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Ky and quantum curves

CHARLES F. DORAN, MATT KERR, AND SOUMYA SINHA BABU

A 2015 conjecture of Codesido-Grassi-Marino in topological string
theory relates the enumerative invariants of toric CY 3-folds to the
spectra of operators attached to their mirror curves. We deduce
two consequences of this conjecture for the integral regulators of
K5-classes on these curves, and then prove both of them; the results
thus give evidence for the CGM conjecture. (While the conjecture
and the deduction process both entail forms of local mirror sym-
metry, the consequences/theorems do not: they only involve the
curves themselves.) Our first theorem relates zeroes of the higher
normal function to the spectra of the operators for curves of genus
one, and suggests a new link between analysis and arithmetic geom-
etry. The second theorem provides dilogarithm formulas for limits
of regulator periods at the maximal conifold point in moduli of the
curves.
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1. Introduction

The simplest Calabi-Yau threefolds are the noncompact toric CYs X deter-
mined by a convex lattice polygon A C R? (or more precisely by the fan
on a triangulation of {1} x A in R?). Each such CY has a family of mirror
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curves C C C* x C*, of genus g equal to the number of interior integer points
of A, given by the Laurent polynomials F'(x;,z9) with Newton polygon A.
Recently a fundamental and novel relationship between (i) the enumerative
geometry of X and (ii) the spectral theory of certain operators Fon L? (R)
attached to C, has been proposed by M. Marifio and his school, in the con-
text of non-perturbative topological string theory [3, 7, 21|. The goal of this
paper is to lay out some mathematical consequences of this meta-conjecture,
and provide evidence for it by proving them in two important cases.

A Laurent polynomial F'= 3% _A~z> anz™ is promoted to an operator

F' (or “quantum curve”) by a process called Weyl quantization, which depends
on a real constant h. Writing r for the coordinate on R, let x denote multipli-
cation by r, and y := ihd,, so that [%,y] = ih. Taking F':= " ape™ %7y,
[3] defines a generalized spectral determinant Zc(a;h) whose zero-locus de-
scribes those curve moduli @ for which ker(F) # {0}. They conjecture that
under a “quantum mirror map” a + t"(a), Z¢ is proportional to a quantum
theta function ©x(t; h) derived from the all-genus enumerative invariants of
X; see Conjecture 2.2. In particular, the zeroes of ©x should recover the
spectrum of any fixed quantum curve F.

In the formulation of [2], local mirror symmetry relates the “maximally
supersymmetric”’ case (A = 2m) of (i) to (iii) the Hodge-theoretic invariants
(or “regulators”) of algebraic Ks-classes on C. This allows us to reformulate
this case of the conjecture of Codesido-Grassi-Marino [3] in §2.3 as a putative
relationship between quantum curves and regulators (i.e. between (ii) and
(iii)). We do this under the assumption that F' ranges only over the integrally
tempered Laurent polynomials, so that the symbol {—z1, —x2} € K2(C(C))
extends to motivic cohomology classes on the compactifications C, C Pa.
This smaller moduli space M has dimension ¢, and the resulting regulator
classes 15 R(a) € H'(Cq, C/Z) may be projected modulo H0(C,) to yield
a section v of the Jacobian bundle J — M of the family C — M, called
the higher normal function. We deduce from the conjecture of [3] that the
locus in M where v meets a specific torsion shift of the theta divisor in J
should match the zero-locus of Z¢ after tweaking the signs of the moduli;
this is made precise in Conjecture 2.4.

We may further refine this prediction in the genus-1 case, where A is
now reflexive and the Laurent polynomial F(z) = ¢(z) + a now has only
one parameter a. In §3.1, we use integral mirror symmetry to compute the
torsion shifts, and show that (after a miraculous cancellation) they simply
translate the theta divisor to the origin! The prediction is now that the



K5 and quantum curves 2263

spectrum of the quantum curve is given by!
(1) og(@)={acM]via)=0 € J(C,)}.

Keeping in mind that g = 1 (A reflexive), ¢ is tempered, and h = 27, our
first main unconditional result is then the following

Theorem A (Theorems 3.7 and 3.10). Assume A C R x [-1,1]. Then
the “2" direction of (1) holds, and the “C” direction holds for “almost all”
ergenvalues.

We prove the “O” statement in §3.2 by explicitly constructing square-
integrable eigenfunctions of ¢ with eigenvalue a, using vanishing of v(a) to
show well-definedness. The result (in §3.3) on the “C” inclusion is obtained
by using the coherent state representation of ¢ to bound the accumulation
of eigenvalues in a manner that matches growth (~ const. x log?(a)) of v
as a — 00. One perspective on Theorem A is that we may view v(a) as
a normalized solution to an inhomogeneous Picard-Fuchs equation, and in
effect (1) states that the eigenvalues of ¢ are simply the points where v(a) €
Z (see Remark 3.5(i)). The latter condition is a statement about a period of
a mixed motive, and combining this with a variant of Grothendieck’s period
conjecture allows one to show conditionally that the eigenvalues of ¢ are
transcendental numbers (Prop. 3.13).

The conjecture of [3] yields a different prediction in the 't Hooft limit i —
00, which is not empty for g = 1 but much more interesting for g > 1. Re-
sults of Kashaev, Marinio and Zakany [11, 22| on the limits of spectral traces
of three-term operators can be viewed as providing a general formula for the
limiting value of a particular regulator period R, (a) = fA/ R{—x1, —x2}|c, at
the maximal conifold point &, in terms of special values of the Bloch-Wigner
(“real single-valued dilogarithm”) function. Here “maximal conifold” means
a particular point in moduli at which C acquires g nodes while remaining
irreducible; that is, the normalization Cj is a P. (The 1-cycle v is uniquely
specified in the region of moduli where the {a;} are large by the asymptotic
behavior R, (a) ~ —2wilog(a1).) By applying a method from [6, §6] for com-
puting regulator periods on singular curves of geometric genus zero, we are

!Note the implicit sign flip on a: we are saying that ker(p — a) # {0} when the
regulator associated to {—xz1, —z2} on p(z) + a = 0 projects to zero in the Jacobian.
The notation for the normal function changes from v to v as it no longer has multiple
components.
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able to verify the predicted dilogarithm formula in two infinite families of
cases, corresponding to

a _ -9..—9 g 1-5,1-J
FY () =214+ 29 + 2172, —i—z. Lajzy Tzy ) and

a 291, ;! 1-j
Fyy q1(z) =21+ 22 + 27 —I—ZJ Lajzy 7.

The g =1 case was already verified in [6, §6.3], while the g = 2 identities
were partially verified in [4, §6].

To give a more explicit statement of this result, write F'¢ := F% — q; in
either case, and [-]o for the operator taking the constant term (1n x1,T2) in
a Laurent polynomial. Then we have:

Theorem B (Theorem 4.1 and (122)). The requlator periods at the maz-
imal conifold point satisfy

,1 k(g+1) 27mig

log(2g +1) — Zk>0 k;(29+1 cl(Fgo)¥lo = 55 RS (a) = (297r7+1)D2(1+629+1)

and

. ori
log(2g + 1) — Zk>o m[(l@%il‘l)k]g ﬁRzy L 1( )= (29+1)D (1+e2sF1).

In fact, the two families are isomorphic under the moduli-map send-
ing aj +— ag—j+1, and the cycles are just two amongst g (named ~q,...,7g)
for which we can compute the regulator period at a, obtaining ¢ different
identities. Part of the proof involves using a method from [14] to determine
(from the series expansions of their periods) how many times the “limits” of
the {v;} at a pass through each of the g nodes, cf. Prop. 4.4; this method
may be of independent interest in the study of monodromy. Incidentally, the
identities we prove should have implications for the asymptotic behavior of
genus-zero Gromov-Witten numbers of the corresponding CY X, but we do
not pursue this direction here.

In an appendix we compute some regulator periods used in the paper
and relate the torsion constants so crucial in §3.1 to integral periods of a
limiting mixed Hodge structure. Finally, as a quick word on notation: we

use 0, = a% and §, = x0, throughout, as well as (E) for congruence mod m

(usually 2); and we avoid the use of Einstein summation.
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2. A conjecture in topological string theory
and its consequences

2.1. Quantum curves

Let A C R? be a polygon with vertices in Z? whose interior contains the
origin 0. Write

(2) F(z1,22) = 3, cAnze OmT™

for a general Laurent polynomial with Newton polygon A. The affine curve
C:={z € (C*?| F(z) =0} is then smooth of genus g := |int(A) NZ2|. It
admits a smooth compactification C in P, which denotes a minimal toric
desingularization of the toric surface constructed from the normal fan of A.
For instance, if A is reflexive with polar polygon A°, then g =1 and Pa
is constructed from the fan with rays passing through each of the nonzero
points of A° N Z2.

Taking a maximal integral triangulation tr(A), consider the fan ¥ on
{1} x tr(A) C R3. The resulting toric variety

(3) X =Py

is called a local C'Y 3-fold since Kx = Ox.? This will be our “A-model”, on
which we do enumerative geometry and run the Ké&hler moduli. Such non-
compact CY 3-folds often arise from the crepant resolution of a finite quotient
of C3. For instance, if 1 € Zay,1 acts on C? by diag{Cort1, <§k+17 C§k+1}, the
resolution X is obtained by taking A to be the convex hull of (1,0), (0, 1),
and (—k, —k) (with g = k). Another set of examples (with g = 1) arises when
A is reflexive: in this case, X is just the total space of Kp,,. There is some
overlap with the quotient construction: for instance, Kp2 [resp. Kp,, Kqap, 3]
arises from a quotient of C® by Z3 [resp. Z4, Zg].

2To see this, note that —c;(Kx) = ¢1(X) is the sum of the irreducible divisors
corresponding to the elements of A NZ2, which is the divisor of the first toric
coordinate wy on X hence rationally equivalent to zero.

3We shall use the notation dPg to refer to the generalized del Pezzo of degree 6
defined by the self-dual polygon with vertices (1,0), (0,1), and (—3, —2). (This is
called the “Eg del Pezzo” in [8].
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Local mirror symmetry connects the genus-zero enumerative invariants
of X to periods of the “B-model”

(4) Y = {(z,u,v) € (C*)? x C? | F(x1,x2) + uv = 0},

an open CY 3-fold with Ky trivialized by the form

1 _ (dxy1 )z Adxo /70 N du A dv 3
O gt (TG TR ) 0

We shall will say more about this in due course. It has been proposed by
Marifio and collaborators [3, 7, 21] that one can capture the higher-genus enu-
merative invariants of X as well by quantizing the curve C — that is, turning
the Laurent polynomial F' into an operator and considering its spectral the-
ory. The idea is to write x1 = €*, xo = €Y, and promote x,y to noncommuting
operators X,y on L?(R) with [%,y] = ik (A € R). More explictly, writing r for
the coordinate on R, we take X = pu, (multiplication by ) and y = —ihd,; and
then we set &1 = X, &3 = €Y. Notice that if f € L?(R) is the restriction of
an entire function, then &y is a shift operator, viz. (e71" f)(r) = f(r — ih).

The promotion of F' to Fis highly nonunique: for instance, eXey and
Y [resp. e¥e¥| differ by a multiplicative factor of €2 [resp. €| by the
Campbell-Baker-Hausdorff formula. The standard way to fix this (before [3])
was to employ a perturbative approach called WKB approximation, which
works modulo successive powers of A. In this context a connection between
quantization and K9(C(C)) was pointed out in [9], which we briefly review in
the next paragraph, if only to highlight that it is completely different from
the link (in the non-perturbative setting) we conjecture in §2.3 and establish
in §3.

So suppose that we want a function ¢ on C (rather than R) and a choice of
F given by Ey := F(i1,22) := F(ug,,e =) mod O(h), for which Fyp = 0.
(In this case, we will say C is quantizable.) Begin with formal asymptotic ex-
pansions F= > i>0 R F;, and ) =en 220 W55 Choosing a base point pg € C
with z1(pg) = 1, we take So(p) = f;; log(am)dx—g”l1 (integral on C), which locally
satisfies 05,50 = log(x2) hence

(FY)(p) = [F(z1(p), 22(p)) + O(W)]1h(p) = O(h)ib(p).

Of course, enSo only gives a well-defined function on C if the integral is
path-independent mod 27hZ. When this happens, one then solves for the
higher-order corrections S;, by postulating their form in terms of “topological
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recursion”, and finally solves for the F;. We remark that for i = 27, the well-
definedness condition on Sy is precisely the statement that the regulator class
R{x1, 20} € HY(C,C/Z(2)) of the coordinate symbol {z1, 22} € K2(C(C)) is
trivial. More generally, if the regulator class is torsion (which is the quan-
tizability criterion proposed by [9]), then the well-definedness condition is
satisfied for h = QM’T for some M € Z. This is a very different condition on the
regulator class than the one appearing in RHS(33) below, even in the g =1
case (see the discussion leading up to Lemma 3.11).

For the rest of this paper we consider only the non-perturbative (exact)
approach pioneered in |7]. Namely, we fix the single choice

A

(6) F= ZmeAmW ame

m1)2+m2§/

and try to describe its spectrum as an operator on L?(R). A little more pre-
cisely, if int(A) NZ2 = {m(j)}jzlw,g, then writing a; := a,,», Pj = 2
Fj(o) = Pj_lF|a1:--~:ag:0 and Fj = Pj_1F|aj:07 we are interested in determin-
ing the eigenvalues {eEr(ij)(“l""’a;""’%)}neN of Fj for j =1,...,9.* We should
note here that as long as the {a,,} are all real, the Fj,ﬁ’j(o) are obviously
Hermitian; even better, their inverses pj, p§0) are expected to be bounded
self-adjoint and of trace class, with a discrete positive spectrum. These prop-
erties, which justify indexing the eigenvalues by N and make the Fredholm

determinants
(7) det(1 + ajp;) = [Tymp(1 + aje= B (@)

well-defined, are proved in [11] and [19] for all the specific operators we will
discuss below.

Definition 2.1 ([3]). The generalized spectral determinant is

(8) Ze(a; h) = det(1+ 329, a; P py PF).

This function contains all the information we are after. For any fixed
{ar}rzj, we may recover (7) as Ec(a;h)/(Ec(a; h)|a,—0), since their zeroes
(in a;) are the same and both sides are 1 at a; = 0 [3, (2.74)]. So the spectra of
Fi,. .. ,Fg are simply slices of the zero-locus of (8), a union of hypersurfaces
in RY indexed by N. Note that in the genus one case, (8) is just det(1 + a1p1).

“For the time being, one should think of the non-interior parameters a,, as being
fixed. For the assertion that the spectrum is positive and discrete, further restric-
tions (such as those we impose for temperedness later) should be made.
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2.2. Local mirror symmetry and the CGM conjecture

Let r:= |[0A NZ?3|, so that |[ANZ?| = g+ r; and denote by L C Z9*" the
rank-(g + r — 3) lattice of relations vectors {{m }meanzz with >, £ (1, m)=
0. Each m € A NZ corresponds to a toric divisor D,, C X, amongst which
we have the g compact D; := D,,»». If C C X is any compact toric curve
(corresponding to any edge of tr(A)), its intersection numbers with the divi-
sors of the toric coordinates wg, w1, wo are zero, leading to a relations vector
Uy, = (C - Dy,) x. Such relations integrally span L, although the (Mori) cone
generated by effective curves may not be smooth or even simplicial. We will
ignore such “finite data” issues here, as we will eventually pass to a slice of
the complex-structure moduli space where this is not an issue.

So write {C;}i=1,.. g+r—3 for independent generators of this cone (i.e.
Hy(X,Z)eg), with corresponding relations E(i), and define complex structure
parameters

o0
9) zi = zi(a) = [[nennze am"

for C and Y. It is convenient at this stage to fix three vertices of A and set
the corresponding a,,’s equal to 1. We shall mainly work in a neighborhood
of the large complex structure limit (LCSL) point z = 0, though at times will
also be concerned with the maximal conifold point Z — the unique point (if
it exists) on the “boundary” of that neighborhood® where C develops g nodes
(while remaining irreducible) hence has geometric genus zero.

What are the periods parametrized by (9)? We summarize some results
from [2].° One may construct 3-cycles T, A1, ..., Agrr—3 on Y such that near
the LCSL

(10) /77:27ri, —t; ::/ n ~ log(z).
T A

i

%i.e., the region of convergence for certain power series representing the periods

of C; see §4.

6While stated there for g = 1, the proof — by “limiting” results of [10] for compact
CY 3-folds to the local setting — works for any A that makes the BKV polytope
A := {the convex hull of (—1,1,0,0), (2,—1,0,0), and (—1,—1) x A in R*} reflex-
ive. (For instance, take A to be the convex hull of (1,0), (0,1), and (—g, —g) [resp.
(—n,—1)] for g | 6 [resp. n | 12]). We also expect these results to hold more gener-
ally. A minor difference in formulation here is that instead of applying the BKV
limit to derivatives of the prepotential ® of a compact CY, we can directly take
derivatives of Fj.
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The mirror map z — e, which we usually express as t(z) (or t(a) := t(z(a)))
then induces a biholomorphism between neighborhoods of the LCSL and the
large volume point (in Kihler moduli space” of X). Next write

<11) fO(t) = % Zl CiliziStiltiQtig + ZdEHQ(X,Z)cH NO deidt

for the genus-zero free energy of X, in which the ¢; € Q are certain triple
intersection numbers® and the Ny g € Q are genus-zero local Gromov-Witten
numbers. The basic Hodge-theoretic assertion of local mirror symmetry is
that there are 3-cycles Bi,...,B, on Y for which?

(12)  Ju, 0= 55 2001 > Cygdh, Folt) — 3 0577 Ayt + 2miT;

6(1)

under the mirror map, where —Cy; = (£, ;)

of C; 1nD ,and T; € Q.
The 3- cycles are constructed by describing Y — (C*)? as a conic bundle,
with fibers isomorphic to C* over (C*)?\ C, and to C Ug C (pair of complex

lines crossing once) over C. This yields (cf. [6, §5.1]) an exact sequence of
MHS

=) C; - Dj, A;j = the coefficient
@

(13) 0— Q(3) D Hs(Y) S ker{H1(C) — H1((C*)?)}1) = 0
in which im(A) = (7) and the right-hand term has basis (27i times)
A1y ...y Ogtr—3, 617 s 7/39'

On the level of Q-vector spaces, B has a section M sending this basis to the
A; = M(oy) and Bj = M(B;). It is constructed by sending

p € ker{H1(C,Q) — H1((C")*,Q)}

first to its bounding Q-chain 'y, in (C*)? (with o', = ¢), over which M(yp)
is a 3-cycle with S! fibers (shrinking to points over ). Writing

R{f, g} :=log(f)% — 2rilog(g)ér,

It {J;} € H*(X) is a basis dual to {C;}, then the Kéhler parameter is Y, 74.7;

8by interpreting X as a (decompactifying) limit of a compact CY and computlng
intersections —J;, Ji, Ji, there; see §3 for details in the genus one case.

9The 2nd and 3rd terms are required in order for integrality of the periods, and
arise from applying the procedure described in [2]; the second term arises from the
fact that ch(Op,) = [D;] — 3[D3] mod Q[p], where [p] is the class of a point.
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for the standard regulator current for Milnor Ks-symbols,'® we have on (C*)?
the relation

d[R{~z,—y}] = 2 AL — (270) 25,2

This leads at once to

(14) 27Ti/ 772/ ‘ﬁf/\dyyz/{ —y} = R,
M(p) r @

®

which is to say that R,, = —2mit; and Rg, = >, C;0;, Fo — wi)_; Asjt; mod
Q(2).

In the physics literature, the nontrivial a,, on the boundary are called

mass parameters; if we write these as af, ..., a; 3, then our complex struc-
B g 1] :
ture parameters take the form z; =][;_;a; ™ x Hk 1% . Taking the

a; > 0 large but keeping the aj bounded, so that t; ~ Ej 1 Cijlog(aj),
the subleading terms (constant in a) can be shown!'! to be Q-linear com-
binations of logarithms of the negative roots {qx}x=1,. , of the edge poly-
nomials of F. (The latter are defined as follows: if e is an edge of A,
with vertex v, and m® € Z? is a primitive lattice vector along e, then put
Pe(w) := ZmeemZQ amw™Y)/m° ) The key observation is that each gy, is the
Tame symbol of {—x, —y} € K3(C) at a point p;, € CN (Pa \ (C*)?), so that
a loop g C C around py has fek R{—=x,—y} = 2rilog(qx)-

The physicists have a grand potential function Jx (t; h) which says “every-
thing they know how to say” about enumerative geometry of X, and includes
(refinements of) higher-genus GW-invariants. We refer the reader to [3] for
details, as we shall only discuss two special cases in which those invariants
(mostly) drop out. First, in the mazimally supersymmetric case h = 2w, we
have!?

Tx (b 2m) =51 {z 81, 01, — 33,00, +2}ﬁ0(§)

(15) X
+ Fi(t) + Fr5 () + Alg, 2r),

YHere Ty := ffl(]R<0) denotes the cut in branch of log(f), viewed as a 1-chain
oriented from f~!(c0) to f71(0), and 5Tf the current of integration over it.

"Done from a physics perspective in [8], and from a regulator perspective in
Appendix A. Here “negative roots” means the roots of Pe(—w). In particular, if
edge polynomials are powers of (1 4 w), the ¢ are all 1.

12Remark that ¢ is an abuse of notation since the g are B-model coordinates;
one would ideally replace them by monomials in the e** which equal g under the
mirror map. (Similar remarks apply to m in (16).) But we don’t need to be more
precise here as these terms quickly become irrelevant.
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where Fo, Fi, .7:"%\15 are free energies in which the instanton part is twisted by
a “B-field” B € 79+7—3.:13

o Fot) = 1 3, citistiytiy + 32y Noge ¢,
° ]:—1@) = >, bit; + FI"s'(t — 7iB); and
o FNS(t) = 3, bNSt; + FNS (¢ — miB).

In the 't Hooft limit, where h — oo (and a; — oco) while my, := e~ loa(ar)

G = %, and 7; := QWTt remain finite, one finds that

(16) h20x (th) = {12 Fo(T) + 122 20 bYS75 + Ag(m)} + O(h2).

=:J5(¢,m)

We may disregard the unknown functions Ag(m), A(q, 27) of the mass pa-
rameters. -

To state the main physics conjecture, we need two more ingredients. First
is the quantum theta function

(17) Ox(t; 1) = 3 pezs exp {Jx (L + 2mi[Cln; h) — Jx (L h)}

where [C] is the matrix Cj; (and so [C]n is a (g 4+ r — 3)-vector with entries
>_9=1 Cijn;). Terms in Jx which are 27i-periodic in the {t;}, including all
but >,(b; +b¥5)t; in the second line of (15), drop out. The second is a
“quantum deformation” t"(z) = t(z) + O(h) of the mirror map. (We shall
also write t"(a) := t"(2(a)) where convenient.) Again, we describe this where
we need it: at A = 27 it is given by

(18) t(z) = €7(2) = ti((=1)%2) + miB;
like ¢;(2), this is asymptotic to —log(z;), but the signs are (in general) dif-
ferent in the power-series part. In the ‘t Hooft limit, the previous asymptotic

relation ¢; ~ 3. Cyjlog(a;) + > Dik log(gx) becomes exact in the sense that
(with 75, ¢j, and my, as defined just before (16))

(19) T =21 ; CiiG — 32y Dik log(my).

13Tn the g = 1 case, B, is just Cj1; see §2.3 below and [23] for g > 1. We will give
Hodge-theoretic interpretations of b, b when g=11in §3.
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Conjecture 2.2 ([7],[3]). Under the quantum mirror map, the general-
ized spectral determinant of C is given (up to a nonvanishing factor) by the
quantum theta function of its mirror:

(20) Ze(aih) = X @TOK (" (a); ).

This postulates a fundamental and very general relation between spectral
theory (of the B-model) and enumerative geometry (of the A-model). Since
local mirror symmetry relates the latter to Hodge theory of the B-model, it
should imply relationships between Hodge/K-theory and spectral theory of
our curves with no reference to mirror symmetry. We now derive these in
our two special cases, under the assumption that F' is integrally tempered:
all g = 1 = my; equivalently, all edge polynomials of F' are powers of w + 1.
Accordingly, by a (resp. z(a)) we henceforth shall mean just (ai,...,aq),
with the remaining {a,,} determined uniquely by this constraint.

2.3. Consequences in the “maximal SUSY” case

Of course, the use of local mirror symmetry suggested in the last paragraph
requires elaboration, since the classical and quantum mirror maps are not the
same. One should rather expect a relation between Hodge theory of C, and
spectral theory of a “partner” C, given by z = t~1(t"(2’)) or some variant
thereof. (In fact this is still insufficiently precise, since the spectral theory
and the regulator class really depend on a.) We now work this out at i = 2.

First we address the nature and 81gn1ﬁcance of B. Because the monomials

2™ in F were quantlzed as emxEmeY — o5 mlmza%ﬁ"li:g”, at h = 27 we have
F=3% (~1)™™a,,z™. The B-field is determined mod 2 by the effect on

the signs of the z; were we to replace a,, by (—1)"12q,,: namely, B; =
- - @

Zm mlmgﬁ(mi) . Under the assumption that
(21) OAN(2Z x 27Z) = 0,

this is compatible with taking B to be in the Z-span of the columns of [C],
which we write B; = Z§:1 A;C;;.M Notice that then t((—1)2a) = (—1)B¢(a),

Mmod 2, A is just the characteristic function of AN (2Z x 27Z).
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so that by (18) we have t*7((—1)2a) = t(a) + 7iB and the conjectured equal-
ity (20) becomes

(22) Eo((—1)2a; 27) = /xUD+ME2MQ ¢ (t(a) + 7iB; 277).

That is, after absorbing the “47iB” twist into ©x and Jx, our Hodge/
spectral “partners” are related by at most a change of sign in the complex
structure parameters. The main question is what the quantization condition
looks like: which values of a make Ox(t(a) + wiB; 27), hence the spectral
determinant, zero?

This is where the local mirror symmetry enters. Under our assumption
(21), its previous incarnation in (12) can (by a tedious intersection theory
argument) be expressed as'®

(23)  Rg,(a) = 3, Ci0, Fo (L(a) + iB) + (27i)°B; (B} € Q).

Next, since our temperedness assumption has eliminated the Tame symbols,
the {R,,}777~° are no longer independent (unless r = 3). More precisely,
there are g cycles v; € H1(C,Z) with regulator periods R, ~ —2rilog(a;)
(cf. Appendix A), whence

(24) Ra, =32, CijRy;

and the A; can be chosen so that {vj,ﬁj}?zl is a symplectic basis.'® The

regulator class R = R{—z1,—x2} € H*(C,C/Z(2)) then has a local lift!7 to
H'(C,C) given (in terms of the dual symplectic basis {7} B; ?:1 of H') by

(25) R = 22:1 (R’Y/y; + Rﬁzﬁg) )

whose Gauss-Manin derivatives

~ OR
(26) wj = Vojor, R =7j + 201 8Rfj By

15 Although the regulator periods R, [resp. periods €, j, in (27) below| are in-
finitely multivalued, they are periods of a class R [resp. classes {w;}] which are
single-valued in a [resp. z]; so we shall loosely write them as functions thereof.

'6This is again by local mirror symmetry: the R, [resp. Rq,| are the A-model
periods of flat sections arising from curves dual to the D; [resp. J;]; while the Rg,
are those arising from ch(Op, (—E;)) U ['(X) for suitable curves E;.

"For our purposes, this can be regarded as living on an open neighborhood (in
z-space C9) of (0,¢€)9 for some € > 0.
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are classes of holomorphic 1-forms by Griffiths transversality. Evidently these
are normalized so that the symmetric g x g matrix!'®

Qj1j2 (g) P= 27r1 Zzl o 011]1012]28t 875 ]:0( ( ) + WiIB)
OR
(27) o >i, Cinji O, Rp,, = 325 Cijy aRB]2
aRBm
- 8R = f'yjl Wy,

is the standard period matrix of C.

We have already observed that the isomorphism class of C depends only
on z, which parametrizes the standard coarse moduli space for toric hyper-
surfaces; and we are restricting to a “tempered slice” of this space. However,
R only becomes single-valued in a, forcing us to work on the finite cover
M :={a € (C*)9 | Cy,) is smooth} of this slice. Let C ©> M be the uni-
versal (compactified) curve, and set # := R'7,C ® Opq, H := R'7,Z, and
J =H/{H+ F'H}. Then ¢ is the sheaf of sections of the Jacobian bun-
dle J 2 M, and 2 /H is the sheaf of sections of the C/Z cohomology bun-
dle ’H(lc /7~ M., which factors through the obvious CY-torsor ’Hé /z 27
By temperedness, the symbol {—z1, —z2} € K2(C(C)) lifts to a motivic co-
homology class Z € H3,(C,Z(2)) (= CH*(C,2)), and we make the key

Definition 2.3. By the higher normal function associated to Z, we shall
mean the well-defined section ﬁR of ’Hé /2> OF its projection

to a section of J. The latter is computed by evaluating R as a functional
on holomorphic 1-forms (modulo periods), i.e. by the column vector

Vi = (27‘(’1)2<R w]> (] = ]-avg)
(28) = 47r2 Ze 1< ‘y/ﬁ + R,Beﬁz: 7; + ZE' Qj@ﬁ?)
= W(Zzzl Ry, — Rﬂj)

modulo the Z-span of columns of (I, | €2).

180bviously, these are the entries of a matrix; the full matrix will be represented
by Q or [©] below.
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To use mirror symmetry to compute v, put jo = Rg, — (27ri)2Tj, and ob-
serve that by (23) thru (27) (together with Q;; = Q;/;)

§i(a) = 47rz >, Cing (32, 01, — 1)0h, Folt(a) + 7iB)

22 (X6, — DRs, = (5% 2 Ra, 0. Rs, — Rp,)
(27“ ZZ Y, Cie R, 04, Rg, — Rﬁj)

= 4%(2 R, Qj — jo) = v —B‘;-.

Returning to the quantization condition, the exponent in (17) is

(29)

t4

(30)  JIx(t+ 2mi[Cln; 2m) — Jx (¢ 2m)

= 7itn[Qn + 27in - £ — o ij Ci [Ti=i Civjenes
where
o Qs = 55 304 i Ciniy Cioju O, Or, Fo(t) and
o &= o > Cii (X2, 6, — 1)0h, Fo(t) + 3, Cij(bi + b5)

by a straightforward computation, cf. [3, (3.28)]. Substituting in ¢ = t(a) +
miB, the first two terms of (30) become

(31) mi'n[Q(a)]n + 2min - (v(a) + B + 3[Q(a)]A)

(for B € Q) by (27)-(29). By an intersection theory argument and the iden-
tity n® = n, the cubic third term becomes —7% P n;D? mod Z(1), which
©

may be absorbed into B. Therefore, writing A := %A and @ for the usual
Jacobi theta function,

(32) Ox (t(a) + 7iB; 27) = O(v(a) + B+ [Q(a)]4, [2(a)]).

We have thus deduced from Conjecture 2.2 a striking relationship be-
tween the quantization condition and the higher normal function. Let DyC J
be the theta divisor and Dy [%] its translate by (minus) the torsion section
B + [Q]A.

Conjecture 2.4. For A satisfying (21) and F integrally tempered, the zero-
locus of the twisted spectral determinant Z¢((—1)2a;27) is ezactly the locus
where the normal function meets this torsion shift of the theta divisor: as
subsets of M, we have

(33) ZL (Ze((—1)2a;2m)) = p (v(M) N Dylg]) -
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In genus g = 1, there are 15 reflexive polygons (up to unimodular transfor-
mation) which can be presented inside R x [—1,1]. After making the torsion
shifts completely explicit in §3.1, we prove the “2” direction of (33) for these
cases in §3.2.

2.4. Consequences in the ‘t Hooft limit
Our spectral determinant Z¢ has fermionic spectral traces which general-
ize, from the (g = 1) case of a single operator, the traces of p‘?N acting on

AN L2(R), cf. [3, §3.3]. Defined by

(34) Ec(a;h) =: ZNl,...,NgZO Ze(N, h)ﬂﬂ

these can clearly also be expressed in terms of loop integrals about 0:

da1 dag
(35) Ze(N Zc(a; h) N1+1 ’ aNg+1‘
9

Applying Conjecture 2.2 replaces Zc(a; 1) by >, ¢z eIx (" (@) +2mi[Clnh)  where
the 27i[C]n simply accounts for the change in t"(a) as the a; go n; times
around 0 — or equivalently, as p1; := log(a;) increases by 2min; (for each j).
Accordingly, (35) becomes
(36) m fiolooo ... fi‘iooo ex (tM(a)ih) =329, N"“"d,ul Ao Adpg,

Recall from §2.2 that the ‘t Hooft limit takes A — oo while essentially
fixing ¢; = 5 and 7; = e h -, which we will also impose on A; -’ . As tem-

peredness makes the g, = 1 hence my = 1, we write Jg*({) := (g ,1), and
note that (19) reduces to 7; = 2m >, CijCj.

Remark 2.5. In fact, even if we don’t assume temperedness, but fiz the edge
27
polynomials hence the {q;}, the effect is the same since my (= e~ 1°8(@)) = 1

in the limit.

Now by (16), for 7> 0 (36) becomes

37 hepioeo i G RIEO-X, NGO ey A A dCy

(27mi)9 J—ioco —ioco

and we write é (A) for the stationary point of (the leading part of) the expo-
nential, where 0 = 0, (Jg*(¢) — 2_jAj¢j), or equivalently A; = d; Jg (€), for
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each j. By the saddle-point method, we can write (37) as exp(h?{.J; @(A)) -
> A;¢i(A) + O(h~2)}), which is to say that

~

(38) Jim (95,572 log Ze (hA, h)|a=0 = —¢;(0)-
Moreover, according to [3, §2.3], 7i(A) = 2w >, CZ]C]( ) is nothing but the
classical mirror map in the “conifold frame” Wlth A a parameter which van-

ishes at the maximal conifold point 2.1 In other words, if a is any preimage
of Z in M, then we have R, (a) = —27i7;(0) and

(39) R, (a) = —4n° i;(0) mod Q(2).

On the other hand, if we set N; = 0 for j > 1, then the asymptotic expan-
sion of Z¢(N1,0...,0;h) = tran p2(ry ((p) (0 ))®Nl) can be computed via oper-
ator theory and abymptotlc properties of the quantum dilogarithm. This
is worked out in [11, 22| for the three-term operators (pgo))*1 =4 e¥ +
e~ ™™ corresponding to the Laurent polynomials

mgj) (J)

(40) Fy n(z) =21 + 22 + 27 15 —|—ZJ Lajxy Ty

(Here we recall that the {m()} index the interior integral points of A; for
instance, if m = n = g, then mY) = (1 — 4,1 — j).) Note that by Remark 2.5,
7(A) will actually compute the mirror map/regulator periods in the conifold
frame for the families defined by the integrally tempered polynomials®®

Fm,n(@) = +.T2+331 Ty +Z] 10’]1’{” Lo
(41) m+1 Eﬂ 1 n+1

l—gmil _
+Zgl 1( ) 91 T, q1 _|_Zgz 1( ) 92x2 2

where g1 := ged(m + 1,n) and g2 = ged(m,n + 1). Anyway, the result of [op.
cit.] (see also [21, §4.3]) is that

(42)  lim (9, h2log Zc(hA1,0,. .., 0;h))|x, o

h—o0

_ m+4n+1 m+1
- T oxz D( 5mnmmn)

19We are not aware of a proof of this statement, but there is strong computa-
tional evidence; it is also gonsistent with the observation, in view of (23), that the
vanishing of ¢, Jg* (¢) at ((0) is equivalent to that of a Q(2)-translate of Rg, (a) at

a € t71(#(0) — wiB). This is exactly what should happen at a g-nodal fiber.
200f course, there is no distinction between (40) and (41) if g1 = 1 = go.
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where Dy is the Bloch-Wigner function, 3,,, := emfﬁﬂ, and

m —m
1o _ dmn"dmn
mmn -

—1 -
’ dm,n"Fm,n

Since LHS(42) must agree with LHS(38) (with j = 1), in view of (39) we
arrive at

Conjecture 2.6. For the families Cp, , arising from (41), the regulator pe-
riod R+, asymptotic to —2milog(a1) at the origin has value

(43) iRy () = L Dy (<37 vy, ) =t Dy mod Q(1)

27i _3m,n

at the maximal conifold point.

Example 2.7. A toric coordinate change brings Fbo into the form F3,
but with a; and as swapped. So Conjecture 2.6 actually yields predictions
for both nontrivial regulator periods at a = (5, —5), namely =R, (@) =
Doo = 3Dy(e5 w) and 5L R, (@) = D31 = 2Dae’ w0) mod Q(1), where

= 127‘/5 This assertion was checked in [4] by a computation we will gen-
eralize (and make more rigorous) in §4.

3. From higher normal functions to eigenfunctions

In this section we state and prove a precise version of Conjecture 2.4 in the
genus 1 case.

3.1. Integral mirror symmetry and quantization conditions

The condition g = 1 is equivalent to reflexivity of A, whereupon X becomes
simply the total space of Kp,.. There is a unique compact toric divisor D =
Dy 2 Pao C X, corresponding to the ray through (1,0,0), which amounts to
the zero-section of p: X — D. Denoting by E° C D a general anticanonical
(elliptic) curve, we remark that D? = —E° in H*(X).

Let ¢ be the unique integrally tempered Laurent polynomial with New-
ton polygon A, constant term 0, and coefficients 1 at the vertices, and (writ-
ing a = ay) take F' = a + ¢. After compactifying fibers in P and birationally
modifying the total space, this produces a relatively minimal elliptic fibration
& — P! with rational total space, fibers E,, and discriminant locus ¥ U {co}.
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Writing r := |0A N Z?| and r° := |0A° N Z?|, Ex has type L., and ¥ is cut
out by a polynomial Ps, of degree 12 — r° = r.2!
A section of the relative dualizing sheaf for our family is given by

ReS (d$1/l‘1/\dﬂ?2/$2)7

(44) wla) := I+a=tp(z)

271'1

with period??

(45) wy(a) == [Lwla) =1+ 3 0(~1)*¢"oa"

in a neighborhood of the large complex structure point oo. More precisely,
this series converges on D* := {a | |a| > |a|} C U := P!\ (XU {c}), where
the conifold point a can be described by —a := min(¢p(R4 x Ry )) since the
coefficients of ¢ are all positive [5].

By assumption, all the tame symbols of {—xz1, —z2} are trivial, and so
the Ry, (¢ =1,...,7 —2) must be integer multiples of R, ~ —27ilog(a).
More precisely, we have ;—%Rai =t;, = Cjt = —(C; - D)t = d;t, where d; €
[0,4] N'Z is the lattice-length of the edge of JA corresponding to C;. From
Appendix A, we have on the cut disk D™ :=D*\ (D*NR_)

(46)  t=t(a) = g% Ry(a) = log(a) + Y4 T [Moa*,

which gives w = 2mV5 R hence (1n the notation of §2.3) wq = w/w, globally

on U. We also see that et ~ a~! makes sense as a coordinate on D = D* U

{oo}. The local mirror symmetry results in [2] can be made very explicit:23

Lemma 3.1. On D™ we have the following identifications:
(a) Rg(a) = %t(a)2 + mir°t(a) + (27Ti)2(% + ﬂ) — > k>0 ke k(@)
(b) a) (= %$> 5eta) = 5 = g3 Laso K20e M), and
(c) v(a) = gt(a)® + (5 + T3) + g3z Lo K(1 + kt(a)) e,

where Ny, is the local GW-invariant for D counting rational curves whose
classes C € Hy(D) satisfy (C- E°)p = k.

2lFor a generic choice of ¢, the remaining singular fibers of £ are I;’s. Since &
is rational (as a blowup of Pa), the degree of the relative dualizing sheaf must be
1; and as each Iy contributes % to this degree, there must be 12 — r° I;’s. Each of
these contributes 1 to deg(Ps), and this degree is invariant as we specialize ¢.

22[.]y takes the constant term; v is y; from §2.3.

23Here as above 8 = 1, Q = Qq1, v = v1.



2280 C. F. Doran, M. Kerr, and S. Sinha Babu

Proof. X is described in |2, §6] as the large-fiber-volume limit of an elliptically-
fibered compact CY 3-fold W — Pa. with section D. Let Cq,...,C, be
the components of Pa- \ (C*)? (and their images in X), D} := p‘l(CZ-), and
Co = p~L(pt). Then {Cy,C,...,Cr_2} span H4(W Q), {D,D},...,D._,}
span H?(W,Q), and we can write D2 =3 ,Ci= ZZ 1 elC’ for
unique e; € Q, whereupon D3 = Z 24, ie; =1°. Let Jy,...,J-_o denote a
basis of H*(W,Q) dual to Cy, ..., Cr 2, and define Jq,...,Jr—2 by J; :i=
J; — %Jo. Then the ¢; in (11) are given by ¢;,i,i, = —Ji, Jip Jig -2+

The integral periods of the A-model VHS given by |2, (6.13-15)] lead (in
the LMHS as tg — 0) to the following periods for our A-model VMHS. First,
the limit of the Gamma class for W yields I'(X) := 1 — iD? + (A Cp =
1+ Y02 ey + (3 + &7r°)Co € H*(X, Q). Next, for integral periods we need
to compose ch(-) Uf(X)' K™ (X) — H(X,Q) with the following as-
signment of perlods to cohomology classes: pt — 1; C; — 21 t; (27r1)2R
and D — (27ri)2 Zi:l d;0y, Fo(t). Applying this to Op, we have ch(Op) =
D — iD?+ D3, whence ch(Op)U I(X)=D+ 3,60+ (3 +5), and
finally (after multiplying the resulting integral period by (27i)?)

(47) Rg =3, di0 Fo(t) + miy; ety + (2mi)% (3 + 5).
We also recall from (27) that the period ratio is given by 2 = 27711 > di0y Rg,

and the normal function by v = ;5 (R,Q — Rp).
The last step is to substitute ¢; = d;t, which gives

(48)  Fo(t) = —2(3, Titi)* + ¢ Ny e (©E)nt — D3+ 3o Mpe ™™

since 3, Jid; = >, didi — 3, 94 Jy = (Jo — D) — Jo = —D [2, (6.5)]. Using
d;0y, = 0 in (47)ff now gives (a)-(c). O

Remark 3.2. We point out two immediate consequences of Lemma 3.1.
First, along with (46), (c) makes it clear that v(a) as well as

(49) V(a) == wy(a)v(a) = £ (Rywg — Rpw)

24The results of [loc. cit.] are stated in terms of derivatives of the prepotential
®(tp,t) of W in the limit as ¢y — co. One can obtain the free energy Fo(t) for
X by substltutmg to =->"] 2 £i¢; into @ and taking to — oo in ®"$*; we then
have (2m 36D<I> 5m0) ey (— o —I— >, di0;)® (27”)2 >, di0;Fo, hence the version of
the A-model periods glven here.
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are real-valued on D* N R, . Second, notice that

8}% wﬁ _ Y(a)

w37

(27r1) 207 Rg = 812%7536 aRws R,

where the Yukawa coupling V(a) = wy6.wg — wgdaw~ blows up at a. Differ-
entiating (a) twice expresses this as a power series in e, from which one
deduces that

(50) lim supy ., /] = exp(R(t(a))).
as in |6, §5.4| (though this result is now unconditional).

We may now identify all of the torsion constants in §§2.2-2.3:2°

Lemma 3.3. In Q/Z the following equalities hold:

(i) b= dibi =15 — % and NS .= 3, dibNS = 70 — L.

(i) T=43+% andB® =1 — L.
(ili) A =1 =B, where B is as in (32)~(33).2

Proof. (i) These are the coefficients of ¢ in F; and F° (after substituting
t; = d;t), which can be derived from [8, (4.18) and (4.21)].27 Namely, we
have b; = 57c2(X) - J; [8, (4.18)] and co(X) = (11r° +1)Co + 123, €,C; =
(107° 4 12)Cy — 12D? |2, §6.2] hence

_ _10r°+12 12r° __ r° 1
2402 E:dJZ* 2402( ) D= % T 21 — 13 %

According to [8, (4.21)], we have

de PE r o
FS ~ —dlog(Ps(a)) ~ — 28 Jog(a) ~ — &t ~ (57 — L)t.
(So of course, (i) holds in Q, but we’ll only need it mod Z.)
(ii) The value of T is immediate from Lemma 3.1(a). To compute B® =
v(a) —&(a), we need to revisit £ from (29). The B-field is given by B; = d;
(cf. §2.3 above or |8, §3.2]), and A = A; =1, which means that replacing

25 Again, for simplicity writing T = Ty, B® = B}, B =By, and A = A;.

26and not as in (31), where B does not yet incorporate the correction from the
cubic term.

2T"We should point out here that our “r” is not the “r” in [8], where it means
ged{d;}. (Moreover, their “¢” is rgxMmg times our t.)
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t by t+ miB is equivalent to replacing t by ¢ + mi. Together with >, d;, =
t> ., di0y, =ty = 0 and (48), this gives

&(a) = 15 (8 — 1)y Fo(t(a) + i)

(51) o o _
= St(a)? + 5 + 125 Y0 k(1 + kt(a))Mye k@

and, together with Lemma 3.1(c), the claimed value of B°.
(iii) We already have A = A = 3. For B, we compute

E(t(a) + mi) = g2 ((t + 7i)9y — 1) 8 Fo(t(a) + mi) + (b + bNS)
(52) = &(a) + 2502 Fo(t(a) + 7i) + (b + bN9)

=v(a) + %Q(a) + (b + b8 —B°)
and note that the cubic term in (30) becomes —%iDBn3 =—"rind = — 2 2rin
mod Z(1). Together with (i)-(ii), this results in the apparently miraculous

cancellation

o

NS o r
(53) B=b+bNS B =

[\J[9N)

D[

modulo Z. O

Finally, we turn to the quantization conditions, i.e. to the spectrum (as
an operator on L?(R)) of?8

¢ = ZmeaAmW (=1)™m™M2a, 2" 35"

(54) e . A
=Y meonnze (1) T an, B BT = —p(—d, — i)

or p:= ¢t Writing o(-) for spectrum and A(a) := Z(w-(a),ws(a)) for the
period lattice, we have the

Proposition 3.4. In the genus-1 case, Conjecture 2.4 is equivalent to
(55) o(@)={acU]|V(a)e Ala)}.

Proof. Noting that M = U, in the LHS of (33) we are taking the zero-locus

of E(—a;27) = det(1 — ap), which is precisely the spectrum of ¢. The RHS
of (33) is the locus in U where v(a) meets the theta divisor (which is %@)

mod Z(1,Q(a))) shifted by AQ(a) + B = 1+S;(a)’ which is to say where v(a)

28Remark that ¢ = F; and p = p; in the notation of §2.1. We have mimy =
)
mi + ma + 1 because (21) always holds for reflexive polygons.
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is zero mod Z(1,9Q(a)). Outside of D™, this condition is only well-defined in
the sense of analytic continuation; to fix this, we multiply by w, to get the

form displayed in RHS(55). O

Remark 3.5. (i) The condition V(a) € A(a), which is well-defined on U,
reduces to v(a) € Z(1,9Q(a)) for a € D™. Moreover, the argument in [19, §3.1]
using the coherent state representation shows more generally (for any ¢
considered here) that o(¢) belongs to Ry, and is countable with eigenvalues
Aj limiting to oo (so that p is bounded). In fact, we expect that o(¢) C
(|a],00), as is clear for ¢ = a1 + a7 +xo+ a5 or oy + a7 Fxe + a5t +
T1Ty L. xl_lxg and experimentally observed in other cases. This would mean
that the quantization condition “V € A” reduces not just to v € Z(1,2), but
to

(56) v(a) € Z,

as v is real by Remark 3.2. We'll have more to say about this in §3.2.

(i) The most crucial “torsion” invariant in Lemma 3.3, leading to the can-
cellation in (53) and the simple form of (55), is surely the constant term T
of the regulator period Rg. As an independent check, one can directly com-
pute this constant term without using mirror symmetry and the Gamma
class; see Appendix A for examples. Another check on our quantization con-
dition is that it should coincide with that in [8, §3.3.2] when all Q,, =1
(= Do(m) =0 and B(m,2r) =b+ b5 =% —1). Since voly(E) in [8,
(3.24)] is just Rg, we may also identify “C” there as . Taking E = log(a)
and Eei = t(a), [8, (3.105)] collapses to &(a) — 5 € Z + 3, hence to v(a) € Z.

(iii) There is an interesting sign discrepancy in (55): quantizability of
 — a is being linked to a regulator class on the curve E, C Pa compactifying
solutions to ¢(z) + a = 0. Blame it on the B-field! Or better yet, proceed to
the next section for a more basic reason why it has to be this way.

3.2. Construction of eigenfunctions for difference operators
In this section we assume that A is a reflexive polygon satisfying
(57) A CRx[-1,1],
and ¢ is as in §3.1, so that

(58) p(z) = 2™ (w1 + 1) 22 + po(a1) + 27" (21 + 1) a3
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Remark 3.6. Regarding unimodular change of coordinates (1, z2 + 2325,
x$z$ with ad — bc = 1) as an equivalence relation on reflexive polygons, there
are 16 equivalence classes. All but one?” of these has representatives satisfy-
ing (57).

For each a € U, E, C IPA denotes as before the Zariski closure of E} :=
{z € (C*)? | p(x) + a = 0}. Forgetting x2 produces a 2 : 1 map m: E, — P!
with corresponding involution ¢: E, — E, and discriminant

(59) (po(x1) + a)2 — 4 (g 4 l)d“+d‘ =: D(x1).

The latter is a Laurent polynomial (in 1) with “Newton polytope” an interval
[—c_,cy] containing [—1,1] (and contained in [—2,2]), whose length is the
number of ramification points of 7~1(C*) =: EX N C*; denote the set of
these by B C E¢, and let pg € B be one of them. The holomorphic function

(60) 8(p) = 21(p)™ (21(p) + 1) (22(p) — x2(e(p))),
on E satisfies 62 = (7%)* 2, thereby providing a well-defined lift of v/Z to

Writing E for the fiber product of 7% and (—exp): C — C* yields a
diagram

(61) E, DR P pX 5 3
Wi Wxi II l
P! °C* C > =z

— exp

with vertical maps of degree 2, and points in EX [resp. C| denoted by Z [resp.
z = II(Z)|. We also write P(2) =: (z1(2), z2(Z)), where z1(2) = z1(z) = —¢€?,
and %y € EX for the point with P(Z) = py and (z0) € (—,7]. For later
reference put Ef := P~1(E¥), which is either all of EX or the complement
of TI71(7Z(1)).3°

Now suppose V(a) € A(a).If a € D7, then v, 8, w,,wg, 2, R,, Rg, and
v are well-defined; if not, we take them to be analytic continuations (along

Prepresented by A = convex hull of {(—1,—1), (2,—1), (=1,2)}, with P = P2
30There are 4 equivalence classes of ploygons for which E} = E;, corresponding
to X =P2?, P! x P!, Fy, and Fy. Otherwise, for Z € EX \ EZ, in view of (58) we

have =1 = 21(2) = z1(2) = —e* = z € Z(1).
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the same path) to a of those objects from D~. (We will not write w(a) etc.,
just w, since a is fixed and understood.) Then we have

(62) v == (RyQ — Rg) = n1 + nof
for some ni,ny € Z. Notice that the regulator class R is only well-defined in
HY(E,,C/Z(2)), so its value on 7 is still represented by R, := R, — 47r?na.
This replaces (62) by
(63) Rg — R, 20 = —dn’ny € Z(2),
and we claim this allows us to define a holomorphic function on E’(’; by
- i dra(3) R, X

(64) X(Z) := exp (i {fg,:o z ;2((;)) - f'%o P w}) ,
where w is as in (44), and @gﬂ is any path from Zj to Z.

The issue here is well-definedness, since nothing in the braces blows up

on E. To check this, we remind the reader that for a loop £ on E* based
at po, the value of R on its homology class is computed by>!

(65) Ry Z%) [ log(—z1)dlog(—x2) — log(—z2(po)) [ dlog(—z1),

where log(—z1) is analytically continued along . [13]. If . lifts to a loop Z
on E}, then clearly [, dlog(z1) = 0, and (65) pulls back to [ 29223) Now

16
given two paths &, 2’ from % to Z on EZ, take £ to be the loop obtained
by composing & with the “reverse” of &', and write £ = k1y + k23 in
H,(E,,Z). (By integral temperedness of {—xz1,—xz2}, this determines R¢
mod Z(2).) The difference between the braced expression in (64) for these
two paths is then

[s zﬁz((;)) - f—: [ P*w = [,log(—z1)dlog(z2) — 93—: f[pw

= k1R, + koRg — 22 (k k

(66) = FiRy + keRg — 5 (k1wy + kawp)
= k1(Ry —Ry) + k2(Rs — R Q2)
= 47r2(k1n2 — kany) = 0,

7(2)

310f course, dlog(—z) = dlog(z) = “£. Note that (65), which is due to Beilinson
[1] and Deligne [unpublished], is different from the regulator formula using the
current R{—x1, —z2} (in which the function “log” is not analytically continued but
has a branch cut), but is easily shown to give the same integral regulator.
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using (63). After multiplying by 5, this discrepancy is killed by the exp and

the claim is verified. )
In fact, x(2) extends to a meromorphic function on E which is holo-
morphic at II~1(0). Of course, w has no poles on E,, and so P*w has none

on E~ax; the potential culprit is %7 when d,,d, are not both zero. Writ-

ing z = 27in + w + O(w?), x2 = w? (for d = —d,, or dy), we find fzdx—”;? ~
dzo —nd
~ T2
Finally, writing 7: E; — E,* for the involution over C, we put

2ridnlog(w) hence exp(o- [ 2%2) ~ w4, as desired.

(67) B (3) =

The denominator has zeroes at P~1(B), which does not intersect any of
the poles of the numerator.3> Moreover, these are simple zeroes, and the
numerator also has zeroes at these points (which are just the fixed points of
7). So ¥ is holomorphic on EX \ TI~1(Z(1)\{0}). Notice also that applying
I to Z changes the sign in the numerator and denominator of (67) (since
P oi=10P). We conclude that there exists a meromorphic function ¥ on
C, with (at worst) poles on 27i(Z \ {0}), such that ¥ = IT*¥; we write this
loosely as

(68) U(z):= B

and denote its restriction to the real line by ¢ (r). We are now ready to prove
the

Theorem 3.7. For A satisfying (57), the “2” direction of (55) holds. That
is, if V(a) € A(a), then a € ().

Proof. First note that #; = multiplication by e” (not —e"), 2o = =29 and
¢ = —p(—&1, —22) are unbounded operators on L?*(R), whose domains are
roughly the proper linear subspaces on which each operator preserves square
integrability. (See [19] for details.) In particular, it is possible in this sense
to be in the domain of ¢ while failing to be in that of i’fl and i‘éﬂ, which
is just what happens for (). Indeed, assuming V' (a) € A(a), we claim that

32The only way ¢ has a fixed point at £, = —1 is if d, = d¢ = 0.
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Y € L3(R) \ {0} and
(69) o = ayp,

which will obviously prove the theorem.

As W is holomorphic on {z € C | —27i < ¥(2) < 27i}, with meromorphic
extension to a neighborhood of its closure, we have
:t27r18 w( ) :|:27r182\p( ) \I/(’l“ 4 27Ti)

(70) = W(re(r)) = (L20)(r) = (S)(r).

Furthermore, 74 has a unique lift 74: Eax — E(f with the property that
P o 74 = P; and so the difference operator .74 lifts to (.ZLx)(2) == x(7(%)).
By the independence of path in (64), we can take our path from Zy to 74 (2)
to be the composition of Ti(gzz ) with a fixed path QZSE from Zy to 7+ (2p).
That is, writing P(25) = .i”oi, we have

(71)
X(72(2)) = exp (2L {fa(@z )+ P Z%ZQ((? ?j: L (PE)+PE Pm})
- (20 - 1 )
X exp (g {fgoj: log(—x1) %2 — % o w}) _

Adding and subtracting — log(—z2(29)) fgoi dm—“’cll (= F2milog(—22(%p)) ) in the
last braced expression, (71) becomes

(72) X(é)ei{IOg(ixQ(2))7103:(75”2(20))} X ei{Rzét_%wxét}e$ log(fzg(éo))'

By the same calculation as in (66), we have R g+ — %wiﬂoi € Z(2), and so
after cancelling log(—z2(po))’s, we arrive at

(73) (LX) (E) = —22(2)F - x(2).

Since —&1 = —fler = flimer = iz, (r), ¢ acts on @ as — (U, (r)y =),
which lifts to —p(pa, (), -7 ) for functions on EX Applying this to x(2)
gives —p(x1(z),x2(2)) - x(2) = ax(Z), and applying it to x(Z(2)) yields

—p(x1(2), 22(6(2))) - x(6(2)) = ax(i(2)).

(Here we are just using the equation of the curve, yp(z1(2),r2(2)) +a =
0; and we can ignore 6(P(2)) in the denominator of ¥ since .+ doesn’t
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affect it.) So the overall effect on U, hence 1, is multiplication by a. This
proves (69).

We still need to check is that 4 is indeed square-integrable. Clearly [ P*w
has a finite limit as r — +00, so we consider the behavior of

(74) Jre&l) = [log(—1(r))dlog(~zs(7)).

Let g € E, \ E}, and set 0 := ordy(z;); then (—1)°°> lim,_,, % =1by
integral temperedness. Hence there is a local holomorphic coordinate w on
E, vanishing at ¢, with —z; = w® and —z3 = £w?(1 + O(w)), and (74) =
%log%u + O(wlogw) is just 2.07211"2 (with o1 # 0) plus terms limiting to
zero. Since this is multiplied by 5- before taking exp, we conclude that x(Z)
is bounded on II"*(R). On the other hand, in the denominator §(P(7)) =

D(—e€") of ¢, P(—€") = ;;—c, a;e’” (a_. ,a., #0) is dominated by
the e“t” term as r — 400 and the e”“" term as r — —oo. That is, |[¢(r)] <
Ce~I"/2l for some constant C, hence 1 belongs to L?(R).

Finally, we must show that 1 is not identically zero. If it were, then by
basic complex analysis ¥ would be zero; so it suffices to check that (say)
U(zp + 27in) # 0 for some n € Z. We may choose a local holomorphic coor-
dinate u on EX about Zp, such that (locally) 7 sends u — —u and z = zg + u2.
Clearly z2(2) = 22(po)(1 + c1u + O(u?)) and P*w = (cg + O(u))du for con-
stants ¢1,co € C*. The expression in braces in (64) (integrating on a path
from Zy to Z(u)) takes the form (cjzo — %cz)u%—O(uQ), and we can en-
sure the coefficient of w is nonzero by reﬁlacing zo by zg + 2win if nec-
essary (since this affects nothing else). So the numerator of (67) becomes
eCoutOW?) _ o—coutO(w?) | 9¢0, and since the denominator also has a sim-
ple zero at u = 0 we are done. ]

Remark 3.8. Returning to the “sign flip” between curve and operator high-
lighted in Remark 3.5(iii), we remind the reader that it is {—z1, —z2}, not
{z1,x2}, which is integrally tempered for the simplest choices of Laurent
polynomial ¢.33 So it is the regulator integral for this symbol which produces
a well-defined W(Z). But the signs in the symbol force the shift operator s
to act on x(Z) through multiplication by —z5(Z) rather than x4(Z), which in
turn forced us to use (—exp) (not exp) in (61) so that #; acts through mul-
tiplication by —z1(2), resulting in the action of ¢ = —p(—21, —Z2) through
multiplication by —¢(x1(z), x2(2)). The upshot is that the signs in the sym-
bol?* are ultimately responsible for the presence of the B-field.

Be.g. w1 4+ 29 + 7 2y ", and including the examples studied in [8] with trivial
mass invariants Q,, = 1.
34along with those in (54) arising from Weyl quantization and the CBH formula.
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Remark 3.9. A result of Kashaev and Sergeev [12, Theorem 7|, while ex-
pressed in very different terms, can be shown to be equivalent the special
case p = x1 + 27" + 22+ 25" of Theorem 3.7. (The conditions in [loc. cit.]

on a pair (A, &) € C x Ryy they require for their construction of eigenfunc-
ie M,(e)

tions of ¢ amount to taking v(e) € Z and \ = .) However, they

T 872 w,(e)
do not relate their result to the relevant conjecture of F?ﬁ or prove a partial

converse as in Theorem 3.10 below.

Without stating any results formally, we want to briefly address the
higher genus hyperelliptic case, where F} = ¢ still takes the form in (57)—(58)
but A is no longer reflexive. (Note that ¢g will have as, . . ., a4 as coefficients.)
One easily checks that the construction of ¢ and the proof of Theorem 3.7 still
go through after modifying x(Z), provided we impose a stronger quantization
condition than that in RHS(33). Namely, referring to (28), suppose that

(75) the normal function vector v(a) belongs to (I, | Q)Z7.

Then replacing the expression in braces in (64) by

d.l’z z *
(76) f,zzgo < x2((2)) - ?:1 Ry, f@go Prw;

for appropriate determinations of R, , the obvious generalization of (66)
goes through, ensuring that the generalized x(Z) is well-defined. Under an
additional assumption like (21), and changing the signs in ¢ of those a;’s
attached to even powers of Z1, one finds as before that ¢y = aqv.

The criterion (75), which we expect corresponds to the exact NS quanti-
zation conditions of 23|, will only hold at countably many points in moduli.
On the other hand, Conjecture 2.4 predicts the existence of eigenfunctions
for ¢ in a codimension-1 subset of moduli. So it stands to reason that there
should be something special about the eigenfunctions 1, which we can only
construct for g in the smaller locus. In the genus-2 example worked out ex-
plicitly in [25, §4.3], whose “fully on-shell” quantization conditions (cf. [loc.
cit., (4.45)]) should agree with (75), Zakany highlights the enhanced decay
of his explicit eigenfunctions. Indeed, in our construction, for g > 1 the dis-
criminant 2 will involve higher powers of both z; and :Ul_l than for g =1,
which leads to decay better than e~I"/2| at infinity for (r); this perhaps
begins to explain the discrepancy.
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3.3. Remarks on the spectrum of ¢

Notably absent from the last section is any discussion of the “converse ques-
tion”, as to whether every eigenfunction of ¢ arises from the construction
described there. We will prove a fairly strong result in this direction, to
the effect that “almost every” eigenvalue A satisfies V' (A) € A(A). As already
mentioned in Remark 3.5,%% the spectrum o ((3) is a countable subset of [¢, 00)
for some ¢ > 0, whose elements can be arranged in an increasing sequence
{A\j}j>1 with A; — 0. We may replace ¢ by its self-adjoint Friedrichs exten-
sion to L?(R) without affecting these statements, cf. [19].

Suppose P is a proposition (that can be true or false) about elements of

o(¢). Write N(A) := [{j e N| \; < A}| and
Np(A) .= |{j € N| A; < Xand P(});) holds}|.
We will say that P holds asymptotically if

(77) lim P

ANy T

Theorem 3.10. In the setting of Theorem 3.7, the “C” direction of (55)
holds asymptotically.

Proof. The statement P()\;) about eigenvalues here is, of course, that v();) €
.38 From Lemma 3.1(c), we know that v(a) = g log? a + O(log a), whence

(78)  N(A)=Ne(\) > [v(N) —v(la])] > g log® A+ O(log A).
Now given f, g € L*(R), write (f, g) fR g(r)dr, and
(79) flyr,y0) =275/ 32 e wlr—w)? +2]y2r}f( ) dr

for the coherent state transform of f. Adapting the calculations of [19, §3.1]
to our setting gives

(80) = [fg= @(y1,92) [F (1, y2) |2y dye

35The point is that the proof of [19, Prop. 3.4] trivially generalizes to all ¢ we
consider here, because A always contains a reflexive triangle (or square). The proof
of Theorem 3.10 involves, in contrast, a rather nontrivial generalization of [op. cit.,
§3.2].

36We can always throw out a finite set of eigenvalues less than |a|, if they exist
(cf. Remark 3.5).
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where

s

(81) D(y1,12) = ZmeaAmZZ ame ?

=iam

(mi+m3) gmaiyi+mays

This implies, for instance, the semi-boundedness of ¢, as

O >ci= m%@n(I)(y)>0 = ¢>c-1d = a(¢) C [c,0).
yerz =

Let (-)+ be the function on R defined by (s); = s for s > 0 and (s); =0
for s <0, and note that

A
(82) fo N(s)ds = 2321()‘ = Aj)+-
Reasoning with Jensen’s inequality as in |op. cit., §2.2], we have
(83) o1 A=A+ < gz [l (A — ®(y1,92))+ dyn do.

Choose M > 0 so that Ma,, > an (Vm € A NZ?). Writing Y; := €% and
Iy :={Y € R% | L > p(Y1,Y2)}, note that the boundary dI', is the cycle 8
on E_j. Together with Lemma 3.1(a) and (14), this gives

RHS(83) < gy [fie (MA — (Y1, Y2)) 4 2 52
<

A dY:i dYs )\
2z e, 52 = sz Rs(—MN)

= g%)\log2 A+ O(log \).

(84)

Putting the last three equations together, we get
(85) < log? A+ O(log A) > N(A),

which combined with (78) gives the result. O

The constraints imposed on the zero locus of p o v by its interpretation as
eigenvalues of ¢ (Theorem 3.7), and vice versa (Theorem 3.10), seem worth
exploring further. For instance, per Remark 3.5, we expect (and know in some
cases) that ¢ > |a|; together with the following Lemma, this essentially rules
out points a € U at which V(a) € A(a) (the exact quantization condition)

and R(a) is torsion (the perturbative quantization condition proposed in
19]).

3TBy a special case of the main result of [26], the torsion locus of R is in fact
finite.
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Lemma 3.11. For a € (|a|,), R(a) € Hi(Eq, C/Z(2)) is a nontorsion
class.

Proof. From the known integrality of local instanton numbers of toric CY
3-folds [18], it follows that LHS(50) > 1, hence that ®(¢(a)) > 0. From (46)
(and positivity of coefficients of ¢, and negativity of @), it is immediate that
t(la]) > R(t(a)), hence t(a) € Ry for a € (]a|, 00). But if R(a) is torsion, then
R,(a) € Q(2) = t(a) € Q(1) CiR. O

More striking is a conditional transcendence result on the eigenvalues
that arises from their asymptotic Hodge-theoretic interpretation in Theo-
rem 3.10. A mixed version of the Grothendieck period conjecture (which we
will simply call the GPC) says that the transcendence degree of a period
point arising from a motive defined over Q is equal to the dimension of the
minimal mixed Mumford-Tate domain containing it. The (mixed) motive in
question is the Ks-cycle {— xl, —x9} on E,, with MHS the extension of Z(0)
by HY(E,,Z(2)) given by e ) R. The possibillities for the M-T group are
an extension of SLy or a 1-torus (depending on whether E, is CM) by GX?
or {1} (depending on whether R is torsion); the corresponding domain is $),

a CM point in it, or the product of either one with C2. The coordinates of

the period point are 2(a) (in ) and (gﬂ(g;, g‘;(gg) (in C2).38

Conjecture 3.12 (GPC). Ifa € Q and R(a) is nontorsion, then the tran-

scendence degree of Q(Q(a), (27”&2, RQle)z)/Q(Q( ) is 2.

Proposition 3.13. Assuming the GPC, asymptotically o(p) consists of
transcendental numbers.

Proof. Let A € o(¢) be an eigenvalue for which v(\) € Z. (We may assume
A € (la], 00).) That is, we have an algebraic relation ;25 (R, (A\)Q(A;) — Rs()\))
=n on ;T(SQ and f“;ﬁ over Q(Q2())). By the GPC, either A ¢ Q or R(\) is
torsion. But the latter possibility is ruled out by Lemma 3.11, and so we are
done by Theorem 3.10. O

We conclude with somthing of a curiosity: in case ¢ = x1 + acl_l + x0 +
x5t + x5t 4 27 'ag, our normal function is closely related to the Feynman

integral Z associated to the sunset graph with equal masses [2]. This is writ-

ten in [op. cit.] as a function of s = 3_% = the inverse norm of the external

38We have to divide by (2mi)?, of course, because a torsion class must have
coordinates in Q, not transcendental ones in Q(2).
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momentum, but written as a function of a we have Z(a) = @V(a) (see
lop. cit., (7.17)]). The condition that V' (a) € A(a) means that V, or equiv-
alently Z, belongs to its own lattice of ambiguities under monodromy. As
we have seen, the values of a at which this happens correspond to eigenval-
ues of ¢. One wonders if there is any deeper physical relation here between

Feynman amplitudes and quantum curves.
4. Regulator periods at the maximal conifold point

In this section we prove Conjecture 2.6 in the cases (m,n) = (g,g) and
(29 — 1,1), for every g > 1. A proof for (m,n) = (2g,1) will appear in a
forthcoming work by the third author [27].

Because we have to enumerate multiple nodes on the maximal conifold
curve, it is better in this section to replace (z1,x2) as toric coordinates by
(x,y), which we do throughout. We also denote the zero-locus of a polynomial

by Z(-).
4.1. The main result and some preliminaries

Consider the families of genus-g curves cut out of (C*)? by the (integrally
tempered) polynomials F, 4(z,y) and Fag_11(z,y) from (41). In contrast to
§2, Cyg and Coy—_1,1 will denote their compactifications in Pa. There are
no mass parameters in either case, so r =3 and the equations take the
simpler form (40). Moreover, C4 4 is torically equivalent to Cog—1,1 via the
map u =z~ 'y~ v =a9y9". The effect of this map is straightforward: for
n=1,...,g it simply shifts n — g —n + 1 on the level of indices; that is, if
F, 4(z,y) is written with parameters a,, then the image (under the above
map) is precisely Fhy 1 4(u,v) with parameters ay—pn41. The upshot of this
connection is that statements concerning regulator periods of Co4_1,1 can be
pulled back to those corresponding to Cg4 4, provided we choose the correct
cycles. For our purposes here, the important case is that the cycle v4_y41 of
Cag—1,1 giving rise to R,,_ ., ~ —2wilog(ag_n11) pulls back to the cycle v,
of Cy 4 corresponding to R,, ~ —2wilog(an).

Theorem 4.1. Conjecture 2.6 holds for the families Cy 4 and Cog—1,1; that
18,

(86) %ﬂRVl (a) Q(El)pg,g and
(87) %R’Yg (@) = Dag-14-

Q(1)
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Remark 4.2. The predictions of [3] aligning with Conjecture 2.6 are written
in terms of the complex structure/GKZ parameters z; := z;(a). (In the (g, g)

1 ) __ ajas __ Gg—_204 __ Gg—1
cases these are given by 21 = a2 TR e Bl = T 2 = )

Translated into statements about the corresponding regula‘gor periods (cf.
(24)), these essentially amount to3

(88) L9 [C7Y1Ra, (2)

2ni

D,

Q)

which of course is equivalent to (43). While z; and R, are more natural from
the standpoint of GKZ systems, the {a;} and the corresponding regulator
periods R, simplify the statement of the result, and are more natural to
compute directly (cf. Appendix A). As we will see, the {v;} are also the
cycles which limit to loops passing through individual nodes at the maximal
conifold point a.

Remark 4.3. As R{—z,—y} = R{z,y} mod Q(2) we may work with the
latter. Note also that (43) is stated in terms of the regulator period asymp-
totic to —2wilog(ay); it is convenient in this section to drop the negative
sign and work with one asymptotic to 2rilog(a,). Thus from now on

R, ~ 2rilog(an).

Furthermore, since we intend to investigate different components of the dis-
criminant locus throughout this section, it will be important to track the
moduli; so henceforth we will rename Fy ; and Fy,_11 to Fﬁg and F;z]_l 1-

Let us outline a proof of Theorem 4.1. Denote by C,, the fiber of
the family over the mazimal conifold point a. It has g nodes {p;}, and
the cycles {%}?:1 passing through each node generate H;(Cy4); we set
111%% = f,y R{z,y}. Writing & = 5[Id],(a) for the change-of-basis matrix, we

ave

Proposition 4.4. Let kj :=ged(2j — 1,29+ 1). Then
(89) Kk = diag(k1, ..., kKg).

It then follows from temperedness that

(90) R (4) = £=Rs .

39Here [C'~!] is the inverse of the first g x g minor of the intersection matrix [C].
The R, “correspond” to z; in the sense of being asymptotic to 27ilog(z;).
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In §4.2 we detect monodromies via power series representing classical periods,
verifying Proposition 4.4 in the process. In §4.3 we use a key technique
developed in [6, §6] that allows us to connect conifold limits of regulator
periods to special values of the Bloch-Wigner function; this method coupled
with Proposition 4.4 settles Theorem 4.1. As a consequence g-many series
identities are borne out in §4.4 — not just the two required for the Theorem.

We conclude this subsection with two preliminary results. The first will
help us to control certain power series asymptotics, and the second gives us
information on nodal fibers of C .

Lemma 4.5. Ifa,b,c € Ry are such that a = 2b + ¢, then

I'(1+a) 1 Jafa/c\P*\*
(91) T2(1+ b)T(1+c) N27rb\/:<c< > ) '

Proof. Stirling’s approximation yields

I'l+a) I Ja a® _,iopie 1 Ja a°
S — — e = — —_—
I21+b)C(1+c¢) 2mb\ cb?ce 27b \ ¢ b2bca—2b

_ 1 aa"‘c%_l\/ﬁ a(e\?\"
S 2b\V ece b2 27b\ e\ e\ b

SO

for b,c — oo (and a = 2b + ¢). O
Lemma 4.6. Suppose that the fiber over a = (@i, ...,aq) has g-many sin-
gularities, say p; == (Z;,9;),n=1,...,9. Then for each j, p; is a node, and
Tj = Yj-

Proof. Since x0,Fgq(x,y) — yO,Fg4(x,y) = x — y, any singularity must have
symmetric co-ordinates; that is, Z; = g;. By toric equivalence we may replace
Fgg(x,y) by

(92) F

hg—1,(UV) =u+v+ Dy apu 1 4 29ty

(reversing the order of the {a,}); by abuse of notation we continue to label
the singularities of Fgg—l,l by pj, but with coordinates (u;,7;) satisfying
a2t = 17]2». Since the edge polynomials of (92) are all w+ 1, the curve
intersects each component of the toric boundary with multiplicity 1, and

so all p; € C* x C*. Moreover, (92) is irreducible since it is quadratic in v,
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with discriminant 2 (u) of odd degree. As a consequence, the vanishing cycle
sequence associated to the smoothing ngfl’l + s takes the form

(93) 0— H'(C3, 1) = Hi — H,

van

— 0.

Since tk(F'H} ) = g and the g singularities each contribute nontrivially to

rk(F'H], ), each contribution must be exactly 1. So the p; are either nodes
or cusps, and to show they are nodes it will suffice to show that the Hessians
H F2 is non-degenerate at p;.

gTo do this, define
(94) Pu) =29+ 1439, (29+1—2j)au,

and observe that

(95) P(ij) = 2%]1]72*9 11(B5) + 20uF5,_ 1 (p;) = 0.
Thus Z(P ) {1, ...,1,}. Tt follows that P has no repeated roots; that is,
P'(@j) # 0 (Vj). To compute the Hessians, write

auqugfl,l(ﬁj) = g:l (-1
1

At this point a few simplifications can be made. Differentiating the defining
equation of P and plugging in u = @;, we obtain,

(99)  Pl(ay) =239 (0 — Dagti; " — 327 (29 — Dlaga;
On the other hand 8, (F2 5g-1.1 (1, v)/u) vanishes at p;, which yields

_2 1~—
———Ze 1€a4u —2g 9= vjl—O

(100) = Y7 (29 — Djaei; " = _W
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Combining everything, we arrive at

(101) DuuFgy11(9y) = Pogg + TG

Therefore,

~ 2 ~ ~
Hye | (53) = (0B 11(5) = OunFly 11 (55)00u Fhy 11 (55)

as was to be shown. O

4.2. Monodromy calculations via power series

Consider a 1-parameter family of curves C — P! with coordinate ¢, endowed
with a section w of the relative dualizing sheaf; on smooth fibers C;, wy is a
holomorphic 1-form. Assume that C. has a single node p. (i.e. is a “conifold
fiber”), and let g be the “conifold” vanishing cycle pinched at p.. Writing &g
for a cycle invariant about ¢ = 0, its monodromy about ¢ = ¢ is a multiple
of g, say kdg for some k € Z>o. We would like to compute this conifold
multiple k.
Writing eo(t) = 32,50 bmt™ := [ wi, we have

(102) / wr = (Te. — I)eg = 2miCy + O(t — ¢)
k50

for some Cy € C. Observe that

Pe Pe

(103) / wc:k/wc:k-Zﬁi~Reswc:>C():k:-Reswc.
kdo do

On the other hand, |14, Lemma 6.4] (with B(t) = eo(t), A = 27iCy, and
w = 1) yields
Co

cm-m

(104) b ~

provided Cy # 0.49 Therefore we have proven

400therwise, B,, has a smaller exponential growth-rate and RHS(105) is zero,
which confirms the Lemma when Cy = 0 as well.
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Lemma 4.7. The conifold multiple is computed by

lim b, -c™-m

105 k=17
(105) Resp, we

Example 4.8. Consider the Legendre family, y? = x(x — 1)(z — t). Setting

¢ =1 gives rise to a node at (1,0). Taking w; = %x, we have

(106) Res(1,0) we = Resom1 2952 = 1.

2
Moreover b, = 277(7;/2) , hence (105) implies

(107) k= lim 27m(7/2)" =2,

m—r 00

Example 4.9. Now consider the family C; defined by

filx,y) = oy — Y323 + 4% +1).

In this case ¢ = 35 and by, = (%13)!, but C. = Z(H?Zl(l + ¢+ (Fy)) is a
Néron 3-gon with three nodes p;. But since gg(c) will pass through each p;
the same number kg of times, and w. must have the same residue at each,
(105) holds (taking say p. = p1 := (1,1)) provided we interpret k as 3kq. For

the residue of

de Ndy  dz dx

108 2miw. = Rese, = =
( ) Je 8yfc xr— y2

at p1, we can restrict to the component X, := Z(1 + (3= + C??y)

1 dx 1 Gady
R .= —R — = —Resy—1 | 54—
Sp, 27 5.1 (:U — 92 Xc> 27 y=1 <y2 + 3y + C:«*?)
1 G 1
109 = . = .
(109) 2mil — Cg 213
Since b, = (ilnfg,)! we get
) 1 (3m)!
(110) k;:nlgnoo?ﬁ—m‘m' - -2mV/3 =3,

which means that €(c) winds once around the Néron 3-gon.
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For the proof of Proposition 4.4, we need to compute the Picard-Lefschetz
matrix k, whose entries k;; tell how many times the specialization v;(a)
passes through p;. In order to invoke Lemma 4.7 for this purpose, we should
reinterpret these numbers as (roughly speaking) conifold multiples for 1-
parameter subfamilies of C, acquiring a single node. The idea is that a is
a normal-crossing point of the discriminant locus, whose g local-analytic
irreducible components each parametrize fibers carrying a single node p;.
These are labeled in such a way that the ;™ component can be followed out
to where it meets the a;-axis at a; = ;. Call this fiber Cy%, and p; = (&;, &;)
for the limit of the node to it.

From Appendix A we have the 1-forms

—a. dr ANd
(111) @j = 95 Ve, R{z,y} = 51 Rese, , ( . )

zjijgy(x’ Y)

and 1-cycles v; (j =1,...,9). The computation that follows will consider
periods II;; = fw_ w; on the 1-parameter families over the a;-axes (acquiring
a single node at &j = a;), which will suffice to determine the diagonal terms
Kj;. That the remaining, off-diagonal terms are actually zero follows from the
fact (cf. Appendix A) that each ~; is well-defined on a tubular neighborhood
of the hyperplane in (compactified) moduli defined by z; = 0, which is cut
by the conifold components carrying p; for every i # j.
Now Cg’, is defined by

(112) féfg = F%g(:x, y)=x+y+ &jxlijlfj +a 9y,

and to find the node p; we solve

02 j 5 2g+1 o 029—2j42
(113) B =2 T =0,
T=Y=2x;
°2g+1 j 02g-+1 . o 02g—2j42
(114) 157 0n 111 = &9 — g — (j - Daal P =0
T=yY==1;
to obtain

. lg—7+1

115 p= s -

( ) SU] 2] . 1 9
2(9—j+1)

. 20+1( 2g+1 2g+1
a; = g

11 =
(116) 2j —1\g—j+1
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In particular, we have the relation

. o2(g—j+1) . 2g9+1
(117) a;T; BECTERE

In order to calculate the residue of w; at p;, recall that for any f(z,y) =
Ax? 4+ Bzy + Cy? + higher order terms € Clx,y], we have

da:/\dy) B 1
f - VBZ—4AC’

dx N dy
f

118 Res? := Resg | Resz
0 0 (f)

Changing variables to X :=o —2;, Y :=y—2; in fgg(x y) leads to the
equation

29 1(2g242g+1— 1)(2g+1
29 y (]) (29%+29+ _ (g—7+1)(29+ ))X2 —|—5:]2.9_1(2g2+2g—(g—j+1)(2g+1))XY
#2971 (29242941 (g—j+1)(29+1
(119) + - (297420t 5 (77Tt y 2 + higher order terms.
Therefore
Res? dx N\ dy _ 1

%, a;gygfg ) #3771/ (202 +29—(9—5+1)(29+1))>— (2¢°+29+1—(9—j+1)(2g+1))?
1
#3971/ (29—29—1) (49> +4g+1-2(g—j+1)(29+1))

. 1
(120) T #2041 0)(29 112912 2)

i
#5720+ 1)(25-1)

(The sign of the square root reflects a choice of orientation for the vanishing
cycles at each pj, hence for the cycles 4;.) Consequently the residue of w;
may now be found:

aJR 2 da;/\dy

Resy w; =
m 2mi 2 fij]fgg
_ —CL?' 1’2(9 ) Res 2 d:z:/\dy
2ri " anynf3)
—1 2(g9—j+1) 1
(121) = % (CLJ.’I,'] ) '

2 /2g + 125 - 1)
V21
2m(g—j+ 1)V (2 — 1)

For the periods of w;, we start as in Appendix A with those of the
regulator class. Writing ¢; := 29~ 1y/ L F g (2, y) — aj, (A.3) (with the sign
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flip from our choice of ;) yields

1 _ (_aj)im m
%R% (a) Q?l) log(a;) — Z T[(Pj Jo
m>0
(—a;)™™
122 = i) — —
(122) log(a;) Z - X
m>0
[Ty + 27y + 300 aga? Ry pad oy e ym,
——— N ; ———
=:A; =:B; e ::C;c =:D;

where [L]p stands for the constant term (in x,y) appearing in the Laurent
polynomial L. Now, given ly,l2,--- ,l; € Z, we define

1 g
12 = 1)L -1
(123) [, 2j_1<(2g+ )lj+k§1(2k )zk>
k#j

1

g
(124) (= 51 <(g —J D+ (k- j)lk>, and put
k=1

k#j
(125) Lj=A{(li,lz, - ,ly) € 24 | V; € Z>0} \ {(0,---,0)}

Note that I € Z>9 == [; € Z>¢. The upshot of this construction isif L, L} €
Z>q are such that

g—1
Ly plLj L _
(126) A7 B [[(C)*D7 =1 and
k=1
ki
g
(127) Li+Li+> l=m
k=1

then L; = L’ = I} (by symmetry) and m = [;. Thus the lattice £; C Z9 en-
codes all possible constant terms appearing in (122), giving
(128)

1 F([J) 'y g L
TR% (a) = log(a;) — Z (—a;)~ " Hak.
i Q(1) £, T2(1+ [;) 1T+ 1)
k=1

k=1
k#j
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For the classical periods I, = f @ = 5504, Ry, it is clear from (128) that
IL;; vanishes on the a;-axis for E 7é j. Focusing then on

g
(129) Tjj(a)= [ wy=1+) rty) (—a;)" ] T @it

g
i c; T2(1 41 L(1+1 k=1
T [ITar)
we set a; = 0 for 7 # j to obtain
T(1+ 3431) 29:+1

(—aj)” 21",

(130) S=1+ >

+
92]] L,E€Z50

P2(1 4+ 50T (1 + 1)

Recall that x; := ged(2j — 1,29 + 1), and set

25 —1 m.'_29+1_(29+1)n]
T Rk Tk 25—1 7
(131) l,’i] Kj J
rj=-L, and 55 1= aj_mj
nj

Clearly nj,m;,r; € Z~o. Now we have a power series of the form

=)™ + myrj
132 =1+ ") by s
( ) Z F2 1+ m;— ’I’LJT )F(l“‘”]T] Z ) J

Let 5 := & " Applying Lemma 4.5,

L1+ mjr)) - (=1)mami2, my

133 ~
(133) 21+ mjinj r)I(1 + njr;) 2mrj(my; — nj)\/i 7

from which we may conclude that

2. /m;
(134) lim b, ;-8 = ! .
7500 T 2m(my — )/

Observing that

V29 + 1 NaT (29 + 1)n;
Resy, w; = - - = - : -
2m(g—j+1)/(2j—1) 2mn(g—j+1) 27 —1
2. /m;n;
(135) = 1

~2m(my —ny) (25 — 1)
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we apply (105) to obtain

lim b, -r;- 527 9 — 1
T —>00 -
(136) Kj; = = =

Resp, @, N n;
This concludes the proof of Proposition 4.4.

Remark 4.10. Notice that k1 = kg = 1. We document & := (k1,...,kp)
for g=1,...,10 in Table 1. The lack of symmetry for g > 4 should not be
surprising given the shape of the Newton polygon.

g K
1 1

2 1,1)

3 (1,1,1)

1 (1311

5 (1,1,1,1,1)

6 (1,1,1,1,1,1)

7 (1,35,1,3,1,1)

8 | (1,1,1,1,1,1,1,1)

9 | (LI,I,I,1,1,1,1,1)
10 | (1,3,1,7,3,1,1,3,1,1)

Table 1: Conifold multiples for small genera

4.3. Normalization of the conifold fibers

For the family Cy, ,, determined by the {Fj ,}, the mazimal conifold point
a € (C*)Y is defined to be the unique point (if it exists) on the boundary of
the region of convergence of the g power series (A.3) where Cih.n (given by
Fr.n = 0) acquires g nodes (labeled by p; := (£;,49;)). In this subsection we
determine a in the (g, g) cases (where r = 0).

Remark 4.11. In this case it is not necessary to impose a convergence
requirement to get uniqueness of a g-nodal rational curve in moduli. This
comes along for the ride as we shall see in Remark 4.15. However, one should
add right away that it is only Z which is unique (with or without this re-
quirement), not a. In fact, M is a (2¢g + 1)-to-1 étale cover of M, the GKZ
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moduli space (cf. Remark 4.2). Precisely one of the 2¢g + 1 preimages of 2
has real coordinates; it is this one we shall call a. Given existence of a, es-
tablished in Prop. 4.13 below, a result of Tyomkin [24, Prop. 7| guarantees
uniqueness of 2.

The idea is to begin with the moduli space of all curves on Pa in the
linear system |Oa(1)| avoiding the singularities. (That is, we consider es-
sentially all Laurent polynomials on A = conv{(1,0),(0,1),(—g,—g)}, not
just the tempered ones.) This has dimension g + 2, and contains a variety V'
parametrizing all irreducible nodal rational curves. By [loc. cit.]|, V is irre-
ducible and isomorphic to an open subset of (C*)? x (P!)? modulo PGL2(C)
viewed as automorphisms of the mormalizing P!, hence of dimension 2. Quo-
tienting out by toric automorphisms (i.e. (C*)?) maps each curve to its z-
coordinate. The action of (C*)2 on V has no fixed points, so the image of V'
in M, is zero-dimensional and irreducible, i.e. a single point.

Now the most straightforward way to find @ would be via the discriminant
locus: one should look for transverse intersections amongst its local analytic
branches. This is a viable strategy in particular cases; however, it requires
careful analysis even in genus 2.

Example 4.12. The family Cs 2 arising as the mirror of the resolution of
C3/7Zs orbifold was extensively studied in [3, §4.1]. Its discriminant locus is
described by the equation

(137) 31252225 + 5002125 4 16235 — 2252120 — 829 + 2721 + 1 =0,

where
az ay
(138) z1 = 3> zZ9 = -
aj a3

Figure 1 illustrates the intersection that gives rise to the maximal conifold
point 2 = (—35z, 1), which lifts to a = (5, —5).

It is clear that for the family C, 4, the discriminant locus is described by
a degree 2¢g + 1 polynomial in g variables; so that approach quickly becomes
untenable. However, a close study of the g = 1 and g = 2 cases suggested a
“constructive” approach to producing g-nodal fibers, which generalized well
and leads to the following:

Proposition 4.13. Let T, denote the m*" Chebyshev polynomial of the
first kind; this is a degree-m polynomial characterized by Tp,(cos ) = cosm#.
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Figure 1: Discriminant locus of Cy2; axes are z;’s.

Then we have*
(139) ngjg(:r,x) = 23:(7'29“(%) +1).

It follows that

12 1 ) — 1
(140) 4; = (~1)g—ir1 29 (9FJ and
2j—1\g—75+1
(=T g+
(141) &j=gj=——p—sec 29 1 T

forj=1,...,9. In particular, a € 79.

Proof. That z; € Z(RHS(139)) is immediate from the defining property of
T2g+1, and the &; are distinct and different from —%. Moreover, writing
U, for the m*™ Chebyshev polynomial of the second kind, the relation
(Tag41(w) — 1)(Tag41(w) + 1) = (w? — 1)(Usy(w))? guarantees that all roots
other than —3 of (Tag41(s) + 1) have even multiplicity. So they all have
multiplicity 2 and are precisely the {Z;}.

The polynomial F(a:, y)i=x+y+ Z?Zl ajxt =iyt 4 279y~9, with a;
as in (140), satisfies F'(z,z) = RHS(139) by standard results on coefficients

4INote also that Fg%g is irreducible, since the Newton polygon is Minkowski in-
decomposable.
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of Trn. Clearly F(p;) = 0, and the {p;} are in fact singularities of Z(F") since
‘?91; (x,z) = %%(F(x,x)) and they are double roots of F(z,z). Therefore,
by Proposition 4.6, they are all nodes. Since one can also check that (128)

converges at p;, Z(Z:" ) is the maximal conifold curve. O

Remark 4.14. Of course, Proposition 4.13 recovers the known maximal
conifold points for the families Cy,1,Ca2 (a1 = =3 for g =1 and a1 = 5,42 =
—5 for g = 2). Table 2 gathers To441 and a for a few low genus cases.

g Tag+1(z) a

1 423 — 3z -3

2 1625 — 2023 + 5z (5,-5)

3 64x" — 1122° + 562° — Tx (-7,14,-7)

4 | 256x° — 57627 + 4322° — 1202> + 9z (9,-30,27,-9)

5 | 1024211 — 291629 + 281627 — 123225 + 2202° — 11z | (-11, 55, -77, 44, -11)

Table 2: Maximal conifold points for low genera.

Being of geometric genus zero, the maximal conifold fiber CAghq admits
uniformizations by P'. In particular, we have the g distinct parametrizations
z = (X;(2),Y}(2)), with

~ g+1
(142) X;(2) = 7 (1-2) and

(1- csgzrl)@ <§;15“>>g
z

g+1
. Z)j <1 ngﬂwn)
(143) Vi) = ;
(1 TG i#) (1-2)

having the property that z = 0, 00 are mapped to p;. (We defer the proof to
the end of this subsection.) Hence the image of the path from z = 0 to z = 0o
on P! is sent A(by the 5 map) to 4;. As dictated by [6, §6.2], we assign a for-
mal divisor Aj on P!\ {0, 00} to each uniformization: for X (z) = ¢ [1;1-
)4 and Y (2) = e2 [[,(1 — £ )%, this divisor is N := >ikdj ek[ ] Ac-

Br
cording to [loc. cit.|, the imaginary part of [;° R{X(z),Y(2)} is then given

by Do(N) =>4 djEk;DQ(%).

)
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In our present situation,

PG+ 2g1¢8 7T — (202 + 29 — 1))
= 2(g + D16, )+ (9 + 11640 )
(144) = 2(29 + 1)L - (29 + DY)
=229+ 1)1+ ggggjl],

where we are working modulo the scissors congruence relations

(145) 1+ =0, (] + [ =0, (] +[1-¢=0and
(146) 1] + (o] + [eg] + [feg] + 1 - &&] =0

of the Bloch group By(C). Consequently we have the identity
(147) Da(Nj) = 2(29 + 1)D2(1+ ¢§, 71,

of which two particular cases are of note: we claim that

(148) Dy(Ny) = —21D,, and
(149) DQ(NQ) — —27TD2g_1’1.

(See §2.4 for notation.) In fact, we can say something even more general.
Given m € Z~q, we have

m —m
m+1 _ m—l-lém,l _3myl _ m+1 (m—1-k)
-3 Wm,1 = —3 S -1 — 2(m+2) Z CQ m+2)<2 m+2)
3771,1 - 3m71
m+1 m—1 m—1
. 2 m+2 2
(150) = Z CQ (m+2) = ~C2(m+2) Z Gt
2(m+2 = k=0

= (m+2 <Cm+2 + Cm+1> =1+
Therefore, taking conjugates,

2(m +2)Da(1 + (o) = —2(m + 2)Do(1 + (1F5)
(151) = 27Dy 1
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which implies (149) upon setting m = 2¢g — 1. Similarly one can see that

(152) Wgg = 2 2g+1 Zg 0<29+1
and thus
2(29 + 1)Da(14¢5,1) = =229 + 1) Dy (= 3°7_, ¢, 11)
(153) =—2(29+1)Ds <—C2(2g+1) i C§g+1)
= —27Dy g4,

as was to be shown.
We are now ready to prove Theorem 4.1. By the previously mentioned
result of [6, §6.2], we know that S(Rs,) = D2(Nj) or

~

(154) R(skiRs,) = 2= Do(N5).

Next, Proposition 4.4 tells us that R, (a) = x;R4,, while (140) and (128)
ensure that (mod Q(1)) 55 R, (@) hence 5 Ry, is real. Combining this with
(147) gives

1 . 1 (29 + ].)Kl i1
(155) o (@) = o kiR, = T]Dﬂl + ),
whence (86) [resp. (87)] follows from (148) |resp. (149)] by setting j = 1 [resp.
Jj =g]in (155).
To tie up the remaining loose end, we conclude with the

Proof of the parametrizations (142)-(143). Consider the map
nj: P! — Pa

given by (142)-(143) and n;(z) := (X;(2), Y;(2)). Obviously 7;(0) = (&}, ;)
= nj(00). We must show that 7; is of degree 1 onto its image, and that this
image is precisely Cg 4. The first part is easy. Here (only) we take Pa to be
the singular toric variety given by the normal fan of A (and not a refine-
ment). Write Dy, Do, D3 for the boundary divisors, ordered so that the divi-
sors of the torus coordinates read (z) = (g + 1)D1 — gDQ — D3 and (y) =

(9+1)Dy — gDy — Ds. Now on P!, write ¢ := ng_gfr , and also p1,p2, p3

for 1,5]2,@ respectively. Clearly we have (X;(2)) = (g + 1)[p1] — g[p2] — [ps]
and (Y](z)) = (9 + 1)[p2] — glp1] — [ps]. This shows that n;D; = [p;] for i =
1,2,3, so the map has degree 1 and the image meets all three boundary
components transversely.
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The next step is to check that it meets each boundary component where
the edge coordinate is —1, which is where Cg4 hits them for any a. That is,
we must show that the limits

lim X;(2)7%;(2)7", lim X;(2)971¥j(2)?, and lim ()

Z—p1 Z—p2 Z—P3 YJ(Z)

are all —1. For the third, since Z; = y; we get 7 ((z)) = (;_51 )29+ which obvi-

ously gives —1 after substituting z = ;. For the first, we have X;(2)9Y;(2)9*!

@fg“(i_g )29 substituting 2z = 1 yields (2;(1 +&;))**". Writing 5;/2

—i41 . ~ _i.1/2 .
= Cfgﬁ;_ , (141) gives &; = W hence z;(1 +&;) = (—1)9 Jgj/ , which
has (29 + 1) power (—1)9~ 7( 1)9 J+1 = —1. The second limit is very sim-
ilar to the first.

Now suppose n; (P!) # Cg g» and consider the divisor (£ ) C —gD1—
gDy — D3. The results of the last 3 paragraphs give (77j Fgg) = ;Cg g
glp1] = glp2] — [ps] = 2[0] + 2[o0] — (g — 1)[p1] — (9 — D[pe]. If g =1 or 2,

(n; *F 9.9) already has positive degree, which is absurd; and the contradiction
means that n;(P!) = ng. If g > 2, we have to work a bit harder to reach
this contradiction. It will suffice to verify that n;(P!) also passes through the
nodes (&;, ;) for i # j.

To do this, write & := Cffg_gl and p; = ngﬂ'l = ¢2, and note that &; =

(=1)97i(& 4+ &)1 Mf“(l + i)~ We claim that 923 =y (g — 1) (g
— u;)~! (and f?/@zj, too, but we won’t need that) are sent to (Z;,Z;) by n;.
For the x-coordinate, we have

. R (6;; — 1)9+1
X;(0,) = 7
PR 05— 1) (8i — 13)
+1 J l_l
A A e e
= 1, a1 hi—1
T g (BB ) (BET
+1  —g+1_g+1 _
T p R (e -t g

9

gy (g — D+ D)2 —1)9 14

and the y-coordinate calculation is similar. O
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4.4. Explicit series identities

Spelling out (155) in light of (128) kills any torsion modulo Q(1) as both

sides are real,*? and yields the relationship

(29 +1)-ged(25 — 1,29 + 1)
£; T2(1+ [;.) [] T +lk)
k=1

Dy(1+ <2g JH) log(|a;|)—

- H ~li
k#j

valid for j =1,...,g9. The LHS can be shifted to a different avatar via the
formula

(157) Do(1 + CQQH) Dy <2 cos(ﬁ)em(g’j)/@g“)) :

Let us consider some applications of (156). For the family Cs 5 Table 1 and
Table 2 say that k= (1,1) and a = (5, —5). Recalling that r := % =
2 cos(m/5) and plugging in j = 1 in (156) gives

§D2(m627ri/5) =log5 — Z/F2<

™
11,12€Z>0

L(501 + 3lp)(—5) " 3> (=5)"
1+ 20 4+ )T+ 1)1+ 12)

log5 - 3 1) (5m + 3r)5~ 2"
& I2 1+2m+r)r(1+m)r(1+r)'

m,r€ZL>o
On the other hand for j = 2,

Sla+1y
F(5lz+l1)5— 3 5h

(1+ 5D (1+4)D(1+ 1)

5 wi/5\
(158) —Ds(we™/%) =log5 — > o
l1,12€7>0
Defining r :=l1,m := (la — [1)/3,

T'(5m + 2r)575™m"
m) 1+ +3m+r)

5 7i/5
(159) — Da(we™?) = log5 — > I

m TEZ>

These identities, conjectured in [3, A.10|, match the identities [4, (6.13)-
(6.14)].43 L1kew1se for C33 we have a = (—7,14,—7) and k& = (1,1,1), and

“2after changing log(a;) to log(|a;)
43The proof there was incomplete as it did not address k.
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thus
7 "T(7m + 5r + 3p)7” "M AT 20P
(160)  7Da(1+¢7) =logT - ;ZFQ 1+3m+2r+p)r(1+m)r(1+r)r(1+p)
m,r >0
7 7m+5r+p)7 4m— or+2p2 Tm—5r—p
161 —Do(1 =1
(161) - 5(1+¢7) Og?ﬂﬂgzlﬂ 1+2m+r— P)T(1+3m)T(1 + 3r)T (1 + 3p)

(=1)™T(Tm 4 3r + p)7~ "™ T2P23"
m —r — 2p)[(1 + 3m)[(1 + 3r)I'(1 + 3p)

7
(162)  —Da(1+(r) =log7— > BT
W17p€Z>o
More generally, for the family Cy 4, £1 becomes the lattice ZZ, \ {0, ..., 0}
and we end up with a tidy expression,

(163)
(29 +1) X
D it gy = los(linl)-
S, F((zg+1)ll+§j (2k—1)lk> 2+ 1)l — 3 (k1)1 9
Z/ (=)= N ay = ay
= r2 <1+gl1+k2=j2(k—1)lk> k];[l T'(141x) Pl
1<k<g
where Y/ means that we omit the term corresponding to {0,...,0}.

Ui

Remark 4.15. We briefly address convergence of the power series part of
RHS(163), to R(a) := 55 R, (a) + log(a1) evaluated at a = a. Replacing a;
with a;, then substituting the GKZ variables z; (cf. Remark 4.2), it becomes
a power series of the form

¢ k—1)¢ 1)¢ k-2
5 et Bk bl DO T2y

which represents R(a(z)) for sufficiently small z.

Moreover, we claim that R(a(uz)) has no monodromy for z = z(t) :=
(t™,t,...,t) if m >0 and |t| < 1. It is enough to check that there is no
monodromy on z; = 0 (obvious, as the power series is identically zero there)
or when |z1| < 1 and z; = Z; (¢ > 2). For the latter, note that (139) becomes
2u{z 1/2 7’2g+1(21zi/(4g+2)) + 1}, whose discriminant is a power of z; — 1.
(Roots of 75,1 = (29 + 1)Uz, are cos(5 Jr1) for k=1,...,2¢9, and

/2 1/2

= (1" + 2

Tag+1(cos(5477)) + 21

is0iff 2 =1.)
So B(t) := R(a(z(t))) is represented by a power series ). = Bpt™ on
the unit disk, is bounded on {|t| <14 ¢€}\[1,1+€) (as the Ko symbol is
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nonsingular at ¢ = 1), and has monodromy about ¢t =1 (77 — I)B ~ cst. X
(t — 1) (since (11 — I)y is a vanishing cycle with trivial regulator). We are
now in the situation of [14, Lemma 6.4] with w = 2, so that By, ~ cst. x m~2.
The power series thus converges at t =1, and must evaluate to B(1) by
Tauber’s theorem.

Appendix A. Some regulator calculations

Here we demonstrate the existence of integral 1-cycles {7j}§:1 on C with
regulator periods behaving as R, ~ —2wilog(a;) for large a;, as claimed in
§2.3. In the genus 1 case, we also indicate how one can check the constant
term in Rg (cf. Lemma 3.1) without using mirror symmetry, and relate the
constant term to the limit of a variation of MHS. We refer the reader to [6]
or [17] for background on regulator currents.

We start by defining the 1-cycles in distinct regions of moduli. We will
need some notation. Set T := {z € (C*)?||z1| = 1 = |x2|} (with the standard
orientation as a 2-cycle) and let I' C Pa be a 3-chain bounding on T (but
avoiding C \ C). Write 2® := 2™ for the toric coordinate along the boundary
component De C Pa corresponding to an edge e C A, and {ge} for the
roots of P(—xe) (amongst the {qx}), repeated with multiplicity; we have

Pe(ze) = T],( ), with [], ge,r = 1. Also, log(§) will mean log() for &
enclosed (counterclockw1se on De) by I' N D and 0 otherwise.

Now, fixing j € {1,..., g}, take ia; € $) and |a;| > max;.; |a;|; and note
that then F(T)NR_ = 0. In this region, define v; :=T'NC, and use the
current coboundary

(A1) 5Hd[R{F(2),-21,-22}] = Yo R{Pe(ze),-xe} - op, — R{-21,-22} - 6¢

together with the Tame symbols of R{P(ze), —2e} (Which are just the {g_;})
and the Cauchy integral formula to compute

(A.2)
Ry, = [ R{-w1,-22} = [p R{-21,-22} - 0
= 27r1 fqr R{F(x),-x1,-22} + > ¢ me R{Pe(ze),-Te}
= o Jplog(aj(1+ a; ' Fj(x) 2 A 2 4 37 [1 . R{Pe(we),-we}

= 27 <— log(a;) + >4 (_,i)k [(Fj(i))k]gaj k_ D IOge(CIe,Z)> .




K5 and quantum curves 2313

In the tempered case, the {g;} are of course all 1, and the last term vanishes.
We are then left with?*

(A.3) iRy, (@) = —log(az) + Yoo S [FFloa; ™,

in which (by virtue of the GKZ theory) the sum can always be written as a
power series in zp, ... ,zg.45 This gives a common region of convergence for
the series for all j (where the z-coordinates are small), to which the ~; admit
well-defined continuation from the regions on which they were originally
defined: namely, they are the cycles with these regulator periods. Moreover,
they are clearly independent due to the asymptotic behaviors of these periods
in the {a;}.

In addition, (A.2)-(A.3) lead to formulas for periods of 1-forms. Noting
that d[R{F(z), —x1, —x2}] = % A dell A de;’ one introduces

1 X2

(A.4) @i = 55V, R = 54 Resc (%@Adi>

and computes

=1Ly := —/ Wy
i

J

5 R, 1+Zk>og“ VE[FFa®, €=
S Zk>0 ) ‘_kéaé[Ejk]Q7 t#j

where dy; is the Kronecker delta. This formula proves useful in §4.2 where
we change the sign of ;. Turning to the g = 1 case and the computation of
Rg, it is more convenient to work with u = —a > 0. In this coordinate, (46)
becomes t = log(u) — mi + O(u~!). Substituting this in Lemma 3.1(a) and
using 12 — r° = r yields

(A.5)

(A.6) Rg = log?u— £m* 4+ O(u " log ).

Consider the Laurent polynomial ¢ = x1 + $f1 + 22 + $51, which correspo-

nds to local (Pac =)P! x P!, The discriminant (over the xp-axis) of the

44Note that the version of this formula in [17, Prop. 6.2] is missing a +mi (“2-
torsion”) term: the \; parameter there is —a;, so the leading term should have read
—log(—A;) or —log()\ ) + 7.

45Essent1ally, this is just because in order to contribute to the constant term in
(Fj(z))*, a product of monomials must correspond to a sum of relations on points
of ANZ? and the relations are how we defined the {z;}.
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equation x9 + (z1 + xfl —u) + x;l = 0 has roots & ~ 7%1—2’ &y ~ ﬁ, &3 ~
u— 2, and & ~ u + 2 (in increasing order). Introduce 2z 4 (z1) == u — 1 —
oyt £ \/(xl +a7t —u)? —4 and w(z) == ﬁ For =1 € (£2,&3), w
lies in (0, 1), and we write log(< - 1;\/7%) =) >y O™ = Jw+ T6w +
--. Now we compute
(A7)
Rp = — [y R{—a2, —a1} = [ log(52) %
&3

_ I+VI—w da;

_/5 10g(17\/172)%

= *fggd log( )% - Zm>1 O f53 de:?

= 2log(u f{; dfl + 2f§3 log(1 —u=Y(zy + ] ))dT;? + O(u=tlogu)

=4log?u — 2 40 f& 1+ x] )’“%1 + O(u=tlogu)

= 4log®u — 2—;:2 + O(u=tlogu),

)kmwﬁ
k

T
te the sum as —4 )" & = —272 up to O(u~'logu). The point is that since
r = 4, this agrees with the result (A.6) from integral local mirror symme-
try. A similar Computatlon in [17 §6] for p = 1 + 29 + o] 2y (mirror to
local IP’Q) gives Rg = § log u— %5 4+ O(u~'logu), where the —%2 arises as
—2Lip(3) — 2Lis(1) — log 2. Slnce r = 3, this agrees once more with (A.6)
(as it must).

The crucial constant term in Rg has a nice interpretation via the LMHS
at a = co of the VMHS V attached to R € H'(E,,C/Z(2)), the regulator
class of {—x1,—x2} € H(Eq,Z(2)). (Note that the LMHS depends on a
choice of a local coordinate, which we take to be a~! or equivalently @ :=

et =a"1(14+0(a"1)).) We can present V and its dual as extensions

at the end using the appr0x1mat10ns f 6 T+ ~ % to rewri-

(A8)  HME,Z(2)) = Vs — Z(0) and Z(0) — VY — H1(E,Z(-2)).

On the left, a unique class % € F°Ve maps to 1 € Z(0); on the rlght let
7 € V) be the image of 1, and 7, Be V) classes mapping to (27”)27, E

Writing ¢(Q) := 105(?), we have

(A.9) Rs:= (R, B) = g Rs = TUQ)° = 54UQ) + T+ 0(Q),

where T = 3 + 2o (cf. Lemma 3.1(a)), as well as R, :=(R,7) = © LR, =
(Q) and (R, 7) =
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To obtain a period matrix for V', we compare Hodge and Betti bases as fol-
lows. Writing V for V, ,,, the change-of-basis matrix from {R, VR, T%VQZR}
to {r¥, 3", 3"} is

1 1
(A.10) Q:= (R L ) =, "9 T R el())
Rg ae(Q)Rg 1 7£(Q)2776(Q)+T TOZ(Q)fi 1

From (A.10) one easily deduces the monodromies T' € Aut(V) and TV €
Aut(VY) about Q = 0:

1 1
(Bary = (’};’ 1 1) = T=[Ig s p = (ér% )

Consequently the limiting period matrix is

(A.11)  [TV]

1
(A.12) Qi = lim e @le@Mo — [ 1
@0 T -1

The LMHS with respect to ™!, as mentioned above, gives the same result;
but if we change local coordinate to —Q or (equivalently) u~!, we get

(Alg) Qlim,—Q = Clg]m e_g(_Q) IOg(T)Q —

—0 ’

(o]
o NI =

1

0 1
where B° = % — I =T — 2. So we see that both of the constants appearing
in Lemma 3.3(ii) have a standard asymptotic Hodge-theoretic meaning, in

terms of (torsion) extension classes in the LMHS of V in the large complex
structure limit.
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