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K2 and quantum curves

Charles F. Doran, Matt Kerr, and Soumya Sinha Babu

A 2015 conjecture of Codesido-Grassi-Mariño in topological string
theory relates the enumerative invariants of toric CY 3-folds to the
spectra of operators attached to their mirror curves. We deduce
two consequences of this conjecture for the integral regulators of
K2-classes on these curves, and then prove both of them; the results
thus give evidence for the CGM conjecture. (While the conjecture
and the deduction process both entail forms of local mirror sym-
metry, the consequences/theorems do not: they only involve the
curves themselves.) Our first theorem relates zeroes of the higher
normal function to the spectra of the operators for curves of genus
one, and suggests a new link between analysis and arithmetic geom-
etry. The second theorem provides dilogarithm formulas for limits
of regulator periods at the maximal conifold point in moduli of the
curves.
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1. Introduction

The simplest Calabi-Yau threefolds are the noncompact toric CYs X deter-
mined by a convex lattice polygon ∆ ⊂ R2 (or more precisely by the fan
on a triangulation of {1} ×∆ in R3). Each such CY has a family of mirror
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curves C ⊂ C∗ × C∗, of genus g equal to the number of interior integer points
of ∆, given by the Laurent polynomials F (x1, x2) with Newton polygon ∆.
Recently a fundamental and novel relationship between (i) the enumerative
geometry of X and (ii) the spectral theory of certain operators F̂ on L2(R)
attached to C, has been proposed by M. Mariño and his school, in the con-
text of non-perturbative topological string theory [3, 7, 21]. The goal of this
paper is to lay out some mathematical consequences of this meta-conjecture,
and provide evidence for it by proving them in two important cases.

A Laurent polynomial F =
∑

m∈∆∩Z2 amx
m is promoted to an operator

F̂ (or “quantum curve”) by a process called Weyl quantization, which depends
on a real constant ℏ. Writing r for the coordinate on R, let x̂ denote multipli-
cation by r, and ŷ := iℏ∂r, so that [x̂, ŷ] = iℏ. Taking F̂ :=

∑
ame

m1x̂+m2ŷ,
[3] defines a generalized spectral determinant ΞC(a; ℏ) whose zero-locus de-
scribes those curve moduli a for which ker(F̂ ) ̸= {0}. They conjecture that
under a “quantum mirror map” a 7→ tℏ(a), ΞC is proportional to a quantum
theta function ΘX(t; ℏ) derived from the all-genus enumerative invariants of
X; see Conjecture 2.2. In particular, the zeroes of ΘX should recover the
spectrum of any fixed quantum curve F̂ .

In the formulation of [2], local mirror symmetry relates the “maximally
supersymmetric” case (ℏ = 2π) of (i) to (iii) the Hodge-theoretic invariants
(or “regulators”) of algebraic K2-classes on C. This allows us to reformulate
this case of the conjecture of Codesido-Grassi-Mariño [3] in §2.3 as a putative
relationship between quantum curves and regulators (i.e. between (ii) and
(iii)). We do this under the assumption that F ranges only over the integrally
tempered Laurent polynomials, so that the symbol {−x1,−x2} ∈ K2(C(C))
extends to motivic cohomology classes on the compactifications C̄a ⊂ P∆.
This smaller moduli space M has dimension g, and the resulting regulator
classes 1

4π2R(a) ∈ H1(C̄a,C/Z) may be projected modulo H1,0(C̄a) to yield
a section ν of the Jacobian bundle J → M of the family C → M, called
the higher normal function. We deduce from the conjecture of [3] that the
locus in M where ν meets a specific torsion shift of the theta divisor in J
should match the zero-locus of ΞC after tweaking the signs of the moduli;
this is made precise in Conjecture 2.4.

We may further refine this prediction in the genus-1 case, where ∆ is
now reflexive and the Laurent polynomial F (x) = φ(x) + a now has only
one parameter a. In §3.1, we use integral mirror symmetry to compute the
torsion shifts, and show that (after a miraculous cancellation) they simply
translate the theta divisor to the origin! The prediction is now that the



K2 and quantum curves 2263

spectrum of the quantum curve is given by1

(1) σ(φ̂) = {a ∈ M | ν(a) ≡ 0 ∈ J(C̄a)}.

Keeping in mind that g = 1 (∆ reflexive), φ is tempered, and ℏ = 2π, our
first main unconditional result is then the following

Theorem A (Theorems 3.7 and 3.10). Assume ∆ ⊂ R× [−1, 1]. Then
the “⊇” direction of (1) holds, and the “⊆” direction holds for “almost all”
eigenvalues.

We prove the “⊇” statement in §3.2 by explicitly constructing square-
integrable eigenfunctions of φ̂ with eigenvalue a, using vanishing of ν(a) to
show well-definedness. The result (in §3.3) on the “⊆” inclusion is obtained
by using the coherent state representation of φ̂ to bound the accumulation
of eigenvalues in a manner that matches growth (∼ const. × log2(a)) of ν
as a→ ∞. One perspective on Theorem A is that we may view ν(a) as
a normalized solution to an inhomogeneous Picard-Fuchs equation, and in
effect (1) states that the eigenvalues of φ̂ are simply the points where ν(a) ∈
Z (see Remark 3.5(i)). The latter condition is a statement about a period of
a mixed motive, and combining this with a variant of Grothendieck’s period
conjecture allows one to show conditionally that the eigenvalues of φ̂ are
transcendental numbers (Prop. 3.13).

The conjecture of [3] yields a different prediction in the ’t Hooft limit ℏ →
∞, which is not empty for g = 1 but much more interesting for g > 1. Re-
sults of Kashaev, Mariño and Zakany [11, 22] on the limits of spectral traces
of three-term operators can be viewed as providing a general formula for the
limiting value of a particular regulator period Rγ(a) =

´

γ R{−x1,−x2}|Ca
at

the maximal conifold point â, in terms of special values of the Bloch-Wigner
(“real single-valued dilogarithm”) function. Here “maximal conifold” means
a particular point in moduli at which C acquires g nodes while remaining
irreducible; that is, the normalization C̃â is a P1. (The 1-cycle γ is uniquely
specified in the region of moduli where the {aj} are large by the asymptotic
behavior Rγ(a) ∼ −2πi log(a1).) By applying a method from [6, §6] for com-
puting regulator periods on singular curves of geometric genus zero, we are

1Note the implicit sign flip on a: we are saying that ker(φ̂− a) ̸= {0} when the
regulator associated to {−x1,−x2} on φ(x) + a = 0 projects to zero in the Jacobian.
The notation for the normal function changes from ν to ν as it no longer has multiple
components.
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able to verify the predicted dilogarithm formula in two infinite families of
cases, corresponding to

F a
g,g(x) = x1 + x2 + x−g

1 x−g
2 +

∑g
j=1 ajx

1−j
1 x1−j

2 and

F
a
2g−1,1(x) = x1 + x2 + x−2g+1

1 x−1
2 +

∑g
j=1 ajx

1−j
1 .

The g = 1 case was already verified in [6, §6.3], while the g = 2 identities
were partially verified in [4, §6].

To give a more explicit statement of this result, write F̃ a := F a − a1 in
either case, and [·]0 for the operator taking the constant term (in x1, x2) in
a Laurent polynomial. Then we have:

Theorem B (Theorem 4.1 and (122)). The regulator periods at the max-
imal conifold point satisfy

log(2g + 1)−∑k>0
(−1)k(g+1)

k(2g+1)k [(F̃
â
g,g)k]0 =

1
2πiR

g,g
γ (â) = (2g+1)

π D2(1 + e
2πig

2g+1 )

and

log(2g + 1)−
∑

k>0
1

k(2g+1)k
[(F̃

â
2g−1,1)

k]0 = 1
2πi

R2g−1,1
γ (â) = (2g+1)

π
D2(1 + e

2πi

2g+1 ).

In fact, the two families are isomorphic under the moduli-map send-
ing aj 7→ ag−j+1, and the cycles are just two amongst g (named γ1, . . . , γg)
for which we can compute the regulator period at â, obtaining g different
identities. Part of the proof involves using a method from [14] to determine
(from the series expansions of their periods) how many times the “limits” of
the {γj} at â pass through each of the g nodes, cf. Prop. 4.4; this method
may be of independent interest in the study of monodromy. Incidentally, the
identities we prove should have implications for the asymptotic behavior of
genus-zero Gromov-Witten numbers of the corresponding CY X, but we do
not pursue this direction here.

In an appendix we compute some regulator periods used in the paper
and relate the torsion constants so crucial in §3.1 to integral periods of a
limiting mixed Hodge structure. Finally, as a quick word on notation: we
use ∂x = ∂

∂x and δx = x∂x throughout, as well as ≡
(m)

for congruence mod m

(usually 2); and we avoid the use of Einstein summation.
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2. A conjecture in topological string theory

and its consequences

2.1. Quantum curves

Let ∆ ⊂ R2 be a polygon with vertices in Z2 whose interior contains the
origin 0. Write

(2) F (x1, x2) =
∑

m∈∆∩Z2 amx
m

for a general Laurent polynomial with Newton polygon ∆. The affine curve
C := {x ∈ (C∗)2 | F (x) = 0} is then smooth of genus g := |int(∆) ∩ Z2|. It
admits a smooth compactification C̄ in P∆, which denotes a minimal toric
desingularization of the toric surface constructed from the normal fan of ∆.
For instance, if ∆ is reflexive with polar polygon ∆◦, then g = 1 and P∆

is constructed from the fan with rays passing through each of the nonzero
points of ∆◦ ∩ Z2.

Taking a maximal integral triangulation tr(∆), consider the fan Σ on
{1} × tr(∆) ⊂ R3. The resulting toric variety

(3) X := PΣ

is called a local CY 3-fold since KX
∼= OX .2 This will be our “A-model”, on

which we do enumerative geometry and run the Kähler moduli. Such non-
compact CY 3-folds often arise from the crepant resolution of a finite quotient
of C3. For instance, if 1 ∈ Z2k+1 acts on C3 by diag{ζ2k+1, ζ

k
2k+1, ζ

k
2k+1}, the

resolution X is obtained by taking ∆ to be the convex hull of (1, 0), (0, 1),
and (−k,−k) (with g = k). Another set of examples (with g = 1) arises when
∆ is reflexive: in this case, X is just the total space of KP∆◦ . There is some
overlap with the quotient construction: for instance, KP2 [resp. KF2

, KdP′
6

3]
arises from a quotient of C3 by Z3 [resp. Z4, Z6].

2To see this, note that −c1(KX) = c1(X) is the sum of the irreducible divisors
corresponding to the elements of ∆ ∩ Z2, which is the divisor of the first toric
coordinate w0 on X hence rationally equivalent to zero.

3We shall use the notation dP′

6 to refer to the generalized del Pezzo of degree 6
defined by the self-dual polygon with vertices (1, 0), (0, 1), and (−3,−2). (This is
called the “E8 del Pezzo” in [8].
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Local mirror symmetry connects the genus-zero enumerative invariants
of X to periods of the “B-model”

(4) Y := {(x, u, v) ∈ (C∗)2 × C2 | F (x1, x2) + uv = 0},

an open CY 3-fold with KY trivialized by the form

(5) η :=
1

(2πi)2
ResY

(
dx1/x1 ∧ dx2/x2 ∧ du ∧ dv

F (x) + uv

)
∈ Ω3(Y ).

We shall will say more about this in due course. It has been proposed by
Mariño and collaborators [3, 7, 21] that one can capture the higher-genus enu-
merative invariants of X as well by quantizing the curve C — that is, turning
the Laurent polynomial F into an operator and considering its spectral the-
ory. The idea is to write x1 = ex, x2 = ey, and promote x, y to noncommuting
operators x̂, ŷ on L2(R) with [x̂, ŷ] = iℏ (ℏ ∈ R). More explictly, writing r for
the coordinate on R, we take x̂ = µr (multiplication by r) and ŷ = −iℏ∂r; and
then we set x̂1 = ex̂, x̂2 = eŷ. Notice that if f ∈ L2(R) is the restriction of
an entire function, then x̂2 is a shift operator, viz. (e−iℏ∂rf)(r) = f(r − iℏ).

The promotion of F to F̂ is highly nonunique: for instance, ex̂eŷ and
ex̂+ŷ [resp. eŷex̂] differ by a multiplicative factor of eiℏ/2 [resp. eiℏ] by the
Campbell-Baker-Hausdorff formula. The standard way to fix this (before [3])
was to employ a perturbative approach called WKB approximation, which
works modulo successive powers of ℏ. In this context a connection between
quantization and K2(C(C)) was pointed out in [9], which we briefly review in
the next paragraph, if only to highlight that it is completely different from
the link (in the non-perturbative setting) we conjecture in §2.3 and establish
in §3.

So suppose that we want a function ψ on C (rather than R) and a choice of
F̂ given by F̂0 := F (x̂1, x̂2) := F (µx1

, e−iℏδx1 ) mod O(ℏ), for which F̂ψ = 0.
(In this case, we will say C is quantizable.) Begin with formal asymptotic ex-

pansions F̂ =
∑

i≥0 ℏ
iF̂i, and ψ = e

i

ℏ

∑
j≥0 ℏ

jSj . Choosing a base point p0 ∈ C
with x1(p0) = 1, we take S0(p) =

´ p
p0
log(x2)

dx1

x1
(integral on C), which locally

satisfies δx1
S0 = log(x2) hence

(F̂ψ)(p) = [F (x1(p), x2(p)) +O(ℏ)]ψ(p) = O(ℏ)ψ(p).

Of course, e
i

ℏ
S0 only gives a well-defined function on C if the integral is

path-independent mod 2πℏZ. When this happens, one then solves for the
higher-order corrections Si, by postulating their form in terms of “topological
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recursion”, and finally solves for the F̂i. We remark that for ℏ = 2π, the well-
definedness condition on S0 is precisely the statement that the regulator class
R{x1, x2} ∈ H1(C,C/Z(2)) of the coordinate symbol {x1, x2} ∈ K2(C(C)) is
trivial. More generally, if the regulator class is torsion (which is the quan-
tizability criterion proposed by [9]), then the well-definedness condition is
satisfied for ℏ = 2π

M for some M ∈ Z. This is a very different condition on the
regulator class than the one appearing in RHS(33) below, even in the g = 1
case (see the discussion leading up to Lemma 3.11).

For the rest of this paper we consider only the non-perturbative (exact)
approach pioneered in [7]. Namely, we fix the single choice

(6) F̂ =
∑

m∈∆∩Z2 ame
m1x̂+m2ŷ

and try to describe its spectrum as an operator on L2(R). A little more pre-
cisely, if int(∆) ∩ Z2 = {m(j)}j=1,...,g, then writing aj := am(j) , Pj = xm

(j)

,

F
(0)
j = P−1

j F |a1=···=ag=0 and Fj = P−1
j F |aj=0, we are interested in determin-

ing the eigenvalues {eE(j)
n (a1,...,âj ,...,ag)}n∈N of F̂j for j = 1, . . . , g.4 We should

note here that as long as the {am} are all real, the F̂j , F̂
(0)
j are obviously

Hermitian; even better, their inverses ρj , ρ
(0)
j are expected to be bounded

self-adjoint and of trace class, with a discrete positive spectrum. These prop-
erties, which justify indexing the eigenvalues by N and make the Fredholm
determinants

(7) det(1 + ajρj) =
∏

n≥0(1 + aje
−E(j)

n (a1,...,âj ,...,ag))

well-defined, are proved in [11] and [19] for all the specific operators we will
discuss below.

Definition 2.1 ([3]). The generalized spectral determinant is

(8) ΞC(a; ℏ) := det(1 +
∑g

j=1 ajP̂
− 1

2

j ρ
(0)
j P̂

1

2

j ).

This function contains all the information we are after. For any fixed
{ak}k ̸=j , we may recover (7) as ΞC(a; ℏ)/(ΞC(a; ℏ)|aj=0), since their zeroes
(in aj) are the same and both sides are 1 at aj = 0 [3, (2.74)]. So the spectra of
F̂1, . . . , F̂g are simply slices of the zero-locus of (8), a union of hypersurfaces
in Rg indexed by N. Note that in the genus one case, (8) is just det(1 + a1ρ1).

4For the time being, one should think of the non-interior parameters am as being
fixed. For the assertion that the spectrum is positive and discrete, further restric-
tions (such as those we impose for temperedness later) should be made.
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2.2. Local mirror symmetry and the CGM conjecture

Let r := |∂∆ ∩ Z2|, so that |∆ ∩ Z2| = g + r; and denote by L ⊂ Zg+r the
rank-(g + r − 3) lattice of relations vectors {ℓm}m∈∆∩Z2 with

∑
m ℓm(1,m)=

0. Each m ∈ ∆ ∩ Z corresponds to a toric divisor Dm ⊂ X, amongst which
we have the g compact Dj := Dm(j) . If C ⊂ X is any compact toric curve
(corresponding to any edge of tr(∆)), its intersection numbers with the divi-
sors of the toric coordinates w0, w1, w2 are zero, leading to a relations vector
ℓm = (C ·Dm)X . Such relations integrally span L, although the (Mori) cone
generated by effective curves may not be smooth or even simplicial. We will
ignore such “finite data” issues here, as we will eventually pass to a slice of
the complex-structure moduli space where this is not an issue.

So write {Ci}i=1,...,g+r−3 for independent generators of this cone (i.e.
H2(X,Z)eff), with corresponding relations ℓ(i), and define complex structure
parameters

(9) zi = zi(a) :=
∏

m∈∆∩Z2 a
ℓ(i)m

m

for C and Y . It is convenient at this stage to fix three vertices of ∆ and set
the corresponding am’s equal to 1. We shall mainly work in a neighborhood
of the large complex structure limit (LCSL) point z = 0, though at times will
also be concerned with the maximal conifold point ẑ — the unique point (if
it exists) on the “boundary” of that neighborhood5 where C develops g nodes
(while remaining irreducible) hence has geometric genus zero.

What are the periods parametrized by (9)? We summarize some results
from [2].6 One may construct 3-cycles T ,A1, . . . ,Ag+r−3 on Y such that near
the LCSL

(10)

ˆ

T
η = 2πi, −ti :=

ˆ

Ai

η ∼ log(zi).

5i.e., the region of convergence for certain power series representing the periods
of C; see §4.

6While stated there for g = 1, the proof — by “limiting” results of [10] for compact
CY 3-folds to the local setting — works for any ∆ that makes the BKV polytope
∆ := {the convex hull of (−1, 1, 0, 0), (2,−1, 0, 0), and (−1,−1)×∆ in R4} reflex-
ive. (For instance, take ∆ to be the convex hull of (1, 0), (0, 1), and (−g,−g) [resp.
(−n,−1)] for g | 6 [resp. n | 12]). We also expect these results to hold more gener-
ally. A minor difference in formulation here is that instead of applying the BKV
limit to derivatives of the prepotential Φ of a compact CY, we can directly take
derivatives of F0.
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The mirror map z 7→ e−t, which we usually express as t(z) (or t(a) := t(z(a)))
then induces a biholomorphism between neighborhoods of the LCSL and the
large volume point (in Kähler moduli space7 of X). Next write

(11) F0(t) :=
1
6

∑
i ci1i2i3ti1ti2ti3 +

∑
d∈H2(X,Z)eff

N0,de
−d·t

for the genus-zero free energy of X, in which the ci ∈ Q are certain triple
intersection numbers8 and the N0,d ∈ Q are genus-zero local Gromov-Witten
numbers. The basic Hodge-theoretic assertion of local mirror symmetry is
that there are 3-cycles B1, . . . ,Bg on Y for which9

(12)
´

Bj
η = 1

2πi

∑g+r−3
i=1 Cij∂tiF0(t)− 1

2

∑g+r−3
i=1 Aijti + 2πiTj

under the mirror map, where −Cij = (ℓ
(i)
m(j) =)Ci ·Dj , Aij ≡

(2)

the coefficient

of Ci in D2
j , and Tj ∈ Q.

The 3-cycles are constructed by describing Y → (C∗)2 as a conic bundle,
with fibers isomorphic to C∗ over (C∗)2 \ C, and to C ∪0 C (pair of complex
lines crossing once) over C. This yields (cf. [6, §5.1]) an exact sequence of
MHS

(13) 0 → Q(3)
A→ H3(Y )

B→ ker{H1(C) → H1((C
∗)2)}(1) → 0

in which im(A) = ⟨T ⟩ and the right-hand term has basis (2πi times)

α1, . . . , αg+r−3, β1, . . . , βg.

On the level of Q-vector spaces, B has a section M sending this basis to the
Ai = M(αi) and Bj = M(βj). It is constructed by sending

φ ∈ ker{H1(C,Q) → H1((C
∗)2,Q)}

first to its bounding Q-chain Γφ in (C∗)2 (with ∂Γφ = φ), over which M(φ)
is a 3-cycle with S1 fibers (shrinking to points over φ). Writing

R{f, g} := log(f)dgg − 2πi log(g)δTf

7If {Ji} ⊂ H2(X) is a basis dual to {Ci}, then the Kähler parameter is
∑

i
−ti
2πiJi.

8by interpreting X as a (decompactifying) limit of a compact CY and computing
intersections −Ji1Ji2Ji3 there; see §3 for details in the genus one case.

9The 2nd and 3rd terms are required in order for integrality of the periods, and
arise from applying the procedure described in [2]; the second term arises from the
fact that ch(ODj ) ≡ [Dj ]− 1

2 [D
2
j ] mod Q[p], where [p] is the class of a point.
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for the standard regulator current for Milnor K2-symbols,10 we have on (C∗)2

the relation

d[R{−x,−y}] = dx
x ∧ dy

y − (2πi)2δ(R>0)2 .

This leads at once to

(14) 2πi

ˆ

M(φ)
η =

ˆ

Γφ

dx
x ∧ dy

y =

ˆ

φ
R{−x,−y} =: Rφ,

which is to say that Rαi
= −2πiti and Rβj

≡∑iCij∂tiF0 − πi
∑

iAijti mod
Q(2).

In the physics literature, the nontrivial am on the boundary are called
mass parameters ; if we write these as a′1, . . . , a

′
r−3, then our complex struc-

ture parameters take the form zi =
∏g

j=1 a
−Cij

j ×∏r−3
k=1 a

′
k
C′

ik . Taking the
aj ≫ 0 large but keeping the a′k bounded, so that ti ∼

∑g
j=1Cij log(aj),

the subleading terms (constant in a) can be shown11 to be Q-linear com-
binations of logarithms of the negative roots {qk}k=1,...,r of the edge poly-
nomials of F . (The latter are defined as follows: if e is an edge of ∆,
with vertex ν, and me ∈ Z2 is a primitive lattice vector along e, then put
Pe(w) :=

∑
m∈e∩Z2 amw

(m−ν)/me

.) The key observation is that each qk is the

Tame symbol of {−x,−y} ∈ K2(C) at a point pk ∈ C̄ ∩ (P∆ \ (C∗)2), so that
a loop εk ⊂ C around pk has

´

εk
R{−x,−y} = 2πi log(qk).

The physicists have a grand potential function JX(t; ℏ) which says “every-
thing they know how to say” about enumerative geometry of X, and includes
(refinements of) higher-genus GW-invariants. We refer the reader to [3] for
details, as we shall only discuss two special cases in which those invariants
(mostly) drop out. First, in the maximally supersymmetric case ℏ = 2π, we
have12

JX(t; 2π) = 1
8π2

{∑
i1,i2

δti1 δti2 − 3
∑

i δti + 2
}
F̂0(t)

+ F̂1(t) + F̂NS
1 (t) +A(q, 2π),

(15)

10Here Tf := f−1(R<0) denotes the cut in branch of log(f), viewed as a 1-chain
oriented from f−1(∞) to f−1(0), and δTf

the current of integration over it.
11Done from a physics perspective in [8], and from a regulator perspective in

Appendix A. Here “negative roots” means the roots of Pe(−w). In particular, if
edge polynomials are powers of (1 + w), the qk are all 1.

12Remark that q is an abuse of notation since the qk are B-model coordinates;
one would ideally replace them by monomials in the eti which equal qk under the
mirror map. (Similar remarks apply to m in (16).) But we don’t need to be more
precise here as these terms quickly become irrelevant.
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where F̂0, F̂1, F̂NS
1 are free energies in which the instanton part is twisted by

a “B-field” B ∈ Zg+r−3:13

• F̂0(t) =
1
6

∑
i citi1ti2ti3 +

∑
dN0,de

−d·(t−πiB);

• F̂1(t) =
∑

i biti + F inst
1 (t− πiB); and

• F̂NS
1 (t) =

∑
i b

NS
i ti + FNS, inst

1 (t− πiB).

In the ’t Hooft limit, where ℏ → ∞ (and aj → ∞) while mk := e−
2π

ℏ
log(qk),

ζj :=
log(aj)

ℏ
, and τi :=

2πti
ℏ

remain finite, one finds that

(16) ℏ−2JX(t; ℏ) = { 1
16π4 F̂0(τ) +

1
4π2

∑
i b

NS
i τi +A0(m)}

︸ ︷︷ ︸
=:JX

0 (ζ,m)

+O(ℏ−2).

We may disregard the unknown functions A0(m), A(q, 2π) of the mass pa-
rameters.

To state the main physics conjecture, we need two more ingredients. First
is the quantum theta function

(17) ΘX(t; ℏ) :=
∑

n∈Zg exp {JX(t+ 2πi[C]n; ℏ)− JX(t; ℏ)} ,

where [C] is the matrix Cij (and so [C]n is a (g + r − 3)-vector with entries∑g
j=1Cijnj). Terms in JX which are 2πi-periodic in the {ti}, including all

but
∑

i(bi + bNS
i )ti in the second line of (15), drop out. The second is a

“quantum deformation” tℏ(z) = t(z) +O(ℏ) of the mirror map. (We shall
also write tℏ(a) := tℏ(z(a)) where convenient.) Again, we describe this where
we need it: at ℏ = 2π it is given by

(18) ti(z) := t2πi (z) = ti((−1)Bz) + πiBi;

like ti(z), this is asymptotic to − log(zi), but the signs are (in general) dif-
ferent in the power-series part. In the ‘t Hooft limit, the previous asymptotic
relation ti ∼

∑
j Cij log(aj) +

∑
kDik log(qk) becomes exact in the sense that

(with τi, ζj , and mk as defined just before (16))

(19) τi = 2π
∑

j Cijζj −
∑

kDik log(mk).

13In the g = 1 case, Bi is just Ci1; see §2.3 below and [23] for g > 1. We will give
Hodge-theoretic interpretations of b, bNS when g = 1 in §3.
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Conjecture 2.2 ([7],[3]). Under the quantum mirror map, the general-
ized spectral determinant of C is given (up to a nonvanishing factor) by the
quantum theta function of its mirror:

(20) ΞC(a; ℏ) = eJX(tℏ(a);ℏ)ΘX(tℏ(a); ℏ).

This postulates a fundamental and very general relation between spectral
theory (of the B-model) and enumerative geometry (of the A-model). Since
local mirror symmetry relates the latter to Hodge theory of the B-model, it
should imply relationships between Hodge/K-theory and spectral theory of
our curves with no reference to mirror symmetry. We now derive these in
our two special cases, under the assumption that F is integrally tempered :
all qk = 1 = mk; equivalently, all edge polynomials of F are powers of w + 1.
Accordingly, by a (resp. z(a)) we henceforth shall mean just (a1, . . . , ag),
with the remaining {am} determined uniquely by this constraint.

2.3. Consequences in the “maximal SUSY” case

Of course, the use of local mirror symmetry suggested in the last paragraph
requires elaboration, since the classical and quantum mirror maps are not the
same. One should rather expect a relation between Hodge theory of Cz and
spectral theory of a “partner” Cz′ given by z = t−1(tℏ(z′)) or some variant
thereof. (In fact this is still insufficiently precise, since the spectral theory
and the regulator class really depend on a.) We now work this out at ℏ = 2π.

First we address the nature and significance of B. Because the monomials
xm in F̂ were quantized as em1x̂+m2ŷ = e

iℏ

2
m1m2 x̂m1

1 x̂m2

2 , at ℏ = 2π we have
F̂ =

∑
m(−1)m1m2amx̂

m. The B-field is determined mod 2 by the effect on
the signs of the zi were we to replace am by (−1)m1m2am: namely, Bi ≡

(2)∑
mm1m2ℓ

(i)
m . Under the assumption that

(21) ∂∆ ∩ (2Z× 2Z) = ∅,

this is compatible with taking B to be in the Z-span of the columns of [C],
which we write Bi =

∑g
j=1AjCij .

14 Notice that then t((−1)Aa) = (−1)Bt(a),

14mod 2, A is just the characteristic function of ∆ ∩ (2Z× 2Z).
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so that by (18) we have t2π((−1)Aa) = t(a) + πiB and the conjectured equal-
ity (20) becomes

(22) ΞC((−1)Aa; 2π) = eJX(t(a)+πiB;2π)ΘX(t(a) + πiB; 2π).

That is, after absorbing the “+πiB” twist into ΘX and JX , our Hodge/
spectral “partners” are related by at most a change of sign in the complex
structure parameters. The main question is what the quantization condition
looks like: which values of a make ΘX(t(a) + πiB; 2π), hence the spectral
determinant, zero?

This is where the local mirror symmetry enters. Under our assumption
(21), its previous incarnation in (12) can (by a tedious intersection theory
argument) be expressed as15

(23) Rβj
(a) =

∑
iCij∂tiF̂0 (t(a) + πiB) + (2πi)2B◦j (B◦j ∈ Q).

Next, since our temperedness assumption has eliminated the Tame symbols,
the {Rαi

}g+r−3
i=1 are no longer independent (unless r = 3). More precisely,

there are g cycles γj ∈ H1(C̄,Z) with regulator periods Rγj
∼ −2πi log(aj)

(cf. Appendix A), whence

(24) Rαi
=
∑

j CijRγj
;

and the Aj can be chosen so that {γj , βj}gj=1 is a symplectic basis.16 The

regulator class R = R{−x1,−x2} ∈ H1(C̄,C/Z(2)) then has a local lift17 to
H1(C̄,C) given (in terms of the dual symplectic basis {γ∗j , β∗j }gj=1 of H1) by

(25) R̃ =
∑g

ℓ=1 (Rγℓ
γ∗ℓ +Rβℓ

β∗ℓ ) ,

whose Gauss-Manin derivatives

(26) ωj := ∇∂/∂Rγj
R̃ = γ∗j +

∑g
ℓ=1

∂Rβℓ

∂Rγj

β∗ℓ

15Although the regulator periods Rφ [resp. periods Ωj1j2 in (27) below] are in-
finitely multivalued, they are periods of a class R [resp. classes {ωj}] which are
single-valued in a [resp. z]; so we shall loosely write them as functions thereof.

16This is again by local mirror symmetry: the Rγj
[resp. Rαi

] are the A-model
periods of flat sections arising from curves dual to the Dj [resp. Ji]; while the Rβj

are those arising from ch(ODj
(−Ej)) ∪ Γ̂(X) for suitable curves Ej .

17For our purposes, this can be regarded as living on an open neighborhood (in
z-space Cg) of (0, ϵ)g for some ϵ > 0.



2274 C. F. Doran, M. Kerr, and S. Sinha Babu

are classes of holomorphic 1-forms by Griffiths transversality. Evidently these
are normalized so that the symmetric g × g matrix18

Ωj1j2(z) : = − 1
2πi

∑
i1,i2

Ci1j1Ci2j2∂ti1∂ti2 F̂0(t(z) + πiB)

= − 1
2πi

∑
i1
Ci1j1∂ti1Rβj2

=
∑

i1
Ci1j1

∂Rβj2

∂Rαi1

=
∂Rβj2

∂Rγj1

=
´

γj1

ωj2

(27)

is the standard period matrix of C̄.
We have already observed that the isomorphism class of C̄ depends only

on z, which parametrizes the standard coarse moduli space for toric hyper-
surfaces; and we are restricting to a “tempered slice” of this space. However,
R only becomes single-valued in a, forcing us to work on the finite cover
M := {a ∈ (C∗)g | Cz(a) is smooth} of this slice. Let C̄

π→ M be the uni-
versal (compactified) curve, and set H := R1π∗C⊗OM, H := R1π∗Z, and
J := H/{H+F1H}. Then J is the sheaf of sections of the Jacobian bun-

dle J
ρ→ M, and H /H is the sheaf of sections of the C/Z cohomology bun-

dle H1
C/Z → M, which factors through the obvious Cg-torsor H1

C/Z
ϖ→ J .

By temperedness, the symbol {−x1,−x2} ∈ K2(C(C)) lifts to a motivic co-
homology class Z ∈ H2

M(C̄,Z(2)) (∼= CH2(C̄, 2)), and we make the key

Definition 2.3. By the higher normal function associated to Z, we shall
mean the well-defined section 1

(2πi)2R of H1
C/Z, or its projection

ν := ϖ( 1
(2πi)2R)

to a section of J . The latter is computed by evaluating R as a functional
on holomorphic 1-forms (modulo periods), i.e. by the column vector

νj : =
1

(2πi)2 ⟨R, ωj⟩ (j = 1, . . . , g)

= −1
4π2

∑g
ℓ=1⟨Rγℓ

γ∗ℓ +Rβℓ
β∗ℓ , γ

∗
j +

∑
ℓ′ Ωjℓ′β

∗
ℓ′⟩

= 1
4π2 (

∑g
ℓ=1Rγℓ

Ωjℓ −Rβj
)

(28)

modulo the Z-span of columns of (Ig | Ω).

18Obviously, these are the entries of a matrix; the full matrix will be represented
by Ω or [Ω] below.
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To use mirror symmetry to compute ν, put R̃βj
:= Rβj

− (2πi)2Tj , and ob-
serve that by (23) thru (27) (together with Ωjj′ = Ωj′j)

ξj(a) : =
1

4π2

∑
i1
Ci1j(

∑
i2
δti2 − 1)∂ti1 F̂0(t(a) + πiB)

= 1
4π2 (

∑
i δti − 1)R̃βj

= 1
4π2 (

−1
2πi

∑
iRαi

∂tiRβj
− R̃βj

)

= 1
4π2 (

−1
2πi

∑
i,ℓCiℓRγj

∂tiRβj
− R̃βj

)

= 1
4π2 (

∑
ℓRγℓ

Ωjℓ − R̃βj
) = νj − B

◦
j .

(29)

Returning to the quantization condition, the exponent in (17) is

(30) JX(t+ 2πi[C]n; 2π)− JX(t; 2π)

= πitn[Ω̂]n+ 2πin · ξ̂ − πi
3

∑
i,j ci

∏3
ℓ=1Ciℓjℓnjℓ ,

where

• Ω̂j1j2 :=
−1
2πi

∑
i1,i2

Ci1j1Ci2j2∂ti1∂ti2 F̂0(t) and

• ξ̂j :=
1

4π2

∑
i1
Ci1j(

∑
i2
δti2 − 1)∂ti1 F̂0(t) +

∑
iCij(bi + bNS

i )

by a straightforward computation, cf. [3, (3.28)]. Substituting in t = t(a) +
πiB, the first two terms of (30) become

(31) πitn[Ω(a)]n+ 2πin · (ν(a) + B+ 1
2 [Ω(a)]A)

(for B ∈ Qg) by (27)-(29). By an intersection theory argument and the iden-
tity n3 ≡

(6)

n, the cubic third term becomes −πi
3

∑
j njD

3
j mod Z(1), which

may be absorbed into B. Therefore, writing A := 1
2A and θ for the usual

Jacobi theta function,

(32) ΘX(t(a) + πiB; 2π) = θ(ν(a) + B+ [Ω(a)]A, [Ω(a)]).

We have thus deduced from Conjecture 2.2 a striking relationship be-
tween the quantization condition and the higher normal function. Let Dθ⊂ J

be the theta divisor and Dθ[
A

B
] its translate by (minus) the torsion section

B+ [Ω]A.

Conjecture 2.4. For ∆ satisfying (21) and F integrally tempered, the zero-
locus of the twisted spectral determinant ΞC((−1)Aa; 2π) is exactly the locus
where the normal function meets this torsion shift of the theta divisor: as
subsets of M, we have

(33) ZL
(
ΞC((−1)Aa; 2π)

)
= ρ

(
ν(M) ∩Dθ[

A

B
]
)
.
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In genus g = 1, there are 15 reflexive polygons (up to unimodular transfor-
mation) which can be presented inside R× [−1, 1]. After making the torsion
shifts completely explicit in §3.1, we prove the “⊇” direction of (33) for these
cases in §3.2.

2.4. Consequences in the ‘t Hooft limit

Our spectral determinant ΞC has fermionic spectral traces which general-
ize, from the (g = 1) case of a single operator, the traces of ρ⊗N

1 acting on∧N L2(R), cf. [3, §3.3]. Defined by

(34) ΞC(a; ℏ) =:
∑

N1,...,Ng≥0 ZC(N, ℏ)aN ,

these can clearly also be expressed in terms of loop integrals about 0:

(35) ZC(N, ℏ) =
1

(2πi)g

˛

· · ·
˛

ΞC(a; ℏ)
da1

aN1+1
1

∧ · · · ∧ dag

a
Ng+1
g

.

Applying Conjecture 2.2 replaces ΞC(a; ℏ) by
∑

n∈Zg eJX(tℏ(a)+2πi[C]n;ℏ), where

the 2πi[C]n simply accounts for the change in tℏ(a) as the aj go nj times
around 0 — or equivalently, as µj := log(aj) increases by 2πinj (for each j).
Accordingly, (35) becomes

(36) 1
(2πi)g

´

i∞
−i∞ · · ·

´

i∞
−i∞ eJX(tℏ(a);ℏ)−∑g

j=1 Njµjdµ1 ∧ · · · ∧ dµg,

Recall from §2.2 that the ‘t Hooft limit takes ℏ → ∞ while essentially
fixing ζj =

µj

ℏ
and τi =

2πti
ℏ

, which we will also impose on λj :=
Nj

ℏ
. As tem-

peredness makes the qk = 1 hence mk = 1, we write JX
0 (ζ) := JX

0 (ζ, 1), and
note that (19) reduces to τi = 2π

∑
j Cijζj .

Remark 2.5. In fact, even if we don’t assume temperedness, but fix the edge
polynomials hence the {qk}, the effect is the same since mk(= e−

2π

ℏ
log(qk)) = 1

in the limit.

Now by (16), for ℏ ≫ 0 (36) becomes

(37) ℏg

(2πi)g

´

i∞
−i∞ · · ·

´

i∞
−i∞ eℏ

2{JX
0 (ζ)−∑

j λjζj+O(ℏ−2)}dζ1 ∧ · · · ∧ dζg;

and we write ζ̂(λ) for the stationary point of (the leading part of) the expo-

nential, where 0 = ∂ζi(J
X
0 (ζ)−∑j λjζj), or equivalently λj = ∂ζjJ

X
0 (ζ), for
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each j. By the saddle-point method, we can write (37) as exp(ℏ2{JX
0 (ζ̂(λ))−∑

j λj ζ̂j(λ) +O(ℏ−2)}), which is to say that

(38) lim
ℏ→∞

(∂λj
ℏ−2 logZC(ℏλ, ℏ))|λ=0 = −ζ̂j(0).

Moreover, according to [3, §2.3], τ̂i(λ) = 2π
∑

j Cij ζ̂j(λ) is nothing but the
classical mirror map in the “conifold frame”, with λ a parameter which van-
ishes at the maximal conifold point ẑ.19 In other words, if â is any preimage
of ẑ in M, then we have Rαi

(â) ≡ −2πiτ̂i(0) and

(39) Rγj
(â) ≡ −4π2iζ̂j(0) mod Q(2).

On the other hand, if we set Nj = 0 for j > 1, then the asymptotic expan-

sion of ZC(N1, 0 . . . , 0; ℏ) = tr∧N1L2(R)((ρ
(0)
1 )⊗N1) can be computed via oper-

ator theory and asymptotic properties of the quantum dilogarithm. This

is worked out in [11, 22] for the three-term operators (ρ
(0)
1 )−1 = ex̂ + eŷ +

e−mx̂−nŷ, corresponding to the Laurent polynomials

(40) F ◦
m,n(x) := x1 + x2 + x−m

1 x−n
2 +

∑g
j=1 ajx

m
(j)
1

1 x
m

(j)
2

2 .

(Here we recall that the {m(j)} index the interior integral points of ∆; for
instance, if m = n = g, then m(j) = (1− j, 1− j).) Note that by Remark 2.5,
τ̂(λ) will actually compute the mirror map/regulator periods in the conifold
frame for the families defined by the integrally tempered polynomials20

Fm,n(x) := x1 + x2 + x−m
1 x−n

2 +
∑g

j=1 ajx
m

(j)
1

1 x
m

(j)
2

2

+
∑g1−1

ℓ=1

(
g1
ℓ

)
x
1−ℓm+1

g1

1 x
−ℓ n

g1

2 +
∑g2−1

ℓ=1

(
g2
ℓ

)
x
−ℓ m

g2

1 x
1−ℓn+1

g2

2 ,
(41)

where g1 := gcd(m+ 1, n) and g2 = gcd(m,n+ 1). Anyway, the result of [op.
cit.] (see also [21, §4.3]) is that

(42) lim
ℏ→∞

(∂λ1
ℏ−2 logZC(ℏλ1, 0, . . . , 0; ℏ))|λ1=0

= m+n+1
2π2 D2(−zm+1

m,n wm,n),

19We are not aware of a proof of this statement, but there is strong computa-
tional evidence; it is also consistent with the observation, in view of (23), that the
vanishing of ∂ζjJ

X
0 (ζ) at ζ̂(0) is equivalent to that of a Q(2)-translate of Rβj (a) at

a ∈ t−1(τ̂(0)− πiB). This is exactly what should happen at a g-nodal fiber.
20Of course, there is no distinction between (40) and (41) if g1 = 1 = g2.
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where D2 is the Bloch-Wigner function, zm,n := e
πi

m+n+1 , and

wm,n :=
zmm,n−z−m

m,n

zm,n−z
−1
m,n

.

Since LHS(42) must agree with LHS(38) (with j = 1), in view of (39) we
arrive at

Conjecture 2.6. For the families Cm,n arising from (41), the regulator pe-
riod Rγ1

asymptotic to −2πi log(a1) at the origin has value

(43) 1
2πiRγ1

(â) ≡ m+n+1
π D2(−zm+1

m,n wm,n) =: Dm,n mod Q(1)

at the maximal conifold point.

Example 2.7. A toric coordinate change brings F2,2 into the form F3,1,
but with a1 and a2 swapped. So Conjecture 2.6 actually yields predictions
for both nontrivial regulator periods at â = (5,−5), namely 1

2πiRγ1
(â) ≡

D2,2 =
5
πD2(e

2πi

5 w) and 1
2πiRγ2

(â) ≡ D3,1 =
5
πD2(e

πi

5 w) mod Q(1), where

w := 1+
√
5

2 . This assertion was checked in [4] by a computation we will gen-
eralize (and make more rigorous) in §4.

3. From higher normal functions to eigenfunctions

In this section we state and prove a precise version of Conjecture 2.4 in the
genus 1 case.

3.1. Integral mirror symmetry and quantization conditions

The condition g = 1 is equivalent to reflexivity of ∆, whereupon X becomes
simply the total space of KP∆◦ . There is a unique compact toric divisor D =
D1

∼= P∆◦ ⊂ X, corresponding to the ray through (1, 0, 0), which amounts to
the zero-section of ρ : X ↠ D. Denoting by E◦ ⊂ D a general anticanonical
(elliptic) curve, we remark that D2 = −E◦ in H∗

c (X).
Let φ be the unique integrally tempered Laurent polynomial with New-

ton polygon ∆, constant term 0, and coefficients 1 at the vertices, and (writ-
ing a = a1) take F = a+ φ. After compactifying fibers in P∆ and birationally
modifying the total space, this produces a relatively minimal elliptic fibration
E → P1

a with rational total space, fibers Ea, and discriminant locus Σ ∪ {∞}.
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Writing r := |∂∆ ∩ Z2| and r◦ := |∂∆◦ ∩ Z2|, E∞ has type Ir◦ , and Σ is cut
out by a polynomial PΣ of degree 12− r◦ = r.21

A section of the relative dualizing sheaf for our family is given by

(44) ω(a) := 1
2πiResEa

(dx1/x1∧dx2/x2

1+a−1φ(x) ),

with period22

(45) ωγ(a) :=
´

γ ω(a) = 1 +
∑

k>0(−1)k[φk]0a
−k

in a neighborhood of the large complex structure point ∞. More precisely,
this series converges on D∗ := {a | |a| > |â|} ⊂ U := P1 \ (Σ ∪ {∞}), where
the conifold point â can be described by −â := min(φ(R+ × R+)) since the
coefficients of φ are all positive [5].

By assumption, all the tame symbols of {−x1,−x2} are trivial, and so
the Rαi

(i = 1, . . . , r − 2) must be integer multiples of Rγ ∼ −2πi log(a).
More precisely, we have −1

2πiRαi
= ti = Ci1t = −(Ci ·D)t = dit, where di ∈

[0, 4] ∩ Z is the lattice-length of the edge of ∂∆ corresponding to Ci. From
Appendix A, we have on the cut disk D− := D∗ \ (D∗ ∩ R−)

(46) t = t(a) := −1
2πiRγ(a) = log(a) +

∑
k>0

(−1)k−1

k [φk]0a
−k,

which gives ω = −1
2πi∇δaR hence (in the notation of §2.3) ω1 = ω/ωγ globally

on U . We also see that e−t ∼ a−1 makes sense as a coordinate on D = D∗ ∪
{∞}. The local mirror symmetry results in [2] can be made very explicit:23

Lemma 3.1. On D− we have the following identifications:

(a) Rβ(a) =
r◦

2 t(a)
2 + πir◦t(a) + (2πi)2(12 + r◦

12)−
∑

k>0 kNke
−kt(a),

(b) Ω(a) (= ωβ(a)
ωγ(a)

) = ir◦

2π t(a)− r◦

2 − 1
2πi

∑
k>0 k

2Nke
−kt(a), and

(c) ν(a) = r◦

8π2 t(a)2 + (12 + r◦

12) +
1

4π2

∑
k>0 k(1 + kt(a))Nke

−kt(a),

where Nk is the local GW-invariant for D counting rational curves whose
classes C ∈ H2(D) satisfy (C · E◦)D = k.

21For a generic choice of φ, the remaining singular fibers of E are I1’s. Since E
is rational (as a blowup of P∆), the degree of the relative dualizing sheaf must be
1; and as each Ik contributes k

12 to this degree, there must be 12− r◦ I1’s. Each of
these contributes 1 to deg(PΣ), and this degree is invariant as we specialize φ.

22[·]0 takes the constant term; γ is γ1 from §2.3.
23Here as above β = β1, Ω = Ω11, ν = ν1.
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Proof. X is described in [2, §6] as the large-fiber-volume limit of an elliptically-
fibered compact CY 3-fold W → P∆◦ with section D. Let C1, . . . , Cr be
the components of P∆◦ \ (C∗)2 (and their images in X), D′

i := ρ−1(Ci), and
C0 := ρ−1(pt). Then {C0, C1, . . . , Cr−2} span H4(W,Q), {D,D′

1, . . . , D
′
r−2}

span H2(W,Q), and we can write −D2 = E◦ =
∑r

i=1Ci =
∑r−2

i=1 eiCi for
unique ei ∈ Q, whereupon D3 =

∑r−2
i=1 diei = r◦. Let J0, . . . , Jr−2 denote a

basis of H2(W,Q) dual to C0, . . . , Cr−2, and define J1, . . . ,Jr−2 by Ji :=
Ji − ei

r◦J0. Then the ci in (11) are given by ci1i2i3 = −Ji1Ji2Ji3 .
24

The integral periods of the A-model VHS given by [2, (6.13-15)] lead (in
the LMHS as t0 → 0) to the following periods for our A-model VMHS. First,
the limit of the Gamma class for W yields Γ̂(X) := 1− 1

2D
2 + (11r

◦+r
24 )C0 =

1 +
∑r−2

i=1 eiCi + (12 + 5
12r

◦)C0 ∈ H∗(X,Q). Next, for integral periods we need

to compose ch(·) ∪ Γ̂(X) : Kc,num
0 (X) → H∗

c (X,Q) with the following as-
signment of periods to cohomology classes: pt 7→ 1; Ci 7→ 1

2πi ti =
−1

(2πi)2Rαi
;

and D 7→ 1
(2πi)2

∑r−2
i=1 di∂tiF0(t). Applying this to OD, we have ch(OD) =

D − 1
2D

2 + 1
6D

3, whence ch(OD) ∪ Γ̂(X) = D + 1
2

∑
i eiCi + (12 + r◦

12), and
finally (after multiplying the resulting integral period by (2πi)2)

(47) Rβ =
∑

i di∂tiF0(t) + πi
∑

i eiti + (2πi)2(12 + r◦

12).

We also recall from (27) that the period ratio is given by Ω = −1
2πi

∑
i di∂tiRβ ,

and the normal function by ν = 1
4π2 (RγΩ−Rβ).

The last step is to substitute ti = dit, which gives

(48) F0(t) = −1
6(
∑

i Jiti)
3 +

∑
C
N0,Ce

−(C·E◦)Dt = r◦

6 t
3 +

∑
k>0Nke

−kt

since
∑

i Jidi =
∑

i diJi −
∑

i
eidi

r◦ J0 = (J0 −D)− J0 = −D [2, (6.5)]. Using
di∂ti = ∂t in (47)ff now gives (a)-(c). □

Remark 3.2. We point out two immediate consequences of Lemma 3.1.
First, along with (46), (c) makes it clear that ν(a) as well as

(49) V (a) := ωγ(a)ν(a) =
1

4π2 (Rγωβ −Rβωγ)

24The results of [loc. cit.] are stated in terms of derivatives of the prepotential
Φ(t0, t) of W in the limit as t0 → ∞. One can obtain the free energy F0(t) for
X by substituting t0 = −∑r−2

i=1
ei
r◦
ti into Φcl and taking t0 → ∞ in Φinst; we then

have 1
(2πi)3 ∂DΦ = 1

(2πi)2 (−∂0 +
∑

i di∂i)Φ = 1
(2πi)2

∑
i di∂iF0, hence the version of

the A-model periods given here.
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are real-valued on D∗ ∩ R+. Second, notice that

1
(2πi)2∂

2
tRβ = ∂2Rγ

Rβ = ∂Rγ

δaRβ

δaRγ
= ∂Rγ

ωβ

ωγ
= Y(a)

ω3
γ
,

where the Yukawa coupling Y(a) = ωγδaωβ − ωβδaωγ blows up at â. Differ-
entiating (a) twice expresses this as a power series in e−t, from which one
deduces that

(50) lim supk→∞
k
√

|Nk| = exp(ℜ(t(â))).

as in [6, §5.4] (though this result is now unconditional).

We may now identify all of the torsion constants in §§2.2–2.3:25

Lemma 3.3. In Q/Z the following equalities hold:

(i) b :=
∑

i dibi =
r◦

12 − 1
2 and bNS :=

∑
i dib

NS
i = r◦

24 − 1
2 .

(ii) T = 1
2 + r◦

12 and B
◦ = 1

2 − r◦

24 .

(iii) A = 1
2 = B, where B is as in (32)–(33).26

Proof. (i) These are the coefficients of t in F1 and FNS
1 (after substituting

ti = dit), which can be derived from [8, (4.18) and (4.21)].27 Namely, we
have bi =

1
24c2(X) · Ji [8, (4.18)] and c2(X) = (11r◦ + r)C0 + 12

∑
i eiCi =

(10r◦ + 12)C0 − 12D2 [2, §6.2] hence

b = 1
24c2(X) ·

∑

i

diJi = − 1
24c2(X) ·D = −10r◦+12

24 + 12r◦

24 = r◦

12 − 1
2 .

According to [8, (4.21)], we have

FNS
1 ∼ − 1

24 log(PΣ(a)) ∼ −deg(PΣ)
24 log(a) ∼ − r

24 t ∼ ( r
◦

24 − 1
2)t.

(So of course, (i) holds in Q, but we’ll only need it mod Z.)
(ii) The value of T is immediate from Lemma 3.1(a). To compute B

◦ =
ν(a)− ξ(a), we need to revisit ξ from (29). The B-field is given by Bi = di
(cf. §2.3 above or [8, §3.2]), and A = A1 = 1, which means that replacing

25Again, for simplicity writing T = T1, B
◦ = B

◦

1, B = B1, and A = A1.
26and not as in (31), where B does not yet incorporate the correction from the

cubic term.
27We should point out here that our “r” is not the “r” in [8], where it means

gcd{di}. (Moreover, their “t” is rGKMR times our t.)
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t by t+ πiB is equivalent to replacing t by t+ πi. Together with
∑

i δti =
t
∑

i di∂ti = t∂t = δt and (48), this gives

ξ(a) = 1
4π2 (δt − 1)∂tF̂0(t(a) + πi)

= r◦

8π2 t(a)2 +
r◦

8 + 1
4π2

∑
k>0 k(1 + kt(a))Nke

−kt(a)
(51)

and, together with Lemma 3.1(c), the claimed value of B◦.
(iii) We already have A = 1

2A = 1
2 . For B, we compute

ξ̂(t(a) + πi) = 1
4π2 ((t+ πi)∂t − 1) ∂tF̂0(t(a) + πi) + (b+ bNS)

= ξ(a) + πi
4π2∂2t F̂0(t(a) + πi) + (b+ bNS)

= ν(a) + 1
2Ω(a) + (b+ bNS − B

◦)

(52)

and note that the cubic term in (30) becomes −πi
3 D

3n3=− r◦

3 πin
3 ≡ − r◦

6 2πin
mod Z(1). Together with (i)-(ii), this results in the apparently miraculous
cancellation

(53) B = b+ bNS − B
◦ − r◦

6 = −3
2 ≡ 1

2

modulo Z. □

Finally, we turn to the quantization conditions, i.e. to the spectrum (as
an operator on L2(R)) of28

φ̂ =
∑

m∈∂∆∩Z2(−1)m1m2amx̂
m1

1 x̂m2

2

=
∑

m∈∂∆∩Z2(−1)m1+m2+1amx̂
m1

1 x̂m2

2 = −φ(−x̂1,−x̂2)
(54)

or ρ := φ̂−1. Writing σ(·) for spectrum and Λ(a) := Z⟨ωγ(a), ωβ(a)⟩ for the
period lattice, we have the

Proposition 3.4. In the genus-1 case, Conjecture 2.4 is equivalent to

(55) σ(φ̂) = {a ∈ U | V (a) ∈ Λ(a)}.

Proof. Noting that M = U , in the LHS of (33) we are taking the zero-locus
of Ξ(−a; 2π) = det(1− aρ), which is precisely the spectrum of φ̂. The RHS

of (33) is the locus in U where ν(a) meets the theta divisor (which is 1+Ω(a)
2

mod Z⟨1,Ω(a)⟩) shifted by AΩ(a) + B = 1+Ω(a)
2 , which is to say where ν(a)

28Remark that φ = F1 and ρ = ρ1 in the notation of §2.1. We have m1m2 ≡
(2)

m1 +m2 + 1 because (21) always holds for reflexive polygons.
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is zero mod Z⟨1,Ω(a)⟩. Outside of D−, this condition is only well-defined in
the sense of analytic continuation; to fix this, we multiply by ωγ to get the
form displayed in RHS(55). □

Remark 3.5. (i) The condition V (a) ∈ Λ(a), which is well-defined on U ,
reduces to ν(a) ∈ Z⟨1,Ω(a)⟩ for a ∈ D−. Moreover, the argument in [19, §3.1]
using the coherent state representation shows more generally (for any φ
considered here) that σ(φ̂) belongs to R+, and is countable with eigenvalues
λj limiting to ∞ (so that ρ is bounded). In fact, we expect that σ(φ̂) ⊂
(|â|,∞), as is clear for φ = x1 + x−1

1 + x2 + x−1
2 or x1 + x−1

1 + x2 + x−1
2 +

x1x
−1
2 + x−1

1 x2 and experimentally observed in other cases. This would mean
that the quantization condition “V ∈ Λ” reduces not just to ν ∈ Z⟨1,Ω⟩, but
to

(56) ν(a) ∈ Z,

as ν is real by Remark 3.2. We’ll have more to say about this in §3.2.
(ii) The most crucial “torsion” invariant in Lemma 3.3, leading to the can-

cellation in (53) and the simple form of (55), is surely the constant term T

of the regulator period Rβ . As an independent check, one can directly com-
pute this constant term without using mirror symmetry and the Gamma
class; see Appendix A for examples. Another check on our quantization con-
dition is that it should coincide with that in [8, §3.3.2] when all Qmk

= 1
( =⇒ D0(m) = 0 and B(m, 2π) = b+ bNS = r◦

8 − 1). Since vol0(E) in [8,
(3.24)] is just Rβ , we may also identify “C” there as r◦

2 . Taking E = log(a)
and Eeff = t(a), [8, (3.105)] collapses to ξ(a)− r◦

24 ∈ Z+ 1
2 , hence to ν(a) ∈ Z.

(iii) There is an interesting sign discrepancy in (55): quantizability of
φ̂− a is being linked to a regulator class on the curve Ea ⊂ P∆ compactifying
solutions to φ(x) + a = 0. Blame it on the B-field! Or better yet, proceed to
the next section for a more basic reason why it has to be this way.

3.2. Construction of eigenfunctions for difference operators

In this section we assume that ∆ is a reflexive polygon satisfying

(57) ∆ ⊂ R× [−1, 1],

and φ is as in §3.1, so that

(58) φ(x) = xmu

1 (x1 + 1)dux2 + φ0(x1) + xmℓ

1 (x1 + 1)dℓx−1
2 .
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Remark 3.6. Regarding unimodular change of coordinates (x1, x2 7→ xa1x
b

2,
xc1x

d

2 with ad− bc = 1) as an equivalence relation on reflexive polygons, there
are 16 equivalence classes. All but one29 of these has representatives satisfy-
ing (57).

For each a ∈ U , Ea ⊂ P∆ denotes as before the Zariski closure of E∗
a :=

{x ∈ (C∗)2 | φ(x) + a = 0}. Forgetting x2 produces a 2 : 1 map π : Ea → P1

with corresponding involution ι : Ea → Ea and discriminant

(59) (φ0(x1) + a)2 − 4xmu+mℓ

1 (x1 + 1)du+dℓ =: D(x1).

The latter is a Laurent polynomial (in x1) with “Newton polytope” an interval
[−c−, c+] containing [−1, 1] (and contained in [−2, 2]), whose length is the

number of ramification points of π−1(C∗) =: E×
a

π×

→ C∗; denote the set of
these by B ⊂ E×

a , and let p0 ∈ B be one of them. The holomorphic function

(60) δ(p) := x1(p)
mu(x1(p) + 1)du(x2(p)− x2(ι(p))),

on E×
a satisfies δ2 = (π×)∗D , thereby providing a well-defined lift of

√
D to

E×
a .

Writing Ẽ×
a for the fiber product of π× and (− exp) : C → C∗ yields a

diagram

(61) Ea

π
����

E×
a

?
_oo

π×

����

Ẽ×
a

Poooo

Π
����

z̃
❴

��

∋

P1 C∗?
_oo C− exp

oooo z∋

with vertical maps of degree 2, and points in Ẽ×
a [resp. C] denoted by z̃ [resp.

z = Π(z̃)]. We also write P(z̃) =: (x1(z̃), x2(z̃)), where x1(z̃) = x1(z) = −ez,
and z̃0 ∈ Ẽ×

a for the point with P(z̃0) = p0 and ℑ(z0) ∈ (−π, π]. For later
reference put Ẽ∗

a := P−1(E∗
a), which is either all of Ẽ×

a or the complement
of Π−1(Z(1)).30

Now suppose V (a) ∈ Λ(a). If a ∈ D−, then γ, β, ωγ , ωβ ,Ω, Rγ , Rβ , and
ν are well-defined; if not, we take them to be analytic continuations (along

29represented by ∆ = convex hull of {(−1,−1), (2,−1), (−1, 2)}, with P∆ = P2

30There are 4 equivalence classes of ploygons for which Ẽ∗

a = Ẽ×

a , corresponding
to X = P2, P1 × P1, F1, and F2. Otherwise, for z̃ ∈ Ẽ×

a \ Ẽ∗

a , in view of (58) we
have −1 = x1(z̃) = x1(z) = −ez =⇒ z ∈ Z(1).
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the same path) to a of those objects from D−. (We will not write ω(a) etc.,
just ω, since a is fixed and understood.) Then we have

(62) ν = 1
4π2 (RγΩ−Rβ) = n1 + n2Ω

for some n1, n2 ∈ Z. Notice that the regulator class R is only well-defined in
H1(Ea,C/Z(2)), so its value on γ is still represented by Rγ := Rγ − 4π2n2.
This replaces (62) by

(63) Rβ −Rγ
ωβ

ωγ
= −4π2n1 ∈ Z(2),

and we claim this allows us to define a holomorphic function on Ẽ∗
a by

(64) χ(z̃) := exp
(

i

2π

{
´

P z̃
z̃0

z dx2(z̃)
x2(z̃)

− Rγ

ωγ

´

P z̃
z̃0

P∗ω
})

,

where ω is as in (44), and P z̃
z̃0

is any path from z̃0 to z̃.
The issue here is well-definedness, since nothing in the braces blows up

on Ẽ∗
a. To check this, we remind the reader that for a loop L on E∗

a based
at p0, the value of R on its homology class is computed by31

(65) RL ≡
Z(2)

´

L log(−x1)dlog(−x2)− log(−x2(p0))
´

L dlog(−x1),

where log(−x1) is analytically continued along L [13]. If L lifts to a loop L̃

on Ẽ∗
a, then clearly

´

L dlog(x1) = 0, and (65) pulls back to
´

L̃ z dx2(z̃)
x2(z̃)

. Now

given two paths P,P ′ from z̃0 to z̃ on Ẽ∗
a, take L̃ to be the loop obtained

by composing P with the “reverse” of P ′, and write L = k1γ + k2β in
H1(Ea,Z). (By integral temperedness of {−x1,−x2}, this determines RL

mod Z(2).) The difference between the braced expression in (64) for these
two paths is then

´

L̃ z dx2(z̃)
x2(z̃)

− Rγ

ωγ

´

L̃ P∗ω =
´

L log(−x1)dlog(x2)− Rγ

ωγ

´

L ω

≡
Z(2)

k1Rγ + k2Rβ − Rγ

ωγ
(k1ωγ + k2ωβ)

= k1(Rγ −Rγ) + k2(Rβ −RγΩ)

= 4π2(k1n2 − k2n1) ≡
Z(2)

0,

(66)

31Of course, dlog(−x) = dlog(x) = dx
x

. Note that (65), which is due to Beilinson
[1] and Deligne [unpublished], is different from the regulator formula using the
current R{−x1,−x2} (in which the function “ log” is not analytically continued but
has a branch cut), but is easily shown to give the same integral regulator.
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using (63). After multiplying by i

2π , this discrepancy is killed by the exp and
the claim is verified.

In fact, χ(z̃) extends to a meromorphic function on Ẽ×
a which is holo-

morphic at Π−1(0). Of course, ω has no poles on Ea, and so P∗ω has none
on Ẽ×

a ; the potential culprit is dx2

x2
, when du, dℓ are not both zero. Writ-

ing z = 2πin+ w +O(w2), x2 = wd (for d = −du or dℓ), we find
´

z dx2

x2
∼

2πidn log(w) hence exp( i

2π

´

z dx2

x2
) ∼ w−nd, as desired.

Finally, writing ι̃ : Ẽ×
a → Ẽ×

a for the involution over C, we put

(67) Ψ̃(z̃) :=
χ(z̃)− χ(ι̃(z̃))

δ(P(z̃))
.

The denominator has zeroes at P−1(B), which does not intersect any of
the poles of the numerator.32 Moreover, these are simple zeroes, and the
numerator also has zeroes at these points (which are just the fixed points of
ι̃). So Ψ̃ is holomorphic on Ẽ×

a \Π−1(Z(1)\{0}). Notice also that applying
ι̃ to z̃ changes the sign in the numerator and denominator of (67) (since
P ◦ ι̃ = ι ◦ P). We conclude that there exists a meromorphic function Ψ on
C, with (at worst) poles on 2πi(Z \ {0}), such that Ψ̃ = Π∗Ψ; we write this
loosely as

(68) Ψ(z) :=
χ(z̃)− χ(ι̃(z̃))

δ(P(z̃))
,

and denote its restriction to the real line by ψ(r). We are now ready to prove
the

Theorem 3.7. For ∆ satisfying (57), the “⊇” direction of (55) holds. That
is, if V (a) ∈ Λ(a), then a ∈ σ(φ̂).

Proof. First note that x̂1 = multiplication by er (not −er), x̂2 = e−2πi∂r , and
φ̂ = −φ(−x̂1,−x̂2) are unbounded operators on L2(R), whose domains are
roughly the proper linear subspaces on which each operator preserves square
integrability. (See [19] for details.) In particular, it is possible in this sense
to be in the domain of φ̂ while failing to be in that of x̂±1

1 and x̂±1
2 , which

is just what happens for ψ(r). Indeed, assuming V (a) ∈ Λ(a), we claim that

32The only way ι has a fixed point at x1 = −1 is if du = dℓ = 0.
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ψ ∈ L2(R) \ {0} and

(69) φ̂ψ = aψ,

which will obviously prove the theorem.
As Ψ is holomorphic on {z ∈ C | −2πi < ℑ(z) < 2πi}, with meromorphic

extension to a neighborhood of its closure, we have

e±2πi∂rψ(r) = e±2πi∂zΨ(r) = Ψ(r ± 2πi)

=: Ψ(τ±(r)) =: (S±Ψ)(r) =: (S±ψ)(r).
(70)

Furthermore, τ± has a unique lift τ̃± : Ẽ×
a → Ẽ×

a with the property that
P ◦ τ̃± = P; and so the difference operator S± lifts to (S̃±χ)(z̃) := χ(τ̃±(z̃)).
By the independence of path in (64), we can take our path from z̃0 to τ̃±(z̃)
to be the composition of τ̃±(P z̃

z̃0
) with a fixed path P±

0 from z̃0 to τ̃±(z̃0).
That is, writing P(P±

0 ) =: L ±
0 , we have

χ(τ̃±(z̃)) = exp
(

i

2π

{
´

τ̃±(P z̃
z̃0
)+P±

0
z dx2(z̃)

x2(z̃)
− Rγ

ωγ

´

τ̃±(P z̃
z̃0
)+P±

0
P∗ω

})

= exp
(

i

2π

{
´

P z̃
z̃0

(z ± 2πi)dx2(z̃)
x2(z̃)

− Rγ

ωγ

´

P z̃
z̃0

P∗ω
})

× exp
(

i

2π

{
´

L ±
0
log(−x1)dx2

x2
− Rγ

ωγ

´

L ±
0
ω
})

.

(71)

Adding and subtracting − log(−x2(z̃0))
´

L ±
0

dx1

x1
(= ∓2πi log(−x2(z̃0)) ) in the

last braced expression, (71) becomes

(72) χ(z̃)e∓{log(−x2(z̃))−log(−x2(z̃0))} × e
i

2π
{R

L
±
0
−Rγ

ωγ
ω

L
±
0
}
e∓ log(−x2(z̃0)).

By the same calculation as in (66), we have RL ±
0
− Rγ

ωγ
ωL ±

0
∈ Z(2), and so

after cancelling log(−x2(p0))’s, we arrive at

(73) (S̃±χ)(z̃) = −x2(z̃)±1 · χ(z̃).

Since −x̂1 = −µer = µ−er = µx1(r), φ̂ acts on ψ as −φ(µx1(r),−S−),
which lifts to −φ(µx1(r),−S̃−) for functions on Ẽ×

a . Applying this to χ(z̃)
gives −φ(x1(z), x2(z̃)) · χ(z̃) = aχ(z̃), and applying it to χ(ι̃(z̃)) yields

−φ(x1(z), x2(ι̃(z̃))) · χ(ι̃(z̃)) = aχ(ι̃(z̃)).

(Here we are just using the equation of the curve, φ(x1(z), x2(z̃)) + a =
0; and we can ignore δ(P(z̃)) in the denominator of Ψ̃ since S̃± doesn’t



2288 C. F. Doran, M. Kerr, and S. Sinha Babu

affect it.) So the overall effect on Ψ̃, hence ψ, is multiplication by a. This
proves (69).

We still need to check is that ψ is indeed square-integrable. Clearly
´

P∗ω
has a finite limit as r → ±∞, so we consider the behavior of

(74)
´

r dz2(r̃)z2(r̃)
=
´

log(−x1(r))dlog(−x2(r̃)).

Let q ∈ Ea \ E×
a , and set oj := ordq(xj); then (−1)o1o2 limp→q

x1(p)o2

x2(p)o1
= 1 by

integral temperedness. Hence there is a local holomorphic coordinate w on
Ea vanishing at q, with −x1 = wo1 and −x2 = ±wo2(1 +O(w)), and (74) =
o1o2
2 log2w +O(w logw) is just o2

2o1
r2 (with o1 ̸= 0) plus terms limiting to

zero. Since this is multiplied by i

2π before taking exp, we conclude that χ(z̃)
is bounded on Π−1(R). On the other hand, in the denominator δ(P(r̃)) =√

D(−er) of ψ, D(−er) =∑c+
j=−c−

aje
jr (a−c− , ac+ ̸= 0) is dominated by

the ec+r term as r → +∞ and the e−c−r term as r → −∞. That is, |ψ(r)| ≤
Ce−|r/2| for some constant C, hence ψ belongs to L2(R).

Finally, we must show that ψ is not identically zero. If it were, then by
basic complex analysis Ψ would be zero; so it suffices to check that (say)
Ψ(z0 + 2πin) ̸= 0 for some n ∈ Z. We may choose a local holomorphic coor-
dinate u on Ẽ×

a about z̃0, such that (locally) ι̃ sends u 7→ −u and z = z0 + u2.
Clearly x2(z̃) = x2(p0)(1 + c1u+O(u2)) and P∗ω = (c2 +O(u))du for con-
stants c1, c2 ∈ C∗. The expression in braces in (64) (integrating on a path
from z̃0 to z̃(u)) takes the form (c1z0 − Rγ

ωγ
c2)u+O(u2), and we can en-

sure the coefficient of u is nonzero by replacing z0 by z0 + 2πin if nec-
essary (since this affects nothing else). So the numerator of (67) becomes
ec0u+O(u2) − e−c0u+O(u2) ∼ 2c0u, and since the denominator also has a sim-
ple zero at u = 0 we are done. □

Remark 3.8. Returning to the “sign flip” between curve and operator high-
lighted in Remark 3.5(iii), we remind the reader that it is {−x1,−x2}, not
{x1, x2}, which is integrally tempered for the simplest choices of Laurent
polynomial φ.33 So it is the regulator integral for this symbol which produces
a well-defined Ψ̃(z̃). But the signs in the symbol force the shift operator x̂2
to act on χ(z̃) through multiplication by −x2(z̃) rather than x2(z̃), which in
turn forced us to use (− exp) (not exp) in (61) so that x̂1 acts through mul-
tiplication by −x1(z), resulting in the action of φ̂ = −φ(−x̂1,−x̂2) through
multiplication by −φ(x1(z), x2(z̃)). The upshot is that the signs in the sym-
bol34 are ultimately responsible for the presence of the B-field.

33e.g. x1 + x2 + x−1
1 x−1

2 , and including the examples studied in [8] with trivial
mass invariants Qmk

= 1.
34along with those in (54) arising from Weyl quantization and the CBH formula.
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Remark 3.9. A result of Kashaev and Sergeev [12, Theorem 7], while ex-
pressed in very different terms, can be shown to be equivalent the special
case φ = x1 + x−1

1 + x2 + x−1
2 of Theorem 3.7. (The conditions in [loc. cit.]

on a pair (λ, ε) ∈ C× R>4 they require for their construction of eigenfunc-

tions of φ̂ amount to taking ν(ε) ∈ Z and λ = − iε
8π2

Rγ(ε)
ωγ(ε)

.) However, they

do not relate their result to the relevant conjecture of [7] or prove a partial
converse as in Theorem 3.10 below.

Without stating any results formally, we want to briefly address the
higher genus hyperelliptic case, where F1 = φ still takes the form in (57)–(58)
but ∆ is no longer reflexive. (Note that φ0 will have a2, . . . , ag as coefficients.)
One easily checks that the construction of ψ and the proof of Theorem 3.7 still
go through after modifying χ(z̃), provided we impose a stronger quantization
condition than that in RHS(33). Namely, referring to (28), suppose that

(75) the normal function vector ν(a) belongs to (Ig | Ω)Zg.

Then replacing the expression in braces in (64) by

(76)
´

P z̃
z̃0

z dx2(z̃)
x2(z̃)

−∑g
j=1Rγj

´

P z̃
z̃0

P∗ωj

for appropriate determinations of Rγj
, the obvious generalization of (66)

goes through, ensuring that the generalized χ(z̃) is well-defined. Under an
additional assumption like (21), and changing the signs in φ̂ of those aj ’s
attached to even powers of x̂1, one finds as before that φ̂ψ = a1ψ.

The criterion (75), which we expect corresponds to the exact NS quanti-
zation conditions of [23], will only hold at countably many points in moduli.
On the other hand, Conjecture 2.4 predicts the existence of eigenfunctions
for a in a codimension-1 subset of moduli. So it stands to reason that there
should be something special about the eigenfunctions ψ, which we can only
construct for a in the smaller locus. In the genus-2 example worked out ex-
plicitly in [25, §4.3], whose “fully on-shell” quantization conditions (cf. [loc.
cit., (4.45)]) should agree with (75), Zakany highlights the enhanced decay
of his explicit eigenfunctions. Indeed, in our construction, for g > 1 the dis-
criminant D will involve higher powers of both x1 and x−1

1 than for g = 1,
which leads to decay better than e−|r/2| at infinity for ψ(r); this perhaps
begins to explain the discrepancy.
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3.3. Remarks on the spectrum of φ̂

Notably absent from the last section is any discussion of the “converse ques-
tion”, as to whether every eigenfunction of φ̂ arises from the construction
described there. We will prove a fairly strong result in this direction, to
the effect that “almost every” eigenvalue λ satisfies V (λ) ∈ Λ(λ). As already
mentioned in Remark 3.5,35 the spectrum σ(φ̂) is a countable subset of [c,∞)
for some c > 0, whose elements can be arranged in an increasing sequence
{λj}j≥1 with λj → 0. We may replace φ̂ by its self-adjoint Friedrichs exten-
sion to L2(R) without affecting these statements, cf. [19].

Suppose P is a proposition (that can be true or false) about elements of
σ(φ̂). Write N(λ) := |{j ∈ N | λj ≤ λ}| and

NP(λ) := |{j ∈ N | λj ≤ λ and P(λj) holds}|.

We will say that P holds asymptotically if

(77) lim
λ→∞

NP(λ)

N(λ)
= 1.

Theorem 3.10. In the setting of Theorem 3.7, the “⊆” direction of (55)
holds asymptotically.

Proof. The statement P(λj) about eigenvalues here is, of course, that ν(λj) ∈
Z.36 From Lemma 3.1(c), we know that ν(a) = r◦

8π2 log
2 a+O(log a), whence

(78) N(λ) ≥ NP(λ) ≥ ⌊ν(λ)− ν(|â|)⌋ ≥ r◦

8π2 log
2 λ+O(log λ).

Now given f, g ∈ L2(R), write ⟨f, g⟩ :=
´

R
f(r)g(r)dr, and

(79) f̃(y1, y2) := 2−5/4π−3/2
´

R
e−

1

4π
{(r−y1)2+2iy2r}f(r) dr

for the coherent state transform of f . Adapting the calculations of [19, §3.1]
to our setting gives

(80) ⟨φ̂f, f⟩ =
˜

R2 Φ(y1, y2) |f̃(y1, y2)|2dy1 dy2

35The point is that the proof of [19, Prop. 3.4] trivially generalizes to all φ we
consider here, because ∆ always contains a reflexive triangle (or square). The proof
of Theorem 3.10 involves, in contrast, a rather nontrivial generalization of [op. cit.,
§3.2].

36We can always throw out a finite set of eigenvalues less than |â|, if they exist
(cf. Remark 3.5).
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where

(81) Φ(y1, y2) :=
∑

m∈∂∆∩Z2 ame
−π

2
(m2

1+m2
2)

︸ ︷︷ ︸
=:ãm

em1y1+m2y2 .

This implies, for instance, the semi-boundedness of φ̂, as

Φ ≥ c := min
y∈R2

Φ(y) > 0 =⇒ φ̂ ≥ c · Id =⇒ σ(φ̂) ⊂ [c,∞).

Let (·)+ be the function on R defined by (s)+ = s for s ≥ 0 and (s)+ = 0
for s ≤ 0, and note that

(82)
´ λ
0 N(s) ds =

∑
j≥1(λ− λj)+.

Reasoning with Jensen’s inequality as in [op. cit., §2.2], we have

(83)
∑

j≥1(λ− λj)+ ≤ 1
4π2

˜

R2(λ− Φ(y1, y2))+ dy1 dy2.

Choose M > 0 so that Mãm ≥ am (∀m ∈ ∂∆ ∩ Z2). Writing Yj := eyj and
ΓL := {Y ∈ R2

+ | L ≥ φ(Y1, Y2)}, note that the boundary ∂ΓL is the cycle β
on E−L. Together with Lemma 3.1(a) and (14), this gives

RHS(83) ≤ 1
4π2M

˜

R2(Mλ− φ(Y1, Y2))+
dY1

Y1

dY2

Y2

≤ λ
4π2

˜

ΓMλ

dY1

Y1

dY2

Y2
= λ

4π2Rβ(−Mλ)

= r◦

8π2λ log
2 λ+O(log λ).

(84)

Putting the last three equations together, we get

(85) r◦

8π2 log
2 λ+O(log λ) ≥ N(λ),

which combined with (78) gives the result. □

The constraints imposed on the zero locus of ρ ◦ ν by its interpretation as
eigenvalues of φ̂ (Theorem 3.7), and vice versa (Theorem 3.10), seem worth
exploring further. For instance, per Remark 3.5, we expect (and know in some
cases) that c > |â|; together with the following Lemma, this essentially rules
out points a ∈ U at which V (a) ∈ Λ(a) (the exact quantization condition)
and R(a) is torsion (the perturbative quantization condition proposed in
[9]).37

37By a special case of the main result of [26], the torsion locus of R is in fact
finite.
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Lemma 3.11. For a ∈ (|â|,∞), R(a) ∈ H1(Ea,C/Z(2)) is a nontorsion
class.

Proof. From the known integrality of local instanton numbers of toric CY
3-folds [18], it follows that LHS(50) ≥ 1, hence that ℜ(t(â)) ≥ 0. From (46)
(and positivity of coefficients of φ, and negativity of â), it is immediate that
t(|â|) > ℜ(t(â)), hence t(a) ∈ R+ for a ∈ (|â|,∞). But if R(a) is torsion, then
Rγ(a) ∈ Q(2) =⇒ t(a) ∈ Q(1) ⊂ iR. □

More striking is a conditional transcendence result on the eigenvalues
that arises from their asymptotic Hodge-theoretic interpretation in Theo-
rem 3.10. A mixed version of the Grothendieck period conjecture (which we
will simply call the GPC) says that the transcendence degree of a period
point arising from a motive defined over Q̄ is equal to the dimension of the
minimal mixed Mumford-Tate domain containing it. The (mixed) motive in
question is the K2-cycle {−x1,−x2} on Ea, with MHS the extension of Z(0)
by H1(Ea,Z(2)) given by 1

(2πi)2R. The possibillities for the M-T group are

an extension of SL2 or a 1-torus (depending on whether Ea is CM) by G×2
a

or {1} (depending on whether R is torsion); the corresponding domain is H,
a CM point in it, or the product of either one with C2. The coordinates of
the period point are Ω(a) (in H) and (Rγ(a)

(2πi)2 ,
Rβ(a)
(2πi)2 ) (in C2).38

Conjecture 3.12 (GPC). If a ∈ Q̄ and R(a) is nontorsion, then the tran-

scendence degree of Q̄(Ω(a), Rγ(a)
(2πi)2 ,

Rβ(a)
(2πi)2 )/Q̄(Ω(a)) is 2.

Proposition 3.13. Assuming the GPC, asymptotically σ(φ̂) consists of
transcendental numbers.

Proof. Let λ ∈ σ(φ̂) be an eigenvalue for which ν(λ) ∈ Z. (We may assume
λ ∈ (|â|,∞).) That is, we have an algebraic relation 1

4π2 (Rγ(λ)Ω(λi)−Rβ(λ))

= n on Rγ(λ)
(2πi)2 and Rβ(λ)

(2πi)2 over Q̄(Ω(λ)). By the GPC, either λ /∈ Q̄ or R(λ) is
torsion. But the latter possibility is ruled out by Lemma 3.11, and so we are
done by Theorem 3.10. □

We conclude with somthing of a curiosity: in case φ = x1 + x−1
1 + x2 +

x−1
2 + x1x

−1
2 + x−1

1 x2, our normal function is closely related to the Feynman
integral I associated to the sunset graph with equal masses [2]. This is writ-
ten in [op. cit.] as a function of s = 1

3−a = the inverse norm of the external

38We have to divide by (2πi)2, of course, because a torsion class must have
coordinates in Q, not transcendental ones in Q(2).
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momentum, but written as a function of a we have I(a) = (2πi)2

a V (a) (see
[op. cit., (7.17)]). The condition that V (a) ∈ Λ(a) means that V , or equiv-
alently I, belongs to its own lattice of ambiguities under monodromy. As
we have seen, the values of a at which this happens correspond to eigenval-
ues of φ̂. One wonders if there is any deeper physical relation here between
Feynman amplitudes and quantum curves.

4. Regulator periods at the maximal conifold point

In this section we prove Conjecture 2.6 in the cases (m,n) = (g, g) and
(2g − 1, 1), for every g ≥ 1. A proof for (m,n) = (2g, 1) will appear in a
forthcoming work by the third author [27].

Because we have to enumerate multiple nodes on the maximal conifold
curve, it is better in this section to replace (x1, x2) as toric coordinates by
(x, y), which we do throughout. We also denote the zero-locus of a polynomial
by Z(·).

4.1. The main result and some preliminaries

Consider the families of genus-g curves cut out of (C∗)2 by the (integrally
tempered) polynomials Fg,g(x, y) and F2g−1,1(x, y) from (41). In contrast to
§2, Cg,g and C2g−1,1 will denote their compactifications in P∆. There are
no mass parameters in either case, so r = 3 and the equations take the
simpler form (40). Moreover, Cg,g is torically equivalent to C2g−1,1 via the
map u = x−1y−1, v = xgyg−1. The effect of this map is straightforward: for
n = 1, . . . , g it simply shifts n 7→ g − n+ 1 on the level of indices; that is, if
Fg,g(x, y) is written with parameters an, then the image (under the above
map) is precisely F2g−1,g(u, v) with parameters ag−n+1. The upshot of this
connection is that statements concerning regulator periods of C2g−1,1 can be
pulled back to those corresponding to Cg,g, provided we choose the correct
cycles. For our purposes here, the important case is that the cycle γg−n+1 of
C2g−1,1 giving rise to Rγg−n+1

∼ −2πi log(ag−n+1) pulls back to the cycle γn
of Cg,g corresponding to Rγn

∼ −2πi log(an).

Theorem 4.1. Conjecture 2.6 holds for the families Cg,g and C2g−1,1; that
is,

1
2πiRγ1

(â) ≡
Q(1)

Dg,g and(86)

1
2πiRγg

(â) ≡
Q(1)

D2g−1,g.(87)
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Remark 4.2. The predictions of [3] aligning with Conjecture 2.6 are written
in terms of the complex structure/GKZ parameters zi := zi(a). (In the (g, g)
cases these are given by z1 =

a2

a3
1
, z2 =

a1a3

a2
2

, . . . , zg−1 =
ag−2ag

a2
g−1

, zg = ag−1

a2
g

.)

Translated into statements about the corresponding regulator periods (cf.
(24)), these essentially amount to39

(88) 1
2πi

∑g
i=1[C

−1]1jRαi
(ẑ) ≡

Q(1)
Dm,n,

which of course is equivalent to (43). While zi and Rαi
are more natural from

the standpoint of GKZ systems, the {aj} and the corresponding regulator
periods Rγj

simplify the statement of the result, and are more natural to
compute directly (cf. Appendix A). As we will see, the {γj} are also the
cycles which limit to loops passing through individual nodes at the maximal
conifold point â.

Remark 4.3. As R{−x,−y} ≡ R{x, y} mod Q(2) we may work with the
latter. Note also that (43) is stated in terms of the regulator period asymp-
totic to −2πi log(an); it is convenient in this section to drop the negative
sign and work with one asymptotic to 2πi log(an). Thus from now on

Rγn
∼ 2πi log(an).

Furthermore, since we intend to investigate different components of the dis-
criminant locus throughout this section, it will be important to track the
moduli; so henceforth we will rename Fg,g and F2g−1,1 to F

a
g,g and F

a
2g−1,1.

Let us outline a proof of Theorem 4.1. Denote by Ĉg,g the fiber of
the family over the maximal conifold point â. It has g nodes {p̂j}, and
the cycles {γ̂j}gj=1 passing through each node generate H1(Ĉg,g); we set
Rγ̂j

:=
´

γ̂i
R{x, y}. Writing κ = γ̂ [Id]γ(â) for the change-of-basis matrix, we

have

Proposition 4.4. Let κj := gcd(2j − 1, 2g + 1). Then

(89) κ = diag(κ1, . . . , κg).

It then follows from temperedness that

(90) 1
2πiRγj

(â) ≡
Q(1)

κn

2πiRγ̂j
.

39Here [C−1] is the inverse of the first g × g minor of the intersection matrix [C].
The Rαi “correspond” to zi in the sense of being asymptotic to 2πi log(zi).
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In §4.2 we detect monodromies via power series representing classical periods,
verifying Proposition 4.4 in the process. In §4.3 we use a key technique
developed in [6, §6] that allows us to connect conifold limits of regulator
periods to special values of the Bloch-Wigner function; this method coupled
with Proposition 4.4 settles Theorem 4.1. As a consequence g-many series
identities are borne out in §4.4 — not just the two required for the Theorem.

We conclude this subsection with two preliminary results. The first will
help us to control certain power series asymptotics, and the second gives us
information on nodal fibers of Cg,g.

Lemma 4.5. If a, b, c ∈ R≫0 are such that a = 2b+ c, then

(91)
Γ(1 + a)

Γ2(1 + b)Γ(1 + c)
∼ 1

2πb

√
a

c

(
a

c

(
c

b

)2b/a
)a

.

Proof. Stirling’s approximation yields

Γ(1 + a)

Γ2(1 + b)Γ(1 + c)
∼ 1

2πb

√
a

c

aa

b2bcc
e−a+2b+c =

1

2πb

√
a

c

aa

b2bca−2b

=
1

2πb

√
a

c

aa

ca
c2b

b2b
=

1

2πb

√
a

c

(
a

c

(
c

b

)2b/a
)a

for b, c→ ∞ (and a = 2b+ c). □

Lemma 4.6. Suppose that the fiber over ã = (ã1, . . . , ãg) has g-many sin-
gularities, say p̃j := (x̃j , ỹj), n = 1, . . . , g. Then for each j, p̃j is a node, and
x̃j = ỹj.

Proof. Since x∂xF
a
g,g(x, y)− y∂yF

a
g,g(x, y) = x− y, any singularity must have

symmetric co-ordinates; that is, x̃j = ỹj . By toric equivalence we may replace

F
ã
g,g(x, y) by

(92) F
ã
2g−1,g(u, v) = u+ v +

∑g
ℓ=1 ãℓu

−ℓ+1 + u−2g+1v−1

(reversing the order of the {aℓ}); by abuse of notation we continue to label
the singularities of F

ã
2g−1,1 by p̃j , but with coordinates (ũj , ṽj) satisfying

ũ−2g+1
j = ṽ2j . Since the edge polynomials of (92) are all w + 1, the curve

intersects each component of the toric boundary with multiplicity 1, and
so all p̃j ∈ C∗ × C∗. Moreover, (92) is irreducible since it is quadratic in v,
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with discriminant D(u) of odd degree. As a consequence, the vanishing cycle
sequence associated to the smoothing F

ã
2g−1,1 + s takes the form

(93) 0 → H1(Cã
2g−1,1) → H1

lim → H1
van → 0.

Since rk(F 1H1
lim) = g and the g singularities each contribute nontrivially to

rk(F 1H1
van), each contribution must be exactly 1. So the p̃j are either nodes

or cusps, and to show they are nodes it will suffice to show that the Hessians
HF

ã
2g−1,1

is non-degenerate at p̃j .

To do this, define

(94) P̃ (u) := 2g + 1 +
∑g

j=1(2g + 1− 2j)ãju
−j ,

and observe that

(95) P̃ (ũj) =
2g−1
ũj

F
ã
2g−1,1(p̃j) + 2∂uF

ã
2g−1,1(p̃j) = 0.

Thus Z(P̃ ) = {ũ1, . . . , ũg}. It follows that P̃ has no repeated roots; that is,
P̃ ′(ũj) ̸= 0 (∀j). To compute the Hessians, write

∂uuF
ã
2g−1,1(p̃j) =

∑g
ℓ=1 ℓ(ℓ− 1)ãℓũ

−ℓ−1
j + 2g(2g − 1)ũ−2g−1

j ṽ−1
n

=
∑g

ℓ=1 ℓ(ℓ− 1)ãℓũ
−ℓ−1
j + 2g(2g−1)ỹj

ũ2
j

,(96)

∂uvF
ã
2g−1,1(p̃j) = (2g − 1)ũ−2g

j ṽ−2
j = 2g−1

ṽj
, and(97)

∂vvF
ã
2g−1,1(p̃j) = 2ũ2g−1

j ṽ−3
j = 2

ṽj
.(98)

At this point a few simplifications can be made. Differentiating the defining
equation of P̃ and plugging in u = ũj , we obtain,

(99) P̃ ′(ũj) = 2
∑g

ℓ=1 ℓ(ℓ− 1)ãℓũ
−ℓ−1
j −∑g

ℓ=1(2g − 1)ℓãℓũ
−ℓ−1
j

On the other hand ∂u(F
ã
2g−1,1(u, v)/u) vanishes at p̃j , which yields

− ṽj

ũ2
j
−∑g

ℓ=1 ℓãℓũ
−ℓ−1
j − 2gũ−2g−1

j ṽ−1
j = 0

=⇒ ∑g
ℓ=1(2g − 1)jãℓũ

−ℓ−1
j = − (2g−1)(2g+1)ṽj

ũ2
j

(100)
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Combining everything, we arrive at

(101) ∂uuF
ã
2g−1,1(p̃j) =

(2g−1)2ṽj

2ũ2
j

+ P̃ ′(ũj)
2

Therefore,

HF
ã
2g−1,1

(p̃j) =
(
∂uvF

ã
2g−1,1(p̃j)

)2
− ∂uuF

ã
2g−1,1(p̃j)∂vvF

ã
2g−1,1(p̃j)

= (2g−1)2

ũ2
j

− (2g−1)2

ũ2
j

− P̃ ′(ũj)
ṽj

= − P̃ ′(ũj)
ṽj

̸= 0

as was to be shown. □

4.2. Monodromy calculations via power series

Consider a 1-parameter family of curves C → P1 with coordinate t, endowed
with a section ω of the relative dualizing sheaf; on smooth fibers Ct, ω1 is a
holomorphic 1-form. Assume that Cc has a single node pc (i.e. is a “conifold
fiber”), and let δ0 be the “conifold” vanishing cycle pinched at pc. Writing ε0
for a cycle invariant about t = 0, its monodromy about t = c is a multiple
of δ0, say kδ0 for some k ∈ Z≥0. We would like to compute this conifold
multiple k.

Writing ϵ0(t) =
∑

m≥0 bmt
m :=

´

ε0
ωt, we have

(102)

ˆ

kδ0

ωt = (Tc − I)ϵ0 = 2πiC0 +O(t− c)

for some C0 ∈ C. Observe that

(103)

ˆ

kδ0

ωc = k

ˆ

δ0

ωc = k · 2πi · Res
pc

ωc =⇒ C0 = k · Res
pc

ωc.

On the other hand, [14, Lemma 6.4] (with B(t) = ϵ0(t), λ = 2πiC0, and
w = 1) yields

(104) bm ∼ C0

cm ·m.

provided C0 ̸= 0.40 Therefore we have proven

40Otherwise, Bm has a smaller exponential growth-rate and RHS(105) is zero,
which confirms the Lemma when C0 = 0 as well.
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Lemma 4.7. The conifold multiple is computed by

(105) k =
lim

m→∞
bm · cm ·m

Respc
ωc

.

Example 4.8. Consider the Legendre family, y2 = x(x− 1)(x− t). Setting
c = 1 gives rise to a node at (1, 0). Taking ωt =

dx
y , we have

(106) Res(1,0) ωc = Resx=1
dx

(x−1)
√
x
= 1.

Moreover bm = 2π
(−1/2

m

)2
, hence (105) implies

(107) k = lim
m→∞

2πm
(−1/2

m

)2
= 2.

Example 4.9. Now consider the family Ct defined by

ft(x, y) = xy − t1/3(x3 + y3 + 1).

In this case c = 1
33 and bm = (3m)!

m!3 , but Cc = Z(
∏3

ℓ=1(1 + ζi3x+ ζ2i3 y)) is a
Néron 3-gon with three nodes pi. But since ε0(c) will pass through each pi
the same number k0 of times, and ωc must have the same residue at each,
(105) holds (taking say pc = p1 := (1, 1)) provided we interpret k as 3k0. For
the residue of

(108) 2πiωc = ResCc

dx ∧ dy
fc

=
dx

∂yfc
=

dx

x− y2

at p1, we can restrict to the component Xc := Z(1 + ζ3x+ ζ23y):

Resp1
ωc =

1

2πi
Res(1,1)

(
dx

x− y2

∣∣∣∣
Xc

)
=

1

2πi
Resy=1

(
ζ3dy

y2 + ζ3y + ζ23

)

=
1

2πi

ζ3
1− ζ23

=
1

2π
√
3
.(109)

Since bm = (3m)!
m!3 we get

(110) k = lim
m→∞

1

33m
·m · (3m)!

m!3
· 2π

√
3 = 3,

which means that ε0(c) winds once around the Néron 3-gon.
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For the proof of Proposition 4.4, we need to compute the Picard-Lefschetz
matrix κ, whose entries κij tell how many times the specialization γi(â)
passes through p̂j . In order to invoke Lemma 4.7 for this purpose, we should
reinterpret these numbers as (roughly speaking) conifold multiples for 1-
parameter subfamilies of Ca acquiring a single node. The idea is that â is
a normal-crossing point of the discriminant locus, whose g local-analytic
irreducible components each parametrize fibers carrying a single node pj .
These are labeled in such a way that the jth component can be followed out

to where it meets the aj-axis at aj = åj . Call this fiber Cåj
g,g, and p̊j = (̊xj , x̊j)

for the limit of the node to it.
From Appendix A we have the 1-forms

(111) ϖj =
1
2πi∇δaj

R{x, y} =
−aj
2πi

ResCg,g

(
dx ∧ dy

xjyjFg,g(x, y)

)

and 1-cycles γj (j = 1, . . . , g). The computation that follows will consider
periods Πjj =

´

γj
ϖj on the 1-parameter families over the aj-axes (acquiring

a single node at aj = åj), which will suffice to determine the diagonal terms
κjj . That the remaining, off-diagonal terms are actually zero follows from the
fact (cf. Appendix A) that each γj is well-defined on a tubular neighborhood
of the hyperplane in (compactified) moduli defined by zj = 0, which is cut
by the conifold components carrying pi for every i ̸= j.

Now Cåj
g,g is defined by

(112) f (j)g,g := F
åj
g,g(x, y) = x+ y + åjx

1−jy1−j + x−gy−g,

and to find the node p̊j we solve

x̊2gj f
(j)
g,g

∣∣∣∣
x=y=x̊j

= 2x̊2g+1
j + 1 + åj x̊

2g−2j+2
j = 0,(113)

x̊2g+1
j ∂xf

(j)
g,g

∣∣∣∣
x=y=x̊j

= x̊2g+1
j − g − (j − 1)̊aj x̊

2g−2j+2
j = 0.(114)

to obtain

x̊j =
2g+1

√
g − j + 1

2j − 1
,(115)

åj = −2g + 1

2j − 1

(
2g + 1

g − j + 1

)2(g−j+1)
2g+1

.(116)
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In particular, we have the relation

(117) åj x̊
2(g−j+1)
j = −2g + 1

2j − 1
.

In order to calculate the residue of ϖj at p̊j , recall that for any f(x, y) =
Ax2 +Bxy + Cy2 + higher order terms ∈ C[x, y], we have

(118) Res20
dx ∧ dy

f
:= Res0

(
ResZ(f)

dx ∧ dy
f

)
=

1√
B2 − 4AC

.

Changing variables to X := x− x̊j , Y := y − x̊j in f
(j)
g,g (x, y) leads to the

equation

x
g
y
g
f
(j)
g,g =

x̊
2g−1
j (2g2+2g+1−(g−j+1)(2g+1))

2
X

2 + x̊
2g−1
j (2g2+2g−(g−j+1)(2g+1))XY

+
x̊
2g−1
j (2g2+2g+1−(g−j+1)(2g+1))

2
Y

2 + higher order terms.(119)

Therefore

Res2p̊j

dx ∧ dy
xgygf

(j)
g,g

= 1

x̊2g−1
j

√
(2g2+2g−(g−j+1)(2g+1))2−(2g2+2g+1−(g−j+1)(2g+1))2

= 1

x̊2g−1
j

√
(2g−2g−1)(4g2+4g+1−2(g−j+1)(2g+1))

= 1

x̊2g−1
j

√
−(2g+1)(2g+1−2g+2j−2)

(120)

= i

x̊2g−1
j

√
(2g+1)(2j−1)

.

(The sign of the square root reflects a choice of orientation for the vanishing
cycles at each p̊j , hence for the cycles γ̂j .) Consequently the residue of ϖj

may now be found:

Resp̊j
ϖj =

−åj
2πi

Res2p̊j

dx ∧ dy
xjyjf

(j)
g,g

=
−åj
2πi

· x̊2(g−j)
j · Res2p̊j

dx ∧ dy
xgygf

(j)
g,g

=
−1

2π
· (̊aj x̊2(g−j+1)

j ) · 1

x̊2g+1
j

√
(2g + 1)(2j − 1)

(121)

=

√
2g + 1

2π(g − j + 1)
√

(2j − 1)
.

For the periods of ϖj , we start as in Appendix A with those of the
regulator class. Writing φj := xj−1yj−1F

a
g,g(x, y)− aj , (A.3) (with the sign
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flip from our choice of γj) yields

1

2πi
Rγj

(a) ≡
Q(1)

log(aj)−
∑

m>0

(−aj)−m

m
[φm

j ]0

= log(aj)−
∑

m>0

(−aj)−m

m
×(122)

[(xjyj−1

︸ ︷︷ ︸
=:Aj

+xj−1yj︸ ︷︷ ︸
=:Bj

+
∑g

k=1
k ̸=j

ak x
j−kyj−k

︸ ︷︷ ︸
=:Ck

j

+xj−g−1yj−g−1

︸ ︷︷ ︸
=:Dj

)m]0

where [L]0 stands for the constant term (in x, y) appearing in the Laurent
polynomial L. Now, given l1, l2, · · · , lg ∈ Z, we define

lj :=
1

2j − 1

(
(2g + 1)lj +

g∑

k=1
k ̸=j

(2k − 1)lk

)
(123)

l′j :=
1

2j − 1

(
(g − j + 1)lj +

g∑

k=1
k ̸=j

(k − j)lk

)
, and put(124)

Lj := {(l1, l2, · · · , lg) ∈ Z
g
≥0 | l′j ∈ Z≥0} \ {(0, · · · , 0)}(125)

Note that l′j ∈ Z≥0 =⇒ lj ∈ Z≥0. The upshot of this construction is if Lj , L
′
j ∈

Z≥0 are such that

A
Lj

j B
L′

j

j

g−1∏

k=1
k ̸=j

(Ck
j )

lkD
lj
j = 1 and(126)

Lj + L′
j +

g∑

k=1

lk = m(127)

then Lj = L′
j = l′j (by symmetry) and m = lj . Thus the lattice Lj ⊂ Zg en-

codes all possible constant terms appearing in (122), giving
(128)

1

2πi
Rγj

(a) ≡
Q(1)

log(aj) −
∑

Lj

Γ(lj)

Γ2(1 + l′j)
g∏

k=1

Γ(1 + lk)

(−aj)−lj

g∏

k=1
k ̸=j

alkk .
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For the classical periods Πjℓ =
´

γj
ϖℓ =

1
2πiδaℓ

Rγj
, it is clear from (128) that

Πjℓ vanishes on the aj-axis for ℓ ̸= j. Focusing then on

(129) Πjj(a) =

ˆ

γj

ϖj = 1 +
∑

Lj

Γ(1 + lj)

Γ2(1 + l′j)
g∏

k=1

Γ(1 + lk)

(−aj)−lj

g∏

k=1
k ̸=j

alkk ,

we set ai = 0 for i ̸= j to obtain

S := 1 +
∑

g−j+1
2j−1 lj∈Z>0

Γ(1 + 2g+1
2j−1 lj)

Γ2(1 + g−j+1
2j−1 lj)Γ(1 + lj)

(−aj)−
2g+1
2j−1 lj .(130)

Recall that κj := gcd(2j − 1, 2g + 1), and set

nj : =
2j − 1

κj
, mj :=

2g + 1

κj
=

(2g + 1)nj
2j − 1

,

rj : =
lj
nj
, and sj := a

−mj

j .

(131)

Clearly nj ,mj , rj ∈ Z>0. Now we have a power series of the form

(132) S = 1 +
∑

rj∈N

(−1)mjrjΓ(1 +mjrj)

Γ2(1 + mj−nj

2 rj)Γ(1 + njrj)
s
rj
j =:

∑

rj

brjs
rj
j .

Let s̊j := å
−mj

j . Applying Lemma 4.5,

(133)
Γ(1 +mjrj)

Γ2(1 + mj−nj

2 rj)Γ(1 + njrj)
≈

(−1)mjrj2
√
mj

2πrj(mj − nj)
√
nj
s̊
rj
j

from which we may conclude that

(134) lim
rj→∞

brj · rj · s̊rjj =
2
√
mj

2π(mj − nj)
√
nj
.

Observing that

Resp̊j
ϖj =

√
2g + 1

2π(g − j + 1)
√

(2j − 1)
=

√
nj

2πnj(g − j + 1)
·
√

(2g + 1)nj
2j − 1

=
2
√
mjnj

2π(mj − nj)(2j − 1)
.(135)
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we apply (105) to obtain

(136) κjj =

lim
rj→∞

brj · rj · s̊rjj
Resp̊j

ϖj
=

2j − 1

nj
= κj .

This concludes the proof of Proposition 4.4.

Remark 4.10. Notice that κ1 = κg = 1. We document κ := (κ1, . . . , κn)
for g = 1, . . . , 10 in Table 1. The lack of symmetry for g ≥ 4 should not be
surprising given the shape of the Newton polygon.

g κ

1 1

2 (1,1)

3 (1,1,1)

4 (1,3,1,1)

5 (1,1,1,1,1)

6 (1,1,1,1,1,1)

7 (1,3,5,1,3,1,1)

8 (1,1,1,1,1,1,1,1)

9 (1,1,1,1,1,1,1,1,1)

10 (1,3,1,7,3,1,1,3,1,1)

Table 1: Conifold multiples for small genera

4.3. Normalization of the conifold fibers

For the family Cm,n determined by the {F a
m,n}, the maximal conifold point

â ∈ (C∗)g is defined to be the unique point (if it exists) on the boundary of

the region of convergence of the g power series (A.3) where Câ
m,n (given by

F
â
m,n = 0) acquires g nodes (labeled by p̂j := (x̂j , ŷj)). In this subsection we

determine â in the (g, g) cases (where r = 0).

Remark 4.11. In this case it is not necessary to impose a convergence
requirement to get uniqueness of a g-nodal rational curve in moduli. This
comes along for the ride as we shall see in Remark 4.15. However, one should
add right away that it is only ẑ which is unique (with or without this re-
quirement), not â. In fact, M is a (2g + 1)-to-1 étale cover of Mz, the GKZ
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moduli space (cf. Remark 4.2). Precisely one of the 2g + 1 preimages of ẑ
has real coordinates; it is this one we shall call â. Given existence of â, es-
tablished in Prop. 4.13 below, a result of Tyomkin [24, Prop. 7] guarantees
uniqueness of ẑ.

The idea is to begin with the moduli space of all curves on P∆ in the
linear system |O∆(1)| avoiding the singularities. (That is, we consider es-
sentially all Laurent polynomials on ∆ = conv{(1, 0), (0, 1), (−g,−g)}, not
just the tempered ones.) This has dimension g + 2, and contains a variety V
parametrizing all irreducible nodal rational curves. By [loc. cit.], V is irre-
ducible and isomorphic to an open subset of (C∗)2 × (P1)3 modulo PGL2(C)
viewed as automorphisms of the mormalizing P1, hence of dimension 2. Quo-
tienting out by toric automorphisms (i.e. (C∗)2) maps each curve to its z-
coordinate. The action of (C∗)2 on V has no fixed points, so the image of V
in Mz is zero-dimensional and irreducible, i.e. a single point.

Now the most straightforward way to find â would be via the discriminant
locus: one should look for transverse intersections amongst its local analytic
branches. This is a viable strategy in particular cases; however, it requires
careful analysis even in genus 2.

Example 4.12. The family C2,2 arising as the mirror of the resolution of
C3/Z5 orbifold was extensively studied in [3, §4.1]. Its discriminant locus is
described by the equation

(137) 3125z21z
3
2 + 500z1z

2
2 + 16z22 − 225z1z2 − 8z2 + 27z1 + 1 = 0,

where

(138) z1 =
a2
a31
, z2 =

a1
a22
.

Figure 1 illustrates the intersection that gives rise to the maximal conifold
point ẑ = (− 1

25 ,
1
5), which lifts to â = (5,−5).

It is clear that for the family Cg,g, the discriminant locus is described by
a degree 2g + 1 polynomial in g variables; so that approach quickly becomes
untenable. However, a close study of the g = 1 and g = 2 cases suggested a
“constructive” approach to producing g-nodal fibers, which generalized well
and leads to the following:

Proposition 4.13. Let Tm denote the mth Chebyshev polynomial of the
first kind; this is a degree-m polynomial characterized by Tm(cos θ) = cosmθ.
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Figure 1: Discriminant locus of C2,2; axes are zi’s.

Then we have41

(139) F â
g,g(x, x) = 2x(T2g+1(

1
2x) + 1).

It follows that

âj = (−1)g−j+1 2g + 1

2j − 1

(
g + j − 1

g − j + 1

)
and(140)

x̂j = ŷj =
(−1)g−j

2
sec

(
g − j + 1

2g + 1
π

)
(141)

for j = 1, . . . , g. In particular, â ∈ Zg.

Proof. That x̂j ∈ Z(RHS(139)) is immediate from the defining property of
T2g+1, and the x̂j are distinct and different from −1

2 . Moreover, writing
Um for the mth Chebyshev polynomial of the second kind, the relation
(T2g+1(w)− 1)(T2g+1(w) + 1) = (w2 − 1)(U2g(w))

2 guarantees that all roots
other than −1

2 of (T2g+1(
1
2x) + 1) have even multiplicity. So they all have

multiplicity 2 and are precisely the {x̂j}.
The polynomial F̂ (x, y) := x+ y +

∑g
j=1 âjx

1−jy1−j + x−gy−g, with âj
as in (140), satisfies F̂ (x, x) = RHS(139) by standard results on coefficients

41Note also that F
â
g,g is irreducible, since the Newton polygon is Minkowski in-

decomposable.
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of Tm. Clearly F̂ (p̂j) = 0, and the {p̂j} are in fact singularities of Z(F̂ ) since
∂F̂
∂x (x, x) =

1
2

d
dx(F̂ (x, x)) and they are double roots of F̂ (x, x). Therefore,

by Proposition 4.6, they are all nodes. Since one can also check that (128)
converges at p̂j , Z(F̂ ) is the maximal conifold curve. □

Remark 4.14. Of course, Proposition 4.13 recovers the known maximal
conifold points for the families C1,1, C2,2 (â1 = −3 for g = 1 and â1 = 5, â2 =
−5 for g = 2). Table 2 gathers T2g+1 and â for a few low genus cases.

g T2g+1(x) â

1 4x3 − 3x -3

2 16x5 − 20x3 + 5x (5,-5)

3 64x7 − 112x5 + 56x3 − 7x (-7,14,-7)

4 256x9 − 576x7 + 432x5 − 120x3 + 9x (9,-30,27,-9)

5 1024x11
− 2916x9 + 2816x7

− 1232x5 + 220x3
− 11x (-11, 55, -77, 44, -11)

Table 2: Maximal conifold points for low genera.

Being of geometric genus zero, the maximal conifold fiber Ĉg,g admits
uniformizations by P1. In particular, we have the g distinct parametrizations
z 7→ (X̂j(z), Ŷj(z)), with

X̂j(z) =
x̂j
(
1− 1

z

)g+1

(
1− ζg−j+1

2g+1

z

)(
1− ζ

2(g−j+1)
2g+1

z

)g and(142)

Ŷj(z) =

ŷj

(
1− z

ζ
2(g−j+1)
2g+1

)g+1

(
1− z

ζg−j+1
2g+1

)
(1− z)g

,(143)

having the property that z = 0,∞ are mapped to p̂j . (We defer the proof to
the end of this subsection.) Hence the image of the path from z = 0 to z = ∞
on P1 is sent (by the jth map) to γ̂j . As dictated by [6, §6.2], we assign a for-
mal divisor N̂j on P1 \ {0,∞} to each uniformization: for X(z) = c1

∏
j(1−

αj

z )dj and Y (z) = c2
∏

k(1− z
βk
)ek , this divisor is N :=

∑
j,k djek[

αj

βk
]. Ac-

cording to [loc. cit.], the imaginary part of
´∞
0 R{X(z), Y (z)} is then given

by D2(N ) :=
∑

j,k djekD2(
αj

βk
).
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In our present situation,

N̂j = g2[ζ
2(g−j+1)
2g+1 ] + 2g[ζg−j+1

2g+1 ]− (2g2 + 2g − 1)[1]

− 2(g + 1)[ζ
−(g−j+1)
2g+1 ] + (g + 1)2[ζ

−2(g−j+1)
2g+1 ]

= 2(2g + 1)[ζg−j+1
2g+1 ]− (2g + 1)[ζ

2(g−j+1)
2g+1 ](144)

= 2(2g + 1)[1 + ζg−j+1
2g+1 ],

where we are working modulo the scissors congruence relations

[ξ] + [1ξ ] = 0, [ξ] + [ξ] = 0, [ξ] + [1− ξ] = 0 and(145)

[ξ1] + [ξ2] + [ 1−ξ1
1−ξ1ξ2

] + [ 1−ξ2
1−ξ1ξ2

] + [1− ξ1ξ2] = 0(146)

of the Bloch group B2(C). Consequently we have the identity

D2(N̂j) = 2(2g + 1)D2(1 + ζg−j+1
2g+1 ),(147)

of which two particular cases are of note: we claim that

D2(N̂1) = −2πDg,g and(148)

D2(N̂g) = −2πD2g−1,1.(149)

(See §2.4 for notation.) In fact, we can say something even more general.
Given m ∈ Z>0, we have

−zm+1wm,1 = −zm+1
zmm,1 − z−m

m,1

zm,1 − z−1
m,1

= −ζm+1
2(m+2)

m−1∑

k=0

ζk2(m+2)ζ
−(m−1−k)
2(m+2)

= −
ζm+1
2(m+2)

ζm−1
2(m+2)

m−1∑

k=0

ζ2k2(m+2) = −ζ22(m+2)

m−1∑

k=0

ζkm+2(150)

= ζm+2

(
ζmm+2 + ζm+1

m+2

)
= 1 + ζm+1

m+2 .

Therefore, taking conjugates,

2(m+ 2)D2(1 + ζm+2) = −2(m+ 2)D2(1 + ζm+1
m+2 )

= −2πDm,1(151)



2308 C. F. Doran, M. Kerr, and S. Sinha Babu

which implies (149) upon setting m = 2g − 1. Similarly one can see that

(152) wg,g = ζ1−g
2(2g+1)

∑g−1
k=0 ζ

k
2g+1

and thus

2(2g + 1)D2(1 + ζg2g+1) = −2(2g + 1)D2

(
−∑g

k=1 ζ
k
2g+1

)

= −2(2g + 1)D2

(
−ζ22(2g+1)

∑g−1
k=0 ζ

k
2g+1

)
(153)

= −2πDg,g,

as was to be shown.
We are now ready to prove Theorem 4.1. By the previously mentioned

result of [6, §6.2], we know that ℑ(Rγ̂j
) = D2(N̂j) or

(154) ℜ( 1
2πiRγ̂j

) = 1
2πD2(N̂j).

Next, Proposition 4.4 tells us that Rγj
(â) = κjRγ̂j

, while (140) and (128)
ensure that (mod Q(1)) 1

2πiRγj
(â) hence 1

2πiRγ̂j
is real. Combining this with

(147) gives

1

2πi
Rγj

(â) =
1

2πi
κjRγ̂j

≡
Q(1)

(2g + 1)κj
π

D2(1 + ζg−j+1
2g+1 ),(155)

whence (86) [resp. (87)] follows from (148) [resp. (149)] by setting j = 1 [resp.
j = g] in (155).

To tie up the remaining loose end, we conclude with the

Proof of the parametrizations (142)–(143). Consider the map

ηj : P
1 → P∆

given by (142)–(143) and ηj(z) := (X̂j(z), Ŷj(z)). Obviously ηj(0) = (x̂j , ŷj)
= ηj(∞). We must show that ηj is of degree 1 onto its image, and that this

image is precisely Câ
g,g. The first part is easy. Here (only) we take P∆ to be

the singular toric variety given by the normal fan of ∆ (and not a refine-
ment). Write D1, D2, D3 for the boundary divisors, ordered so that the divi-
sors of the torus coordinates read (x) = (g + 1)D1 − gD2 −D3 and (y) =
(g + 1)D2 − gD1 −D3. Now on P1, write ξj := ζg−j+1

2g+1 , and also p1, p2, p3
for 1, ξ2j , ξj respectively. Clearly we have (X̂j(z)) = (g + 1)[p1]− g[p2]− [p3]

and (Ŷj(z)) = (g + 1)[p2]− g[p1]− [p3]. This shows that η∗jDi = [pi] for i =
1, 2, 3, so the map has degree 1 and the image meets all three boundary
components transversely.
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The next step is to check that it meets each boundary component where
the edge coordinate is −1, which is where Ca

g,g hits them for any a. That is,
we must show that the limits

lim
z→p1

X̂j(z)
gŶj(z)

g+1, lim
z→p2

X̂j(z)
g+1Ŷj(z)

g, and lim
z→p3

X̂j(z)

Ŷj(z)

are all −1. For the third, since x̂j = ŷj we get X̂j(z)

Ŷj(z)
= ( z−1

z−ξ2j
)2g+1 which obvi-

ously gives −1 after substituting z = ξj . For the first, we have X̂j(z)
gŶj(z)

g+1

= x̂2g+1
j (

z−ξ2j
z−ξj

)2g+1; substituting z = 1 yields (x̂j(1 + ξj))
2g+1. Writing ξ

1/2
j

:= ζg−j+1
4g+2 , (141) gives x̂j =

(−1)g−j

ξ
1/2
j +ξ̄

1/2
j

hence x̂j(1 + ξj) = (−1)g−jξ
1/2
j , which

has (2g + 1)st power (−1)g−j(−1)g−j+1 = −1. The second limit is very sim-
ilar to the first.

Now suppose ηj(P
1) ̸= Câ

g,g, and consider the divisor (F â
g,g) = Câ

g,g − gD1−
gD2 −D3. The results of the last 3 paragraphs give (η∗jF

â
g,g) = η∗jCâ

g,g −
g[p1]− g[p2]− [p3] ≥ 2[0] + 2[∞]− (g − 1)[p1]− (g − 1)[p2]. If g = 1 or 2,

(η∗jF
â
g,g) already has positive degree, which is absurd; and the contradiction

means that ηj(P
1) = Câ

g,g. If g > 2, we have to work a bit harder to reach
this contradiction. It will suffice to verify that ηj(P

1) also passes through the
nodes (x̂i, ŷi) for i ̸= j.

To do this, write ξi := ζg−i+1
4g+2 and µi := ζg−i+1

2g+1 = ξ2i , and note that x̂i =

(−1)g−i(ξi + ξ̄i)
−1 = −µg+1

i (1 + µi)
−1. We claim that θij := µj(µjµ̄i − 1)(µ̄i

− µj)
−1 (and ξ2j /θij , too, but we won’t need that) are sent to (x̂i, x̂i) by ηj .

For the x-coordinate, we have

X̂j(θij) = x̂j
(θij − 1)g+1

(θij − µj)(θij − µ2j )
g

=
−µg+1

j

1 + µj

µg+1
j (µj µ̄i−1

µ̄i−µj
− µ̄j)

g+1

µg+1
j (µj µ̄i−1

µ̄i−µj
− 1)(µj µ̄i−1

µ̄i−µj
− µj)g

=
−µg+1

j

1 + µj

µ̄g+1
i µ̄g+1

j (µ2j − 1)g+1

(µj − 1)(µ̄i + 1)(µ2j − 1)g
=

−µ̄gi
1 + µi

= x̂i,

and the y-coordinate calculation is similar. □
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4.4. Explicit series identities

Spelling out (155) in light of (128) kills any torsion modulo Q(1) as both
sides are real,42 and yields the relationship

(2g + 1) · gcd(2j − 1, 2g + 1)

π
D2(1 + ζg−j+1

2g+1 ) = log(|âj |)−
∑

Lj

Γ(lj)

Γ2(1 + l′j)
g∏

k=1

Γ(1 + lk)

(−âj)−lj

g∏

k=1
k ̸=j

âlkk(156)

valid for j = 1, . . . , g. The LHS can be shifted to a different avatar via the
formula

(157) D2(1 + ζg−j
2g+1) = D2

(
2 cos( π

2g+1)e
πi(g−j)/(2g+1)

)
.

Let us consider some applications of (156). For the family C2,2 Table 1 and

Table 2 say that κ = (1, 1) and â = (5,−5). Recalling that w := 1+
√
5

2 =
2 cos(π/5) and plugging in j = 1 in (156) gives

5

π
D2(we

2πi/5) = log 5−
∑

l1,l2∈Z≥0

′ Γ(5l1 + 3l2)(−5)−5l1−3l2(−5)l2

Γ2(1 + 2l1 + l2)Γ(1 + l1)Γ(1 + l2)

= log 5−
∑

m,r∈Z≥0

′ (−1)mΓ(5m+ 3r)5−5m−2r

Γ2(1 + 2m+ r)Γ(1 +m)Γ(1 + r)
.

On the other hand for j = 2,

5

π
D2(we

πi/5) = log 5−
∑

l1,l2∈Z≥0

′ Γ(5l2+l1
3 )5−

5l2+l1
3 5l1

Γ2(1 + l2−l1
3 )Γ(1 + l1)Γ(1 + l2)

.(158)

Defining r := l1,m := (l2 − l1)/3,

5

π
D2(we

πi/5) = log 5−
∑

m,r∈Z≥0

′ Γ(5m+ 2r)5−5m−r

Γ2(1 +m)Γ(1 + r)Γ(1 + 3m+ r)
.(159)

These identities, conjectured in [3, A.10], match the identities [4, (6.13)–
(6.14)].43 Likewise, for C3,3 we have â = (−7, 14,−7) and k = (1, 1, 1), and

42after changing log(âj) to log(|âj |)
43The proof there was incomplete as it did not address κ.
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thus
7

π
D2(1 + ζ

3
7 ) = log 7−

∑

m,r,p∈Z≥0

′ (−1)rΓ(7m+ 5r + 3p)7−7m−4r−2p2p

Γ2(1 + 3m+ 2r + p)Γ(1 +m)Γ(1 + r)Γ(1 + p)
(160)

7

π
D2(1 + ζ

2
7 ) = log 7−

∑

m,r,p∈Z≥0

′ (−1)rΓ(7m+ 5r + p)7−4m−5r+2p2−7m−5r−p

Γ2(1 + 2m+ r − p)Γ(1 + 3m)Γ(1 + 3r)Γ(1 + 3p)
(161)

7

π
D2(1 + ζ7) = log 7−

∑

m,r,p∈Z≥0

′ (−1)mΓ(7m+ 3r + p)7−7m+2p23r

Γ2(1 +m− r − 2p)Γ(1 + 3m)Γ(1 + 3r)Γ(1 + 3p)
.(162)

More generally, for the family Cg,g, L1 becomes the lattice Z
g
≥0 \ {0, . . . , 0}

and we end up with a tidy expression,

(2g + 1)

π
D2(1 + ζg2g+1) = log(|â1|)−

∑

lk∈Z≥0
1≤k≤g

′ (−1)

g∑
k=1

lk Γ

(
(2g+1)l1+

g∑
k=2

(2k−1)lk

)

Γ2

(
1+gl1+

g∑
k=2

(k−1)lk

)
g∏

k=1

Γ(1+lk)
â
−(2g+1)l1−

g∑
k=2

(2k−1)lk

1

g∏

k=2

âlkk ,

(163)

where
∑
lk

′ means that we omit the term corresponding to {0, . . . , 0}.

Remark 4.15. We briefly address convergence of the power series part of
RHS(163), to R̃(a) := 1

2πiRγ1
(a) + log(a1) evaluated at a = â. Replacing âi

with ai, then substituting the GKZ variables zi (cf. Remark 4.2), it becomes
a power series of the form

∑′
ℓ≥0 cℓz

gℓ1+
∑g

k=2(k−1)ℓk
1 z

(g−1)ℓ1+
∑g

k=3(k−2)ℓk
2 · · · zℓ1g

which represents R̃(a(z)) for sufficiently small z.
Moreover, we claim that R̃(a(uz)) has no monodromy for z = z(t) :=

(tm, t, . . . , t) if m≫ 0 and |t| < 1. It is enough to check that there is no
monodromy on z1 = 0 (obvious, as the power series is identically zero there)
or when |z1| < 1 and zi = ẑi (i ≥ 2). For the latter, note that (139) becomes

2x{z−1/2
1 T2g+1(

1
2xz

1/(4g+2)
1 ) + 1}, whose discriminant is a power of z1 − 1.

(Roots of T ′
2g+1 = (2g + 1)U2g are cos( kπ

2g+1) for k = 1, . . . , 2g, and

T2g+1(cos(
kπ

2g+1)) + z
1/2
1 = (−1)k + z

1/2
1

is 0 iff z1 = 1.)
So B(t) := R̃(a(z(t))) is represented by a power series

∑
mBmt

m on
the unit disk, is bounded on {|t| < 1 + ϵ} \ [1, 1 + ϵ) (as the K2 symbol is
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nonsingular at t = 1), and has monodromy about t = 1 (T1 − I)B ∼ cst. ×
(t− 1) (since (T1 − I)γ1 is a vanishing cycle with trivial regulator). We are
now in the situation of [14, Lemma 6.4] with w = 2, so that Bm ∼ cst. ×m−2.
The power series thus converges at t = 1, and must evaluate to B(1) by
Tauber’s theorem.

Appendix A. Some regulator calculations

Here we demonstrate the existence of integral 1-cycles {γj}gj=1 on C with
regulator periods behaving as Rγj

∼ −2πi log(aj) for large aj , as claimed in
§2.3. In the genus 1 case, we also indicate how one can check the constant
term in Rβ (cf. Lemma 3.1) without using mirror symmetry, and relate the
constant term to the limit of a variation of MHS. We refer the reader to [6]
or [17] for background on regulator currents.

We start by defining the 1-cycles in distinct regions of moduli. We will
need some notation. Set T := {x ∈ (C∗)2

∣∣|x1| = 1 = |x2|} (with the standard
orientation as a 2-cycle) and let Γ ⊂ P∆ be a 3-chain bounding on T (but
avoiding C̄ \ C). Write xe := xm

e

for the toric coordinate along the boundary
component De ⊂ P∆ corresponding to an edge e ⊂ ∂∆, and {qe,ℓ} for the
roots of P (−xe) (amongst the {qk}), repeated with multiplicity; we have
Pe(xe) =

∏
ℓ(1 +

xe

qe,ℓ
), with

∏
ℓ qe,ℓ = 1. Also, loge(ξ) will mean log(ξ) for ξ

enclosed (counterclockwise on De) by Γ ∩ De and 0 otherwise.
Now, fixing j ∈ {1, . . . , g}, take iaj ∈ H and |aj | ≫ maxi ̸=j |ai|; and note

that then F (T) ∩ R− = ∅. In this region, define γj := Γ ∩ C, and use the
current coboundary

(A.1) 1
2πid[R{F (x), -x1, -x2}] =

∑
e
R{Pe(xe), -xe} · δDe

−R{-x1, -x2} · δC̄

together with the Tame symbols of R{P (xe),−xe} (which are just the {q−1
e,ℓ})

and the Cauchy integral formula to compute

Rγj
=
´

γj
R{-x1, -x2} =

´

ΓR{-x1, -x2} · δC̄
= −1

2πi

´

T
R{F (x), -x1, -x2}+

∑
e

´

Γ∩De

R{Pe(xe), -xe}
= −1

2πi

´

T
log(aj(1 + a−1

j Fj(x)))
dx1

x1
∧ dx2

x2
+
∑

e

´

Γ∩De

R{Pe(xe), -xe}
= 2πi

(
− log(aj) +

∑
k

(−1)k

k [(Fj(x))
k]0a

−k
j −∑

e,ℓ loge(qe,ℓ)
)
.

(A.2)
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In the tempered case, the {qk} are of course all 1, and the last term vanishes.
We are then left with44

(A.3) 1
2πiRγj

(a) = − log(aj) +
∑

k>0
(−1)k

k [F k
j ]0a

−k
j ,

in which (by virtue of the GKZ theory) the sum can always be written as a
power series in z1, . . . , zg.

45 This gives a common region of convergence for
the series for all j (where the z-coordinates are small), to which the γj admit
well-defined continuation from the regions on which they were originally
defined: namely, they are the cycles with these regulator periods. Moreover,
they are clearly independent due to the asymptotic behaviors of these periods
in the {aj}.

In addition, (A.2)–(A.3) lead to formulas for periods of 1-forms. Noting
that d[R{F (x),−x1,−x2}] = dF

F ∧ dx1

x1
∧ dx2

x2
, one introduces

(A.4) ϖℓ :=
1
2πi∇δaℓ

R = −1
2πiResC

(
δaℓ

F
F

dx1

x1
∧ dx2

x2

)

and computes

(A.5)

−Πjℓ := −
ˆ

γj

ϖℓ

= −1
2πiδaℓ

Rγj
=

{
1 +

∑
k>0(−1)k[F k

j ]0a
−k
j , ℓ = j

∑
k>0

(−1)k+1

k a−k
j δaℓ

[F k
j ]0, ℓ ̸= j

where δℓj is the Kronecker delta. This formula proves useful in §4.2 where
we change the sign of γj . Turning to the g = 1 case and the computation of
Rβ , it is more convenient to work with u = −a≫ 0. In this coordinate, (46)
becomes t = log(u)− πi+O(u−1). Substituting this in Lemma 3.1(a) and
using 12− r◦ = r yields

(A.6) Rβ = r◦

2 log2 u− r
6π

2 +O(u−1 log u).

Consider the Laurent polynomial φ = x1 + x−1
1 + x2 + x−1

2 , which correspo-

nds to local (P∆◦ =)P1 × P1. The discriminant (over the x1-axis) of the

44Note that the version of this formula in [17, Prop. 6.2] is missing a ±πi (“2-
torsion”) term: the λj parameter there is −aj , so the leading term should have read
− log(−λj) or − log(λj) + πi.

45Essentially, this is just because in order to contribute to the constant term in
(Fj(x))

k, a product of monomials must correspond to a sum of relations on points
of ∆ ∩ Z2, and the relations are how we defined the {zi}.
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equation x2 + (x1 + x−1
1 − u) + x−1

2 = 0 has roots ξ1 ∼ 1
u+2 , ξ2 ∼ 1

u−2 , ξ3 ∼
u− 2, and ξ4 ∼ u+ 2 (in increasing order). Introduce 2x2,±(x1) := u− x1 −
x−1
1 ±

√
(x1 + x−1

1 − u)2 − 4 and w(x1) :=
4

(u−x1−x−1
1 )2

. For x1 ∈ (ξ2, ξ3), w

lies in (0, 1), and we write log( 4
w · 1−

√
1−w

1+
√
1−w

) =:
∑

m≥1 θmw
m = 1

2w + 3
16w

2 +

· · · . Now we compute
(A.7)

Rβ = −
´

β R{−x2,−x1} =
´ ξ3
ξ2

log(x2,+

x2,−
)dx1

x1

=

ˆ ξ3

ξ2

log(1+
√
1−w

1−
√
1−w

)dx1

x1

= −
´ ξ3
ξ2

log(w4 )
dx1

x1
−∑m≥1 θm

´ ξ3
ξ2
wmdx1

x1

= 2 log(u)
´ ξ3
ξ2

dx1

x1
+ 2
´ ξ3
ξ2

log(1− u−1(x1 + x−1
1 ))dx1

x1
+O(u−1 log u)

= 4 log2 u− 2
∑

k>0
u−k

k

´ ξ3
ξ2
(x1 + x−1

1 )k dx1

x1
+O(u−1 log u)

= 4 log2 u− 2π2

3 +O(u−1 log u),

at the end using the approximations
´ ξ3
ξ2
(x1 + x−1

1 )k dx1

x1
∼ 2ξk3

k ∼ 2uk

k to rewri-

te the sum as −4
∑ 1

k2 = −2
3π

2 up to O(u−1 log u). The point is that since
r = 4, this agrees with the result (A.6) from integral local mirror symme-
try. A similar computation in [17, §6] for φ = x1 + x2 + x−1

1 x−1
2 (mirror to

local P2) gives Rβ = 9
2 log

2 u− π2

2 +O(u−1 log u), where the −π2

2 arises as
−2Li2(

1
2)− 2Li2(1)− log2 2. Since r = 3, this agrees once more with (A.6)

(as it must).
The crucial constant term in Rβ has a nice interpretation via the LMHS

at a = ∞ of the VMHS V attached to R ∈ H1(Ea,C/Z(2)), the regulator
class of {−x1,−x2} ∈ H2

M(Ea,Z(2)). (Note that the LMHS depends on a
choice of a local coordinate, which we take to be a−1 or equivalently Q :=
e−t = a−1(1 +O(a−1)).) We can present V and its dual as extensions

(A.8) H1(E,Z(2)) → VZ → Z(0) and Z(0) → V∨
Z → H1(E,Z(−2)).

On the left, a unique class R ∈ F 0VC maps to 1 ∈ Z(0); on the right, let
τ ∈ V∨

Z be the image of 1, and γ̃, β̃ ∈ V∨
Z classes mapping to 1

(2πi)2 γ,
1

(2πi)2β.

Writing ℓ(Q) := log(Q)
2πi , we have

(A.9) R̃β := ⟨R, β̃⟩ = 1
(2πi)2Rβ = r◦

2 ℓ(Q)2 − r◦

2 ℓ(Q) + T+O(Q),

where T = 1
2 + r◦

12 (cf. Lemma 3.1(a)), as well as R̃γ := ⟨R, γ̃⟩ = 1
(2πi)2Rγ =

ℓ(Q) and ⟨R, τ⟩ = 1.
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To obtain a period matrix for V , we compare Hodge and Betti bases as fol-
lows. Writing ∇ for ∇∂ℓ(Q)

, the change-of-basis matrix from {R,∇R, 1
r◦∇2R}

to {τ∨, γ̃∨, β̃∨} is

(A.10) Ω :=

(
1
R̃γ 1

R̃β ∂ℓ(Q)R̃β 1

)
=

(
1

ℓ(Q) 1
r◦

2 ℓ(Q)2− r◦

2 ℓ(Q)+T r◦ℓ(Q)− r◦

2 1

)
+O(Q).

From (A.10) one easily deduces the monodromies T ∈ Aut(V) and T∨ ∈
Aut(V∨) about Q = 0:

(A.11) [T∨]{β̃,γ̃,τ} =
(

1
r◦ 1
0 1 1

)
=⇒ T := [T ]{τ∨,γ̃∨,β̃∨} =

(
1
1 1
0 r◦1

)
.

Consequently the limiting period matrix is

(A.12) Ωlim,Q := lim
Q→0

e−ℓ(Q) log(T )Ω =



1
0 1
T − r◦

2 1


 .

The LMHS with respect to a−1, as mentioned above, gives the same result;
but if we change local coordinate to −Q or (equivalently) u−1, we get

(A.13) Ωlim,−Q := lim
Q→0

e−ℓ(−Q) log(T )Ω =




1
1
2 1
B
◦ 0 1


 ,

where B
◦ = 1

2 − r◦

24 = T− r◦

8 . So we see that both of the constants appearing
in Lemma 3.3(ii) have a standard asymptotic Hodge-theoretic meaning, in
terms of (torsion) extension classes in the LMHS of V in the large complex
structure limit.
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