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Abstract—Anomaly-based attack detection methods that rely
on learning the benign profile of operation are commonly used for
identifying data falsification attacks and faults in cyber-physical
systems. However, most works do not assume the presence of
attacks while training the anomaly detectors- and their impact
on eventual anomaly detection performance during the test set.
Some robust learning methods overcompensate mitigation which
leads to increased false positives in the absence of attacks/threats
during training. To achieve this balance, this paper proposes
a framework to enhance the robustness of previous anomaly
detection frameworks in smart living applications, by introducing
three profound design changes for threshold learning of time
series anomaly detectors:(1) Tukey biweight loss function instead
of square loss function (2) adding quantile weights to regression
errors of Tukey (3) modifying the definition of empirical cost
function from MSE to the harmonic mean of quantile weighted
Tukey losses. We show that these changes mitigate performance
degradation in anomaly detectors caused by untargeted poisoning
attacks during training- while is simultaneously able to prevent
false alarms in the absence of such training set attacks. We
evaluate our work using a proof of concept that uses state-of-
the-art anomaly detection in smart living CPS that detects false
data injection in smart metering.

Index Terms—Explainable Machine Learning, Smart Living
CPS, Resilient AI/ML, Data Poisoning attacks.

I. INTRODUCTION

Data poisoning attacks [1] are recognized as a significant
threat to all machine learning (ML) tasks - where an attacker
injects false data as inputs while training an ML model. This
degrades the accuracy of predictive outcomes made by the ML
model during the test set.

On the other hand, many smart living CPS applications
use anomaly based attack detection frameworks to detect false
data injection attacks. These methods operate by learning the
profile of benign operation via an anomaly detection metric
calculated from CPS sensor data. Then it learns boundaries
of the anomaly metric. Such learnt boundaries act detection
thresholds and hence form the attack detection criterion that
is used in test set. Presence of any attack in the test set is
expected to cause the anomaly detection metric to violate the
learned thresholds of the anomaly detection metric. Naturally,
it is clear that unknown attacks already present while training
such anomaly detectors, will skew the anomaly detection
metric and consequently the learnt detection thresholds.

Current research efforts on data poisoning have predomi-
nantly focused on advanced data poisoning attack strategies
that bypass popular deep learning methods and standard
learning methods [6, 7] and industrial CPS [15]. Research in

mitigation of even simple data poisoning attacks in the context
of smart living CPS, has been limited. In this paper, we inves-
tigate how to mitigate impact of simple poisoning attacks on
the accuracy of anomaly based attack detectors in smart living
CPS, while not sacrificing false alarm performance, without
making any parametric assumptions on the data/attacks.

A. Motivation and Research Gaps in Smart Living CPS

A series of previous works [2, 4, 5] had laid a foundation
for a unified science of anomaly based detection of attacks
and emergency events in smart living CPS. Specifically, in [2]
the CPS sensor data is collected from smart meters and the
goal was to detect presence of organized data falsification (e.g.
electricity theft). Similarly, in [5], the same overall approach is
applied to detect emergency events in a smart transportation
network by learning the profile of benign behavior derived
from speed data collected from road side sensors.

All the above works in anomaly detection for smart living
CPS follows the following unified recipe: (1) First, a latent
space embedding method transforms the raw CPS sensor data
into a time series latent space (in a lower dimension) that
serves as an anomaly detection metric; (2) Second, regression
based learning is used that takes the latent space as its training
data inputs and learns the best fit boundaries of the latent space
that specify the thresholds of benign operation. (3) Third,
the latent space contains mathematical properties that show
deviations beyond the learnt thresholds under attacks [4, 2] or
unsafe events [5] in the test set, hence detecting the threats.
The particular challenge in smart living CPS, unlike industrial
CPS, is the reduction of false alarms since benign fluctuations
in the aggregate data patterns are more common due to human
behaviors which are more random.

Additionally, fundamentals of machine learning assume that
training and test set data come from the same distribution.
Thus learning the thresholds of the latent space accurately
requires training on data gathered from the live deployment of
CPS sensors. However, attacks may be already present in the
live deployment of CPS sensors from which anomaly detectors
learn benign profile of operation. Hence, the latent space will
be altered and the inputs to the threshold learner (which are
points in the latent space) are altered; which in turn alters the
thresholds of the anomaly detector.

Due to the altered thresholds, there is a degradation in the
missed detection (actual attacks in the test set go undetected)
or the false alarms (benign samples in the test set are er-



roneously inferred as attacks) depending on the direction of
change. We justify the above claim later in Sec. III-B with a
case study on a state of the art anomaly detection framework
applied to smart metering infrastructure. We find that simple
data falsification attacks during training that does not require
any advanced knowledge by an adversary ensure that data
falsification attacks go undetected in the test set, due to the
biasing of learnt anomaly detection thresholds. Hence, we need
to introduce modifications to the basic design of time series
anomaly detection frameworks for smart living CPS.

One method in [3] offers one of the first mitigation tech-
niques against data poisoning attacks using two robust M-
estimators (Huber and Cauchy Loss) that replaces the tradi-
tional L2 or L1 norm used in regression techniques that learn a
best fit threshold from the points in the latent space. However,
as we prove later (See Sec. III-D), we observed that while
the Cauchy loss function mitigates the impact of undetected
attacks, it also leads to increased false alarms, when there was
no poisoning attack (which is the most probable scenario).
In contrast, Huber loss function has a lower false alarms in
the event of no poisoning during training, but was poor in
mitigating impact of undetected attacks caused by poisoning
attacks. Thus, we need a framework that mitigates impact of
data poisoning attacks without increasing the base rate false
alarms (i.e, false alarms that happen if there was no poisoning).

B. Contributions

To mitigate the impact of poisoning on anomaly detection
performance, we propose an integrated approach of learn-
ing the thresholds of the time series latent space by three
design changes (1) Tukey biweight loss function instead of
square loss function (2) adding quantile weights to regression
errors of Tukey (3) modifying the definition of empirical
cost function from the traditional MSE/MAE to the harmonic
mean of quantile weighted Tukey losses. We also explain the
role of each of three design changes in the mitigation that
gives explain-ability to our methods’ success compared to
existing approaches. We show that this combined approach
operates effectively under varying strength, scale, and duration
levels of training data contamination caused by data poisoning
attacks. We assess the security performance using two NIST
recommended CPS metrics: (a) Undetected Attack’s Impact,
(b) Expected Time between False alarms. We prove that our
method outperforms existing methods in both metrics and
provide ablation studies to show contribution of each design
change on the performance.

II. BACKGROUND AND PRELIMINARIES

Although our work is generic, we show one application
in the context of an anomaly based data falsification attack
detector for smart metering infrastructure to bride the gap
between theory and practice. We use real datasets [8] from
200 meters from a Texas Microgrid and the anomaly detection
model under attack is proposed in [2].

Smart meters deployed on houses collect power consump-
tion data, which corresponds to raw CPS sensor data. For t-th

hour, and for the i-th house, the power consumption reported
by the i-th smart meter is denoted as P i(t). Now, we give a
background of the anomaly detection method being poisoned.

A. Anomaly Detection Problem Specification

The poisoned model under question is a start of the art
time series anomaly detection method for smart living CPS
proposed in a series of previous works [2, 4].

Our choice of this method is justified by the following: (1)
most recent theoretical advance in time series level anomaly
detection technique that can detect very low data falsification
margins and also emergency events; (2) the method generalizes
to different CPS/IoT domains such as and Smart Transporta-
tion Systems [5], Phasor Measurement Units [4]; (3) follows
the latest National Institute of Standards and Technology
(NIST) specified guidelines on CPS security [13];

For enabling a unified understanding we discuss poisoned
framework in 3 phases: (1) Time Series Representation Learn-
ing that produces a time series latent space from raw time
series data during training; (2) Learning of Thresholds from
Latent Space; (3) Anomaly Detection Criterion. Dividing the
framework in this way, will allow researchers to apply this
work for other methods which might use a different time series
anomaly detection metric.

B. Time Series Representation Learning

The works [2, 4], proved that the time series of harmonic
to the arithmetic mean ratios from multiple smart meters
(in general distributed CPS sensors [5, 4]) in a microgrid is
invariant under benign conditions. Specifically, the ratio is to
be calculated over strategic spatial and temporal granularity
from the distributed CPS sensing devices such co-variance of
data from individual meters (and in general CPS sensors) is
maximized. Mathematically, the invariant is defined as:

Qr(T ) =

∑W
t=1 HM(t)∑W
t=1 AM(t)

(1)

where HM(t) and AM(t) are harmonic and arithmetic mean
of power consumption P i(t) from all smart meters in a micro-
grid at time slot t with a box-cox transformation. The temporal
granularity is a time window T of length W slots (hours).

In the case of AMI, the previous work found W = 24
hours and the granularity included the whole solar village of
200 houses due to its small size. Hence for a typical year, the
range of T ∈ {1, 365}.

1) Safe Margins: Safe margins quantify an expected upper
and lower bound of the anomaly detection metric at any time
window T . The µQr

(T ) is defined as the cumulative weighted
time average of ratios observed on the T -th window across
multiple years. The σr denote the standard deviation of the
probability distribution of Qr(T ) samples in the training set.
The upper and lower safe margin is a neighborhood around
the expected value µQr

(T ), controlled by a scalar factor κ of
the standard deviation (σr)- mathematically written as:

Γhigh(T ) = µQr

(T ) + κσr (2)

Γlow(T ) = µQr

(T )− κσr (3)



where Γhigh(T ) is the upper safe margin and the Γlow(T ) is
the lower safe margin.

2) Stateless and Stateful Residuals: Stateless residuals
∇(T ) keep track of the difference between the safe margin and
the ratio sample Qr(T ). Mathematically, this is represented as:

∇(T ) :

 = Qr(T )− Γhigh(T ), if Qr(T ) > Γhigh(T );
= Qr(T )− Γlow(T ), if Qr(T ) < Γlow(T );
= 0, otherwise;

(4)
The corresponding stateful residual are obtained from the

stateless residuals by keeping the cumulative sum of the
stateless residuals ∇(T ) over a sliding window of length F .
At any T , the stateful residual is given by:

RUC(T ) =

T∑
j=T−FS

∇(j) (5)

Thus, the vector of RUC(T ) values for a year will have
365 entries which can be either zero, positive or negative
depending on the patterns on how stateless residuals evolve
over time during the training set.

3) Threshold Learning from regression errors: The positive
RUC(T ) values (denoted by the set RUC+(T )) form the
training data input points from which the optimal upper
threshold (τmax) is learnt. Similarly, the negative RUC(T )
values RUC−(T ) form the input training data points from
which the best lower threshold (τmin) is learnt.

Let each training data point in each of the above sets be
represented as ri+ ∈ RUC+(T ) and ri− ∈ RUC−(T ).

The threshold learning problem is a regression problem with
only the bias parameter as the unknown, because we need to
fit a straight line to the sets RUC+(T ) and RUC−(T )
to find a time invariant threshold that will be used to raise a
threat alarm in the deployment/test set.

In this regression problem, the unknown parameter search
space (hypothesis space) are denoted by τ+ and τ−, for
the upper and lower thresholds respectively. For example, τ+

denote the set of all the candidate upper thresholds for learning
τmax. Now we discuss terminologies of regression analysis:

Regression Error si: The regression error is the difference
between a training data point and a parameter candidate
(candidate threshold)(si = ri − τ̂ ). For each candidate, a
regression error value can be calculated for all training data
points. In linear regression, positive and negative error values
do not have unequal weights.

Loss Function: The loss function is a mathematical transfor-
mation that represents how each error value contributes to the
goodness of the candidate model parameter. Therefore, w.r.t.
one candidate model parameter and one training data point,
there is one loss value. For example, linear regression uses
squares of the regression errors (L2 norm) as loss function.

Empirical Risk (Cost) Function It is an equation that maps
the goodness of a candidate parameter across all training data
points (observations) in the training data. Typically, it is the
average/mean of the loss function values over all training data
points. In linear regression, the empirical risk is called mean

squared error. The candidate parameter that has the minimum
empirical risk is the optimal learning answer. Hence, this type
of regression is known as ordinary least squares regression.

However, in [2] the authors incorporated unequal weighting
of positive and negative regression errors into the loss function.
Furthermore, it used an L1 norm (absolute errors) instead of an
L2 norm (squared errors) in its definition of the empirical loss
function. Algorithm 1, summarizes the learning of thresholds
as proposed in [2]. In Algorithm 1, the regression error
is the τ − RUC(T ). Notice, that, unlike linear regression,
the regression errors get unequal weights and the weighted
regression errors are stored separately in C and P.

Algorithm 1 Calculate τmax

for RUC+(T ), τ+ do
if (RUC+(T ) < τ+) then

cost+ : |τ+−RUC+(T )|
2

C← cost+

else
penalty+ = |RUC+(T )− τ+|2
P← penalty+

end if
end for
τmax = argminτ+

1
N+

∣∣∑
C cost+ −

∑
P penalty

+
∣∣

4) Detection Criterion: The RUC(T test) is the invariant
in the test set. If it is violates the upper and lower thresholds,
it indicates an attack.

RUC(T test) :

{
∈ [τmin, τmax] No Attack;
̸∈ [τmin, τmax], Attack Inferred; (6)

Using the above detection criterion, [2] showed that under
different attacks and faults, the RUC(T test) metric violates
the learnt thresholds.

III. THREAT MODEL AND CHALLENGES

Poisoning attacks in this context aim to bias the learning of
the latent space thresholds. This enables false data injection
attacks to evade detection during testing (known as integrity
violation in adversarial machine learning). False data injection
from smart meters are well documented [2] and can happen
due to vulnerability in hall sensors, magnetic, or optical ports
or vulnerabilities in PLC communications.

Naturally, this can only happen when the attacks during
training cause widening of the true thresholds (upper threshold
increases and lower threshold decreases). Secondly, the attack
goal dictates the need for two threat models; one for the
training to alter the learning outputs- and another for the test
set- to escape detection of attacks launched in the test set.

A. Training Phase Threat Model

Poisoning Attack Strength δ(p)avg is the average margin of data
falsified from one CPS sensing endpoint (e.g. smart meter)
during training. The δ(p)avg is a variable in our attack simulation
to accommodate varying intents/capabilities of attackers.
Poisoning Attack Scale ρ

(p)
mal is the total fraction of CPS

sensing devices from which data is falsified during the training.



In our simulation, the variable ρ
(p)
mal represents different attack

budgets and capabilities of adversaries. Powerful adversaries

who can afford higher ρ
(p)
mal and vice-versa.

Poisoning Attack Type specifies the manner in which data is

falsified from its original value P i
t . The attack type determines

the direction of change in the RUC(T ). The paper [2], reports

several possibilities of data falsification in a smart metering

infrastructure; including additive, deductive, camouflage, etc.

Most attack types create a decrease in the ratios and hence

the RUC(T ) samples decrease, which will cause the lower

thresholds to widen significantly as shown in Sec. III-B.
Poisoning Duration: specifies the duration of the poisoning

attack- which influences the number of poisoned/biased points

given to the learning model. This is kept as a variable to

emulate different possibilities beyond defender’s control.

B. Impact of Training Phase Data Falsification Attacks
We select a deductive poisoning attack type which falsify

data by reducing the original readings; where P i
t −δ

(p)
t , where

δ
(p)
t ∈ [δmin, δmax] and the expected value of δ

(p)
t samples

converge to the strategic training attack strength δ
(p)
avg and this

falsification occurs from a ρ
(p)
mal fraction of total smart meters.

Study cited in [2], showed evidence that the most common

attack on smart meters is the deductive attack which lead to

organized electricity theft. Certain faults and network errors

causes data drops [2], which behaves mathematically similar

to deductive attacks, where the subset of meters show zero

values. The above proves that this threat model is credible for

analyzing bias caused in training anomaly detectors.
Figs. 1 shows the effect of a simple deductive attack with

δpavg = 200, ρpmal = 0.3 for 1 month while training a model

from a live deployment of smart meters on the RUC(T ). Since

the ratio and the RUC(T ) drops, more negative RUCs are trig-

gered in the RUC−(T ). This biases the learning of the τmin

(See). More negative RUCs trigger a lower τmin. In general,

for most anomaly detection metrics (including RUC(T )), the

higher the ρ
(p)
mal and δ

(p)
avg , the larger the deviations in the metric

and hence more serious the strength of poisoning. However, if

δ
(p)
avg is very high then there can be obvious changes in the

RUC(T ) space. Furthermore, the benign changes (see 50-

100) makes threshold learning essential. Counter-intuitively,

the learnt upper threshold also increases after the poisoning

attack. This surprise is caused due to the design of the safe

margins Γhigh(T ) and Γlow(T ), which was done to lower false

alarms in the original method. Hence, we need robust learning

for both thresholds. Furthermore, note the clustering based

approaches to detect possible points are not unified because

the number of clusters that will be formed a-priori is unknown

and entirely depends on the values of ρ
(p)
mal and δ

(p)
avg and there

could be multiple such combinations used by an adversary.
From the above, we conclude that the learning of thresholds

are poisoned in both directions. This is an interesting devel-

opment because a single poisoning attack type (i.e. deductive)

during the training can influence both the upper threshold and

lower thresholds as shown in Fig. 1. This allows for evasion

of attacks during the test set.

Fig. 1. Latent Space RUC(T ) with Benign and Poisoned

C. Test Phase Threat Model

The test set’s threat model mirrors similar perturbation from

smart meters because the adversary goals is to escape the

detection of data falsification in the test set. We distinguish

between training and test set attacks by using two terms: δ
(e)
avg

(indicating attack strength for evasion) and ρ
(e)
mal (indicating

attack scale for evasion) in the test set, which correspond the

attack that just bypasses the threshold and remains undetected.

D. Challenges of Resilient ML in Smart Living

The paper [3], proposed two robust regression algorithms

(Cauchy loss, Huber loss) for learning the anomaly detection

threshold to mitigate poisoning attacks. However, we observed

some limitations in these works and methods which follow

a similar approach. The expected time between consecutive

false alarms ETFA
is a NIST recommended metric [13, 12]

for evaluating time series anomaly detection in CPS. A larger

ETFA
is better indicating less frequent false alarms.

One disadvantage of employing Cauchy loss is that if

poisoning attacks are not present, then the false alarm perfor-

mance becomes very poor. Table I, shows the ETFA
in units of

days for the previous work [3] with the same dataset. We can

see that compared to all other loss functions such as Huber,

L1, and L2 losses, the Cauchy loss has low ETFA
even though

it gives the most mitigation in the presence of poisoning.

Because benign data in smart living CPS is unpredictable due

to human behavioral randomness (Fig. 1), false alarm cannot

be sacrificed in fear of poisoning attacks.

TABLE I
EXPECTED TIME BETWEEN FALSE ALARMS FOR PREVIOUS WORKS

Empirical Loss ETFA
in Days

L1 364.0

L2 364.0

Cauchy 115.5
Huber 313.84

Note that the absence of attacks are much more likely than

presence of attacks (base rate fallacy), which makes this prob-

lem even bigger. However, in cases where poisoning attacks do

occur, the Cauchy loss function is most effective at mitigating

the attack [3]. This highlights the first engineering challenge:

we need a compromise between the mitigating the attack when

present without increasing false alarm frequency- which ex-

isting works do not handle. The second engineering challenge

which is not handled in [3] is it does not take into account

the poisoning duration as a parameter into its poisoning threat

model. As we show later, poisoning duration negatively affects

the detection performance in test set regardless of loss function

choice; and therefore require additional safeguards.



IV. MITIGATION UNDER POISONING ATTACKS

Here we give the details of our method, starting with
theoretical intuition followed by the different design changes
we propose resilient learning of time series anomaly detection
thresholds.

M-estimation In robust statistical learning, M-estimation is
the practice of replacing the well known L2 and L1 loss, with
a special class of functions known as M-estimators. Formally,
let regression errors for each of the i-th training data point
be denoted as si = ri − τ̂ , the loss function of

∑
i s

2
i is

replaced by
∑

iM(si), where M(si) belongs to class of M -
estimators [14], and the optimal estimate of τ (τopt) is:

τopt = argminτ̂
[ 1
N

N∑
i=1

M(si, τ̂)
]

(7)

where τ̂ is a candidate parameter or the hypothesis space.
Influence Function (IF) [14] corresponds to the first order

partial derivative of an M-estimator function with respect to
the regression errors (which is a function of the data input).
Therefore by chain rule, IF quantifies the extent of variation
in the estimator when the sample points during the training
are perturbed. Formally, IF is defined as:

ψ(si) =
∑
i

∂(M(si))

∂si
(8)

where si = ri − τ̂ is directly affected by the perturbation of
ri. To test how sensitive the learning is to poisoning attacks,
one can compare how much the loss function changes when
the input data is altered during training. This is where the
Influence function comes in — it helps us compare the rate
of change in the influence function of various M-estimators.

Redescending M-estimators: Redescending M-estimators
have influence functions ψ(si) which are non-decreasing for
lower values of regression errors si, but start to decrease as
the regression errors increase. It satisfies the following key
property: ψ(si) = 0 ∀ si, |si| > βt, and 0 < βt < ∞
is referred to as the minimum rejection point. Formally,
the ψredescending(si) < ψnon−redescending(si) for larger si,
which happen due to outlying points in the inputs to the learner
( the effect of data poisoning).

Among the three re-descending M-estimators (Hampel,
Tukey, Andrew’s sine), we hypothesize to use the Tukey-
Lambda Bi-Weight estimator because of the following: Ham-
pel’s three-part function features three distinct rejection points
but the poisoning scales, strengths, and durations are be-
yond defender’s control and can take any value. Therefore,
the idea of 3 distinct rejection points is in-appropriate and
applicable only under abrupt short lived changes like those
due to noise. In contrast, Tukey’s biweight function offers a
smoother transition between penalizing inliers and outliers.
This means that while outliers receive higher penalties than
inliers, the shift from less penalized inliers to more penalized
outliers is gradual, unlike Hampel’s function, which has less
smooth transitions. Andrews’ sine function [19], exhibits high
efficiency only with Gaussian distribution which violate the
nature of the both the raw data and latent space in smart
living CPS. Considering these factors, qualitatively, we choose

Tukey’s biweight function as the best among the others. Next
section, we give quantitative evidence of Tukey’s benefit.
A. Tukey Lambda Loss as Resilient Estimator

Tukey Lambda biweight or bisquare loss function [17] for
regression is defined by the following:

MTukey(si) =

{
β2
t

6

(
1− (1− ( siβt

)2)3
)

if |si| <= βt;

β2
t

6 otherwise.
(9)where si is the regression error between i-th data point and

the candidate parameter (i.e., τ+ or τ−) and the βt is a
scaling parameter corresponding to Tukey Loss that controls
the degree of descent in IF and minimum rejection point.
For each |si| ≤ βt, the loss function is a truncated quadratic
function, starting from zero at s = 0 and reaching a maximum
value of β2

t

6 at s = βt. Any si > βt, the constant does not
change β2

t

6 ensuring that MTukey(si) remains bounded as si
increases due to poisoning attackers. By taking the derivative
of Eqn 9, the IF of Tukey loss is given by:

IFTukey(si) =

{
si

(
1− s2i

β2
t

)2

if |si| <= βt;

0 otherwise
(10)

Fig. 2, shows that IFHuber is non-redescending, while
IFCauchy is weakly redescending, while Tukey is strongly
redescending. For small regression errors, IFTukey ≈
IFHuber. Additionally, for large regression errors, IFTukey <
IFCauchy < IFHuber. To conclude, while IFCauchy be-
gins to diminish the influence of large regression errors
(caused by poisoning or faults), the IFTukey < IFCauchy <
IFHuber property makes Tukey the best estimator under
poisoning attacks followed by Cauchy and Huber respectively.

Fig. 2. Influence Function: Hu-
ber, Cauchy and Tukey

However, medium regression er-
rors are typically caused by be-
nign fluctuations in the latent
space common in smart living
applications. However, for some
medium regression errors, we
IFTukey ≥ IFCauchy , which in-
dicates that the Tukey loss allows
the estimator to be influenced;
which should lead to false alarm
reduction in the absence of poi-

soning attacks. The false alarm benefit can be further enhanced
by replacing si in Eqn. 9 with λsi where λ is a weight (line
5 and line 12 in Algorithm 2), which we discuss in Sec. IV-C
that describes how the design changes are merged.
B. Resilient Empirical Risk (Cost) Function

Note that as poisoning duration increases, the optimal esti-
mate is going to get biased regardless of loss function choice;
since loss functions only specify goodness of fit per training
input point not across all training points. As the number of
poisoned points increases with increasing poisoning duration,
small drifts in losses incurred per point (even for the most
robust loss functions) add up, creating an inevitable change in
the optimal estimate.



To enhance resilience against longer duration poisoning
attacks, we propose a modification: using the harmonic mean
of quantile Tukey losses instead of the usual mean of losses
across all training points. Formally, the new ERF is:

ERFHM =
( N∑

RUC(T )
1
Ls

)
(11)

where Ls denotes the quantile Tukey loss incurred per training
point (this appears in Line-18 in Algorithm 2), N is the
number of training input points in the latent space. For
example, N− represents cardinality of the RUC−(T ) and
the corresponding loss are denoted as Ls− . The process of
learning is identical for the τmax and hence we do not re-
write Algorithm 2 separately for learning τmax.

Now we explain why this modification will improve mitiga-
tion under increasing poisoning duration. Note that, arithmetic
mean of the loss function values:

ERFAM =
( 1

N

∑
RUC(T )

Ls

)
(12)

is a Schur convex function (increases exponentially). In con-
trast, the harmonic mean of loss function values (i.e. Eqn. 11 is
a Schur concave function (increases approximately logarithmi-
cally) [18]. Since Schur concave function grows at a lesser rate
with additive drifts (caused by larger loss values of outlying
points) for the same loss function ERFHM < ERFAM . This
results in lower rate of change in the ERF for each parameter
choice τ in Eqn. 11. Hence, as poisoning duration increases,
the harmonic mean of quantile Tukey losses must be better.

Note, due to Schur concave nature of our modified em-
pirical risk, our objective changes from seeking the typical
global minima to identifying the global maxima (line 18 in
Algorithm 2); hence we need to replace the last line from the
typical argmin to argmax, to find the optimal estimate.

Trade-offs: While using Eqn. 11 as ERF in Algorithm 2
offers robustness, the Eqn. 11 is not smooth and differentiable
(See Fig. 3(a)), making efficient gradient descent/ascent tech-
nique not applicable. Hence, one needs to either use simulated
annealing or a brute force approach to find the maxima.

In contrast, the usual arithmetic mean of losses (See
Fig. 3(b)) as an empirical risk function, gradient descent
applies well. To conclude, the mitigation comes at the cost of
performance. However, for this framework there is only one
parameter to learn, the search space is over a reduced latent
space, and parameter needs to be learnt only once. Hence,
a brute force approach to find the exact global maxima in
Algorithm 2 is implemented. In future, we will implement
simulated annealing to report any performance difference.

C. Final Learning Algorithm with Quantile Weighted Tukey

Here we merge the tukey biweight, quantile weighted re-
gression errors and robust ERFHM into one (Algorithm 2).
We introduce two weights (i.e., λhigh and λlow) to the si
before it is passed to the Tukey loss, such that λhigh > λlow.
This can be verified from line 5 and line 12 in Algorithm 2.
The Lines 2-9, tackle the outer points, while 10-16 tackle
inner points relative a candidate choice τ−. The λlow weight

(a) (b)
Fig. 3. Empirical Risk with Quantile Tukey: (a) ERFHM (b) ERFAM .
Both figures correspond to ρ

(p)
mal = 0.40, δ(p)avg = 200, poisoning duration 6

months, poisoning attack type deductive, hypothesis space is τ−. Note that
the maxima of ERFHM is achieved for τ− = −0.23, while the minima of
traditional ERFAM is achieved at τ− = −0.32. This proves that ERFAM

is less robust due more negative threshold under attacks

Algorithm 2 Empirical Risk Function as Harmonic Mean of
Quantile Tukey losses(τ (hmtu)

min )

1: for RUC−(T ), τ− do
2: if (RUC−(T ) < τ−) then
3: S− : |τ− − RUC−(T )|
4: if (S− ≤ βt) then

5: Ls− :
β2
t
6

[
1 −

[
1 −

(
s−λhigh

βt

)2]3]
6: else
7: Ls− :

β2
t
6

8: end if
9: else

10: S− : |RUC−(T ) − τ−|
11: if (S− ≤ βt) then

12: Ls− :
β2
t
6

[
1 −

[
1 −

(
s−λlow

βt

)2]3]
13: else
14: Ls− :

β2
t
6

15: end if
16: end if
17: end for

18: τ
(hmtu)
min = argmaxτ−

(
N−∑

RUC−(T )
1

L
s−

)

corresponds to regression errors of inner points relative to τ−,
and λhigh corresponds to regression errors of outer points. This
further adds to the balance between false alarms and limiting
impacts of poisoning attacks. Finally, line 18 implements our
ERFHM in Eqn. 11. Note however, that for learning of the
upper threshold τhmtu

max , the definition of outer and inner points
get switched due to the sign change in RUC+(T ). We need
to be careful about how the quantile weights are described
compared to previous works on this problem [3]. Therefore,
for RUC+ < τ+, the line 5, of Algorithm 2 will be replaced
by λlow instead, and the line 12 will be replaced by λhigh,
unlike Algorithm 2.
D. Learning Hyperparameters

Now we describe the hyperparameters selection βt, λlow
λhigh over a cross validation dataset. We split the dataset
from the 2016 dataset into partition of four month of cross
validation. The rest of the 8 months of 2016 was set aside for
testing. Among the 4 months, we have 2 months of benign and
2 months of various attacks. Hence, we have different pairs of
benign and attack realizations in the cross validation set. We
jointly measure the false alarms and the missed detection over
the benign and attack portions respectively, by trying different
values of the hyper-parameters. We pick the hyperparameters
according to the following:

argminβ
t+

,βt−
(wmdMD + wfaFA) (13)



We maintained a fixed weight assignment of wfa = 0.7 and

wmd = 0.3. This choice is substantiated that the reduction of

false alarms at the very least, twice as important.

The β+
t and β−t is 0.0009, λhigh = 0.8 and λlow = 0.2. The

hyperparameters, βc, βh, in Cauchy and Huber Losses were

evaluated in [3], we adopt those values directly for comparison

with our work.

E. Security Evaluation Metrics

Here we elaborate the two main security evaluation metrics.

Impact of Undetected Attack: This metric quantifies miti-

gation by measuring the impact of an undetected attack on

the utility after implementing both our attack and defense

strategies [13]. To determine the daily impact of an undetected

attack, we quantify the lost revenue in relation to the unit price

of electricity, denoted as RR. This calculation is expressed as:

RR = (δavg ∗M ∗ η ∗ E)/1000 (14)

here, η = 24 represents the number of daily reports, E =
$0.12 stands for the average cost of electricity per unit (KW-

Hour) in the USA, δavg signifies the margin of false data in

test set, M denotes the number of compromised smart meters

in the test set. The impact of an undetected attack is:

Impact = RR ∗ Tdetect (15)

where Tdetect refers to the time duration in days between the

start and end of the undetected attack within the test set. A

smaller impact signifies superior performance.

For mitigation performance, we report the I in the test set

in the presence of optimal evasion attacks measured over a 90-

day period. Optimal evasion attack is a data falsification that

just evades the poisoned threshold and hence is the stealthiest

possible attack. The lesser the I , the better is the mitigation.

Expected Time between Consecutive False Alarms: The

expected time between two false alarms, denoted as ETFA

is a metric recommended by recent NIST [13] recommended

metric for time series anomaly detection:

ETFA =

∑
ηFA

TBFA

ηFA − 1
(16)

where ηFA represents the number of false alarms and the

TBFA is the time interval between any two consecutive false

alarms. In the case of a single false alarm, this equation does

not apply, and instead, ETFA
is 364, reflecting the expectation

of another false alarm occurring within a year. Note, the higher
the ETfa

the better it is, (i.e. less frequent false alarms).

For false alarm performance, we report ETfa
for 9 months

of 2016 (i.e., the test set), when there no poisoning attacks

during the training set and no evasion attacks in the test set.

V. EXPERIMENTAL RESULTS

We validate our work using the data collected from the

Pecan Street Project with 200 houses [8] from a solar micro-

grid. Amongst the different datasets available, the texas dataset

shows most variations and data errors [2], which motivated

us to pick this dataset. Unlike in [2, 3], we did not do any
data cleaning for this paper, so we can test mitigation of both

attacks and any gross data errors. Further, experimental details

on extraction of RUC(T ) can be found in [2].

The smart meter data are partitioned into three segments for

training, cross-validation, and testing purposes. The training

dataset comprises all records from 2014 and 2015, following

the approach outlined in prior research [3] to ensure fair

performance evaluation. The remaining records from 2016 are

split into two subsets for cross-validation and testing. For

cross-validation, all records from the first three months of

2016 are utilized, while the data from the subsequent nine

months of year 2016, constitute the testing dataset. The learned

hyperparameters for proposed method are β+
t = 0.0009 and

β−t = 0.0009. To extend poisoning duration, we introduce

variations in the duration of deductive attack types in the

training dataset, categorizing them into three distinct periods:

2 months (8.33% poisoned samples), 4 months, and 6 months

(25% poisoned samples). We also vary the poisoning strength

per smart meter δ
(p)
avg from 50W to 400W (above 400W most

methods can detect attacks) and the poisoning scale ρmal(p)

varying from 20% to 70% of the meters compromised. We

report performance averaged over all possibilites.p g p

Fig. 4. Average Impact of undetected attacks over Varying Poisoning

Durations Averaged over all (δ
(p)
avg , ρ

(p)
mal) pairs: Proposed vs. Previous Works

A. Impact Mitigation Performance Under Poisoning

The Fig.4 illustrates the average impact of undetected attack

in the test set, (averaged over all δ
(p)
avg and ρ

(p)
mal) of our

proposed approach; as compared to existing works that use

quantile weighted versions of cauchy and huber losses and

the ERF is arithmetic mean of such losses. Note that attack

is undetected means we implemented an attack that will not

exceed the learnt threshold - assumes adversary with complete

knowledge. From Fig. 4 we can easily infer that proposed

method has the lowest impact of undetected attack regardless

of the increasing poisoning duration.

B. Base Rate False Alarm Performance

Table II, gives the expected time between false alarms for

different design choices in the event that there are no poison-
ing attacks in the training; no data falsification in the test set;
and utility uses our design as compared to others. We see that

our proposed approach gives ETfa
of 241 days. In contrast,

we see that regular Tukey that does not use quantile regression
errors give a poorer false alarm performance with 201.34

days between any two false alarms. This shows specifically

the benefit of incorporating quantile regression errors rather



than regular errors. Additionally, the quantile Cauchy is the

worst giving on average 116.52 days gap between two false

alarms, and quantile Huber gives 233.65 days which is the

worse than our proposed approach - but huber is least robust

under poisoning. This proves that our method mitigates impact

of undetected attack without sacrificing base rate false alarm

performance. Note the difference in the numbers compared

to [3] is due to the use of uncleaned data in our paper.

TABLE II
BASE RATE EXPECTED TIME BETWEEN FALSE ALARMS: COMPARISON

Empirical Loss ETfa
Harmonic Mean of Quantile Tukey Loss - Proposed 241.0

Arithmetic Mean of Quantile Tukey Loss 232.16

Arithmetic Mean of Regular Tukey Losses [17] 201.34

Arithmetic Mean of Quantile Cauchy Loss [3] 116.52

Arithmetic Mean of Quantile L1 Loss [3] 239.01

Arithmetic Mean of Quantile Huber Loss [3] 233.65

C. Mitigation Sensitivity Analysis with Ablation Studies

Here, we show how mitigation performance is affected

by varying poisoning strength and scales keeping the same

poisoning duration of 4 months. Fig. 5(a) shows impact of

three different loss function for each poisoning strength value,

(averaged over all corresponding ρ
(p)
mal varying between 20%

and 70%). As the poisoning strength increases, Cauchy’s and

Huber’s performance in terms of undetected attack impact

increases while for the proposed approach. This is true for

Fig. 5(b) which shows sensitivity over varying ρ
(p)
mal (each

averaged over all possible δ
(p)
avg).g p g

(a)

g

(b)
Fig. 5. Average Mitigation Performance with poisoning duration of 4 months:

(a) varying poisoning strength (averaged over all possible ρ
(p)
mal); (b) varying

poisoning scale ρ
(p)
mal (averaged over all possible δ

(p)
avg). The Figures are

generated by using proposed ERFHM same for varying loss functions
to show the individual benefit of loss function choice.e individual benefit of loss function choice.

Fig. 6. Average Impact Mitigation over varying poisoning durations. gener-
ated by keeping the same loss function (i.e. Tukey) to show the individual
benefit of the proposed ERFHM into our design

Fig. 6 shows only the difference made by the difficult to

optimize empirical risk function, while keeping everything else

in Algorithm 2 same. We observe that our modified empirical

risk (light blue bars) gives a much lower impact of undetected

attack, compared to the use of arithmetic mean of quantile

weighted Tukey losses (dark blue bars). This proves that the

performance trade-off for using our proposed robust empirical

risk ERFHM is worth it; as the poisoning duration increases,

the benefit of ERFHM over ERFAM become more apparent.

D. Conclusion
In this paper, we enhanced the robustness of anomaly based

attack detection methods in smart living CPS against training

set (simple poisoning) attacks of various scales, strengths,

and durations. Our framework contained three design changes

compared to the usual practice of learning the thresholds -

(i) quantile regression errors, (ii) Tukey Bi-weight as loss

function, (iii) harmonic mean of Tukey loss as empirical risk

function. We found that combining the three proposed design

changes in the learning the threshold of time series anomaly

detectors, it is possible to mitigate both impact of poisoning

attacks as well as base rate false alarms (in the absence of

poisoning) without a priori assumptions on attack capabilities.

Furthermore, also offered explanations of why our design

choices improved performance and also did not make any

assumptions about optimal attacks.
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