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ABSTRACT

Modern smart vehicles have a Controller Area Network (CAN) that
supports intra-vehicle communication between intelligent Elec-
tronic Control Units (ECUs). The CAN is known to be vulnerable
to various cyber attacks. In this paper, we propose a unified frame-
work that can detect multiple types of cyber attacks (viz., Denial of
Service, Fuzzy, Impersonation) affecting the CAN. Specifically, we
construct a feature by observing the timing information of CAN
packets exchanged over the CAN bus network over partitioned
time windows to construct a low dimensional representation of the
entire CAN network as a time series latent space. Then, we apply a
two tier anomaly based intrusion detection model that keeps track
of short term and long term memory of deviations in the initial
time series latent space, to create a ‘stateful latent space’. Then, we
learn the boundaries of the benign stateful latent space that spec-
ify the attack detection criterion. To find hyper-parameters of our
proposed model, we formulate a preference based multi-objective
optimization problem that optimizes security objectives tailored for
a network-wide time series anomaly based intrusion detector by
balancing trade-offs between false alarm count, time to detection,
and missed detection rate. We use real benign and attack datasets
collected from a Kia Soul vehicle to validate our framework and
show how our performance outperforms existing works.
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1 INTRODUCTION

A modern smart vehicle contains an intra-vehicular network, called
a Controller Area Network (CAN) that supports intra-vehicle com-
munication between various electronic components of a car using a
CAN protocol. Such electronic components are known as Electronic
Control Units (ECUs). The intra-vehicle communication between
various ECUs is supported by a communication standard called
the CAN protocol. The CAN protocol has become a widely used
communication standard in the realm of smart vehicles [20].

In CAN communication, each ECU node is uniquely identified by
a CAN ID. All ECUs have access to a common bus channel, which
means that any ECU node can send messages. Therefore, even if
the attacker has access to at least one of the ECUs, it can negatively
influence the CAN messages from other ECU nodes, since all ECU
nodes must adhere to common BUS contention rules [9]. Finally,
the broadcast nature of the protocol makes it very flexible and easy
to use but also allows attackers to observe messages and misuse
this property by flooding the CAN network illegitimately.

Till date, several proof of concept attacks exploiting CAN bus
vulnerabilities have been shown. For example, researchers at Soft-
ware Engg. Institute (SEICMU), demonstrated a Jeep Cherokee hack
via exploiting CAN [16]. Similarly, researchers in Korea Univ. [18]
demonstrated various kinds of attacks by exploiting CAN BUS
vulnerabilities on a Kia Soul car: such as DoS(Denial of Service),
Fuzzing, and Impersonation, cause vehicle malfunctions that affect
the physical safety of passengers.

1.1 Related Work and Limitations

The body of existing works can be classified under the following
categories: i) ECU ID specific approaches; ii) Standard Machine
Learning Classifiers iii) Time windowed statistics.

ECU ID specific approaches involve designing the intrusion
detection system based on training observations from each ECU
ID [28], [13], [26], [21]. Hence, these approaches require separate
detection per ECU. The total number of ECUs in a modern car varies
between 80 to 150. Hence, a large number of models per ECU is
required which negatively affects scalability. Furthermore, general-
izability is another disadvantage of these methods since every car
manufacturer has a different system of CAN ID assignment to its
ECUs, making such methods, car specific.

Standard Machine Learning Classifiers apply known methods
such as One-Class Support Vector Machine (OCSVM) [2], [1] and
Generative Adversarial Network (GAN) training mechanism [8] to
detect anomalous behavior in the CAN bus. The major disadvantage
of this class of method is the lack of explain-ability of detection and
benign inferences. Furthermore, the detection is not in real time and
happens at the end of the test set. Additionally, the framework in [2]
calculates false alarm rate and miss-detection rate but not time to
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detection. The works [1, 8] do not evaluate the rate of false alarm
and miss-detection which are key aspects of evaluating intrusion
detection methods.

Time windowed statistics is an approach that uses temporal
patterns of CAN messages for anomaly based detection of CAN
bus attacks. In [12], an inter-arrival time was computed between
ECU node IDs. Then accuracy, recall, and the actual runtime were
calculated for detection. In [17], the researchers created a func-
tion that counts the number of unique CAN IDs within a specific
time window. They evaluated its performance by presenting only
an AUC (Area Under the Curve) score. However, false alarm or
miss-detection and time to detection of attacks were not reported.
Additionally, [24] explains that the above approaches were not
suitable for detecting advanced attacks such as impersonation.

The work [18] used an "offset” measure - defined as the number
of CAN messages observed between a remote and a data frame for
a given ECU node. Offset based detection is very cumbersome as
the range of possible offsets can vary arbitrarily. Hence, the method
needs to profile patterns of each offset separately for each ECU node.
Furthermore, [18] did not report false alarm or missed detection.
In contrast, the work in [10], used a "Clock Offset" based Intru-
sion Detection System (COIDS) that observed the time intervals
between periodic messages transmitted in the network. COIDS es-
timated these time differences, known as clock offsets, between the
transmitter ECUs’ clocks. These clock offset measurements were
used as unique fingerprints for each transmitter ECU to construct
a baseline of normal clock behavior. Just like [18], the work in [10]
does not report false alarm or missed detection, and also has the
disadvantage of ECU node specific approaches.

1.2 Our Contributions

We propose a unified framework that can detect different CAN BUS
attack types such as DoS, Fuzzy, Impersonation. We summarize our
key contributions in the following list:

(1) We construct a time series invariant feature by observing the
inter-arrival time of CAN packets(Data and Remote frames) over
the CAN bus network over partitioned time windows (in an ECU
Node ID agnostic manner), that constructs a stable low dimensional
representation of the entire CAN network benign behavior as a
time series latent space.

(2) Then, we construct a two tier anomaly based intrusion detec-
tion model that keeps track of short term and long term memory of
deviations in the initial time series latent space to create a stateful
latent space., that establishes the profile of benign behavior in a
lower dimensional manifold.

(3) Then, we learn the boundaries of the stateful latent space
under benign conditions to establish the attack detection criterion,
by leveraging the benefits of quantile L1 regression learning.

(4) Most importantly, we formulate a preference based multi-
objective optimization formulation to find hyper-parameters of
the proposed model such that it optimizes the security objectives
tailored for a network-wide time series anomaly based intrusion
detector by balancing trade-offs between false alarm count, time to
detection and missed detection rate.

(5) We use real benign and attack datasets collected from a Kia
Soul vehicle to validate our framework and show how our perfor-
mance outperforms existing works using the same dataset.
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(6) We perform security evaluation assuming strategies attacker
can employ given the knowledge of this proposed method. Then
we quantify the extent of possible degradation in attack detection
performance and associated trade-offs.

Benefits of our work: First, our proposed technique supports
real-time detection, i.e., it does not need the entire test set of attacks
to infer attacks. Second, our approach is unified - i.e., it is not Node
ID specific or attack type specific approach. Specifically, the same
architecture is used to detect different attack types such as denial-
of-service (DoS), fuzzy and impersonation attacks. Only the values
of parameters and hyperparameters need to be different. Third,
our model parameters and hyperparameter learning are optimized
by balancing multiple conflicting security objectives necessary for
network wide time series anomaly based attack detection.

The rest of the paper is organized as follows: Sec. 2: introduces
the details of the CAN BUS and protocol frame format. Sec. 3 de-
scribes the dataset and attack implementation details; Sec. 4 is the
proposed framework; Sec. 5 gives test set set up, attack detection
criterion and experimental evaluation; Sec. 6 offers security evalua-
tion of our proposed method if the attacker has knowledge of our
method; finally Sec. 7 offers a conclusion.

2 CAN SYSTEM DESCRIPTION
Here, we introduce the details of the CAN network and protocol.
2.1 CAN BUS Network

Here, we present the details of ECUs and CAN Network:

ECUs: ECUs are small embedded computers that perform one
or more functions such as engine control, transmission control,
ABS (Anti-lock Braking System), airbag control, and more. An ECU
broadcasts CAN messages containing appropriate commands, to all
other ECUs, via the CAN network [25]. The intended ECU receiver
accepts while other ECUs discard the CAN messages. A modern
vehicle may have anywhere between 70 ECUs [15] up to 150 ECUs
in luxury cars. Each ECU is uniquely represented by at least one
or more CAN IDs. The CAN IDs are assigned to ECUs such that
they implicitly denote priority. A lower CAN ID hex code indicates
a higher priority ECU and hence wins the CAN bus contention.

CAN Topology: The physical media that supports communica-
tion between ECUs, is the CAN bus, where the ECUs are connected
via a bus topology; hence the term CAN bus network. A CAN
bus network allows ECUs to communicate over a wide range of
distances, at a high speed, without much wiring cost.

CAN protocol: The CAN protocol supports communication from
multiple ECUs simultaneously. As multiple ECUs transmit messages,
only one message can occupy the CAN bus at any given time point.
The message which has the lowest CAN ID value in its identifier
field has the higher priority to gain the occupancy of the CAN bus
i.e. a high priority CAN packet. The lower priority ECU node will
terminate its transmission while the high priority node continues
to transmit. The low priority node attempts to transmit again and
transmits once the bus is free. This is how the CAN protocol resolves
collisions during message transmission.

2.2 CAN Frame Format

Below we describe the various fields of the CAN version 2.0A frame:
Start of Frame(SOF): represents a ‘dominant 0’ to signal to the
rest of the network that a CAN node wants to communicate.



A Unified Time Series Analytics based Intrusion Detection Framework for CAN BUS Attacks

ID: This frame identifier defines the priority of each message in
the CAN network. A lower ID value has higher priority to occupy
the CAN bus.

Remote Transmission Request(RTR): RTR indicates whether a
node forwards data or requests dedicated data from another node
Control: The control field contains a ‘dominant 0’ for 11 bit Identi-
fier, known as Identifier Extension Bit (IDE). It also has the Data
Length Code(DLC) of 4 bits which specifies the length of the trans-
mitted Data.

Data: The data field contains the actual data values also known as
payload(0-8 bytes)

Cyclic Redundancy Check(CRC): CRC checks for data integrity
Acknowledgement(ACK): ACK slots indicate that the data was
received and processed correctly.

End of Frame(EOF): EOF represents the end of the CAN frame
with a recessive ‘1”.

2.3 Response Mechanism of CAN Frame:

A typical CAN message is called a CAN frame. Two fundamental
types of frames is relevant to our study: (1) remote frame and (2)
data frame. These frame types play a role in the request response
mechanism of the CAN protocol.

Remote Frame: When the RTR bit of a CAN frame is ‘recessive
1’, the frame is known as the remote frame. Remote frame is a
control frame and does not contain any data. Instead, it works as a
request frame that requests the desired data from a particular ECU
node. When that node receives a remote frame, it responds with a
corresponding data frame in response to the remote frame request.
Data Frame: When the RTR bit is a ‘dominant 0’, the frame is called
a data frame and is in response to a remote frame. The Data frame
contains the same ECU node ID as the remote frame along with
the actual payload and is responsible for transmitting the message
from a source to the destination ECU.

3 ATTACKS AND DATASET DESCRIPTION

Here, we first give a general dataset description used in our paper,
followed the description of attack and some implementation details.

3.1 Dataset Description

We use publicly available real world OTIDS dataset [19], to evaluate
our framework. There are a total of 2,369,397 messages in this
dataset, which were gathered from the CAN bus network of a Kia
Soul vehicle during a state without attack. Additionally, this dataset
has three distinct attack types: DoS, Fuzzy and Impersonation,
which is described later in the paper. There are 656,578 messages for
DoS attack attack, 591,989 messages for fuzzy attacks, and 995,471
messages for impersonation attacks.

These datasets were gathered by recording CAN traffic through
the OBD-II port of a Kia-Soul vehicle. Attack nodes were con-
structed using an Arduino with a CAN shield and a Raspberry
Pi3 with PiCAN2 to perform DoS, fuzzy, and impersonation attacks.
For the impersonation attack, the impersonating node was pro-
grammed to choose a specific identifier and transmit data frames
periodically while responding immediately with a data frame upon
receiving a remote frame. The impact of the attacks on the actual
vehicle was also verified by [19]. The following describe of each of
the attack types:
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3.2 DoS Attack

A denial of service (DoS) attack is a flooding strategy where an
adversary overwhelms the CAN network with excessive number of
CAN packets marked with higher priority CAN messages. In OTIDS
dataset [19], the adversary floods the network with high priority
CAN packets where the identifier field has IDs - 0x000. This allows
the adversary to occupy the CAN bus more often, by winning the
BUS contention process. Hence, the legitimate ECU nodes back off
and get delayed access to the CAN BUS and sometimes get blocked
from accessing the BUS entirely. In [19], ECUs with the following
CAN IDs 0x153, 0x164,0x1F1,0x220,0x2C0,0x4B0,0x4B1,and 0x5A0
get impacted due to DoS attack. The DoS attack type was first
shown by Miller & Valasek [22], which affect functioning of steering
control unit, causing the car to be unresponsive to sharper turns.
Similarly, depending on the ECU being denied, the physical impacts
of DoS attacks could vary.

3.3 Fuzzy Attack

In Fuzzy attack, the adversary injects semi-random or random data
into the network’s communication process to create unexpected
consequences. Fuzzy attack involves actual CAN IDs that are typi-
cally broadcast on the bus or generate random CAN IDs to carry
out the attack [14]. In the case of OTIDS dataset which we are using,
the attacker follows the first approach to create fabricated CAN
messages. Specifically, the attacker injects spurious CAN messages
with IDs that appear in the benign traffic and inserts arbitrary data
in the data field of the spurious CAN message. In this way, fuzzy
attack injects various types of CAN frames with random data in
order to compromise these CAN IDs 0x164, 0x1F1, 0x220, 0x2CO0,
0x4B0, 0x4B1, and 0x5A0 [18]. The work [11], showed the practical
impact of the same fuzzy attack on a KIA Soul vehicle - such as high
beeping sounds, errors in the navigation system, and compromised
functionality of the accelerator pedal.

3.4 Impersonation Attack

Impersonation (or masquerade) attacks refer to the malicious act of
an attacker pretending to be a legitimate node on the network. The
attacker uses a weakly compromised node to first suspend message
transmission of a targeted CAN ID. Subsequently, the attacker uses
the OBD port-II, to inject a fabricated message. In OTIDS dataset,
the CAN ID 0x164 which appears in normal vehicle operations was
first suspended. Then the attacker injects a message with the same
CAN ID as an impersonating node to respond to remote frames
intended for the legitimate ECU with CAN ID 0x164.

There are a number of impacts of impersonation attack. For
example, the work [7] showed impersonation attacks, in which an
attacker compromises two ECUs, to mount this attack. This is done
by the attacker first monitoring and learning the CAN ID of the
ECU, then injecting attack messages of the same ID and frequency.
This type of attack is commonly referred to as a "masquerade attack"
in other papers. Miller et al. [23] demonstrated that they controlled
the Jeep Cherokee’s ABS (an ECU) by a masquerade attack.

4 TECHNICAL FRAMEWORK

The technical portion of this paper is divided into six parts: (i)
Theoretical Intuition (Sec 4.1): which describes the domain specific
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Table 1: Notation

Symbol Description

1D Set of CAN IDs

OR(T) Standard deviation of ratio values R(T)
e Scalar factor of oR(T)

1 Window length

fl Frame length

wi, W Quantile regression weights

t Timestamps

T Time window

ts(ID) Time interval

BRTR Set of RTR bits(0,1)

Nt (T) Total number of the time intervals in a window
V(1) Stateless Residual

HM(T) Harmonic means of the time intervals
AM(T) Arithmetic means of the time intervals
R(T) Ratio of HM(T) to AM(T)

HR((T) Mean of the ratio values R(T)

SMhigh The upper safe margin

SMigw The lower safe margin

RUC(T) Stateful Residuals

Thnaxs Tr*nin upper & lower threshold of stateful latent space

Individual ON-cycle

n Total number of ON-cycle

f(n) Number of ON-cyle where attack is detected
dj Time to detection in each ON-cycle

dT Average time to detection

challenges and theoretical origins of our work. (ii) Time Series La-
tent Space(Sec 4.2): is the first phase of the detection method which
creates a low dimensional time series representation from the raw
CAN traffic; (iii) Stateful Latent Space(Sec 4.3): that introduces the
idea of stateless residuals and stateful residuals to create a state-
ful latent space that is stable and sparse; (iv) Learning Thresholds
of Stateful Latent Space(Sec 4.4): this part explains learning the
thresholds of stateful latent space; (v) Finding Hyper Parameter
with Multi- Objective Optimization (Sec: 4.5): explains the security
trade-offs of choosing the optimal parameters for the proposed
approach. (vi) Sec. 4.6 discusses how the theoretical model is imple-
mented with the dataset to derive the optimal model that is then
applied to the test set. A summary of the notations can be found in
Table 1.

4.1 Theoretical Intuition

First, we get the theoretical intuition on the scientific idea and its
relevance to the CAN BUS security problem.

4.1.1 Requirements: First, let us understand the requirements:

Real Time Detection: For anomaly based intrusion, learning the
profile of benign behavior is required. Any observations that do not
adhere to the profile of benign behavior are viewed as an intrusion.
While anomaly detection techniques can be modeled in various
ways; since CAN bus attacks create an immediate civilian impact,
we must take a time series approach that enables real time detection
in the test/deployment set.

Invariant Properties: For high fidelity time series attack detec-

tion in cyber physical systems, the NIST guidelines [27] opine that
the metric of anomaly detection must have the following properties:
(1) Stationarity in Benign Situations: In the absence of attacks,
anomaly detection metrics should show minimal changes across
time and history. Metrics with such properties are called invariants.
(2) Fluctuations in Invariant Under Cyber Attacks: The
invariant should have inherent mathematical properties that will
produce fluctuations, such that values taken by the invariant are
completely different when under attack versus when under benign;
i.e. invariant will tend to form separate clusters under benign versus
under attack. This requirement maximizes detection accuracy.
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Unified Approach: Smart cars have limited computer power un-
like enterprise networks. Additionally, there are several types of
cyber attacks affecting the CAN, and there are several ECU Node
IDs. Current detection methods are either attack specific (needs
different methods to detect each attack type), or ECU Node Specific
(needs to fingerprint each ECU node)- i.e. they are ‘not’unified. Hav-
ing multiple instances of attack detection per attack type and per
ECU node increases on-board computing and memory requirements
which is not ideal. Hence, we seek to develop a unified approach.

4.1.2  Domain Specific Challenges. The invariant design is particu-
larly challenging because of two reasons: Previous theoretic works
on time series invariant design [5, 27], work on signal translated
data which are exchanging data on the same physical quantity be-
tween nodes in the network. In our problem, this is not the case,
because each ECU node carries a payload that is specific to its
function. Hence, we need to identify a universal feature that has
properties that will lead to in-variance under benign conditions,
while showing deviations regardless of the attack type.

Furthermore, the number of ECUs in a car varies between tens
upto hundreds. It is well known that the clustering requirement
is difficult to achieve or explain in higher dimensions, popularly
known as the "curse of dimensionality". Hence, we need a dimen-
sionality reduction technique that will map the entire CAN bus
network’s CAN data at any time point into a lower dimensional la-
tent space that will enable lightweight real time anomaly detection.

While methods like PCA (Principal Component Analysis) and t-
SNE(t-Distributed Stochastic Neighbor Embedding) are commonly
used for dimensionality reduction, these methods do not automati-
cally evolve with time and require costly re-calculations on every
time window of detection. Furthermore, both of these popular ap-
proaches make parametric assumptions on the raw data features,
which did not work for the problem we have. Hence, we need to
apply a different technique to guarantee this.

4.1.3 Theoretical Origins. Our framework is inspired from the-
oretic advances in a series of works [4, 5]. For a set of random
variables that are weakly positive correlated, it was proven in [4]
that the ratio between harmonic to arithmetic mean of the individ-
ual values of the random variables remain stationary in their time
series. The magnitude of positive covariance determines strength
of the stationarity and invariance. The work [4], also proved that
any event that violates the space/time positive covariance structure
will cause fluctuations in the values taken by the time series of
the ratio between Harmonic Means to Arithmetic Mean of such
random variables.

4.1.4 Hypothesis. Given the above known scientific facts from [4],
if analogical random variables containing similar properties can be
constructed, then it can be utilized to find an invariant in a lower
dimensional space that is stable enough to create a time series
profile of benign behavior. The first novelty of the paper is the
identification of such random variables that contain these desired
properties. The second novelty is to adapt the NIST’s guidelines
(meant for physics driven frameworks) for a data driven method
like ours. Another important novelty is that the previous works
in network-wide time series anomaly-based intrusion detection in
CPS including [4, 27], do not take a security principled approach for
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finding the hyper-parameters of a two-tier NIST model. We show
a way to find the hyper-parameters as a preference-based multi-
objective optimization problem, that makes sense for network wide
time series anomaly-based intrusion detection.

4.2 Time Series Latent Space

Generating the time series latent space is described in two stages:
(1) the extraction of a unified feature set, that serves as input to the
invariant calculation; (2) the invariant calculation process over the
unified feature that produces a time series latent space.

4.2.1 Unified Feature Set Extraction. For unified attack detec-
tion, we establish a common link that exists between different
attacks and different ECU Node IDs affected by the cyber attacks.

For DoS attack, since the legitimate ECU nodes on average back-
off more due to higher amounts of high priority messages, the time
intervals between the requested remote frames and response data
frames of the attack-affected ECUs tend to stochastically increase,
while the benign ECUs request response intervals do not.

For Fuzzy Attack, the attack increases the processing load on the
receiver ECUs as random CAN IDs are injected in the CAN network.
Also, unexpected random data increases the ECU node processing
time, thus the response of the data frame from receiving ECU is
delayed. Again, the time interval between the requested remote
frame and the responded data frame of affected ECUs increases
stochastically.

For Impersonation attack, the attacker first suspends communi-
cation from the targeted legitimate ECU node. Then a fully com-
promised ECU node sends a response data frame to the requested
remote frame originally meant for the targeted ECU node ID. Again,
the anatomy of this attack creates a subtle but inevitable stochastic
increase in the time interval between the response and the data
frame for the targeted ECU node ID.

From the above three paragraphs, we conclude the common link
between all the attacks: i.e., subtle random and stochastic increases
in the time interval between remote and data frames for a subset
of CAN IDs. Hence, using such a feature will enable unified attack
detection. However, we cannot profile the probability distribution or
covariance for detection because these are steady state approaches
(i.e., they are accurate over bigger samples of data).

We divide the time domain into discrete time windows of length
1, each denoted by T. Our idea is that at each time window T, we

record the time intervals tSIDi (T) between a remote frame and its
corresponding data frame, for each of the i-th CAN ID ID; observed
within the T-th time window. The recording of the time interval is
possible by mirroring the CAN bus traffic to the OBD-Port II, and
then compute the time intervals.

Now, we introduce the calculation of each tiD" (T). Let the set
of CAN IDs with a pair of remote frame and data frame observed
in the T-th time window be ID = {IDy,---,ID;,--- ’IDms(T)}’
where each ID; corresponds to a specific CAN identifier and 5;, (T)
is the total number of time interval pairs observed in the T-th time
window. Additionally, we denote Brrr = {0, 1} as the set of RTR
bits, representing the two values for the RTR field. Formally, each
time interval pair is given by:

D;
tIPH(T) = t(Brrg = 1,ID;) — t(Brrr = 0, ID;) (1)
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Figure 1: Time Intervals (tiD ) in Time Windows(1 & 2)

where the time interval associated with a particular ID is defined as
1D

t; ¢ which is determined by the difference between the timestamps
of the RTR bit 1 (¢(Brrr = 1,ID)) and the RTR bit 0 (¢t(Brrg =
0, ID)) for a particular ID.

Why this Feature Choice For Invariant: From steady state
analysis of the benign part of the dataset, we found the covariance
structure of time intervals observed between remote and corre-
sponding data frame between different CAN IDs in the car follows
a generally weakly positive covariance structure. As evident from
Fig. 2, the figure depicts the Spearman’s rank correlation between
various th" is generally positive. Since we proved that various tiDi
follows a generally positive covariance structure, then intelligently
adapting the theory in [4] will construct a time series of the ratio
between harmonic to arithmetic mean of tSIDi (T) enabling a profile
of benign behavior in real time via a lower dimensional mapping.

Attack Free Dataset
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Figure 2: Spearman’s Rank Correlation between ECU CAN
IDs for Benign Data shows a predominantly positive covari-
ance structure as evident from mostly red shades)
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Figure 3: Ratio for Benign data:Tier 1 Latent Space

4.2.2 Behavioral Invariant:. In this section, we propose the
mechanism of constructing the Harmonic Mean to Arithmetic Mean

ratio of the different tSIDi at each time window T as invariant which
characterizes a 2-dimensional latent space-time series embedding.
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Formally, let the harmonic mean, HM(T) and arithmetic mean,
AM(T) of the time interval at time window T be defined as:
Nts (T)

D;
1o (T) ()

15 (T)

=15

The AM(T) and HM(T) of the time intervals feature in the

T — th time window, where 5(ID;) represents the i-th time in-

terval and n; (T) denotes the total count of time interval pairs

occurring within that T-th time window. At the end of each win-

dow T, we calculate the ratio of HM(T) and AM(T), denoted as
R(T). Formally:

AM(T) = —=2

HM(T) = NG

@

HM(T)
AM(T)
where 0 < R(T) < 1,as HM(T) < AM(T).

Fig. 3, visualizes the R(T) for the benign portion of the dataset
and it is clear that most of the ratio samples are near 1, but due to
high noise and the fact that the strength of correlation is not very
high, many R(T) show sharp downward deviations which makes it
unsuitable for high fidelity detection. This indicates that we need
to take additional steps to get a more stable latent space that is
consistent to as per NIST requirements [27].

4.3 Constructing a Stateful Latent Space

R(T) = (3

Traditionally, a threshold-based method is used to track changes in
the difference between the time series’ real value and its smoothed
expected value over time. However, this approach either results in
more false alarms or missed detections, but cannot balance both. As
aremedy [27], mandates the notion of stateless residuals and state-
ful residuals, which we merge into our problem. The term residual
is defined by the difference between a time series invariant and
a certain smoothed (or expected) value of the invariant. Stateless
residuals only keep track of the difference at a given time instant
and have no memory of the past. Stateful residuals on the other
hand keep a memory of stateless residuals from this time window
to a certain recent past (i.e. a higher order markov model). Now we
show how we adopt this concept:

4.3.1 Stateless Residuals. The stateless residual for us will be
the instantaneous difference between the ratio metric, denoted as
R(T), and some measure of expected boundaries called safe expected
margin. In our approach, we determine the mean, pp(7) and the
standard deviation of the op(7) from the probability distribution
of the ratio values R(T) in the training dataset.

We define the safe expected margin as a region of R(T) samples,
fall within some range of the pg(t) + € X og(T), Where e is a scalar
factor of the standard deviation within the range of (0, 5]. Formally,
the upper expected safe margin (denoted by SMhigh) and the lower
expected safe margin (denoted by SM,y,) given by the following:

SMhigh = HR(T) + € " OR(T) (4)

SMiow = HR(T) — € * OR(T) 5)
where e is a hyper-parameter controlling the width of the safe
expected margin. A larger e widens the safe margins, leading to
a decrease in false alarms but also increase the chances of missed
detections for smaller attacks.
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Now we calculate the stateless residuals. Stateless residual mathe-
matically is the “signed distance" between the observed ratio values
R(T) and the expected safe margins. We define three categories of
stateless residuals and they are calculated by the following:

VH(T) = R(T) = SMpigp,
v (T) = R(T) = SMjow
v (T) =,

if R(T) > SMhigh

if R(T) < SMjyy (6)

if SMjy,, < R(T) < SMhigh

In Eqn. 6, the v (1), corresponds to those ratio samples that
stay within the expected margin are perfect inliers. The V*(T) is a
positive stateless residual obtained, if the sample ratio value R(T)
is greater than the upper expected safe margin, while a negative
stateless residual V™ (T) is obtained when R(T) falls below the
lower expected safe margin. In general, the notation V(T) refers to
any stateless residual (i.e., V¥ (T),V~(T), v (T) ).

Cyber attacks need to continue for some time to have a tangible
impact on the system; while deviations due to noise are more ran-
dom and sporadic over time. This fact can be leveraged to reduce
the false alarms without sacrificing missed detection, by calculating
a stateful residual from stateless residuals [27]. In our context, this
means tracking the pattern of a longer term history of consecutive
V(T) values apart from just the stateless residual every time win-
dow. Next, we formally define the stateful residual, which will form
the final latent space that characterizes the underlying structure of
benign data.

4.3.2 Stateful Residual. Now we show the calculation of stateful
residuals. At each time window T, the framework keeps a sum of
the stateful residuals V(T) over a sliding frame of length fI number
of time windows. Mathematically, it is defined by:
T
RUC(T) = Z V(T)

T=T—fI

)

Note that RUC(T) can be positive, negative, or zero, depending
on the realizations of V(T) over time. The Fig. 4 depicts all the
RUC(T) samples obtained (by plugging in the optimal hyperparam-
eter values into the model, which is shown later in Sec 4.5), which
specifies the stateful latent space.

Let the set of positive, negative, and zero RUC(T) samples ob-
served during the benign (training) set be denoted as RUC*, RUC™,
RUC® We can see that a major portion of the stateful latent space
is zero (i.e., the RUC(®) are in the majority). The RUC™ are the val-
ues less than zero and in fact RUC* has zero samples. This indicates
a sparse and stable stateful latent space.

0.0

- benign

) 2000 4000 6000 8000 10000 12000
ime

Figure 4: Stateful Latent Space Embedding that specifies be-
nign Data from the entire CAN bus network
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4.4 Learning Thresholds of Stateful Latent
Space with Quantile L1 Regression

In this section, we focus on learning the boundaries/threshold that
specify the profile of benign operation of the CAN BUS network
from the stateful latent space. The RUC) set does not play arole in
the threshold identification since these are zeros and are considered
perfect in-liers. The set of RUC™ will be used to learn the lower
threshold boundary of the stateful latent space (denoted as 7, ;)
while the RUC* will be used to learn the upper boundary of the
stateful latent space (denoted as 7mqx)-

Note, that an alternative for establishing a threshold is to use
the most extreme value observed in the RUC™ and RUC" set as a
threshold - but this creates an overly optimistic model which has
higher time to detection and higher missed detections. Hence, a
notion of best fit threshold on the RUC™ and RUC” sets is more
appropriate for attack detection threshold design.

The attack detection threshold can be viewed as time invariant
straight lines that identify the upper and lower best fit. Hence,
employing a regression that learns the bias term only by taking the
set RUC™ as inputs will give lower threshold. Similarly, a regression
that learns the bias term with RUC? as its training input points will
help to find upper threshold. In given dataset, we did not observe
any positive RUC. Hence, the problem reduces to doing a regression
to just learn the lower threshold ), . over the set RUC™.

Now in standard machine learning, regression problems use
an L2 norm (MSE loss function) that assumes that regression er-
rors follow a Gaussian distribution. However, for our problem, the
RUC™ feature space does not adhere to a Gaussian distribution due
to complex relationships between ECU request-response patterns.
Moreover, L2 norm assumes constant variance in the errors across
observations, known as homoscedasticity. However, the variability
in the regression errors for the observed latent space is not constant
over time. Given the violation of such assumptions, we conclude
that we cannot use simple linear regression to find the threshold.

To address the aforementioned challenges, now we introduce the
algorithm that learns the threshold from input points in RUC™ and
RUCY sets, using a less well-known quantile weighted L1 regression
technique. The learning approach is identical for both thresholds,
hence the Algorithm below only shows how to learn the optimal
lower detection threshold i.e. T:‘m.n. In this dataset, we did not find
any positive RUC values, hence 7;,,,, is a degenerate case, which
means T, ,, is effectively 0. Practically, we only need to learn 7 . .

Explanation of Algorithm 1: Algorithm 1 calculates the op-
timal threshold, 7, by iterating over the candidate threshold
hypothesis space 7~ where 7~ is an instance from the hypothe-
sis/candidate space. The elements in RUC™ represented by r, form
training inputs to Algorithm 1.

We also need to give more weight to points in the outer region
compared to the inner region, to reduce the false alarms, since
these are part of benign behavior. The quantile L1 regression gives
different weights (w1 & ws) to regression errors depending on their
importance and calculates the weighted L1 errors. The RUC™ < 7
correspond to inner points, while RUC™ > 7 indicated outer points.
With wy > wy and w1 + wy = 1, in Algorithm 1, the outer points
get more penalty that helps in false alarm reduction. The L1 norm
does not incur large penalties for occasional outliers in the outer
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Algorithm 1 Calculate 7} .,

re RUC™

for = € [tpin] do
cost_ =0
penalty_ =0

forr € RUC™ do
if r < 7 then
cost_ =wy - |r—17|
else
penalty_ =wy - |r — 77|
end if
end for
end for

o _ .
Tyin = aTgming

1
NRUC—

|sum(cost_) + sum(penalty_)|

region of the latent space during benign operation, preventing the
learnt threshold from getting too influenced by outliers in the outer
region. This ensures that our learning approach accounts for both
the need of detecting the anomaly accurately and the necessity of
balancing the false alarms and missed detection error trade-offs.
Eventually, running Algorithm 1 produces 7, : which corre-
sponds to that 7 which minimizes the mean of quantile weighted
L1 loss values over all the training data points appearing in RUC™.

4.5 Finding Optimal Hyperparameters with
Multiple Objective Optimization

Here we propose a method to learn the optimal values of the set
of hyperparameters {e, fI,1, w1, wa} - which are collectively the
hyper-parameters of our anomaly detection model. Ideally, we need
to pick the set of hyper-parameters that give the best security
performance, but we do this in a novel way that balances various
security objectives concurrently, unlike standard hyper-parameter
tuning used in machine learning.

We posit that multiple objectives need to be satisfied for optimal
security performance. Time to detection, false alarms, and missed
detection rates are typical factors in assessing security performance.
However, most anomaly detection frameworks treat each of these
factors in silos or do not take an approach that balances all these
factors in the correct sequence of importance.

As far as time series anomaly detection is concerned for a net-
work wide detector (such as ours), the most important is the false
alarm count and not false alarm rate (due to base rate fallacy [3]),
followed by time to detection, and at last the missed detection rate.
This preference order can be reasoned by the following explanation:

The missed detection rate is least important in our context, since
at the network-wide level, we need to just raise an alarm only once
to indicate the presence of an attack. Once the RUC violates the
threshold, even if some of the RUC samples following that, do not
violate the detection threshold, the system as a whole has already
raised an alarm indicating an attack. Missed detection rate is very
important for host level intrusion detection methods but is not very
important in network wide detection. The missed detection rate
still makes sense to evaluate since it gives an average sense of what
fraction of the attack samples fall outside the detection thresholds
during the attack lifetime; giving us an idea of what to expect for
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other attack realizations that is not represented in a given dataset.
Then, the time between the actual launch of an attack and the actual
detection made by our framework - (i.e., time to detection) is more
critical than the missed detection rate due to the immediate nature
of the impact of CAN bus attacks on the vehicle’s operation.

Now let us compare the time to detection versus false alarm
count. Note, we are considering false alarm count instead of rate,
because rates are misleading in time series anomaly detection. The
rate entirely depends on how often the detector makes a decision
and the duration of the validation and test sets. Hence, false alarm
rates will not paint an accurate picture [3, 27]. Since the actual prior
probability of attack is very low, the benign situation is the most
commonly encountered one; hence minimizing false alarm counts
should get the highest preference, followed by time to detection,
and then missed detection rate.

From the above explanation, it makes sense to model the prob-
lem as a preference based multi-objective optimization problem [6]
rather than an ideal multi-objective optimization problem, since
the objectives in our case are not of equal priority. Now, let us
formally define our preference based multi-objective optimiza-
tion in the context of our problem. Let X be the set of decision
variables (which constitutes all the unknown hyper-parameters
of the proposed model), such that X = {wj, wa, e, 1,1}, ie., the
unknown hyper-parameters of our model. The decision variables
affect the set of multiple objective functions denoted by F, where
F(X) = {fra(X), frp(X), fup(X)} constituting false alarm count,
time to detection and missed detection rate respectively as individ-
ual objectives; all of which need to be minimized. The optimization
can be defined as follows:

min fra (8a)
min frp (8b)
min fmp (8¢c)
subject to 0O<w <1l V weR (8d)
0<wy<1l V weR (8e)
e>0, V eeR (8f)
fl>1, v flel (8g)
I1>1 vV lel (8h)

Since our problem is based on a multiobjective optimization
problem, we found Pareto optimality is the best concept to choose
the optimal solution, as it finds solution for multiple decision cri-
teria. Pareto optimization produces set of optimal solutions called
Pareto Front based on priorities. This optimization process finds out
Pareto Front depending on the decision variables such as regression
error’s weights wy and wy, scalar factor e determining the width of
safe margin, frame length fI and time window length I.

To solve Multi-Objective Optimization Problems (MOOP), the
following approaches are popular: (1) genetic (e.g. NSGA-II) and (2)
classical (e.g., e-constraint method, weighted sum/metric). While
classical approaches are able to produce one deterministic set of op-
timal solutions, genetic algorithms produce multiple sets of optimal
solutions through repetitive calculations of various genetic oper-
ators. This means the genetic algorithms have higher complexity
and most often require an additional step to find a usable solution
from the set of solutions. Since smart vehicles have limited local
computing capabilities, classical approaches have a clear advantage.
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With the classical approach, two main methods are weighted-
sum and the e-constraint method. The weighted sum is difficult to
apply in our context as the weight assignments are difficult, due
to each objective being in a different unit of scale. Furthermore,
convexity is a required condition for the weighted sum method,
which is often difficult to guarantee in real world problems.

Since our problem has three different objectives with a clear
preference order, the e-constraint method is appropriate since it
reformulates the problem for each objective individually (thus creat-
ing sub-problems) and then executes the decision variable solution
iteratively in the order of preference. The e-constraint method is
also suited for non-convex problems. The order of priority is as
follows: minimizing the false alarm, time to detection and lastly
missed detection. Another requirement of e-constraint method is
incorporating user specified constraints on the other objectives,
while the priority objective is being optimized in a given iteration.

The user specified constraints while minimizing false alarm
for time to detection(erp) is less than 0.5 s and missed detection
rate(epp) is less or equal to 0.55.The value for erp indicates the
maximum acceptable duration for detecting an intrusion within the
system. Keeping the importance of quick response to any anomalies
in mind, the model’s requirement is defined as less than 0.5 sec to
detect any intrusion in the network. Setting ejsp at 0.49 is to ensure
that the system’s primary focus is capturing the majority of the
threats while some anomalies go undetected. The implementation
details of our multi-objective optimization for cross validation phase
can be found in Sec. 4.6.

4.6 Details of Model Implementation

This section concerns how we applied the theoretical model dis-
cussed between Sec. 4.2-Sec. 4.5 with our dataset. Note that the orig-
inal dataset contains one benign dataset and three attack datasets.
While our training dataset includes only benign samples, the cross
validation sets and the test sets have both benign and attack sam-
ples.

First, we divide the original benign dataset into two parts equally.
The first 50% is used as the training dataset. The remaining 50%
of the benign dataset is again split into two equal parts: The first
portion of the latter 50% is used as the benign part of the cross
validation set, while the remaining portion is set aside to form the
benign portion of the testing set. Then, we extract the last 50% of
the entries from each of the three attack datasets and append it to
the common benign part of cross validation set - to create three
cross validation sets one per attack type.

Then, for each of the three cross validation sets, we find the
corresponding optimal hyper-parameters set e*, fI*, I*, w}, w} (by
solving the multi-objective optimization) that produces three combi-
nations of optimal hyperparameters for each corresponding attack
type. The optimal model hyperparameters obtained after applying
the MOOP on the three validation sets are shown in Table 2.

We use these values from Table 2 and plug them into our model
over the training dataset to obtain three distinct sets of optimal
stateful latent spaces, i.e., RUC(T) values. Then we apply Algo-
rithm 1 on the three optimal latent spaces producing three different
thresholds 77, and 7, one for each attack type.
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Table 2: Pareto Front Set

Attack Type e Frame Length | Time Window | wj Wy
DoS Attack 2.7 9 50 0.9 0.1
Fuzzy Attack 3 7 90 0.9 0.1
Impersonation Attack 5 5 150 0.9 | 0.1

5 TESTING AND EXPERIMENTAL
EVALUATION

The experimental results section is divided into three subsections:
(a) Calculation of Latent Space in Test Set and Detection Criterion
(b) Nlustrative Visualization Results; (c) Performance Evaluation.

5.1 Test Set Calculation of Latent Space

The test set has both benign and attack datasets similar to cross val-
idation. We extracted the last 25% of the benign dataset and the first
50% of the attack dataset for each of the attack types (Dos, Fuzzing,
Impersonation) and appended them to form one continuous test
dataset per attack type. Therefore, the corresponding attack starts
somewhere in the middle of the test set and this time point is noted
which gives the ground truth start time of the actual attack. The
time to detection is defined as the difference between the ground
truth attack start time stamp and the timestamp when the RUC in
the test set violates any of the learned thresholds. Note that the
original benign dataset is larger than the attacks even with smaller
percentages, the benign samples are over-represented in the test
set (Table 3) which allows for a fair false alarm assessment.

Table 3: % of Benign and Attack in test set

Attack Type Benign(%) | Attack(%)
DoS 64.34 35.66
Fuzzy 66.68 33.32
Impersonation 54.34 45.66

For each of the three test sets, we plug in the optimal hyper-
parameter values into our model to calculate the RUC*¢S*(T) (i.e.
the stateful latent space in the test set) and compare it with the
corresponding thresholds learnt during training. For each window
T, we calculate the stateless residual (V¢5?(T)) followed by the
stateful residual RUC?®S! (T) values in the test set, using the HR(T)
and og(r), which are the mean and the standard deviation of the
ratio samples calculated over the training set.

The RUC!®S!(T) calculated over the benign part should ideally lie
within the thresholds (z}, ; and 7},,,,) while the RUC test(T) values
calculated over the attack part of the test set should fall outside the
threshold range (z; ; and 7},,,,). Formally, this is written as:

Benign;
Attack

€ [T:*lin’ T:;lax] >

RUC“"“(T)z{ min’ 1 9
¢ min’ max]s

5.2 Illustrative Visualization Results

Here, we provide a visualization of the ratio and RUC values under
benign and attack parts of the test set. We show some time domain
pictures of how the RUC in the test set violates the learnt attack de-
tection thresholds (learnt from the training phase) during the attack
part of the test set, but RUC(T) remains within the threshold under
the benign part of the test set. This illustration is further divided
into four subsections, each for (i)DoS, (ii)Fuzzy, (iii) Impersonation
and (iv) Explainability-which gives a reason behind the observed
visualization under benign and attack parts of the test set.
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5.2.1 DoS Attack. For Dos attack, we show two visualizations.
The first visualization (See Fig. 5(a)) shows the ratio metric during
the test set, indicating a drop when DoS attack is initiated. The
second visualization is the RUC metric, shown in Fig. 5(b).

The RUC feature in Fig. 5(b) shows that the attack successfully
violates the learnt threshold (the black dashed line) during the
test set. The RUC feature is then used to detect the attack. This
highlights the ability of the RUC to detect malicious traffic and
identify DoS attacks.

101m V, N 0, () m————
oawrmwm (H =05 "
So6 -1.0
%]
5 2
Eo.a -15
02 -2.00 7 Tmin
— benign benign [
0ol T attack 25 attack :
11300 11400 11500 11600 11700 11800 11900 11300 11400 11500 11600 11700 11800 11900
Time Time
(@) (b)

Figure 5: Test Set with DoS Attack (a) Ratio (b) RUC

5.2.2 Fuzzy Attack. For the fuzzy attack, Fig. 6(a), we observe
that the ratio metric drops when the attack starts, but the extent of
the drop is not very obvious. This shows the need for the stateful
residual which is depicted in Fig. 6(b). The Fig. 6(b) clearly shows
that the attack samples violate the learnt threshold 7.
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Figure 6: Test Set with Fuzzy Attack (a) Ratio (b) RUC

5.2.3 Impersonation Attack. For impersonation attacks, the at-
tackers attempt to imitate the typical behavior of an ECU node.
Hence, detecting this attack is more difficult. The ratio metric dur-
ing the impersonation attack is shown in Fig. 7(a) and the RUC
characteristic is shown in Fig. 7(b). The presence of the attack is
nonetheless clearly demonstrated by the RUC feature, which vio-
lates the threshold.
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Figure 7: Test set with Impersonation (a) Ratio (b) RUC
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5.24 Explain-ability of Deviations and Detection. We explain
the reason why the ratio and latent space show sharp decreases in
the visualization. Fig. 8 shows that the Spearman’s rank correlation
calculated under attacks has a largely uncorrelated covariance struc-
ture when compared to the earlier Fig. 2 under benign data which
showed a positive covariance structure. The drop in covariance
explains the decrease in ratio and the RUC.
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Figure 8: Spearman’s Rank Correlation between ECU CAN
IDs for DoS Attack Dataset shows predominantly negative
or uncorrelated covariance structure compared Fig. 2 which
had a generally positive covariance structure

5.3 Performance Evaluation and Results

The performance evaluation (Section 5.3), gives the numbers on
the final performance achieved by our optimally learnt model dur-
ing the test set. We report the final performance evaluation using
three metrics- time to detection of false alarm count, and missed
detection rate in the test set, to assess the performance of our ap-
proach. The subsection is further divided into four parts, one each
for performance metrics under DoS, Fuzzy, Impersonation attacks
and the fourth is the comparison of our performance with existing
works using the same dataset.

Table 4 is a summary of the numbers obtained for performance
evaluation under each of three attacks. Below we discuss observa-
tions for each attack type:

5.3.1 DoS Attack Performance. Table 4, first row, corresponds
to the performance, obtained from the test set of DoS attacks. The
RUCs of the test set were calculated using the hyperparameter
values, shown in Table 2. After that, the values were compared with
the thresholds to measure the performance.

One notable aspect of the evaluation results is the absence of
any false alarms, indicating that the intrusion detection system
successfully differentiated between normal and attack traffic.

Our framework exhibits a time to detection of only 0.036215
seconds for DoS attack Attack, demonstrating our ability to quickly
and accurately detect a DoS attack. Finally, the missed detection
rate of 0.01291513 suggests that most of the attack samples violate
the attack detection threshold.

Table 4: Experimental Results of the Optimal Model.

Attack Type | FA Count | Time to Detection | MD Rate
DoS 0 0.036215 sec 0.01291513
Fuzzy 0 0.300889 sec 0.54775549
Impersonation 0 0.11819791 sec 0
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5.3.2 Fuzzy Attack Performance. Table 4, second row, corre-
sponds to the performance obtained from the test set with Fuzzy
attacks. We achieved a false alarm count of 0 for fuzzy attacks Thus
the most common disadvantage of anomaly based attack detection
has been avoided for Fuzzy attacks showing a similar absence of
false alarms. This is not surprising given how the priorities in the
multiobjective optimization have been set. If one is willing to sacri-
fice a few false alarms, the time to detection and missed detection
will see further improvement.

The intrusion detection system was able to identify the fuzzy
attack within 0.3008 sec, which should enable any CAN bus attack
mitigation technique to respond quickly.

Finally, the missed detection rate is 0.54775549, i.e. 54% of the
attack samples did not violate the threshold and 46% of the samples
violated the attack detection threshold. While the missed detection
may seem a touch on the higher side, this is not a problem for
network wide time series anomaly detection frameworks, because
the attack needs to be inferred just once.

5.3.3 Impersonation Attack Performance. Table 4, third row,
corresponds to the performance obtained from the test set with
Impersonation attacks. The hyperparameters, referred to in Table 2),
are achieved via cross-validation.

We observe that false alarm just like DoS and Fuzzy attacks is
zero. To conclude, our framework does not suffer from false alarms
for any attack due to the way to tune the hyperparameters of the
model. Thus, we escape the problems with the base rate fallacy that
plagues all anomaly based intrusion detection methods.

When compared to DoS attacks, impersonation attacks took
0.118 sec and the missed detection rate under impersonation attack
was also found to be zero with the optimal model.

Table 5: Comparison with Previous Works

Attack Metric | Proposed | COIDS [10] OTIDS [18] OCSVM [2]
Dos FA 0 NA NA 6.45%
MD 1.29% NA NA 2.99%
TD 0.036 0.204 0.846 sec NA
Fuzzy FA ) NA NA NA
MD 54.77% NA NA NA
TD 0.3001 0.219 0.892 sec NA
Imperso FA 0 NA NA NA
_nation MD 0 NA NA NA
TD 0.118 0.235 0.972 sec NA

5.3.4 Comparison with Previous Works. In this section, we
provide a comparison with previous works, shown in Table 5.
We compare our framework with COIDS [10], OTIDS [18] and
OCSVM [2]; all of which used the same dataset [19].

False Alarms: Let us compare the false alarm (FA) performance of
our approach with rest of the methods. Except for OCSVM none of
the other methods using this dataset to calculate FA. Our framework
with a 0% false alarm rate for every attack, outperforms OCSVM
with a 6.45% FA.

Time to Detection: Now let us compare the time to detection
achieved by our proposed approach with the COIDS, OTIDS and
OCSVM methods for each of the DoS, Fuzzy and Impersonation.

For DoS attacks, our framework detects the attack in 0.036 sec
outperforming the COIDS method (with 0.204 sec) and the OTIDS
method (with 0.846 sec) for COIDS, while OCSVM did not report it.

For Fuzzy attacks, our framework detects the attack in 0.30 sec.
The COIDS method (0.21 sec) and OTIDS method (with 0.892 sec)
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for COIDS, while the OCSVM method did not report time to detec-
tion. Our framework takes 0.10 seconds more compared to COIDS
method. However, the disadvantage of COIDS method is it does
not make an effort to measure the other important metrics of false
alarm and missed detection.

For impersonation attacks, our approach detects the attack in
0.11 seconds, thus outperforming COIDS (with 0.235 sec) and OTIDS
(with 0.972 sec.), while OCSVM did not report time to detection.

Missed Detection: Amongst existing works only OCSVM paper
measures the missed detection rate for only DoS attack attack. How-
ever, our framework has an MD of 1.29% outperforming OCSVM
with an MD of 2.99%.

6 SECURITY EVALUATION FOR EVASION

Security by obscurity is not a good practice. Hence, now we discuss
strategies that attackers might employ to circumvent or degrade
detection success when attackers have complete knowledge of our
detection model and show how much our performance degrades.
The attacker could exploit our method to bypass detection by imple-
menting all attack types, using an ON-OFF strategy, i.e., alternating
between equal periods of attacks being injected (called ON cycle)
and no attack being injected (called OFF cycle). The intuition is that
if the attacker restricts the time duration of each ON cycle to be
equal to or less than the known frame length (fI) of our detection
model, smaller deviations will trigger in the stateful latent space;
which may not violate optimal detection threshold 7, . .

However, we prove that progressive degradation of time to de-
tection and missed detection rate happens only for very short ON
periods. Such short on-off periods are unlikely to have tangibly
physical impacts on the vehicle.

Now we discuss how we simulated the ON-OFF strategy using
the dataset. For an adversary, the attack parameter is the length of
each ON/OFF period, which could be any number that is beyond
the defender’s control. Hence, we create multiple variations of the
attack test sets with various ON-OFF periods in the following way:

Preparing Test Set with ON-OFF strategy: To simulate the
on-off strategy using the OTIDS dataset, we did the following:
For each attack type, we constructed a test set by arranging attack
and benign samples from the original dataset sequentially, given a
particular ON-OFF ratio. We tested different on-off cycle’s lengths
that examine the impact of this attack parameter on our detection.

For example, if the ON-OFF period is 5, we prepare an attack
dataset where 5 ratio samples from the attack dataset are followed
by 5 ratio samples from the benign data and another 5 from the
attack test set then repeat. We are using the original dataset to create
on on-off strategy in the test set. Therefore, there is no chance of
incorrect evaluation.

Metrics of evaluation under Complete Knowledge: We mea-

sured the average time to detection and the missed detection rate
of our method for various ON-OFF period lengths.

Average Time to Detection and Missed Detection: Let n be the total
number of ON-cycles in the new test set, then f(n) signifies the
number of the ON-cycles where the attack got detected.

Let k be a variable representing each individual ON-cycle, such
that k € {1, n}. For each ON cycle where the attack gets detected
by our method, we record the corresponding time to detection,
denoted as di. Now, the time to detection for a candidate on-off
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attack can be represented as d1, da, ...., dp. If f(n) is the number of
ON-cycles(where attack is detected), the average time to detection
dT can be determined as follows:

n
d
ar = ZisL %

f(n)
The number of attack samples that did not violate the threshold
are counted as missed detection.
Below we discuss the performance of our proposed model for
every attack under the on-off cycle attack strategy.

6.0.1 DoS Attack. In our detection model for DoS attack, the
optimal frame length is 9. Therefore, for testing, we calculate the
average time to detection and missed detection rate for three candi-
date ON attack periods = 5, 9, 15. The 5 and 9 correspond to attacks
less than equal to the optimal frame length, while 15 correspond to
higher than optimal fI ON periods.

From Fig. 9(a), we see when ON and OFF period = 5, the sys-
tem takes 0.5523 sec on average to detect. The blue dashed line in
Fig. 9(a), is the time to detection (0.036 sec) without an on-off attack.
Hence, in the worst case, the difference is 0.514 seconds between
our defense model and the attacker’s stealthiest response. We can
also see from Fig. 9(a), that as the ON-OFF periods become equal
to or greater than the frame length the red line converges towards
the baseline time to detection.

In contrast, Fig. 9(b), shows that the highest missed detection rate
is 0.1949 if the on-off period length is equal to the optimal frame
length. The attacker may optimally attack by aligning their on-off
lengths that match the optimal frame length to create a difference of
about 0.16 from the baseline. For all other candidate On-off periods,
missed detection rate drops and converges to the baseline (i.e., blue
dashed line).
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Figure 9: DoS Attack (a) Degradation in Avg. Time to Detec-
tion(s) (b) Missed Detection Rate

6.0.2 Fuzzy Attack. For fuzzy attack, the optimal frame length is
7. Similar to the reasons given under DoS attack attack, we try the
following on-off periods, viz., 5, 7 and 15.

Figure 10(a) compares the time to detection with and without on-
off attacks. As on-off period increases, the average time to detection
decreases. The worst case happens for an ON-OFF period of 5
(shorter than optimal fl of 7), where average time to detection is
0.8661 seconds, while the time to detection without on-off is 0.3
sec, given a worst-case difference of only 0.56 seconds.

Figure 10(b) shows when length of the on-off cycle increases,
the missed detection rate decreases. The missed detection rate is
higher at 0.7819 when the on-off window is exactly the same as the
frame length. However, the difference is not practically significant
since the attack still gets quickly detected for all On-off periods.
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Figure 10: Fuzzy Attack (a) Degradation in Avg. Time to De-
tection(s) (b) Missed Detection Rate

6.0.3 Impersonation Attack. In impersonation attack, the opti-
mal frame length is 5. Fig. 11(a) shows the average time to detection
with varying on-off period such as 3,5 and 7. The baseline time
to detection without an on-off attack is 0.11 seconds (dashed blue
line) and we observe that under on-off, time to detection varies
between 41.5 seconds in the worst case (for ON period of 3) to 0.49
sec (for ON period=7). However, on-off cycle length of 3 or 5, may
be too short to have an impact on the vehicle. Although this is
hypothetical, we are considering the worst-case scenario, which
can be verified by offensive cybersecurity researchers in future.

From Fig. 11(b), we can see that the missed detection rate in-
creased (0.738) when the on-off cycle is 5, equal to optimal frame
length but slightly less for on-off cycles 3 and 7. When the on-off
cycle duration is 3, less than the optimal frame length, the average
time to detection is 41.515 sec, but the time to detection rapidly
drops to zero as the ON period increases slightly.
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Figure 11: Impersonation Attack (a) Degradation in Avg. Time
to Detection (b) Missed Detection Rate

Discussion: One disadvantage of our work is that although
highly accurate, it needs to run three copies of the same model
architecture with three pairs of cross validated hyperparameters
concurrently to detect the presence of any one or more of the
attacks. However, since our method is very lightweight, it is much
better compared to ECU node-specific, offset-specific and neural
network based techniques. We keep the measure of complexity for
this as future work.

7 CONCLUSION

In this paper, we have introduced a common model architecture
that maps the entire CAN bus network’s data into a stateful la-
tent space embedding which can be used to detect three different
types of attacks: Denial-of-service (DoS) attack, Fuzzy attack and
Impersonation attack. Furthermore, we showed that preference
based multi-objective optimization to learn the hyper-parameters
of our model can balance various security performance objectives.
Furthermore, we showed the benefits of quantile L1 regression for
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learning the threshold such that attacks can be detected in real time
by comparing it with a stateful latent space embedding.
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