Thermal Multiferroics in all Inorganic Quasi-Two-Dimensional Halide 1 **Perovskites** 2 Tong Zhu¹†, Xue-Zeng Lu²†, Takuya Aoyama³, Koji Fujita⁴, Yusuke Nambu^{5,6,7}, Takashi Saito⁸, 3 Hiroshi Takatsu¹, Tatsushi Kawasaki⁴, Takumi Terauchi⁴, Shunsuke Kurosawa^{5,9,10}, Akihiro 4 Yamaji^{5,9}, Hao-Bo Li^{11,12}, Cédric Tassel¹, Kenya Ohgushi³, James M. Rondinelli^{2*}, Hiroshi 5 Kageyama¹* 6 ¹Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto 7 University, Nishikyo-ku, Kyoto, 615-8510, Japan. 8 ²Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, 9 60208, USA. 10 ³Department of Physics, Graduate School of Science, Tohoku University, Sendai, 980-8578, 11 Japan. 12 13 ⁴Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan. ⁵Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan. 14 15 ⁶Organization for Advanced Studies, Tohoku University, Sendai, 980-8577, Japan. ⁷FOREST, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan. 16 ⁸Institute of Materials Structure Science, High Energy Accelerator Research Organization 17 (KEK), Tokai, Ibaraki, 319-1106, Japan. 18 ⁹New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, 980-8578, Japan. 19 ¹⁰Institute of Laser Engineering, Osaka University, Suita, Osaka, 990-8560, Japan. 20 ¹¹SANKEN, Osaka University, Ibaraki, Osaka, 567-0047, Japan. 21 ¹²Spintronics Research Network Division, Institute for Open and Transdisciplinary Research 22 Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan. 23 *Corresponding author. Email: kage@scl.kyoto-u.ac.jp (H.K.); jrondinelli@northwestern.edu 24 25 (J.M.R.) †These authors contributed equally to this work 26 27 28 29 30 31 32 33 34 35

Introductory Paragraph

Multiferroic materials, in particular those possess simultaneous electric and magnetic order, offer a platform to design technologies and to study new physics. Despite the substantial progress and evolution of multiferroics, one priority in the field remains to be the discovery of new materials, especially those offering different mechanisms for controlling electric and magnetic orders. Here, we demonstrate simultaneous thermal control of electric and magnetic polarizations in quasi-two-dimensional halides (K,Rb)₃Mn₂Cl₇, arising from a polar to antipolar transition as evidenced using both X-ray and neutron powder diffraction. Our density functional theory calculations indicate a possible polarization switching path including a strong coupling between electric and magnetic order in our halide materials suggesting a magnetoelectric coupling, a situation not realised in oxide analogues. We expect our findings to stimulate the exploration of non-oxide multiferroics and magnetoelectrics to open access to alternative mechanisms, beyond conventional electric and magnetic control, for coupling ferroic orders.

Main Texts

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

The discovery of above-room-temperature multiferroic BiFeO₃¹ and spin-driven multiferroic TbMnO₃¹ led to the renaissance in multiferroic materials. Although the initial driver behind the research was the electric-field-control of magnetism to design non-volatile, energetically efficient magnetic storage devices², the progressive understanding in the field has since substantially widened the potential application of multiferroic materials³, e.g., ranging from scalable energyefficient magnetoelectric spin-orbit (MESO) logic⁴ to magnetoelectric nanorobots for targeted drug delivery⁵. Additionally, their broken space-inversion and time-inversion symmetry is analogous and hence closely related to other fields in fundamental physics with similar symmetry requirements, such as magnetic monopoles⁶ and early-universe cosmic string formation³. While the discovery of high temperature multiferroic materials with strong coupling remains one of the top priorities, searching for single-phase compounds exhibiting new multiferroic controlling mechanism is equivalently important, as they can open opportunities for applications and physics not considered before⁷. However, the development of new multiferroic materials is hampered by intrinsic chemical incompatibility⁸. Specifically, non-centrosymmetric, polar crystal structures needed for electric polarization are typically stabilized by second-order Jahn-Teller distortions⁹ of closed-shell cations with either d⁰ or ns² electronic configurations⁸, which are incompatible with magnetic properties which require unpaired electrons. Multiple approaches have been utilized to circumvent the contra-indication. In Type-I multiferroics, polar distortions and magnetism are introduced from different cations, typically in complex oxides, e.g., BiFeO₃¹⁰. Alternative singlephase multiferroics such as rare-earth manganates rely on polar noncollinear magnetic order^{1,11}, which are categorized as Type-II multiferroics.

Recently, hybrid-improper ferroelectricity (HIF) has emerged as an alternative and promising mechanism to realize multiferroics with strong magnetoelectric coupling¹². Under this mechanism, typically in quasi-2D perovskite oxides such as A₃B₂O₇ Ruddlesden-Popper (RP) phases, two nonpolar octahedral rotations couple to a third polar distortion to give electric polarizations¹³. This mechanism has at least three advantages: First, polar structures arise from size-mismatch between cations, and there is no special electronic structure requirement. Therefore, it is tactically simpler to unify electric polarizations with long-range magnetic order. Second, both electric and magnetic polarizations are coupled to the same structural distortions, from which a strong coupling between the two ferroic orders is anticipated. Despite these merits, only very few oxide candidates have identified, Ca₃Mn₂O₇^{12,14}, been experimentally including $[Ca_{0.69}Sr_{0.46}Tb_{1.85}Fe_{2}O_{7}]_{0.85}[Ca_{3}Ti_{2}O_{7}]_{0.15}{}^{15} \ and \ MnSrTa_{2}O_{7}{}^{16}. \ Third, the primary order parameter$ in HIF multiferroics is octahedral rotation, which is not only susceptible to an electric field, but other stimuli such as temperature, pressure and strain, implying that multiferroic control may be triggered by stimuli other than the conventional electric fields, although such control has not been realised in any of oxide HIF multiferroics. Here we prepared and examined a series of the first inorganic halide HIF multiferroic materials (K,Rb)₃Mn₂Cl₇ with quasi-2D-perovskite structures. Employing halides rather than oxides offers a better chance to combine two ferroic orders, because the large total negative charge from oxide anions requires high valent B-site cations (typically 4+ or 5+) and this limits the number of paramagnetic (PM) cations one can choose, one main reason behind the limited amount of HIF multiferroic/magnetoelectric oxides. In contrast, divalent magnetic cations can be easily incorporated into the B-site of halide perovskites due to the lower charge of the halide anions. The presence of a large number of divalent magnetic cations suitable for octahedral geometry, together with the wide variety of nonmagnetic monovalent cations (such as alkali metals) for A-site, enable

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

a rational design of a large family of new HIF multiferroics. Crucially, we show simultaneous thermal manipulation of the electric and magnetic polarizations in these materials. This new controlling mechanism is triggered by a thermal-induced polar-to-antipolar structural transition, which has never been observed in HIF oxide multiferroics. Polycrystalline K₃Mn₂Cl₇ was synthesized via a ceramic synthesis route from KCl and MnCl₂, with a modified condition from a previous report¹⁷. Refinements against low-temperature synchrotron X-ray diffraction (SXRD) and neutron powder diffraction (NPD) data (Supplementary Information Fig. S1, Tables S1, S2) reveal it adopts a polar, $a^-a^-c^+/a^-a^-c^+$ distorted, n=2 RP structure, in space group $A2_1am$ (Fig. 1a). This low-temperature polar structure is unambiguously demonstrated by pyroelectric and second-harmonic generation data (Fig. 1c, Supplementary Information Fig. S31). It arises from a HIF mechanism by combining a^-a^- out-of-phase rotations (X_3^-) irreducible representation, irrep), c^+ in-phase rotation (X_2^+) irrep), and a polar Γ_5^- distortion through a trilinear coupling interaction $Q_{X_3^-}Q_{X_2^+}Q_{\Gamma_5^-}$ (Supplementary Information Figs. S2-S4, Table S3). On warming, $K_3Mn_2Cl_7$ undergoes a first-order transition between $T_{C1} \sim 155$ K and T_{C2} ~ 180 K to adopt a hybrid-improper antipolar $P4_2/mnm$ structure with $a^-b^0c^0/b^0a^-c^0$ distortion (X₃⁻ irrep), which stabilizes an antipolar distortion mode (M₂⁺) (Supplementary Information Figs. S5-S8, Tables S4-S6). Further warming to $T_A \sim 410$ K leads to a transition to the undistorted I4/mmm structure (Figs. 1a, 1b, Supplementary Information Figs. S9, S10, Tables S7, S8). Zero field-cooled (ZFC) and field-cooled (FC) magnetization data (Fig. 2a) split at 64.5 K, while NPD data collected below 64.5 K (Fig. 2b) reveals a series of sharp magnetic reflections, indicating a long-range magnetic order below 64.5 K (T_N). Strong diffuse magnetic features in the NPD suggesting short-range spin correlations are observed between 64 K and 100 K, consistent with a broad maximum in magnetic susceptibility around 100 K (T_{max}). Fitting of the 4 K NPD data (Fig.

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

2c, Supplementary Information Fig. S11, Table S9) reveals a G-type antiferromagnetic order in magnetic space group $A2_1$ 'am', with refined moments $(4.36(2) \mu_B)$ aligning along the crystallographic c-axis (Fig. 2e). This magnetic symmetry permits weak ferromagnetic (wFM) canting along the b-axis via the Dzyaloshinskii-Moriya (DM) interaction¹⁸ (Fig. 2e), as evidenced by non-linear hysteretic magnetization-field isotherms (Fig. 2d) and density functional theory (DFT) calculations (Supplementary Information Figs. S17, S18, Table S11). Fitting the temperature-dependence of the ordered moments using a power law $M = M_0(1 - \frac{T}{T_N})^{\beta}$ yields a Néel temperature of $T_N = 64.3(1)$ K (Fig. 2f).

The coupling between the electric polarization and the wFM order in $K_3Mn_2Cl_7$ is established by examining the crystal and magnetic symmetries (Fig. 3a). The electric polarization (P) is directly coupled to the X_3^- out-of-phase tilt and X_2^+ in-phase rotation. The ferromagnetic order (m Γ_5^+ irrep) is established via a trilinear coupling mechanism with the X_3^- tilt and m X_1^- G-type antiferromagnetic order. Consequently, two ferroic orders are directly coupled via the X_3^- tilt, and can be simultaneously manipulated by applying an external stimulus which selectively modifies this distortion. A close inspection of the NPD data reveals a clear anomaly of the polar Γ_5^- distortion at T_N (Fig. 3b), indicating a dropping in electric polarization due to the onset of 3D magnetic order, hence a coupling effect. An anomalous negative thermal expansion (NTE) of the polar a-axis is observed below T_N , indicative of strong magnetoelastic coupling and a situation not reported in previous HIF multiferroic oxides. More direct evidences for probing magnetoelectric coupling can be obtained by future measurement of the magnetization under external fields, which likely require high-quality single crystals.

The coupling scheme established above is analogous to Ca₃Mn₂O₇¹², but crucially differs in switching pathways. In Ca₃Mn₂O₇, the lowest energy pathway to switch the polarization with the

change of X₃⁻ rotation cannot be unambiguously established and simultaneous manipulation of polarization and magnetism has not been observed. In contrast, our calculations show the lowest energy path for K₃Mn₂Cl₇ involves switching the X₃⁻ tilt, which transforms via an antipolar intermediate P42/mnm state (Figs. 3c, 3d). This pathway is lower in energy than transition paths through the 90° twin boundary and *Pnma* phase that have been reported in HIF RP oxides ^{19,20} by 4.2 meV/f.u. and 3.6 meV/f.u., respectively. To the best of our knowledge, this calculated pathway has never been unambiguously demonstrated in oxide HIF ferroelectrics/multiferroics and it is likely to also switch the wFM in K₃Mn₂Cl₇ (Figs. 3a, 3c, Supplementary Information Figs. S26-S29). It is important to note that the transition from $A2_1am$ to $P4_2/mnm$ must by symmetry involve a simultaneous change in directions in both local electric and magnetic polarisation (Fig. 3a). The suggested intermediate P42/mnm phase in the polarization switching path identified from our DFT calculations is in excellent agreements with the observed thermal phase transitions (Fig. 1a): the antipolar P42/mnm structure is the intermediate phase. This temperature-induced polarantipolar transition has never been realized in oxide HIF multiferroics. Given such transition involves the loss of the c^+ rotation (which does not affect ferromagnetism) and a change in the $X_3^$ tilt direction from $a^-a^-(X_3^-(a;0))$ to $a^-b^0(X_3^-(a;a))$, we anticipate control of ferromagnetism (Fig. 3a, Supplementary Information Fig. S29). However, the polar-antipolar transition temperature (T_C) for $K_3Mn_2Cl_7$ is higher than the magnetic ordering temperature T_N , hence dipolar control of the magnetism cannot be directly realized in this composition. Substituting K⁺ with the larger Rb⁺ cation reduces the size-mismatch with manganese and stabilizes the antipolar P42/mnm structure, lowering $T_{\rm C}$ while keeping $T_{\rm N}$ almost unchanged (Supplementary Information Figs. S22, S30). Consequently, $T_{\rm C}$ can be chemically tuned below $T_{\rm N}$ by varying Rb concentration. Large concentrations even stabilize the antipolar P42/mnm as the ground-state structure, e.g., K₂RbMn₂Cl₇ adopts an antipolar P4₂/mnm structure at 5 K (Supplementary Information Figs. S12-

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

S14, Table S10). The 5 K NPD data also reveals a similar G-type antiferromagnetic order along the c-axis in magnetic space group Pnn'm' in K₂RbMn₂Cl₇. The a^-b^0 tilt (X₃⁻ irrep) creates additional canted moments in the ab plane due to DM interactions, evidenced by non-linear, hysteretic magnetization-isotherms (Supplementary Information Figs. S15, S16). For lower Rb concentrations, such as $K_{2.85}Rb_{0.15}Mn_2Cl_7$, we find upon cooling below T_N (~65 K) that a structural transition from the antipolar $P4_2/mnm$ to polar $A2_1am$ occurs, accompanied by a spin-structure transition from A2₁'am' to Pnn'm' (Fig. 4a), evidenced by SXRD, magnetic and NPD data (Fig. 4b, Supplementary Information Figs. S19-S25). During this process both electric polarization and weak-ferromagnetic moments are reorientated in quasi-2D layers. Therefore, thermally induced simultaneous manipulation of ferromagnetism and polarization through a change in the octahedral tilts is achieved in a single phase (Supplementary Information Figs. S26-S29). Such tilt-enabled multiferroic coupling has long been sought but never realized. We expect a similar effect over a wide composition range in K_{3-x}Rb_xMn₂Cl₇ solid-solutions when the polar-antipolar transition occurs below T_N (Fig. 4c, Supplementary Information Fig. S30). For decades, research in multiferroics and magnetoelectrics has focused on using electric or magnetic field to control ferroic orders. We have shown that the concept can be thermally accessible in the first halide-based HIF multiferroics. The thermal induced simultaneous reorientations (but not switching) of electric and ferromagnetic polarizations are achieved directly using thermal energy without thermomechanical mediation. Such unusual control is enabled by the evolution of octahedral rotation from a^-a^- to a^-b^0 , which has not been identified in oxide HIF multiferroics. The distinct anion chemistry is perhaps behind the different phase transition behaviours and switching paths between oxides and chlorides, which require further experimental

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

and theoretical evidences for verification. Although the transition in our current materials is polar-

191 antipolar, there is no reason to expect that thermal multiferroic materials with polar-polar structural transition cannot be designed. 192 In addition to our HIF multiferroic halides, there exist other 2D and quasi-2D multiferroic halides 193 enabled by different mechanisms. Typical examples include 2D van der Waals (vdW) multiferroics 194 such as transition metal dihalides²¹, and the improper BaMF₄ family $(M = Mn/Ni/Co/Fe/Cu)^{22}$. 195 Despite their chemical similarities with our materials, their underlying multiferroic mechanisms 196 and potential switching paths are different. Specifically, 2D vdW multiferroics, such as NiI₂, are 197 type-II multiferroics and reply on a non-centrosymmetric spin texture to induce its electric 198 polarisation²¹. BaMF₄ are conceptually more similar to our materials as they also belong to 199 improper geometric ferroelectrics. However, they melt before undergoing a ferroelectric transition 200 and hence the switching path remains ambiguous²². 201 Is similar dipolar thermal control possible in other multiferroic materials such as aforementioned 202 non-HIF multiferroic halides? In this regard, type-II multiferroics are promising candidates, as 203 there is no reason to prevent them from exhibiting transitions between two non-centrosymmetric 204 spin arrangements with both electric and (weak) ferromagnetic polarisation pointing along different 205 directions. However, low magnetic ordering temperatures may be an intrinsic challenge and such 206 thermal control may only exist at very low temperatures. In contrast, BaMF4 are unlikely to offer 207 similar thermal control, as no polar-polar or polar-antipolar transition has been experimentally 208 identified in this family. 209 The temperature-induced dipolar manipulation can be easily achieved remotely, which is 210 appealing for in vivo application such as drug deliveries³, and can be triggered by using 'side 211 effects' such as intentional Joule heating. In addition, inducing a temperature difference is 212 generally easier than applying a large electric or magnetic field which is normally required in 213

controlling current multiferroics. Since structural transitions are sensitive to many external conditions such as pressure²³ and radiation²⁴, these stimuli are expected to achieve similar control. Besides, the fact that both polar and magnetic transition temperatures in our materials can be tuned below the nitrogen boiling point suggests that they may be studied as multicaloric materials^{25,26}

for ultra-low temperature refrigeration required for quantum information technologies²⁷.

Other halide materials with different transition metals, and/or with halide species other than chloride should be attempted and different transition metals can result in different magnetic symmetries and hence distinct coupling mechanisms. Although the magnetic ordering temperatures of layered halide perovskites (Table S12) are generally below ambient temperature, they may be elevated by chemical and structural modifications, e.g., alloying halides with oxide to strengthen the superexchange interaction in oxyhalides, or making 3D halide heterostructures, similar to the oxide [(YFeO₃)₄(LaFeO₃)₅]₄₀²⁸, to exploit 3D magnetic exchange paths that facilitate higher ordering temperatures. Finally, it would be very attractive to explore the possibility of realising thermal multiferroic systems with polar-polar structural transitions. Such systems would allow for more multiferroic states through combined electric and thermal control (Figs. S32 and S33).

Acknowledgments: The authors thank A. Kaminaka from Tohoku University for sample preparation, S. Kawaguchi and S. Kobayashi from SPring-8, JASRI for the assistance in collecting SXRD data (2020A0822). NPD experiments were performed at J-Parc BL09 SPICA beamline (2019S10) and JRR-3 HERMES beamline (22602). T. Z. acknowledges Sumitomo Chemical. H. K. and T. Z. acknowledges JSPS Core-to-Core Program (JPJSCCA202200004), JSPS Grant-in-Aid for Specially Promoted Research "Hydrogen Ion Ceramics" (JP22H04914), and JSPS Grants-

in-Aid for Scientific Research (22H04914, 22H0514). T. Z. and S. K. acknowledges GIMRT 237 Program of the Institute for Materials Research, Tohoku University (202109-RDKGE-0104). X.-238 Z. L. and J. M. R. were supported by the National Science Foundation under award number DMR-239 2011208. Computational efforts were supported by the National Energy Research Scientific 240 Computing Center (NERSC), a U.S. DOE Office of Science User Facility located at Lawrence 241 Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231, and the 242 Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF 243 (ACI-1548562). T. A. was supported by the JSPS KAKENHI (20K14396). K. F. was supported 244 by the JSPS KAKENHI (JP20K20546 and JP22H01775), the Kazuchika Okura Memorial 245 Foundation, the Nippon Sheet Glass Foundation for Materials Science and Engineering, and the 246 Mitsubishi Foundation. 247

248

- Author contributions: T. Z., X.-Z. L., J. M. R., and H. K. designed the project. T. Z., S. K. and
- A. Y. synthesized samples. X.-Z. L. performed theoretical calculations. T. Z., Y. N., T. S. and C.
- T. collected SXRD and NPD data. T. Z. performed structural analysis, with comments from Y. N.,
- 252 K. F. and X.-Z. L. T. A. and K. O. performed physical property measurements. K. F., T. K. and T.
- T. performed SHG measurements. T. Z., H. T. and H. L. collected and analyzed magnetization
- data. T. Z., X.-Z. L., J. M. R., and H. K. wrote the manuscript, with comments from other authors.

255

Competing interests: The authors declare that they have no competing interests.

Figure Legends

- Fig. 1. Structure evolution of K₃Mn₂Cl₇. (a) Schematic of tilting distortions adopted by 259 K₃Mn₂Cl₇ with temperature. (b) Normalized lattice parameters with temperature. (c) Temperature-260
- dependent dielectric constants, pyroelectric currents and electric polarizations on a polycrystalline 261

pellet. 262

263 264

258

Fig. 2. Magnetic properties of K₃Mn₂Cl₇. (a) ZFC/FC data collected between 2 K and 300 K. 265 (b) NPD data collected between 4 K and 100 K. Arrows indicate selected magnetic reflections. 266 The bottom figure shows the expanded region from 4.5 Å to 7.5 Å where the most intense magnetic 267 268 peaks appear. (c) Refinement of A21am crystal and A21'am' magnetic models against 4 K NPD data. (d) M(H) data collected at 5 K (blue) and 70 K (red). The inserted plot is the expanded region 269 around the origin, which clearly shows the hysteresis loop. (e) G-type antiferromagnetic order 270 observed from NPD data (left) and final canted-antiferromagnetic structure (right) due to the DM 271 interaction. (f) Power law fitting to ordered Mn moments against temperature. The ordered 272 273 moments and corresponding error bars come from fitting intensities of magnetic reflections from

274 275 NPD data.

276

277 278

279

280

281

282

283 284

285

286

287

288

Fig. 3. Symmetry relationship and indirect evidence for magnetoelectric coupling in K₃Mn₂Cl₇. (a) Magnetoelectric (ME) coupling mechanism in the polar A2₁am phase and symmetry relationship in the antipolar $P4_2/mnm$ state. Switching the X_3^- (a,0) distortion switches both the electric polarization $P(\Gamma_5^-)$ and weak ferromagnetism (m Γ_5^+) in the polar $A2_1am$ phase. Combining the mX_1 antiferromagnetic order with X_3 (a,0) (in $A2_1am$ symmetry) and X_3 (a,a) (in P42/mnm symmetry) leads to different weak ferromagnetic orders. (b) Indirect evidence for ME coupling. Top, middle, and bottom figures show magnetization, refined polar Γ_5 distortion and polar a-axis against temperature. Polar Γ_5 distortions and cell parameters along a-axis, as well as their corresponding error bars are obtained from fitting the variable-temperature NPD data. (c) Polarization energy switching barriers between +P state (left) and -P state (right) through the intermediate phase for different paths. (d) Mode amplitude and symmetry evolution in the polarization switching path via P42/mnm intermediate state.

289 290

291

292

293 294

295

296

297

298

299

Fig. 4. Simultaneous thermal manipulation of P and M in $K_{3-x}Rb_xMn_2Cl_7$. (a) Illustration of thermal changes in the directions of P and M. Arrows in the top panel indicate the local electric polarizations. Arrows in the bottom panel indicate directions of wFM. Note that wFM shown above T_C in this figure represents one of several possible scenarios, which are detailed in Supporting Information Section 8. (b) Temperature evolution of 004 reflections (SXRD) and phase fractions from A2₁am and P4₂/mnm phases of K_{2.85}Rb_{0.15}Mn₂Cl₇. Upon cooling, there is a transition from the antipolar to polar state. (c) A proposed phase diagram as a function of composition and

temperature. The right-hand-side figure shows an expanded region around the origin. The dashed

line indicates K_{2.85}Rb_{0.15}Mn₂Cl₇. Circles represent experimentally observed phase transition

temperatures. 300

Reference

- 302 1. Wang, J. et al. Epitaxial BiFeO₃ Multiferroic Thin Film Heterostructures. Science (1979) **299**, 1719–1722 (2003).
- 304 2. Kimura, T. et al. Magnetic Control of Ferroelectric Polarization. Nature 426, 55–58 (2003).
- 305 3. Bibes, M. & Barthélémy, A. Towards a Magnetoelectric memory. *Nat Mater* 7, 425–426 (2008).
- 306 4. Spaldin, N. A. Multiferroics beyond Electric-field Control of Magnetism. *Proc R Soc A: Math, Phys Eng Sci* 476, 20190542 (2020).
- 308 5. Manipatruni, S. *et al.* Scalable Energy-efficient Magnetoelectric Spin-orbit logic. *Nature* **565**, 35–42 (2019).
- 310 6. Chen, X.-Z. et al. Hybrid Magnetoelectric Nanowires for Nanorobotic Applications: Fabrication,
- Magnetoelectric Coupling, and Magnetically Assisted In Vitro Targeted Drug Delivery. *Adv Mater* **29**, 1605458 (2017).
- Meier, Q. N. *et al.* Search for the Magnetic Monopole at a Magnetoelectric Surface. *Phys Rev X* **9**, 11011 (2019).
- 8. Ponet, L. *et al.* Topologically Protected Magnetoelectric Switching in a Multiferroic. *Nature* **607**, 81–85 (2022).
- Hill, N. A. Why Are There so Few Magnetic Ferroelectrics? *J Phys Chem B* **104**, 6694–6709 (2000).
- 10. Pearson, R. G. The second-order Jahn-Teller effect. J Mol Struct: THEOCHEM 103, 25–34 (1983).
- Hur, N. *et al.* Electric Polarization Reversal and Memory in a Multiferroic Material Induced by Magnetic Fields. *Nature* **429**, 392–395 (2004).
- 321 12. Benedek, N. A. & Fennie, C. J. Hybrid Improper Ferroelectricity: A Mechanism for Controllable Polarization-Magnetization Coupling. *Phys Rev Lett* **106**, 107204 (2011).
- Yoshida, S. *et al.* Hybrid Improper Ferroelectricity in (Sr,Ca)₃Sn₂O₇ and Beyond: Universal Relationship between Ferroelectric Transition Temperature and Tolerance Factor in *n* = 2 Ruddlesden–Popper Phases. *J Am Chem Soc* **140**, 15690–15700 (2018).
- 14. Liu, M. *et al.* Direct Observation of Ferroelectricity in Ca₃Mn₂O₇ and its Prominent Light Absorption. *Appl Phys Lett* **113**, 22902 (2018).
- 328 15. J., P. M. *et al.* Tilt Engineering of Spontaneous Polarization and Magnetization above 300 K in a Bulk Layered Perovskite. *Science* (1979) **347**, 420–424 (2015).
- 330 16. Zhu, T. *et al.* Directed Synthesis of a Hybrid Improper Magnetoelectric Multiferroic material. *Nat Commun* 331 **12**, 4945 (2021).
- Horowitz, A., Gazit, D. & Makovsky, J. The growth of K₃Mn₂Cl₇, K₄MnCl₆ and CsMn₄Cl₉ from non-stoichiometric melts. *J Cryst Growth* **51**, 489–492 (1981).
- 334 18. Moriya, T. Anisotropic Superexchange Interaction and Weak Ferromagnetism. *Phy Rev* **120**, 91–98 (1960).
- Nowadnick, E. A. & Fennie, C. J. Domains and Ferroelectric Switching Pathways in Ca₃Ti₂O₇ from First Principles. *Phys Rev B* **94**, 104105 (2016).
- 20. Li, S. & Birol, T. Suppressing the Ferroelectric Switching Barrier in Hybrid Improper Ferroelectrics. *NPJ Comput Mater* **6**, 168 (2020).
- 339 21. Song, Q. et al. Evidence for a Single-layer van der Waals Multiferroic. Nature 602, 601–605 (2022).
- 340 22. Scott, J. F. & Blinc, R. Multiferroic Magnetoelectric Fluorides: Why are There so Many Magnetic Ferroelectrics? *J Phys: Condens Matter* **23**, 113202 (2011).
- 342 23. Ye, F. *et al.* Soft Antiphase Tilt of Oxygen Octahedra in the Hybrid Improper Multiferroic Ca₃Mn_{1.9}Ti_{0.1}O₇. *Phys Rev B* **97**, 41112 (2018).
- 24. Cavalleri, A. *et al.* Femtosecond Structural Dynamics in VO₂ during an Ultrafast Solid-Solid Phase Transition. *Phys Rev Lett* **87**, 237401 (2001).
- 346 25. Moya, X., Kar-Narayan, S. & Mathur, N. D. Caloric Materials near Ferroic Phase Transitions. *Nat Mater* 13, 439–450 (2014).
- 348 26. Hou, H., Qian, S. & Takeuchi, I. Materials, Physics and Systems for Multicaloric Cooling. *Nat Rev Mater* 7, 633–652 (2022).
- 350 27. Ladd, T. D. et al. Quantum Computers. Nature 464, 45–53 (2010).
- 351 28. Alaria, J. et al. Engineered Spatial Inversion Symmetry Breaking in an Oxide Heterostructure Built from
- Isosymmetric Room-temperature Magnetically Ordered Components. *Chem Sci* 5, 1599–1610 (2014).

Methods

Synthesis

Polycrystalline samples of $K_{3-x}Rb_xMn_2Cl_7$ ($0 \le x \le 1$) were prepared by reacting suitable stoichiometric ratios of anhydrous KCl (99.0%), RbCl (99.8%) and MnCl₂ (99.999%). The mixture was ground in an agate pestle and mortar in a nitrogen-filled glovebox, pelletized and loaded in a Pyrex tube. The Pyrex tube was then evacuated, sealed and heated to 410 °C at a rate of 100 °C/h and kept at 410 °C for 48 h. Samples were then transferred into the glovebox, reground, pelletized and heated in an evacuated Pyrex tube at 410 °C for another 48 h. Sample purity and reaction progress were monitored by X-ray powder diffraction data, which were collected using a Rigaku SmartLab SE diffractometer (Cu K α radiation). Samples were kept in the glovebox to avoid exposure to air or moisture.

Structural Characterization

High-resolution synchrotron X-ray powder diffraction data were collected using instrument BL02B2 at SPring-8. Samples were packed and sealed in 0.5 mm diameter borosilicate glass capillaries. Diffraction patterns were measured using CeO₂-calibrated X-ray radiations with an approximate wavelength of 0.42 Å. Diffraction data were collected as a function of temperatures using a N₂ gas flow device ($100 \le T/K \le 500$) and Helium gas flow temperature control device ($30 \le T/K \le 100$). Variable-temperature neutron powder diffraction data were collected using SPICA instrument (Time-Of-Flight, TOF) at J-Parc facility and HERMES diffractometer (Constant Wavelength, CW) at Japan Research Reactor-3 (JRR-3). Rietveld profile refinements were performed using the GSAS²⁹, GSAS2³⁰ and FullProf³¹ suites of programs. Symmetry and distortion mode analyses was performed using the ISODISTORT software³².

Magnetic Measurements

- Magnetization data were collected using a Quantum Design MPMS-XL SQUID magnetometry.
- Zero-field cooled (ZFC) and field cooled (FC) data were collected in an applied field of 0.01 T.
- Magnetization-field isotherms were collected with applied fields in the range -5 < H/T < 5.

Dielectric and pyroelectric Measurements

For the measurements of dielectric constant (ε ') and electric polarization (P), a sintered polycrystalline sample was pressed into thin plates and, subsequently, a gold electrode was deposited by a sputtering method on a pair of the widest surfaces. The ε ' was measured at an excitation frequency of 100 kHz in a commercial ⁴He cryostat using an LCR meter (Agilent E4980). Electric polarization was obtained by integrating a pyroelectric current measured with an electrometer (Keithley 6517).

Optical Second Harmonic Generation (SHG) Measurements

For the purpose of investigating the noncentrosymmetric nature of K₃Mn₂O₇, optical SHG was measured at 10 K in reflection geometry using a 1064-nm fundamental beam of a Nd:YAG laser (EKSPLA PL2143) operating with 25 ps pulses at a repetition frequency of 10 Hz. The SHG light from the polycrystalline sample was detected with a photomultiplier tube through a 532-nm narrow band-pass filter. The sample was mounted in a closed-cycle helium refrigerator.

Computational Details

Our total energy calculations are based on density functional theory (DFT) within the generalized gradient approximation (GGA) utilizing the revised Perdew-Becke-Erzenhof functional for solids (PBEsol)³³ implemented in the Vienna Ab Initio Simulation Package (VASP)³⁴. We use a 550-eV

We also use a $5\times5\times2$ k-point mesh and Gaussian smearing (0.10 eV width) for the Brillouin-zone integrations. The electric polarization is computed based on linear response theory using Born effective charges and small ionic displacements with respect to a centrosymmetric reference structure³⁶, which is consistent with that computed by the Berry phase method³⁷. We obtained converged results using an increased planewave cutoff energy of 700 eV in the calculations for the Born effective charges. We used the DFT plus Hubbard U method³⁸ with U and exchange parameter J set to 6 and 1 eV for Mn, respectively. These parameters reproduced the experimentally G-type antiferromagnetic structure. Spin-orbital coupling (SOC) is included in the magnetic anisotropy studies and the J value is increased to 1.5 eV to reproduce the experimentally determined magnetic anisotropy. To compute the symmetric spin exchange parameters, the four-state mapping method is used³⁹. In this study, we calculate the effective symmetric spin exchange parameters, which are obtained by setting $|S_i| = 1$, namely, $J_{ij} = J_{ij}^{eff} S_i S_j$ for a spin dimer ij. Our parallel tempering Monte Carlo (PTMC) simulations are based on an exchange MC method⁴⁰, which can simulate the classical Heisenberg spin system with a Hamiltonian of $E = E_0 + \sum_{i \in \mathcal{N}} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$ where J_{ij} is the symmetric spin exchange parameter. To obtain the plot of the specific heat (C) versus temperature (T), we calculate the specific heat $C \sim (\langle E^2 \rangle - \langle E \rangle^2)/T^2$ after the system reaches equilibrium at a given temperature T in the simulation. Then the critical temperature can be obtained by locating the peak position in the C(T) plot. In our PTMC simulations of the effective Hamiltonian, a 6×6×3 supercell of the 48-atom unit cell is adopted for the K₃Mn₂Cl₇ compound, which is converged and only leads to changes of 2 K compared to a

plane wave cutoff energy for all calculations and the projector augmented wave (PAW) method³⁵.

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

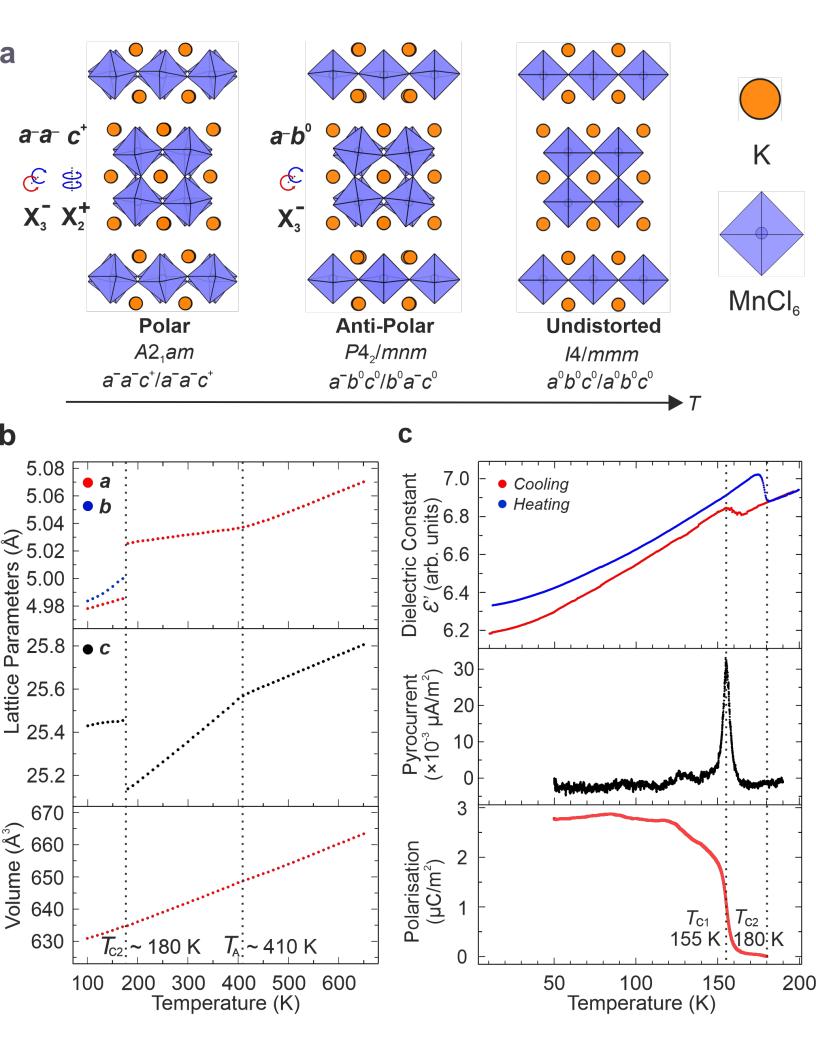
larger 12×12×2 supercell. The number of replicas is set to 96.

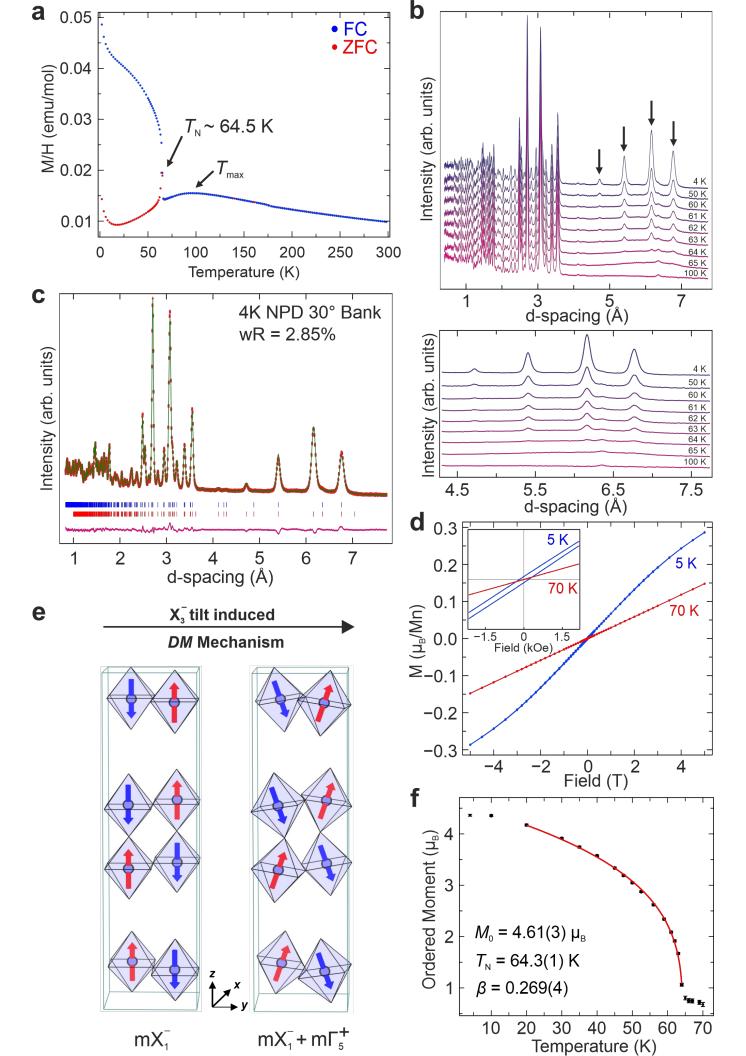
424 **Data availability:** Data needed to evaluate the conclusions of this paper are present in the paper and the Supplemental Materials. Additional data are available upon request from the corresponding 425 authors. 426 427

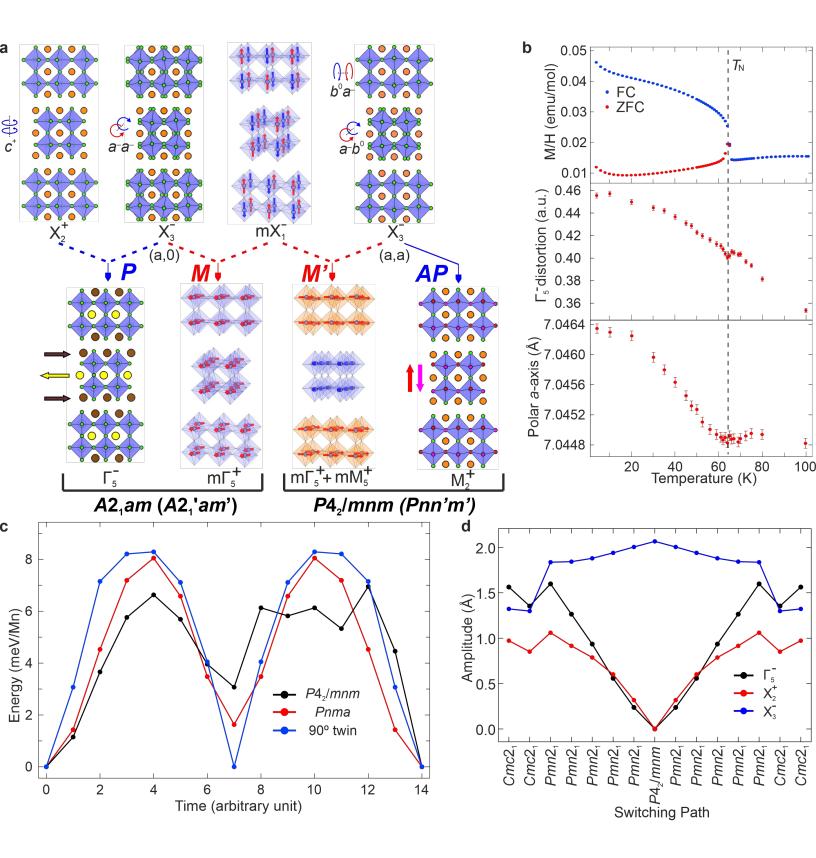
428

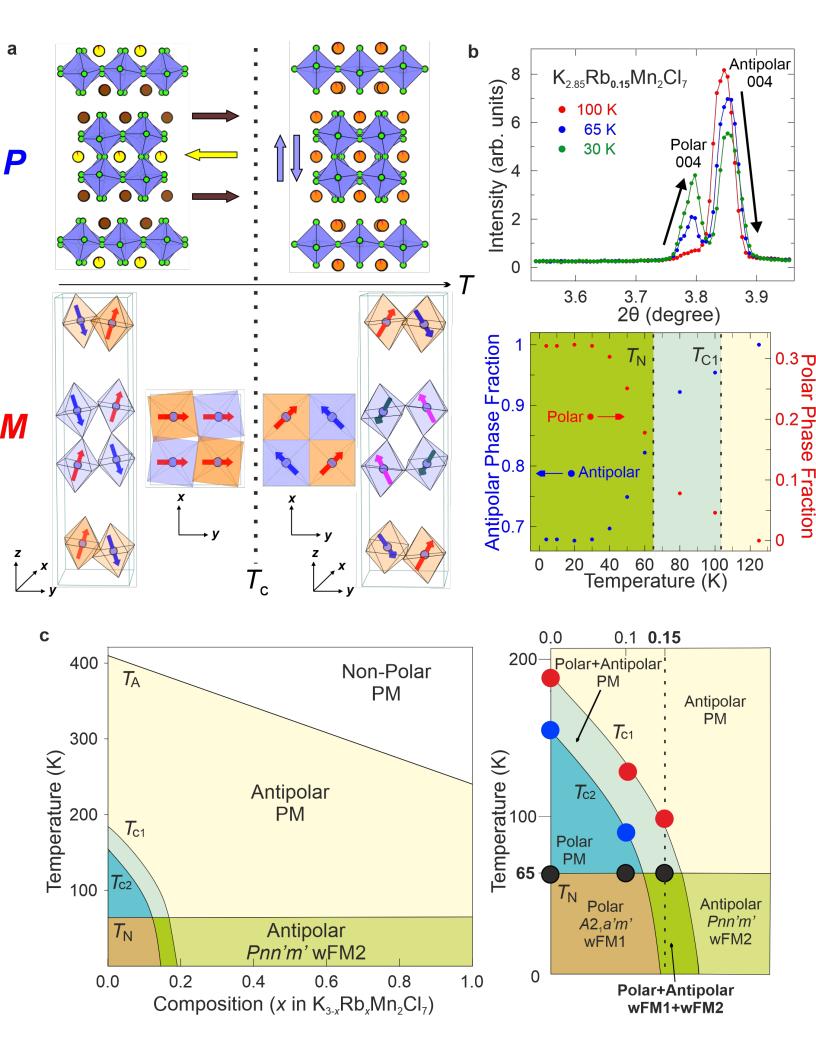
Methods-only references

- 429 29. Larson, A. C. & von Dreele, R. B. General Structure Analysis System (GSAS)(Report LAUR 86-748). Los 430 Alamos, New Mexico: Los Alamos National Laboratory (2004).
- Toby, B. H. & von Dreele, R. B. GSAS-II: the Genesis of a Modern Open-source all Purpose 431 30. 432 Crystallography Software Package. J Appl Crystallogr 46, 544–549 (2013).
- 433 Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder 31. 434 Diffraction. Phys B Condens Matter 192, 55–69 (1993).
- Campbell, B. J., Stokes, H. T., Tanner, D. E. & Hatch, D. M. "ISODISPLACE": a Web-based Tool for 435 32. Exploring Structural Distortions. J Appl Crystallogr 39, 607–614 (2006). 436
- 437 33. Perdew, J. P. et al. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys 438 Rev Lett 100, 136406 (2008).
- 439 34. Kresse, G. & Furthmüller, J. Efficient Iterative Schemes for ab initio Total-energy Calculations using a 440 Plane-wave Basis Set. Phys Rev B 54, 11169–11186 (1996).
- 441 35. Blöchl, P. E. Projector Augmented-wave Method. Phys Rev B 50, 17953–17979 (1994).
- 442 36. Meyer, B. & Vanderbilt, D. Ab initio Study of Ferroelectric Domain Walls in PbTiO₃. Phys Rev B 65, 443 104111 (2002).
- 444 37. King-Smith, R. D. & Vanderbilt, D. Theory of Polarization of Crystalline Solids. Phys Rev B 47, 1651–1654 445 (1993).
- 446 38. Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional Theory and Strong Interactions: Orbital Ordering in Mott-Hubbard Insulators. Phys Rev B 52, R5467–R5470 (1995). 447
- Xiang, H. J., Kan, E. J., Wei, S.-H., Whangbo, M.-H. & Gong, X. G. Predicting the Spin-lattice Order of 448 39. 449 Frustrated Systems from First Principles. *Phys Rev B* **84**, 224429 (2011).
- 450 40. Hukushima, K. & Nemoto, K. Exchange Monte Carlo Method and Application to Spin Glass Simulations. J Phys Soc Jpn 65, 1604–1608 (1996). 451


452


453


Supplementary information is available for this paper.


454

- Correspondence and requests for materials should be addressed to James M. Rondinelli and 455
- Hiroshi Kageyama. 456

