QUASIPROJECTIVITY OF IMAGES OF MIXED PERIOD MAPS
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ABSTRACT. We prove a mixed version of a conjecture of Griffiths: that the closure
of the image of any admissible mixed period map is quasiprojective, with a natural
ample bundle. Specifically, we consider the map from the image of the mixed period
map to the image of the period map of the associated graded. On the one hand, we
show in a precise manner that the parts of this map parametrizing extension data
of non-adjacent-weight pure Hodge structures are quasi-affine. On the other hand,
extensions of adjacent-weight pure polarized Hodge structures are parametrized by
a compact complex torus (the intermediate Jacobian) equipped with a natural theta
bundle which is ample in Griffiths transverse directions.

Our proof makes heavy use of o-minimality, and recent work with B. Klingler
associating a Ran,exp-definable structure to mixed period domains and admissible
mixed period maps.

1. INTRODUCTION

Let X be an algebraic space and M a moduli space of graded-polarized integral
mixed Hodge structures, henceforth referred to as a period space. There is a period
space D parametrizing the associated graded objects of the points in M with a map
M — D, and to any period map ¢ : X — M corresponding to a variation of graded-
polarized integral mixed Hodge structures there is a period map gr ¢ : X — D for the
associated graded variation. By the results of [2] we have a factorization

X — D

oA

where ¢ is algebraic and dominant (meaning Oz — ¢.Ox is injective) and € is a
closed immersion. Moreover, the Griffiths bundle on Z is algebraic and ample, and in
particular Z is quasiprojective.

Our main result is to extend this picture to the mixed case. Precisely, we show:

Theorem 1.1. Let X be a separated algebraic space of finite type over C and p : X —
M the period map associated to an admissibleE variation of (graded-polarized integral)
mized Hodge structures. Then there is a factorization

X —F M.

N A

where f is dominant algebraic and ¢ is a closed immersion. Moreover, the natural theta
bundle on Y is algebraic and relatively ample over the image Z of the period map of
the associated graded. In particular, Y is quasiprojective.

1See Definition for the definition of admissibility over nonreduced bases.
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The period space M is naturally a quotient I'\M of a graded-polarized integral
mixed period domain M by an arithmetic group I', but the same result for the quotientE
Fmon\M by the image of the monodromy representation easily follows from Theorem

(see Corollary [2.11).

As in [2], we for instance obtain as a corollary the following:

Corollary 1.2. Let X be a separated Deligne—Mumford stack of finite type over C
admitting a quasi-finite admissibléL mized period map. Then the coarse moduli space
of X is quasi-projective.

The factorization statement in Theorem [1.1f follows easily from [1] and [2], and the
main content is the relative ampleness of the theta bundle. This is especially interesting
compared to the corresponding result in the pure case as the positivity does not stem
from the negative curvature of M; indeed, the fibers of M — D are flat.

The theta bundle is loosely constructed as follows (see section for details). For
any polarized integral pure Hodge structure V- = (Vz, F*V, qz) of weight —1, extensions
of the form

(1) 0—-V—=FE—Z0)—0
are parametrized by the intermediate Jacobian
J(V)=Vc/FV + Vg

which is a (compact) complex torus. The polarization of V' endows J(V') with a
natural theta bundle which is positive in Griffiths transverse directions. Now for a
general variation of graded-polarized integral mixed Hodge structures E, we obtain
from each variation gr?j_l’w] E .= W,E/W,_oF an extension of the form via the
natural pullback:

0— gtV | E® (erlV E)Y y B » Z(0) ———— 0

| |

0 — gV E® (gl E)Y — gV E® (g E)Y — aW E® (grV E)V — 0

[w—1,w]

The theta bundle of Theorem [1.1|is then the product © := @), Oy_1, of the theta

bundles ©,,_1,,,) associated to each of the grﬁ‘ﬁfl’w]

E. In fact, it is easy to see that
R @([lg—l,w} is f-ample for any a,, > 0.

There are two main difficulties in establishing the relative ampleness of ©. First, we
must show O is algebraic. This follows for X smooth by work of Brosnan—Pearlstein
[4] and in general by definable GAGA [2]. We also give a new proof of the result of
Brosnan—Pearlstain, see Remark

Second, the theta bundle only accounts for the compact parts of the extension data,
and the rest of the argument is devoted to showing that the remaining extension data is
affine. More precisely, there are period maps for which Y — Z has positive-dimensional
fibers but for which all of the gr&_ljw] FE are locally constant on the fibers, and in this
case the theorem requires Oy to be relatively ample—i.e., that Y is quasiaffine over Z.
This ultimately relies on the geometry of mixed period spaces parametrizing extensions

as in with V' of weight < —2 and our argument critically uses the work of Saito.

2Such quotients are not good moduli spaces however as they do not in general have a tame geometry.
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1.1. Outline. In §2]we prove the factorization part of Theorem|I.1]and the algebraicity
of the theta bundle. In §3| we prove an ampleness criterion in terms of point separation
by definable sections. We also apply the work of Saito to prove some results on the
local monodromy of the unipotent part of a variation of mixed Hodge structures. In
we prove the quasiprojectivity part of Theorem

1.2. Acknowledgements. Y.B. would like to thank P. Brosnan for an interesting
discussion related to the biextension bundle. B.B. was partially supported by NSF
grants DMS-1702149 and DMS-1848049.

1.3. Notation. Unless otherwise stated, by definable we mean definable in the o-
minimal structure Rup exp. All algebraic spaces are assumed to be separated and of
finite type over C; all definable analytic spaces (resp. analytic spaces) are complex
definable analytic spaces (resp. complex analytic spaces). We generally do not distin-
guish notationally between algebraic spaces, their associated definable analytic spaces,
or their associated analytic spaces.

2. ALGEBRAICITY OF PERIOD MAPS AND THETA BUNDLES

Throughout, we use the following terminology. Let (Vz, W,Vg) be a free finite
rank Z-module with an increasing rational filtration. We denote by gr!’ V7 the wth
graded object gr!V Vi with the integral structure induced by V7. For each w let a
(—1)“-symmetric form g, on gr!¥ V7 be given. There is an associated graded-polarized
mixed period domain M parametrizing graded-polarized mixed Hodge structures on
(Vz, WaVa@, ¢e). By a graded-polarized mixed period space we mean the quotient M =
I'\M by an arithmetic subgroup I' C G(Z) := Aut(Vz, WeVp, go). We have that M is
naturally an R,j,-definable analytic space by [1]. When the weight filtration has one
nonzero graded piece we refer to M (resp. M) as a polarized pure period space (resp.
domain), and usually denote it by D (resp. D). We also denote by M the “compact”
dual of M—the space of filtrations F'* on V¢ with fixed dim gr}, g’ Ve such that the
induced filtration F*® gr’V Vi is g-isotropic—which is naturally a complex algebraic
variety. See for instance [18| [12] [1] for background on mixed period spaces.

2.1. Admissible period maps. For a definable analytic space X, by a definable
period map we mean a definable locally liftable map ¢ : X — M which is tangent
to the Griffiths transverse foliation of M on the reducedE regular locus. A defin-
able period map is equivalent to a variation of graded-polarized integral mixed Hodge
structures, which consists of: a filtered local system (Vz, WeVg, ge) locally modeled on
(Vz, WV, ¢e) and a locally split filtration F'* of Vz ®z Ox by definable coherent sub-
sheaves which satisfies Griffiths transversality on the reduced regular locus and which
is fiberwise a graded-polarized integral mixed Hodge structure.

We briefly recall the notion of admissible variations; see for instance [11] for details.
Let (Vz, WV, F'®*) be a variation of graded-polarizable integral mixed Hodge struc-
tures on the punctured disk A* with unipotent monodromy. Let V and W,V denote
the canonical extensions of Vz ®7 Oax and WeVgp ®g Oa= to A respectively, equipped
with their logarithmic connections. Recall that the variation (Vz, WeVyz, F'®) is called
pre-admissible if the following conditions hold:

(1) The residue at the origin of the logarithmic connection on V, which is an
endomorphism of the fiber V‘O of V at the origin, admits a weight filtration
relative to W.Vm.

3Note in particular that we do not require the nilpotent tangent directions to be Griffiths transverse,
though it is not clear that this level of generality is useful: variations coming from geometry will satisfy
Griffiths transversality in the nilpotent directions as well.
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(2) The Hodge filtration F'* extends to a locally split filtration F° of V such that
grp gr}V V is locally-free for all p and k.

Given a Zariski-open subset S in a reduced complex analytic space S, we say that
a graded-polarizable variation (Vz, WeVq, F*®) on S is admissible with respect to the
inclusion S C S if for any holomorphic map f : A — S such that f(A*) C S and f*Vy
has unipotent monodromy, the pull-back variation on A* is pre-admissible. One easily
verifies that a variation on A* with unipotent monodromy which is pre-admissible
is admissible with respect to the inclusion A* C A. Moreover, if a variation over a
complex algebraic variety S is admissible with respect to an algebraic compactification
S of S, then it is admissible with respect to any other algebraic compactification of S.

Definition 2.1. Let X be an algebraic space. We say a period map ¢ : X — M is
admissible if it is definable and the reduced map @™ : X4 — M is admissible.

See Corollary [2.7] for some further discussion on the admissibility condition in the
nilpotent directions.

2.2. Properness of admissible period maps. We will need an extension property
for mixed period maps in Lemma that is analogous to Griffiths’ result in the pure
case [8, Theorem 9.5]. This is most likely known to experts, but we include a full
argument for the reader’s convenience.

We first prove a criterion of properness for definable analytic maps analogous to the
valuative criterion of properness for algebraic maps.

Lemma 2.2. Let X be an algebraic space, M a definable analytic space and p : X —
M a definable analytic map. Then the map ¢ is proper if, and only if, the following
property holds: a definable holomorphic map v : A* — X extends to A as soon as
powv:A* > M does.

Proof. Clearly we can assume that both X and M are reduced. Let X be an algebraic
space compactifying X and let X denote the topological closure of X in X x M. Then
X is definable and analytic by Bishop’s theorem [3, Theorem 3], as definable sets have
locally bounded volume. Since X is proper the induced holomorphic map ¢ : X 5 M
is proper, and the map ¢ : X — M is proper exactly when X = X. Assume first that
¢ is not proper, so that there exists = € X — X. Since X — X is a closed analytic
subset of X (as it is the intersection of (X — X) x M with X), there exists v : A — X
a definable holomorphic map such that v(A*) € X and v(0) = Z. Then the map
powv: A* - M does extend to A but v does not. Conversely, let v : A* — X be
a definable holomorphic map such that ¢ o v extends to A. The induced definable
holomorphic map A* — X x M extends to A — X x M and takes values in X = X,
hence we are done.

O

We now apply this criterion to our situation. Let X be a smooth algebraic space,
¢ : X — M an admissible period map, and let X C X be a smooth compactification
such that X\X = |J, D; is a normal crossing divisor. Note that for any i the local
monodromy around D; is quasi-unipotent. We may cover X by polydisks P = A"P
such that PN X = (A*)"P x AP, For each polydisk P we choose a basepoint xp € P,
and let NZ-P be the logarithm of the unipotent part of the local monodromy operator
associated to the D; meeting P. For each P let Cp be the cone generated by {NZ-P }.

Lemma 2.3. The period map ¢ is proper if, and only if none of the cones Cp contains
0.
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When M is a pure period space, it follows from the strong version of the nilpotent
orbit theorem [5, Theorem 1.15] that the cone Cp contains 0 only if one of the N/’s
is zero, in accordance with Griffiths’ result.

Proof. Let v: A* — X be a definable holomorphic map. Thanks to the nilpotent orbit
theorem [1, Proposition 4.3], the composition ¢ o v : A* — M extends to A exactly
when the monodromy around 0 is zero. On the other hand, after shrinking one can
assume that v : A* — X takes values in one of the polydisk P. Then the logarithm
of the unipotent part of the monodromy around 0 is of the form ), a; - Nip for some
non-negative integers a;, and conversely every integral element of (), arises from a
definable holomorphic map A* — P. Since the map v : A* — X extends to A — X
exactly when all the a;’s are zero, we conclude using Lemma

O

Proposition 2.4. Let X be a smooth algebraic space and ¢ : X — M an admissible
period map. Then there exists a log smooth partial compactification X C X for which
the period map extends to a proper map @ : X — M.

Proof. Let X be a log smooth compactification of X. For any polydisk P, consider the
positive octant RYj. The assignment of the monodromy operator N; to the standard
basis vector e; yields a linear map R™ — g to the Lie algebra. Its kernel is an
integral linear subspace of R"7, and we denote by K its intersection with RY;. We
may find an integral simplicial subdivision of the standard fan on RY for which K is
a union of facets. This subdivision corresponds to a (global) monomial modification
X p — X for which the condition of Lemma is satisfied on the preimage of P, once
we extend the period map over the boundary components with no monodromy using
the nilpotent orbit theorem [1, Proposition 4.3]. Notice that any further monomial
modification Z — X p will also satisfy the condition above P. Thus, taking Z to be a
monomial modification of X that dominates each of the X p and extending the period
map over the boundary components with no monodromy, the condition of Lemma
is satisfied. O

Example 2.5. Unlike in the pure case, some blow-ups may be necessary. Consider the
mixed period space Gy, = Ext},;7¢(Z(0),Z(1)) and the period map Al x G, — Gy,
which is just the second projection. Take A!' x G,, C A? C P? as a log smooth
compactification. On each vertical line A' x {z} the period map extends as it is
trivial, but the period map does not globally extend over the line at infinity. In this
case if the monodromy logarithm around A! x {0} is N, then the monodromy around
infinity is —N.

2.3. Algebraicity of the Hodge filtration. For any definable analytic space X and
a C-local system &, £ ®c, Ox is naturally a definable analytic coherent sheaf by taking
flat trivialization on a definable cover by simply-connected open sets. The following is
a nonreduced version of the Deligne extension which is essentially contained in [2, §5].

Proposition 2.6. Let X be an algebraic space and £ a C-local system whose local
monodromy has unit norm eigenvalues. Then the definable analytic coherent sheaf
Ex =& ®c, Ox is algebraic.

Proof. First assume X™9 is smooth. Let Z be a compactification of X for which
(zred, zred\ xred) is log smooth. We may take a R,,-definable cover of Z*" by open
sets P for which P™d 2 A" is a polydisk and (P*)*d = (A*)" x A® where P* = PN X.
As P is Stein (since A" is), we may lift the coordinates to functions ¢; on P, which are
Ran-definable after shrinking P. Now the R,y exp-definable analytic space structure on
P* induces one on any chosen Ra;, oxp-definable simply-connected fundamental set of
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the covering map H" x A% — (A*)" x A®; call this space ®. The ¢; are R,,-definable
morphisms P — C and as the multivalued function log : C* — C is definable on angular
sectors, the logarithms z; = log ¢; are Rap exp-definable on ®. We then define a Deligne
extension E of Ex locally using the lattice 9 := exp(},; z;N;)v for flat sections v of
& where the N; are logarithms of the local monodromy, and the same proof as in the
reduced case shows these extensions patch (see for instance |6, Proposition 5.4]). Now
by ordinary GAGA [16], the extension E is algebraic, and an algebraic frame can be
written analytically (hence R,,-definably) in terms of the v, while the change-of-basis
to the flat frame exp(D; 2;V;) is Rap exp-definable as the N; are imaginary.

In the general case, by performing blow-ups along reduced centers we may produce
a proper map 7 : Y — X which is dominant on an open set U of X and for which Y4
is smooth. Let X’ be the image of Y in X. For a sufficiently big thickening S of the
reduced complement X*4\U™d the following square is a pushout

Sxx X — X'

|

S — X.

As 7' 1Y — X' is dominant and Ex/ C 7, Ey, by definable GAGA |2, Theorem 3.1]
Ex is algebraic, while by Noetherian induction Eg is algebraic. Ex is the pushout of
FEg and Ex/, hence algebraic. O

Corollary 2.7. Let X be an algebraic space with an analytic period map ¢ : X — M
whose reduction "4 : X — M is admissible. Then the following are equivalent:

(1) ¢ is definable (or equivalently admissible);

(2) The Hodge filtration pieces Fy are definable analytic subbundles of the ambient
flat vector bundle;

(3) The Hodge filtration pieces Fy are algebraic subbundles of the ambient flat
vector bundle.

Proof. (2) < (3) is immediate given the proposition and definable GAGA. For (1) <
(2), let U; be a definable cover of X by simply-connected open sets. The definability
of ¢ (given the definability of ¢**d) is equivalent to the definability of the lifts U; — M
to the universal cover M of M, which is in turn clearly equivalent to the definability
of F'y as a subbundle of the ambient flat bundle with its flat definable structure. [J

Remark 2.8. Recall by [17] that all variations of graded-polarized integral mixed Hodge
structures coming from geometry are admissible. From the corollary it is clear that
this is true over possibly non-reduced bases as well.

To algebraize theta bundles in Section [2.5] we will need the following result, which
formalizes the idea that the deformation theory of variations of Hodge structures is
algebraic, even in the singular setting.

Proposition 2.9. Let M be a graded-polarized mixed period space and X C M an
algebraic Griffiths-transverse closed definable analytic subspace. Then for any n the
nth order thickening of X in M is algebraic.

Proof. By definable GAGA we may assume X is reduced. Let (V¢, WeV¢) be the
filtered C-local system underlying the mixed variation on X, and let (V, W,V, F*V') be
the associated bifiltered vector bundle with its canonical algebraic structure. Consider
Fl = FI(W,V) the relative flag variety of filtrations F’*V of V which intersect W,V
with the same dimensions as F'*V and for which the induced filtration F’® grE/ V is
qr-isotropic for each k. We have a section s : X — FI of the natural map 7 : F1 —» X
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given by F*V; let S,, C Fl be the nth order thickening of s(X) in F1l, which is clearly
algebraic.

There is a natural admissible period map ¢ : S, — M extending the inclusion
X C M which we claim is the closed embedding of the nth order thickening. Indeed,
S, can also be analytically constructed as follows. Let X be the universal cover
of X, so we have a closed embedding X C M where M is the universal cover of
M. Let S, be the nth order thickening of X in M, considered as a subspace of
M x M via the diagonal embedding M — M x M where M is the “compact” dual.
Now if I' is the image of the monodromy representation, then we have an embedding
San — T\ S, € F1 =T'\(M x M) where T acts diagonally on M x M.

That S,, is analytically the closed embedding of the nth order thickening is now
obvious, and the definability of ¢ : S,, — M follows from Corollary

O

2.4. Algebracity of images.

Proposition 2.10. Let X be an algebraic space and ¢ : X — M a definable mized
period map. Then there is a factorization

X —F M.

N

where f is dominant algebraic and v is a closed immersion.

Proof. First assume X reduced and let 7 : X’ — X be a resolution. By Lemma
there is a partial compactification X’ C Z’ for which the period map of X’ extends to
a proper map ¢ : Z' — M. Now apply [2, Theorem 4.2].

In general, let Y be the closure of the image of X™9, which is algebraic by the
above. By definable GAGA, the pullback X,, C X of the nth order thickening of Y
to X is an increasing sequence of subspaces set-theoretically supported on all of X4,
which by Noetherian induction [2, Cor. 2.32] on the supports of the ideal sheaves
Ix, is eventually all of X. By Proposition and definable GAGA, the claim for X
follows. O

Corollary 2.11. Let I'yon C G(Z) be the image of the monodromy representation of
the variation of mized Hodge structures associated to ¢, and @mon : X — Imon\M the
corresponding lift of . Then there is a factorization

Fmon mon\M

\/

where f is dominant algebraic and v is a closed immersion.

Proof. As in the above proof we may assume ¢ and therefore @0y is proper. Taking
I on € Tmon to be a finite-index torsion-free normal subgroup, Y will be the quotient
of the image of X in I' . \M by I'mon/Iion, S0 We may assume ['yon to be contained
in a torsion-free normal arithmetic subgroup I' C G(Z). Now Y is a finite étale cover
of the image in I'\ M and therefore algebraic. U
2.5. Theta bundles. Let D be a polarized pure period space parametrizing polarized
weight —1 Hodge structures V on (Vz,qz). We can consider the graded-polarized
mixed period spaces M resp. M’ of extensions

0=V —>FE—Z0)—0
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resp.
0—-Z(-1) - E—-V —=0

both of which map to D. We may also consider the graded-polarized mixed period
space B parametrizing mixed Hodge structures F with weights [—2,0] with

g’y B = Z(-1)
aME=V
grty E = 7(0).

The natural map B — M xp M’ is canonically an analytic Ext,,,r5(Z(0), Z(—1)) =
G, torsor which we call the biextension torsor; the associated analytic line bundle
P on M xp M’ we call the biextension bundle. Viewing M — D as the universal
intermediate Jacobian

J(V) :==Vc/F°V + vy
and M’ — D as the dual J(H"), the biextension bundle P is naturally thought of as
the universal Poincaré bundle.

Remark 2.12. While the total space B, the map to M xp M’, and the G,,-action are
all definable analytic, it is not clear that B is a definable analytic G,,-torsor as it is
not clearly that it is definably locally trivial.

Proposition 2.13. Let X be an algebraic space and ¢ : X — M xp M’ an admissible
period map. Then the pullback Bx of the biextension torsor has a natural algebraic
étale G -torsor structure for which the map Bx — B is definable.

Proof. We start by making some preliminary observations. First, note that Bx has
a natural definable structure, as it is the base-change of B. Thus, it suffices to show
that the space underlying Bx has an algebraic structure compatible with the definable
structure. Indeed, this algebraic structure is unique by definable GAGA, hence the
naturality. Since both the map to X and the G,,-action are pulled back from B, they
are likewise algebraic, and as Bx — X clearly admits an fppf-local section (over Bx
for instance) it follows that it is an étale G,-torsor.

Now to show that the underlying space of Bx is algebraic we proceed by considering
successively more general cases.

Step 1. For X smooth, the proposition is a result of Brosnan—Pearlstein:

Theorem 2.14 (Thm. 241 of [4]). In the above situation and assuming X smooth, Bx
(as a sheaf) admits a natural meromorphic extension to any log smooth compactifica-
tion X whose sections correspond to admissible liftings ¢ : X — B of ¢. In particular,
Bx is an étale G, -torsor.

Note that this algebraic structure is indeed compatible with the definable structure:
étale locally the map Bx — B is identified with

Bx=2G,,xX —-G,,xB—B

where the left isomorphism is induced by a local section of Bx — X, the middle map
comes from the corresponding admissible lift X — B, and the right map is the action.

Step 2. For X reduced, by taking the closure of the image we may assume ¢ : X —
M xp M’ is a closed immersion by Proposition Let m: Y — X be a resolution.
By the previous step, By is algebraic and the natural map By — B is an admissible
period map. It follows by Proposition [2.10/again that the image of By — B is algebraic,
and this is just the underlying space of Bx.
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Step 3. For general X we may still assume ¢ : X — M xp M’ a closed immersion.
By the previous step Byrea is algebraic, and by Proposition and definable GAGA
we conclude that the total space Bx is algebraic, hence Bx is algebraic.

O

Corollary 2.15. In the setup of the proposition, the pullback Px of the biextension
bundle is naturally an algebraic line bundle.

Note that we have a natural definable map
o JV) = JOVY)

commuting with the projection to D which on fibers is the map Ext,,176(Z(0),V) —
Exty15(Z(0),VV) coming from the polarizing form ¢ : V — V'V,

Definition 2.16. Let X be an algebraic space and ¢ : X — M an admissible period
map. The line bundle © x on X which is the pullback of P along ¢ x (coy): X —
M xp M’ endowed with the natural algebraic structure of Proposition [2.13 is the theta
bundle of .

Proposition 2.17. Let X be an algebraic space, V a polarized pure Hodge structure of
weight —1, and ¢ : X — J(V) an admissible quasifinite period map. Then the image
©(X) is contained in a translate of a subtorus which is an abelian variety.

Proof. By Proposition we may assume X is proper, reduced, irreducible, and
a closed subspace X C J(V) containing the split point 0 € J(V). By replacing X
with the image of the difference map X x X — J(V) we may eventually assume X
is a sub-group. If Hz is the image of the monodromy H;(X,Z) — Vz and H¢ C V¢
the complex span, then X = H¢/F°V N He + Hz. The tangent bundle of J(V) is
canonically Ve /FOV and the Griffiths transverse subbundle is F~'V/F°V, so we have
Hyz C F7'V. As X is definable, it must be a compact real torus, so we must have
Hr = Hc/FOV N He via the quotient map. It follows that Hz underlies a polarized
sub Hodge structure of level one. O

Corollary 2.18. In the setup of the proposition, ©x is ample.

Proof. The theta bundle on J(V) is clearly the line bundle associated to the hermitian
form ¢(u, D), and restricts to the usual theta bundle of He/F°H + Hy,. O

Remark 2.19. Considerations as in the previous proposition can be used to give a new
proof of Theorem [2.14] as follows. Consider a diagram

X — M XDMI

L

Y —D

where the horizontal maps are Griffiths transverse closed immersions and X,Y are
reduced. After base-changing along an étale map Y’ — Y with dense image, X’ :=
X xy Y’ — Y’ admits a section. As in the proof of the proposition, using Proposition
we may replace X’ with the image of the difference map X’ xy X’ — M xp
M/, and after finitely many iterations we may assume (after shrinking Y”’) there is a
factorization

X — A Xy AV —— M X'DM/

N |

Y — D
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where A — Y is a smooth definable analytic family of polarized abelian varieties whose
fibers are the subgroups generated by the corresponding fibers of X’ — Y’. Then A
is pulled back along a definable hence algebraic map of Y’/ to a Shimura variety and
the universal Poincaré bundle is algebraic, so A, Bax,,4v, and therefore By are all
algebraic. The closure of the image of Bxs in B is Bx, and therefore algebraic by
Proposition [2.10.

While the argument in the remark directly shows that Bx is algebraic on a strat-
ification, the global definable structure is needed to glue these algebraic structures
together since the fiber dimension may jump, as shown in the example(s) below.

It is not hard to provide examples where fiber dimensions jump, even in the mixed
Shimura setting. In fact, consider the universal abelian variety &), over the moduli
stack A, (one may add level structure to rigidify everything into schemes). Now one
may simply take a curve C inside a fiber over A4,, and a generic surface S containing it.
This is an example of a mixed variation of weights 0,1 with jumping fiber dimensions
over the associated graded.

We give below what we consider a more interesting example, where the fibers over
the graded are generically finite simply for lack of hodge classes in the associated pure
variation, but then over points in the graded which acquire hodge classes, the fiber
dimension jumps. This kind of example is harder to construct “artificially” in the
manner above, and appears to be a more intrinsic geometric phenomenon.

Example 2.20. Let K be a sufficiently high level cover of the moduli space of K3
surfaces polarized by the lattice (§ 2 ), so that it is an irreducible quasiprojective variety.
Let fi1, fo be the divisor classes of the two elliptic pencils and let S be the moduli
space of pairs (X, E) with X € K and E a smooth section of f;. S is also irreducible
and admits a forgetful map S — K. Consider the cohomology of the complement

H?(X\E,Z) which sits in an extension
0— H*(X,Z)/7.f; — H*(X\E,Z) — H'(E,Z)(—1) — 0.
Let HX(X,Z) := H*(X,Z)/(Zf1 + Zf>), which yields an extension
0— H3(X,Z) - H*(X\E,Z) — H'(E,Z)(—1) — 0.
Let ¢ : S — M be the resulting mixed period map for the variation H2(X\FE,Z),
and gro : S — D that of the associated graded. It is easy to see that H2(X,Z) ®
H'(E,Z)V(1) generically has no nontrivial sub Hodge structures, so the generic fiber

of gry is 0-dimensional. On the other hand, if X is the Kummer surface of £ x E’
with the elliptic pencil given by the first factor E x {0}, then for p € E\ E[2] we have

H*(X\E x {p},Q) = H*(Blpp)x o) (E x E'\{£p}),Q)*!
=Q(-1)" @ H'(E,Q) ® H'(E'\{£p},Q)

so the associated graded is constant on the fiber of S — K above X.

3. SETUP FOR THE PROOF OF QUASIPROJECTIVITY

In this section we collect several results that will be needed for the proof of the
quasiprojectivity part of Theorem The first is an ampleness criterion in terms of
definable sections; the second allows us to endow the cohomology groups of variations
of mixed Hodge structures with mixed Hodge structures over arbitrary bases; the
third gives some control on the monodromy of extensions of variations of mixed Hodge
structures, again over arbitrary bases.
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3.1. Definable-analytically quasiaffine maps. We first show that to prove f-
ampleness of an algebraic line bundle L and an algebraic map f : X — Y, it suffices
to show the definable stalks of f,L™ separate points. Note that this is weaker than the
assumption that f.L™ separates points definably locally on Y.

Proposition 3.1. Let f : X — Y be a map of reduced algebraic spaces, L a line bundle
on X. Assume for any point y € Y and any 0-dimensional subspace P C X supported
on the fiber X above y that the restriction on stalks

(FE(EY), = (L)),
is surjective for n > 1. Then L is f-ample.

Proof. By Zariski’s main theorem, it is enough to show for all y and P as in the
statement of the theorem that the restriction map

(Fe(L™))y = (Fo(L"[P))y

is surjective for n > 1. Let g : Z — Y be a relative compactification of X, so g is
proper and there is an open immersion X — Z over Y. Let S be the complement of
X in Z. By assumption there is an n, an analytic open neighborhood U C Y#" of y
and finitely many sections of (L")%f(f~1(U)) separating P, since (fd¢f(L"|p)de), is
a finite-dimensional vector space. We may assume there is a line bundle M extending
L", and by the following lemma definable sections extend meromorphically.

Lemma 3.2. Let Z be a reduced definable analytic space and S C Z a closed definable
analytic subspace. Any definable analytic f : Z\S — C extends meromorphically to Z.

Proof. The closure of the graph I'(f) C (Z\S) x C in Z x P! is definable and analytic
by for example Bishop’s theorem [3, Theorem 3|, as definable sets have locally bounded
volume. (]

It thus follows that
(gi" (Aom(Ig", M)™)y — (8" (Lp)™)y

is surjective for m > 0, and by ordinary GAGA this means the horizontal map below
is surjective, finishing the proof.

(g« (AOom(IG, M)) (g+L'b)y

\/

(feLl™)y

O

Lemma provides a particularly easy criterion for X — Y to be quasiaffine.

Definition 3.3. We say that a map X — Y of definable analytic spaces is definable-
analytically quasiaffine if analytically locally on Y it factors as

X—5CVNxY
\ Jﬂz
Y
where ¢ is a definable analytic locally closed immersion and 75 the second projection.

Recalling that an algebraic map X — Y is quasiaffine if and only if Ox is relatively
ample |9, I1.5.1.6], we have:

Corollary 3.4. Let f : X — Y be a map of algebraic spaces which is definable-
analytically quasiaffine. Then f is quasiaffine.
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3.2. Hodge modules and period maps. To equip the cohomology of variations of
mixed Hodge structures over arbitrary bases with functorial mixed Hodge structures,
we will rely crucially on Saito’s formalism of mixed Hodge modules [14] [15]. Briefly,
for any reduced algebraic space X there is an abelian category MHM(X) of graded
polarizable mixed Hodge modules and a faithful functor

rat : D" MHM(X) — D?(Qx)

which is exact with respect to the perverse t-structure and such that the usual functors
Rf., f*, fi, f', ®F, R #om on derived categories of constructible sheaves lift to functors
Fes [55 f1, f1, ®, #om. For X smooth, a mixed Hodge module consists of a filtered D-

module M and a Q-perverse sheaf P with a quasi-isomorphism DR (M) = Pc where
DR(M) is the de Rham complex of M, while in the general case they are patched
together from such objects via local embeddings into smooth ambient spaces.

Definition 3.5. For X a reduced algebraic space we say E € D? MHM(X) is smooth
if its underlying rational structure is a local system in degree 0 (with respect to the
standard t-structure on D%(Qx)).

For smooth X, there is a natural equivalence of categories |15, Theorem 3.27]

2) { admissible variations of rational

: b
mixed Hodge structures on X } - {smooth objects of D MHM(X)}

which is compatible with pull-backs along algebraic maps f: X — Y.

Proposition 3.6. The functor uniquely extends to a fully faithful functor for any
reduced algebraic space X which is compatible with pull-backs along algebraic maps
f: X =Y. If X is moreover seminormal then the extension is an equivalence of
categories.

In particular, to every admissible period map X — M we obtain a “pullback ob-
ject”E E)fg € D® MHM(X) whose underlying rational structure is the local system Ey.

Proof. The uniqueness and functoriality are consequences of the uniqueness and func-
toriality for smooth X and the following fact:

Lemma 3.7. Let X be a reduced algebraic space. For smooth E,F € D®* MHM(X)
and any dense open set j: U — X we have

Hom(E, F) 2 Hom(j*E, j*F)
via the natural map.
Proof. Let £ = rat(F) and F = rat(F'). On the level of sheaves
Hom(&, F) = Hom(5*E, 7 F)
via the natural map, while
Hom(E, F) = Hom(Q¥, #om(E, F))
(3) = Hom(Q(0), pt,. #om(E, F))
= Hdg,(Hom(&, F))g

where we equip Hom(&, F) with its mixed Hodge structure as rat(H° pt, #om(E, F))
and define Hdgy,(H)g := Hom(Q(—k), H) = F*H N Wy, Hg in general for a rational
mixed Hodge structure H. Likewise for Hom(j*E, j*F). O

4E§ of course depends on .
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It therefore suffices to show the existence of an extension of E)}greg on the regular
locus X™& C X to an object E € D® MHM(X) with rational structure x. We proceed
by induction on dim X, the 0-dimensional case being obvious.

Let 7 : X’ — X be a resolution, let S C X be the singular locus, and let S’ C X’ be
the reduced preimage of S. By induction we may assume Eg and Eg > 1* kg exist,
and by stipulation E)}(I/ exists. We have a triangle in D MHM(X)

(4) Q¥ — mQ¥, — A — Q¥[1].

As 7 is proper the middle map has an adjoint
QY - #'A.
Consider the map
EY, 5 E or'A
obtained from tensoring by E)Ig,. We have natural identifications
Ef onA=2El o r'A= ' (EE @ A)

the first because 7' A is supported on S’ and the second because Eg is smooth. We
therefore obtain a map E¥, — w!(Eg ® A), and we define E to be the cone of the
adjoint:

(5) E-mnEY - Bl oA E[1.
The image of under rat is easily seen to be isomorphic to the natural sequence
Ex = Rm,Exr — Eg ® rat(A) — gx[l].

obtained by tensoring the rat of by £x. Moreover, restricting to the regular
locus we see (by proper base-change) that Ffl.., & B, |xres & E| xres.

For the second claim, assume that X is seminormal and let 7 : X’ — X be a
resolution. Let E € DP MHM(X) be a smooth object and let us prove that it comes
from an admissible variation of rational mixed Hodge structures on X. Since we
can argue Zariski-locally, let’s assume that 7*FE is associated to a period map ¢ :
X' — M. Clearly ¢ is pointwise constant on any fiber of 7. Since M is smooth
and X seminormal, it follows that ¢ factors through X. Here we’ve used that the
analytification of a seminormal algebraic space is weakly normal [7, Cor. 6.14] so that
the regular functions are continuous meromorphic functions. O

Remark 3.8. The seminormality hypothesis is necessary in the second statement of
Proposition as in general the seminormalization X’ — X is a universal homeomor-
phism and the functor rat : D* MHM(X) — D%(Qyx) is faithful.

3.3. Monodromy of extensions. Let Y be a reduced algebraic space with an admis-
sible variation of rational mixed Hodge structures V3. Let X be a reduced algebraic
space with a map f : X — Y and an admissible variation of rational mixed Hodge
structures E'x which sits in an extension

0—Vx > Ex —Qx(0)—0
where Vx = f*V3. We have a corresponding exact sequence of rational structures
0—=Vx =& —Qx —0.

Given a point y € Y, let U C Y be a small neighborhood. The local system Ex
restricted to Xy := f~1(U) has monodromy landing in Vy,,, and we will need two
lemmas controlling the image.
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Lemma 3.9. In the above situation, the image of the extension class of Ex in Ext!(Qx, Vx) =
HY(X,Vx) under the composition

(6) H'(X,Vx) = H'(Y, Rf.Vx) = (R f.Vx),
is Hodge of weight 0 for anyy € Y.

Note that in the statement of the lemma we are using that Vx underlies an object

V)I(q € D® MHM(X) by Proposition and that the sequence @ underlies
H'pt, (VX') = H' pt, (£VX) = H' (iy f V)

where 7, : y = Y is the inclusion. All three groups in @ are therefore equipped with
mixed Hodge structures and the maps are morphisms of mixed Hodge structures.

Proof. The triangle
VX — EX — QX — Vx[l]
lifts to a triangle
Vi = EY - Q¥ — v
in D MHM(X) as the morphisms exist by Lemma and exactness can be checked
on the underlying rational structures. Moreover,
Hom(Q(0), H' pt, Vx) = Hom(Q(0), pt., V'[1]) = H' pt. (VX)
and the group on the left is the weight 0 Hodge classes of H'(X, Vy). O
Note that f*V)? = V)I/LI ® f*(Qg) and that
H'(iy £V = iy @ H' (i £,.Q) = Hom(Hy (Xv, Q), Vyy)

as mixed Hodge structures. Furthermore, under this identification the image of the
extension class of £x under @ is precisely the monodromy representation of £x re-
stricted to Xy .

The previous lemma therefore implies that the monodromy representation Hi (X, Q) —
Vy,y is a morphism of mixed Hodge structures; the following lemma controls the Hodge
numbers of Hi(Xy, Q).

Lemma 3.10. For any map f : X — Y of reduced algebraic spaces and any y € Y,
the nonzero Hodge numbers hP4 of (R" f.Qx )y satisfy 0 < p,q < n.

Remark 3.11. The claim is true for Y a point (for instance see |13, Thm. 5.39]), and
therefore for proper f by proper base-change.

In the following proof the sheaves/morphisms between them naturally underlie ob-
jects in the derived category of mixed Hodge modules (and thus possess/preserve
natural mixed Hodge structures), but we phrase the argument entirely in terms of the
rational structures for simplicity.

Proof. We proceed by induction on dim X, the claim being obvious if X is O-dimensional.
Choose a relative compactification Z and let F' be the fiber over y.

x-Jl,z i F

N

Y +—
ty
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Let Z' be a log resolution of (Z,Z \ X) and let X', F’ be the reduced preimages of
X, F.

</ .
J i’

S/ v X/ Z/ F/
S—X——Z+—F
j 7

The map ¢ is an isomorphism on a dense Zariski open set V' C X; let ¢+ : S — X be
the inclusion of the complement of V and ¢/ : S’ — X’ the preimage.

There is a natural morphism Qx — Rp,Qx:. Let A be the cone, so we have a
triangle

(7) Qx — Rp.Qxr — A — Qx[1]
and note that #%(A) = 0 for i < 0. Applying RI'i* Rj. we obtain an exact sequence

(8) H"1(i*Rj, A) —— H™(i* Rj,Qx) —— H"(i* Rj. Rp.Qx)

(R"f:Qx)y H"(i"Rj,Qx)

where the vertical identifications are by proper base-change. The object A is supported
on S, so pulling back to S we obtain a triangle

Qs = R7Qg — " A = Qg[1]

and after applying RI'i* Rj.t.« an exact sequence

H" Y (i* Rjuti Ry Qg ) —— H" H(i* Rju A) —— H"(i* Rj41+Qs)
(Rn_l(f oLo 7)*@5”)y (Rn(f © L)*QS)y-

By the induction hypothesis, it follows that the nonzero Hodge numbers h?9 of H"~!(i* Rj, A)
have 0 < p,q <n, and by it is therefore enough to prove:

Claim. The nonzero Hodge numbers h?? of H"(i" Rj,Qx) satisfy 0 < p,q < n.

Proof. Recall that Rj’ is exact in the perverse t-structure; let M = j Q% [d] where
d = dim X (we may assume X' irreducible). Recall that

gt M = @ QF, (—k)[d — K]
T|=k

where D = (,c; Dj is the Ith boundary stratum of Z'\X’. Defining F} := F' N Dy to

— 0OH

be the reduced intersection, we have 7’ *ng = (as this is clearly true on the level

Fy
of underlying rational structures), so

gl M = @ QUL (~B)ld .
|I|=k

To prove the claim, it suffices to show the claimed vanishing of Hodge numbers for
H=4(i" grl¥,, M) for all k. This in turn follows because H"*(F},Q)(—k) satisfies
the vanishing for all k& (see Remark [3.11).

O

O
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4. PROOF OF QUASIPROJECTIVITY

4.1. Induction step. Let M,, be a mixed period space parametrizing graded-polarized
integral mixed Hodge structures £/ with weights < w and let My, 1 (resp. M,_1 4,
Dy—1) be the graded-polarized mixed period space parametrizing mixed Hodge struc-
tures H of the form W,,_1 E (resp. grmil,w} E, gr’V | E). We naturally have a definable
analytic morphism
Mw — Mw—l XDy_1 M[w—l,w]
From section we have an analytic theta bundle O, ;) on M, 1 ,); we also
denote by Oj,_1,,,) the pullback to M,,. As no confusion is likely to occur, for any
period map ¢ : X — M,, we also denote by ©,,_1,,,) the pullback to X together with
its natural algebraic structure as in Proposition
The main result of this section is:

Proposition 4.1. Let X,Y, Z be algebraic spaces together with a diagram
X— M,
\g// \

f Y ‘/ Moyp—1 XDy_1 M[wfl,w]

whose horizontal maps are definable Griffiths transverse closed immersions. Then Ox
is g-ample and the theta bundle O, _1 ., s h-ample.

L —— My

Corollary 4.2. In the above situation, O,_1 4 is f-ample.

Before the proof we make some observations. As in the introduction, M,, embeds
into the mixed period space M, parametrizing extensions of the form

0= Wy E@gr! EY — E' — Z(0) = 0
and likewise we have embeddings of M1, M{y,_1,u]; Dw—1, Mw-1 XD,_1 M—14)
into the corresponding spaces M’ ;, M/[_Lo]?DI—l’ M’ Xpr M/[—l,o] associated to M,
that are compatible with the obvious maps. Finally, ©,_ ) is pulled back from M.

Thus we may assume w = 0 and gry’ F = Z(0), and M, parametrizes extensions of
the form
0—-V—>FE—Z0)—0

for V in M_q. In this case, M is isomorphic to the intermediate Jacobian
J(V) :=Vc/FV +Vy

over M_1 where Vg is the universal Z-local system and F*V is the universal Hodge
filtration. Moreover, we have maps

JW_oV) = JV) S J(g™ V)
of definable analytic spaces by interpreting each as mixed period spaces. In particular,
M_1xp_, M[_1 g is isomorphic to J (gr] V) over M_; and 7 has a definable action by
J(W_5V) which around every point of J(gr'¥; V) admits an analytic (hence definable,
after shrinking) trivializing section.

For any y € J(gr™} V), let U’ C J(gr'; V) be a small ball neighborhood, and for
z € M_; the image of y let U C M_1 be the (open) image of U’. Denote

JHE(W_o V) = (W_oVy)c/FOW_oVy + Hdg_, (W-2V2)z,
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where Hdg,(H)z := F¥H N Wa, Hz. We have a diagram
JHS(W_oVp) = J(W_oVy) — U.

Note that independently of the choice of a basepoint there is an identification of the fun-
damental group of J(W_sVy) with W_yVy, that of JE(W_Vy) with Hdg_ (W_2V2)z,
and that the first map is a covering map with covering group Vz/Hdg_,(W_2V.)z.

We endow JH8(W_3Vy) with a definable structure as follows. We may choose a
definable analytic splitting

W_oVy ® Oy = FOW_oVy @ (Hdg_{(W_2V.)z @ Op) @ Q

where Hdg_;(W_oV.)z® 0Oy C Vy®Oy is the constant subbundle and @ is a definable
analytic subbundle. We may therefore definably identify

JHE(W_aVy) = Hdg (W-2V2)a,, x CV x U
over U, where for a mixed Hodge structure H
Hdg_,(H)g,, := (Hdg_,(H)z ® C)/Hdg_,(H)z = G},

with its canonical definable structure.
Choosing a definable section of 7, we identify

7T71(U/) = J(W_QVU) Xy U’

The fundamental group of 7—(U’) (after choosing a basepoint) is canonically identified
with (W_9V,)z via the action of J(W_2Vy). Denote by

Jg’(ig = JHE(W_yVy) xy U’

and note that Jg,d 5 and its definable structure don’t depend on the choices. Fur-

thermore, since JE98(W_yVy) — U is clearly definable-analytically quasiaffine (even
affine), we have:

Lemma 4.3. Jgf’lg — U’ is definable-analytically quasiaffine.
We are now ready to prove Proposition

Proof of Proposition[{.1. By [9, I1.4.6.16] we may assume X,Y, Z are all reduced. We
first show that ©_, o) is h-ample. ©[_, ¢ is algebraic by Proposition and since h
is proper it suffices to show it is ample on fibers, which is Corollary [2.18.

It remains to prove that Ox is g-ample. Using Lemmas and it is sufficient
to show the following;:

Claim. For any y € Y and any sufficiently small open ball neighborhood y € U’ C
J(gr'™, V) as above we have a definable analytic lifting

Hd
(9) Ty

7 J
XU’ — F_I(U/)
where Xy := X Nw—H(U).
Proof. While J2¢ 5 — 7 1(U") is of course not definable, we first claim:

Lemma 4.4. Any analytic lift as in @ is definable.
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Proof. Let 2y C My be a definable fundamental set for Mg and let Z’ be the preimage
of Xy in Zg. Its enough to show that =/ — Jg,d 5 is definable. Recall that My is

identified with V¢ /FOV over M_;. Taking a resolution of X, there are finitely many
nilpotent orbits approximating the preimage of X in =¢; by [10, Theorem 6.2], outside
of a bounded set =’ is within a finite distance (with respect to the standard metric on
Ve/FV) of finitely many nilpotent orbits whose monodromy is trivial in M_1. It thus
suffices to verify that each such nilpotent orbit (restricted to a product of bounded

vertical strips) has definable image in J Hd 5. But possibly after shrinking U’, each such
nilpotent is v + >, t;n; for v € V¢ /F°V and n; € Hdg_(V,)z = Hdg_(W_2V.)z, for
which the claim is obvious. U

By Lemma [3.9 the monodromy of the extension
0—=Vx =& = Zx
restricted to Xy is an element £ of (ng*VX)y which is Hodge of weight 0. We have
an exact sequence
(10) (R'g.W_2V)y = (R'g.V)y = (R'g. g™} V),
and as the extension
0— g Vx — gr[VKLO] E—>Zx —0

is pulled back from Y, £ maps to 0 under the right map of . Thus, £ comes from
a class of (R'g,W_2V), which is Hodge of weight 0, and by Lemma this is an
element of
HOHI(Hl (XU’7 Q>7 Hdg—l(W—2Vy)Q)'
O

O

4.2. General case. Let M be a mixed period space parametrizing graded-polarized
integral Hodge structures F. Let D, be the polarized pure period space of the asso-
ciated graded object grgf E and My,_1,, the graded-polarized mixed period space of
grmil’w} E. We have a diagram

M

Hu) M[w—l,w}

/

D :=]], Dw

where the bottom diagonal map arises from the fact that the natural map [ [, M{y—1,, —
D x D factors through the diagonal.
Consider a diagram
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where X,Y, Z are algebraic spaces and the horizontal maps are Griffiths transverse
closed immersions. The proof of the quasiprojectivity claim of Theorem is com-
pleted by the following:

Lemma 4.5.

(1) Ox is g-ample;
(2) Ox := Q. Olw—1,u] is h-ample.

Proof. (1) If wpin (resp. wWmax) is the minimum (resp. maximum) weight w for

which gr!V E # 0, then by taking images we have diagrams
Xuw » Moy M[wfl,w]

oL

X’wfl — wal

with X = Xypao M = Mo Z = Xy, and D = My, .. By Corollary 4.2

the theta bundle ©,_; ., is fy-ample, and it follows that L := p,, ([15—1,11;] is
f-ample for some a,, > 0 [9, 11.4.6.13]. As L is pulled back from Y, it follows
that Ox is g-ample.

(2) ©x is ample on the fibers of h by Corollary and since h is proper, it
follows that it is h-ample.

O
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