins are identical across benign and attack,
and there is no difference in the range of data ranges under benign
and attack; proving the low-intensity nature of the DDoS attack.

Therefore, given the parallelism between these two different
problems, we hypothesize that diversity index scoring on proba-
bility distributions of 𝑏 ( 𝑗 ) (𝑡) can help identify low-volume attacks
at the IoT device level. The diversity index score is inspired from
Renyi entropy rather than the more popular Shannon’s entropy.
We discuss these preliminaries next.

3.3 Renyi Entropy and Diversity Index Model
The Renyi entropy provisions for an additional parameter ’diversity
order of entropy’ denoted by 𝑞. While quantifying uncertainty in
information via information theory, the parameter ‘q’ in Renyi En-
tropy allows to adaptively and asymmetrically control the relative
importance of each bin in a discretized probability distribution 𝒑
in the entropy calculated.

When the 𝑞 → 1, Renyi Entropy is approximately equal to
Shannon entropy. Mathematically, Renyi entropy is defined as:

𝐻𝑞 (𝒑) =
1

1 − 𝑞
𝑙𝑛

( 𝑅∑︁
𝑠=1

𝑝
𝑞

(𝑠 )

)
(1)

In ecological studies, [13] shows that instead of Renyi Entropy, the
Hill’s Diversity Index derived from Renyi Entropy is more useful,
since this gives control on the importance of each bin type. Hill’s
Diversity Index can quantify how diverse is the uncertainty in the
information content. Mathematically, the Hill’s Diversity index of
the order 𝑞 ∈ R is defined as:

𝑒𝐻𝑞 = 𝐷 (𝑞) =
( 𝑅∑︁
𝑖=1

𝑝
𝑞

(𝑖 )

) 1
1−𝑞 (2)

where 𝑞 is a ‘diversity order’. The higher the value of 𝑞, the more
asymmetric importance is given to the higher probability bins (most
common occurrences) compared to the lower probability bins while
the diversity of the information is being quantified via 𝑒𝐻𝑞 .

3.4 Parameterizing Model Architecture
Time Windowing Parameter: Observing smart home IoT datasets
reveal that most of the time a device is not actively used. There-
fore, the 𝑏 𝑗 (𝑡) contains a lot of intervals with little or no traffic
exchanged. Therefore, we further reduce the feature space by the
sum of the byte volume exchanged between the j-th IoT device
and rest of the internet over a time window of length 𝑇 , such that
𝐵 ( 𝑗 ) =

∑𝑇
𝑡=1 𝑏

( 𝑗 ) (𝑡) is the random variable for which we need to
construct probability distributions. Please note that the random
variable 𝐵 ( 𝑗 ) is a function of the parameter𝑇 i.e., the window length
that will directly affect the parameters of a probability distribution

of 𝐵 ( 𝑗 ) . Hence, we need to find the optimal time windowing param-
eter 𝑇 . Since our mechanism separately works in the same manner
for each device 𝑗 , we drop the suffix 𝑗 from our notations, to keep
notational simplicity.
Binning Width Parameter: The continuous range of data under
each class label needs to be binned into several discrete partitions
of bin width (denoted by 𝑠 bytes). Given a bin width of 𝑠 bytes, the
number of bins will change and so will be the quantized probability
distribution of attack and benign byte volume data.

Furthermore, the ranges of benign data distributions can greatly
vary from IoT device to device due to its specific functionality,
which dictate traffic volumes. This also indicates that the probability
distribution of 𝐵 ( 𝑗 ) r.v. will depend on the binning width parameter
𝑠 , which again changes the shape of the distribution. Hence, we
need to find the optimal 𝑠 .

Diversity Order Parameter Finally, it is evident from the Eqn. 2,
that we need to learn the optimal value of the diversity order pa-
rameter 𝑞 for modeling the diversity scores’ and maximize its dis-
criminative power for classifying attacks from benign. To conclude
we have the following model architecture where the function we
need to learn is specified by the diversity index model. The model
is parameterized by three parameters: (i) 𝑞 is the diversity order;
(ii) 𝑠 the bin width; (iii) 𝑇 the time window length. Therefore, for-
mally we can write the following equation that specifies are simple
explainable ML architecture:

𝐷𝐼 (𝑞, 𝑠,𝑇 ) =
( 𝑅 (𝑠,𝑇 )∑︁

𝑖=1
𝑝
𝑞

𝑖
(𝑠,𝑇 )

) 1
1−𝑞 (3)

The good thing is that our model just needs to learn three pa-
rameters. In contrast, popular ML detectors like an LSTM has
(𝑚 ∗ 𝑛 + 𝑛2 + 𝑛) parameters, where𝑚 = the input dimension and
𝑛 = Number of activations in each gate.

3.5 Pruning Parameter Search Space
We discuss some key design issues which we found result in biased
and unpredictable outcomes that prevent unified treatment.

Search Space of 𝑆 : First, the comparison between attack and be-
nign data probability distribution cannot happen on even terms,
since their benign data ranges greatly vary from IoT device to
IoT device. Wherever binning is involved in information theory
applied to computer security, this issue is not addressed in a scien-
tifically generic manner. Furthermore, fixing the number of bins
while constructing the probability distributions produces different
bin widths, which in turn means a drastically different number of
bins; producing incomparable diversity index model scores.

If we do not prune the search space of the bin width, the differ-
ences in the shape of the distributions between attack and benign
will not be apparent for many parameter combinations. This is not
smart since we know this explodes the search space unnecessarily.
To solve this, we applied Scott’s rule [9], as a scientifically sound
way of assigning an upper bound on the bin width parameter, that
prunes the search space of 𝑠 . Next we discuss how we did this:

Scott’s Normal Reference Rule: Scott’s binning rule is a recom-
mended method for determining the optimal number of bins in
a histogram which is Gaussian distributed. Scott’s rule takes into
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account the sample size and the standard deviation of the data, to
determine the appropriate number of bins. Mathematically, it is
denoted by:

ℎ = 3.49
𝜎
3√𝑛

(4)

where 𝜎 is the estimate of the standard deviation and 𝑛 is the total
number of observations and ℎ is Scott’s number.

However, we cannot apply Scott’s rule directly in our problem to
get the optimal number of bins because, our feature distributions are
not Gaussian. Unpredictable human behavior causes even benign
byte volumes to have high levels of variability. Moreover, there are
variations in the strength of DDoS attacks across attack episodes.
The above reasons result in a higher sample standard deviation
violating the model assumptions of Scotts’ Reference Rule. So with
the high sample standard deviation, Scott’s rule will give an inflated
bin width rather than an optimal one. However, this inflated bin
width can be utilized as statistically sound upper bound over the
unknown bin width parameter 𝑠 . Therefore, to include such potential
scenarios we defined a range of values for 𝑠 ranging from 0.1 to
𝑠𝑚𝑎𝑥 = ℎ to ensure that we constrained the search space of the
binning parameter.

Search Space of 𝑇 : The time window search space is a discrete
integer ranging from 1 to𝑇𝑚𝑎𝑥 minutes, with a step size of 1 minute.
We kept the 𝑇𝑚𝑎𝑥 as 30 minutes since too large 𝑇𝑚𝑎𝑥 would count
the bursty benign byte volume usage too, making discriminative
classification difficult, especially under on-off attacks.

Search Space of 𝑞: The order of diversity parameters directly
affects the diversity index scores. The more negative the 𝑞, the
more importance the rarer bins get in the resulting 𝐷𝐼 (𝑞, 𝑠,𝑇 ). The
more positive the 𝑞, the more abundant or high probability bins get
more weight in the final DI score. Since over a time window, greater
than normal amounts of traffic are exchanged during DDoS attacks,
we posit that the optimal value of 𝑞 that should give the best results
should be in the negative real domain (i.e. −∞ < 𝑞 < 1), because
with a more negative 𝑞, rarer bins are given more importance while
calculating scores. Later, we verify that our hypothesis matches
with the outcome of the optimal 𝑞 in the optimization problem and
this explains why the optimal parameter values fitted to the model
produce linearly separable class-conditioned DI scores.

3.6 Parameter Optimization
In this section, we put forward the supervised learning approach to
learn the parameters of the diversity index model by formulating
the objective function that would enable us to learn optimal values
of the parameters

𝐶 =

(
𝐷𝐼𝑎𝑡𝑡𝑎𝑐𝑘 (𝑞, 𝑠,𝑇 ) − 𝐷𝐼𝑏𝑒𝑛𝑖𝑔𝑛 (𝑞, 𝑠,𝑇 )

)
max
𝑠,𝑞,𝑇

𝐶 (5)

s.t. 0.1 < 𝑠 ≤ 𝑠𝑚𝑎𝑥 𝑠 ∈ R
1 < 𝑇 < 𝑇𝑚𝑎𝑥 𝑇 ∈ I

−∞ < 𝑞 < 1; R

The optimal solution of the above can be represented as

𝑠∗, 𝑞∗,𝑇 ∗ = argmax
𝑠,𝑇 ,𝑞

(𝐶) (6)

The above problem is a mixed integer problem, since the 𝑇 is
strictly integer while parameter constraints 𝑠 and 𝑞 are real valued.
This partial integer nature of the constraints prevents us from
applying gradient-based approaches popular in machine learning.
Therefore, we need an approach to solve Eqn. 5 to an approximate
solution for the Eqn. 6.We do a neighborhood search to find solution
in the following way:

We visualize the parameters (𝑠,𝑇 ) on a 2D coordinate system.
For each point, we find the optimal value of 𝑞 that maximizes the
objective function𝐶 . Given this, we can perform a local search with
(𝑠,𝑇 ) and search the entire parameter space of 𝑞 per point.

Given neighborhood search techniques are highly influenced
by the choice of start point, we had random start points in the
(𝑠,𝑇 ) space, such that 𝑟 is the 𝑟 -th random start point. For each
𝑟 , we start an iterative process indexed by 𝑙 , such that 𝑟𝑙 , is the
l-th iteration of the local search corresponding to the 𝑟 -th random
start point; the 𝑍𝑟 (𝑙) is the set of neighborhood points in (𝑠,𝑇 )
including the random start point. For each point in 𝑍𝑟 (𝑙), we find
the value of the objective function. Then, we pick that combination
of parameters from the set 𝑍 𝑙

𝑟 , which maximizes the local estimate
of 𝐶 after iterating over the search space of 𝑞.

Now let 𝑍 ∗
𝑟 (𝑙), be the point maximizing 𝐶 for a certain value of

𝑞(𝑙). Now this point forms the new pivot for the second iteration
of the local search (i.e l=2) is initiated where the neighborhood set
is selected such that 𝑍𝑟 (𝑙) ∖ 𝑍𝑟 (𝑙 − 1). The above means that the
new neighborhood around the pivot excludes overlap between this
local neighborhood and the neighbor set of the previous iteration.

The process goes on until𝐶 (𝑙) stops changing, and thenwhichever
point (𝑠,𝑇 ) the process converges to is the local optimal parameter
choice 𝑠 (𝑟 ),𝑇 (𝑟 ), 𝑞(𝑟 ), which is entirely dependent on the random
start point 𝑟 . We performed this process for 50 different random
start points. At the end, across random start points the highest
local maximum is treated as the approximate global maxima and
the corresponding parameter values at that point is the optimal
solution 𝑠∗,𝑇 ∗, 𝑞∗.

We do the above for each IoT device and then do a model averag-
ing of each of the parameters across devices, and across all sampled
versions of the training set; and finally, we get the following average
optimal parameter values 𝑇 ∗ = 17 minutes, 𝑞∗ = −20, and 𝑠∗ = 2.3
of the universal model that should apply for any device for any
realization of attack and benign data. Later we plug these optimal
parameter values for diversity index calculation in the test set. The
test set contains both benign and attack data, whose ground truths
are known.

4 EXPERIMENTAL RESULTS
In all, we used .pcap files from specific days of May, June and
October of 2018, with 26 days worth of benign data, and 16 days of
data containing attack samples introduced in an ON-OFF manner.
We created 30 versions of benign and attack dataset as mentioned in
Sec. 2.5, for training and testing in an unbiased manner. The number
of versions we tried was 30 because it is typically considered the
‘minimum sampling bound for central limit theorem’. This would
mean that reporting average performance by taking the average
of the class conditional DI scores will be statistically sound and
unbiased.
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During training, we need data from both benign and attack days

for supervised learning. We used 70% of all available data for train-

ing and the remaining 30% for the purpose of testing. Furthermore,

we sampled this 70% of training and 30% of test data randomly from

the available labeled attack and benign days by sampling rows ran-

domly based on the timestamps and created 30 different realizations

of training and test datasets as mentioned earlier.

4.1 Detection Threshold Identification

To obtain the threshold, we retrofit the optimal parameter values

𝑠∗,𝑇 ∗, 𝑞∗ into the parameterized model (i.e. in Eqn 3 ) to get an

optimized DI value for each device for the attack and the benign

part of the training data respectively. These DI values can be seen in

Fig. 3, and as evident from the picture when the optimal parameters

are retrofitted to each IoT device’s model, we get linearly separable

score embeddings under benign and attack. These label and score

embeddings can now be given as input to a simple linear two-

class SVM, whose optimal hyperplane can serve as a classification

threshold. Therefore, we did the same and obtained the threshold as

seen in Fig. 3. We will use this learned threshold for distinguishing

between an attack and a benign during the test set.

Figure 3: Sample Averaged Training Set Model Scores and

SVM Hyperplane as Threshold

4.2 Testing Set Performance

30% of all the data were used for the test set. The benign part of

test set contains only benign data while the attack part of test set

contains a mix of both benign and attack samples emulating the

ON-OFF strategy. We had 30 different realizations of benign and

attack subsets.

Performance in the test set is depicted in Fig. 4. We can observe

that on average, the DI scores under benign (indicated by blue

markers) remain significantly below the threshold identified during

training. In contrast, the average diversity index scores for the same

devices under data that contains benign and attack traffic in the

test set, are much above the classification threshold, proving that

our model detects low-volume attacks.

5 CONCLUSIONS

We conclude that an information diversity index-based model is

an appropriate latent space embedding for smart home IoT device

level low volume on-off DDoS attack detection due to its explain-

ability, simplicity, and generalization power, if modeled in the way

Figure 4: Classifier Results: Sample Averaged Test Set Scores

this paper proposes. We observe from our study that despite high

variability in traffic, the classification scores in either label are very

distinguishable. We took steps to avoid sampling bias by sampling

different combinations of attacks instead of passively using one

realization of attacks by just passively using the dataset. This allows

machine learning for cybersecurity researchers a way to re-think

how attack datasets are used for validating machine learning-based

cybersecurity methods and why they could be biased. We also indi-

cated that if model architecture is explainable, the search space can

be pruned via reasoning about how the architecture relates to the

problem.
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