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ABSTRACT
Document retrieval has greatly benefited from the advancements
of large-scale pre-trained language models (PLMs). However, their
effectiveness is often limited in theme-specific applications for
specialized areas or industries, due to unique terminologies, incom-
plete contexts of user queries, and specialized search intents. To
capture the theme-specific information and improve retrieval, we
propose to use a corpus topical taxonomy, which outlines the latent
topic structure of the corpus while reflecting user-interested as-
pects. We introduce ToTER (Topical Taxonomy Enhanced Retrieval)
framework, which identifies the central topics of queries and docu-
ments with the guidance of the taxonomy, and exploits their topical
relatedness to supplement missing contexts. As a plug-and-play
framework, ToTER can be flexibly employed to enhance various
PLM-based retrievers. Through extensive quantitative, ablative, and
exploratory experiments on two real-world datasets, we ascertain
the benefits of using topical taxonomy for retrieval in theme-specific
applications and demonstrate the effectiveness of ToTER.
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• Information systems → Information retrieval; Specialized
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1 INTRODUCTION
Pre-trained language models (PLMs) have greatly improved doc-
ument retrieval [16, 19, 20, 53]. The PLM-based retrieval models
are first pre-trained on the massive textual corpora to grasp lan-
guage understanding. Subsequently, they are fine-tuned using vast
datasets of annotated query-document pairs, which enables the
models to capture their semantic similarities. While successful in
general domains like web search which consist of a broad user base,
they are often limited in specialized applications with specific themes.

Theme-specific applications are specialized areas or industries
where retrieval tasks are focused on a specific theme (e.g., academic
paper search, product search in e-commerce). Retrieval in theme-
specific applications poses three challenges spanning specialized
terminology and niche content (C1), limited contexts of user query
(C2), and specialized user interests and search intents (C3).
C1: Theme-specific domains often have specialized terminologies,
which are not frequently included in the general text corpus. For
example, Table 1(a) shows that an academic paper includes many
technical terms specific to certain research fields, such as “proof
of retrievability” and “cryptographic proof”. PLM-based retrievers
trained on general text corpora often lack an inherent understand-
ing of domain-specific specialized and niche terminologies [8].
C2: Users familiar with the domain often omit contexts they believe
are naturally implied in their query. For example, in product search,
users enter a query such as “RTX 3090” without adding contexts
such as “graphics cards”. Table 1(a) shows queries from domain
experts may skip over general contexts such as “cryptography” or
“computer security”. Omitted terms hinder the model’s ability to
fully comprehend the query, leading to imprecise retrieval outcomes.
Inferring missing contexts is more challenging in theme-specific
applications as it often requires domain-specific knowledge.
C3: Users in theme-specific applications have more specialized in-
terests and intents compared to general web searches. For example,
researchers may want to find papers within a specific field of study
to discern a particular research trajectory. In product search, users
often filter results based on specific product attributes. For example,
Table 1(b) shows that both documents are somewhat relevant to the
query as both of them are about ammonia-free hair color products.
However, the query targets hair dye with lasting effects, instead of
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Table 1: Examples of retrieval in theme-specific applications. We use Contriever-MS (retriever) and MiniLM-L-12 (reranker).
Contents closely related to the query are denoted in bold. Details of topic class and core phrase discovery are provided in §4.

(a) Academic domain (b) Product domain
Query Provable data possession at untrusted stores Query #1 black natural hair dye without ammonia or peroxide
Document A
(label: relevant
rank: top-173)

Pors: proofs of retrievability for large files. In this paper,
we define and explore proofs of retrievability (PORs). ... A
POR may be viewed as a kind of cryptographic proof of
knowledge (POK). ... We view PORs as an important tool
for semi-trusted online archives. Existing cryptographic
techniques help users ensure the privacy and integrity
of files they retrieve. ...

Document A
(label: relevant
rank: top-70)

ONC NATURALCOLORS (1N Black) 4 fl. oz. (120 mL).
Healthier permanent hair dye with certified organic ingre-
dients, ammonia free, vegan friendly, 100 gray coverage. ...
Cruelty-free and vegan. It is time to make the clean choice.

Document B
(label: irrelevant
rank: top-11)

Roux Fanci-full Rinse 16 Hidden Honey. Tones and enhances
gray and blonde hair. Rinses in and shampoos out. No am-
monia or peroxide. . . . 15 applications per bottle, temporary
hair color, 15 ounce bottle.

ToTER rank:
top-10

Topic classes: cryptography, trusted computing, digital con-
tent, computer network, computer security, computer science

ToTER rank:
top-5 (Doc.A)
top-32 (Doc.B)

Topic classes: hair color, hair coloring products, hair care,
beauty & personal care

Core phrases: encryption, access control, security, key,
server

Core phrases: dye, permanent, lasting, permanent hair color,
ammonia free

hair rinse with temporary effects. These specialized search intents
are not effectively captured by models trained on general corpora.

Accumulating ample labeled data can mitigate these challenges
to some extent. However, the creation of such datasets in theme-
specific applications is particularly challenging due to the need
for domain expertise (e.g., academic domain) and the proprietary
nature of user logs in specialized applications (e.g., e-commerce)
[4, 28]. As a result, PLM-based retrieval models often struggle to
accurately capture relevance in theme-specific applications [47].

To improve retrieval without relying on labeled data, we propose
to use a corpus topical taxonomy [14, 26, 35, 45, 56], which has been
extensively studied for organizing topics in a corpus. A corpus top-
ical taxonomy outlines the latent topic hierarchy within the corpus
as a tree structure, where each node is a topic class represented by
a cluster of semantically coherent terms describing the topic, as
shown in Figure 1. Recent taxonomy construction studies [1, 14, 26]
have effectively reflected user-interested aspects, drawing from a
foundational seed taxonomy rooted in human knowledge of the
application (e.g., fields of study from Mircosoft Academic [46]). The
constructed taxonomy can be subsequently employed to provide
additional clues to link queries and documents by discerning their
topical relatedness and supplementing the missing contexts.

We propose Topical Taxonomy Enhanced Retrieval (ToTER)
framework, which systematically leverages the corpus taxonomy
to complement the semantic matching of PLM-based retrieval. The
taxonomy provides a high-level topic hierarchy of the entire corpus.
To harness this corpus-level knowledge for retrieval, we first link
it to individual documents. Specifically, ToTER first conducts topic
class relevance learning to discern the relevance of each document to
each topic class node in the taxonomy. We formulate this step as an
unsupervised multi-label classification problem without document-
topic labels. ToTER introduces a new silver label generation strategy
along with a new collective distillation process to produce rich
and reliable signals. This class relevance learning allows ToTER
to effectively identify central subjects of a given text under the
guidance of the topical taxonomy reflecting user interests.

Based on the identified topic class relevance, ToTER leverages
the topical relatedness of a query and documents to complement
the semantic matching by PLM-based retrievers. In Table 1(a), we
see that ToTER can improve retrieval by identifying common topic
classes like “cryptography” and “computer security” for both query

and document, given the presence of terms frequently used for
these topic classes (C1). Furthermore, ToTER combines the topical
relatedness with more fine-grained phrase knowledge for each
topic class, helping to distinguish documents having similar topics.
In Table 1(b), ToTER identifies and utilizes core topical phrases
such as “dye”, “lasting”, and “permanent hair color” to enrich the
query, enabling more accurate finding of relevant documents (C2).
This entire process is built upon the topical taxonomy reflecting
user-interested aspects (C3). Formally, ToTER introduces three
strategies to complement the PLM-based retrieval: (1) search space
adjustment, (2) class relevance matching, and (3) query enrichment
by core phrases. Our contributions are summarized as follows:
• We present a systematic approach to incorporate topical taxon-
omy into retrieval in theme-specific applications, which remains
unexplored in the previous literature.

• We propose ToTER that deliberately discerns and utilizes top-
ical relatedness of queries and documents. As a plug-and-play
framework, it can be integrated with various PLM-based models.

• We validate the effectiveness of ToTER by extensive experiments.
ToTER consistently improves retrieval accuracy in scenarios with
both no labeled data and limited labels.

2 PROBLEM FORMULATION
2.1 Concept Definition
PLM-based multi-stage retrieval. Most PLM-based retrieval sys-
tems leverage multi-stage retrieve-then-rerank pipeline [8, 31, 57].
Specifically, given a query 𝑞, a retriever retrieves a set of candi-
date documents D𝑞 from a large corpus D, where |D𝑞 | ≪ |D|.
Following the first-stage retrieval, a reranker computes a more fine-
grained relevance for each candidate document, and generates the
final ranked list by reordering them.

The first-stage retriever typically adopts a dual-encoder architec-
ture, where query and documents are encoded separately and the
relevance is measured by the similarity between their embeddings.

𝑠𝑑𝑒 (𝑞, 𝑑) = 𝑠𝑖𝑚(𝑓𝜃 (𝑞), 𝑓𝜃 ′ (𝑑)), (1)

where 𝑓𝜃 and 𝑓𝜃 ′ are the query and document encoders, and 𝑠𝑖𝑚(·, ·)
is the similarity function such as the cosine similarity. The docu-
ment embeddings are pre-computed and efficiently retrieved via
approximate nearest-neighbor (ANN) search techniques [18].
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The second-stage reranker mostly adopts a cross-encoder archi-
tecture which takes the concatenation of a query and a document
as input and assesses its relevance score.

𝑠𝑐𝑒 (𝑞, 𝑑) = 𝑓𝜙 (𝑞, 𝑑), (2)

where 𝑓𝜙 denotes the reranker. By fully exploring the interactions
between the query and document, it generates more accurate rele-
vance scores compared to the dual-encoder [57].
Topical taxonomy. A corpus topical taxonomy T = (C,R) repre-
sents a tree structure that outlines the latent topic hierarchy within
the target corpus. Each node 𝑐 𝑗 ∈ C corresponds to a topic class
which is described by a coherent cluster of terms1 describing the
topic, denoted by 𝑃 𝑗 . The most salient term (i.e., center term) is uti-
lized as the class name. Each edge (∈ R) indicates a theme-specific
relationship between a parent and child node, such as “is a subfield
of” or “is a type of”. Figure 1 shows an example of topical taxonomy.

To construct the topical structure reflecting theme-specific user
interests, taxonomies are built upon a foundational seed taxonomy
rooted in human knowledge of the application [1, 14, 26]. An ex-
ample is the fields of study in the academic domain [46], which
embodies researchers’ inclination to organize academic concepts
and studies. Based on this application knowledge, recent methods
[14, 26, 27, 59] have effectively generated taxonomy having remark-
able term coherency, topic coverage, and user-interest alignment.

2.2 Problem Definition
We focus on retrieval within theme-specific applications, which are
specialized areas or industries where retrieval tasks are centered
around specific themes. Given a target corpus D and its topical
taxonomy T 2, our goal is to develop a systematic framework that
exploits the topic hierarchy knowledge to improve the existing
PLM-based multi-stage retrieval. We focus on scenarios where
labeled data from the target corpus is unavailable. Lastly, it is worth
noting that we pursue a plug-and-play solution that can be flexibly
integrated with various existing retriever and reranker models.

3 RELATED WORK
PLM-based retrieval models. PLM-based retrieval models have
advanced in both training and encoding strategies. In terms of train-
ing strategy, starting from in-batch and hard negatives by BM25
[19, 30], advanced hard negative mining by dynamic sampling [55]
and denoising using a cross-encoder [40] have been studied. Many
works have focused on pre-training with unsupervised contrastive
learning [11, 12, 16], knowledge graph [8, 21], and synthetic data
[4, 6, 31] to improve the capability of models. Recent studies [43, 57]
also show that joint training of the retriever and reranker can fur-
ther improve their effectiveness. In terms of encoding strategy,
single-vector representation models [53] encode a given text as
a single vector, and multi-vector representation models [20] use
multiple vectors to improve expressiveness. Recent sparse repre-
sentation models [9, 10] use sparse lexical representations based

1Each term is regarded as a phrase composed of one or multiple word tokens, so the
terms “phrase” and “term” are used interchangeably in this paper.
2The topical taxonomy can be obtained using any off-the-shelf taxonomy completion
technique. In this work, we use the recently proposed method [26].

on the logits of the masked language model layer of PLMs, which
enables a natural query and document expansion.

Despite their effectiveness, they require fine-tuning withmassive
labeled data to be adapted to the new domain corpus. As a plug-
and-play framework, ToTER complements the above approaches
using a topical taxonomy without resorting to the labeled data.
Retrieval with auxiliary corpus knowledge. These techniques
aim to improve retrieval by exploiting knowledge of the target
corpus. One notable approach is pseudo-relevance feedback (PRF),
which utilizes the top-ranked results from an initial retrieval to
enhance the semantic matching process. The existing methods have
exploited key terms [22, 50], text segments [60], and documents [54]
from top-ranked results as an additional context to complement the
query. Recently, [33, 34] have directly utilized knowledge stored
in the PLMs for query expansion. Despite their effectiveness in
filling missing contexts, their effectiveness is often limited in theme-
specific applications due to the suboptimal initial retrieval quality
and the need for domain-specific knowledge.

Another approach leverages inter-document similarity via a cor-
pus graph whose nodes are documents and edges connect most
similar documents. Under the assumption that similar documents
tend to be relevant to the same query, [32] adapts the candidate
document set for reranker using the nearest neighbors in the graph.
[24] first uses lexical retrieval to obtain seed documents and uses
the graph to gradually expand the search space for retrievers. Lastly,
there have been a few attempts to use topic information for retrieval.
[17, 51] combine LDA [3] with statistic-based retrieval, and [13, 48]
use topics for a balanced batch construction. [29] incorporates topic
information into a word embedding-based model. However, there
has been no attempt to exploit the high-quality corpus taxonomy.

It is worth noting that there exist a few attempts to use exter-
nal knowledge (e.g., knowledge base) [8]. We focus on exploiting
knowledge of the target corpus, and ToTER can be combined with
the external knowledge-based models as well.

4 METHODOLOGY
We present Topical Taxonomy-Enhanced Retrieval (ToTER) frame-
work. We first explain how ToTER bridges the given taxonomy with
the target corpus in the training phase (§4.1), then present how
ToTER enhances PLM-based retrieval in the inference phase (§4.2).
The overview of ToTER is presented in Figure 1.

4.1 Topic Class Relevance Learning
The taxonomy reveals the latent structure of the whole corpus. To
exploit it for retrieval, we first connect the corpus-level knowledge
to individual documents. We formulate this step as an unsupervised
multi-label classification, assessing the relevance of each document
to each topic class without document-topic labels.We first introduce
our silver label generation strategy (§4.1.1). Then, we propose a
new training strategy to produce rich and reliable training signals
(§4.1.2). The overall training process is provided in Appendix A.2.1.

4.1.1 Taxonomy-guided silver label generation. As the first
step, we seek to identify a small candidate set of relevant classes for
each document, which will be our silver labels for training. Utilizing
the hierarchical structure of topic classes, we introduce a top-down
approach that recursively assigns documents to the child node with
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Figure 1: The overview of Topical Taxonomy-Enhanced Retrieval (ToTER) framework.

the highest similarity, gradually narrowing down the topic. Given a
document, we start from the “root node” and compute its similarity
to each child node. The document is then assigned to the child node
with the highest similarity.3 This assignment process recurs until
it reaches leaf nodes. Once every document has been assigned, we
apply a filtering step to retain only reliable labels for each document.
Document-class similarity computation. For each document 𝑑 ,
we compute its similarity with a child node 𝑐 𝑗 by considering all
phrases related to 𝑐 𝑗 . Let 𝑃T𝑗 denote the union of all phrases from
the subtree having 𝑐 𝑗 as a root node. The similarity is computed
by considering both lexical aspect (sim𝐿) based on statistics and
semantic aspect (sim𝑆 ) based on PLMs, which are defined as:

𝑠𝑖𝑚𝐿 (𝑑, 𝑐 𝑗 ) =
1

|𝑃T
𝑗
|

∑︁
𝑝∈𝑃T

𝑗

tf (𝑝, 𝑑) · idf (𝑝)

𝑠𝑖𝑚𝑆 (𝑑, 𝑐 𝑗 ) =
1

|𝑃T
𝑗
|

∑︁
𝑝∈𝑃T

𝑗

cos(h𝑝 , h𝑑 ),
(3)

where h𝑝 and h𝑑 denote representations from PLM for a phrase 𝑝
and a document 𝑑 . The lexical and semantic similarity can reveal
complementary aspects; lexical matching has strengths in handling
domain-specific terminologies that rarely exist in the general cor-
pus, and semantic matching excels in capturing broader contextual
meanings while flexibly handling non-exact matching terms.

To jointly consider the two aspects, we adopt the ensemble score
based on the reciprocal rank [58, 59]. By ranking all child nodes in
descending order of 𝑠𝑖𝑚𝐿 and 𝑠𝑖𝑚𝑆 , each node will have two rank
positions 𝑟𝑎𝑛𝑘𝐿 and 𝑟𝑎𝑛𝑘𝑆 , respectively. The overall similarity is:

𝑠𝑖𝑚𝑂 (𝑑, 𝑐 𝑗 ) =
(
1
2

(
1

𝑟𝑎𝑛𝑘𝐿 (𝑐 𝑗 )

)𝜌
+ 1
2

(
1

𝑟𝑎𝑛𝑘𝑆 (𝑐 𝑗 )

)𝜌 )1/𝜌
, (4)

where 0 < 𝜌 ≤ 1 is a constant. We set 𝜌 = 0.1.

3Although a document can cover multiple topics, we assign it to the most similar child
node to generate reliable silver labels.

Filtering step. After the class assignment for all documents, we
apply a filtering step to only retain assignments with high similarity.
For each class node, we keep documents whose similarity exceeds
the median similarity of all documents assigned to the class. If a
document is filtered out from a certain node, the document is also
removed from all its child nodes, ensuring hierarchical consistency.4

Finally, for each document 𝑑 , we obtain silver labels y𝑠
𝑑
∈ {0, 1} | C | ,

where 𝑦𝑠
𝑑 𝑗

= 1 if 𝑐 𝑗 is assigned to 𝑑 , otherwise 0.

4.1.2 Class relevance learning. Based on the obtained silver
labels, we train a class relevance estimator that predicts relevance
between a document and topic classes. For effective training, we
propose a new collective topic knowledge distillation strategy de-
signed to complement incomplete silver labels.
Class relevance estimator. As developing a novel architecture is
not the focus of this paper, we employ the existing methods to en-
code documents and class nodes. For the text encoder, we use BERT
[7] with mean pooling to obtain h𝑑 for each document 𝑑 . For the
topic class encoder, we adopt graph convolutional networks (GCNs)
[23] to incorporate both semantic and structural information. For
each class node 𝑐 𝑗 , we first obtain its ego graph that includes its
𝐿-hop neighboring nodes and apply GCN layers to propagate node
features over the taxonomy structure. Each node feature is initial-
ized by the BERT representation of its class name. After stacking 𝐿
GCN layers, we use the representation of the ego node, denoted as
c𝑗 , as the final class representation.

Then, we calculate the topic class-document relevance by bilinear
interaction between their representations, i.e., 𝑦𝑑 𝑗 = 𝜎 (c⊤

𝑗
Mh𝑑 ),

whereM is a trainable interaction matrix and 𝜎 (·) is the sigmoid
function. The estimator is trained by the binary cross-entropy loss:

min
M, 𝜃𝐺𝐶𝑁

L = −
∑︁
𝑑∈D

∑︁
𝑐 𝑗 ∈C

𝑦𝑑 𝑗 log𝑦𝑑 𝑗 + (1 − 𝑦𝑑 𝑗 ) log(1 − 𝑦𝑑 𝑗 ) . (5)

4We apply the filtering to nodes at the second or deeper levels to ensure every document
has at least one class assignment (the root node has level 0).
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In the early stages of training, we use the silver labels y𝑑 = y𝑠
𝑑
.

As training progresses, we exploit collective topic labels y𝑑 = y𝑐
𝑑

obtained from similar documents, which we will introduce below.
Collective topic knowledge distillation (CKD). As the silver
labels incompletely reveal true relevance classes, relying solely on
them leads to suboptimal estimation. As a solution, we propose
CKD, designed to complement the incomplete labels. Our core idea
is that the topic distribution of a document can be inferred from
semantically similar documents. Specifically, (1) Using each docu-
ment 𝑑 as a query, we retrieve a small subset of semantically similar
documents D𝑑 from the corpus. To accurately retrieve D𝑑 , we
consider both semantic similarity (via a dual-encoder) and topical
relatedness (via our estimator). This will be explained in Sec 4.2.2.
(2) We compute the class relevance distributions for each retrieved
document, i.e., {ŷ𝑑 ′ | 𝑑′ ∈ D𝑑 }. (3) By averaging the predicted
distributions, we generate collective relevance labels y𝑐

𝑑
∈ (0, 1) |𝐶 | .

Unlike y𝑠
𝑑
which consists of binary values, y𝑐

𝑑
reveals the soft

probability of a document’s relevance to each class. Notably, y𝑐
𝑑

reveals topic classes that are highly pertinent to documents similar
to 𝑑 , providing rich supervision not included from y𝑠

𝑑
. Moreover,

this collective knowledge distills more stable and reliable signals
than using individual predictions for pseudo-labeling, as done in
conventional self-training [15, 52]. It is worth noting that y𝑐

𝑑
gets

refined during the training. That is, the topic estimator is improved
with collective knowledge, which again results in more accurate
discovery of similar documents and their topic distributions.

4.2 Topical Taxonomy-Enhanced Retrieval
We present how ToTER improves PLM-based retrieval at the infer-
ence phase. ToTER consists of three strategies to complement the
existing retrieve-then-rerank pipeline. Each strategy is designed to
gradually focus on fine-grained ranking, as shown in Figure 1.
Class relevance estimation. After training, for every document
𝑑 in the corpus, we compute its topic class relevance as ŷ𝑑 . Consid-
ering each document only covers a small subset of topics within
the corpus, we focus on classes with high relevance. To indicate
these relevant classes, we introduce a binary indicator vector b̂𝑑 ∈
{0, 1} | C | , where 𝑏𝑑 𝑗 = 1 denotes that 𝑑 has a certain degree of
relevance to 𝑐 𝑗 , otherwise 𝑏𝑑 𝑗 = 0. We recursively retain the top
𝑚% classes for each level of taxonomy by setting the correspond-
ing elements of b̂𝑑 as 1. If a class is not retained at a higher level,
all its child classes are not retained as well, ensuring hierarchical
consistency. We set𝑚 = 10. At test time, for a given query 𝑞, we
obtain ŷ𝑞 and b̂𝑞 in the same way.

4.2.1 Search space adjustment (SSA) to reduce search space.
The topic class relevance reveals the central subjects of each docu-
ment, providing a snapshot of its main focus. Before applying the
PLM-based retrievers, we seek to filter out a large number of irrel-
evant documents having little topic class overlap with the query.
This step can benefit subsequent retrieval by reducing the search
space while preserving topically relevant documents that may oth-
erwise be overlooked by PLM-based retrievers. For search space
reduction, lexical models (e.g., BM25) are mostly considered due to
their high efficiency [24, 47]. We expect topic-based SSA can have

strengths in identifying relevant documents, compared to using
lexical similarity based on word overlap.

As topics are discrete categories, we can efficiently compute the
topic overlap using the binary vectors. In specific, we compute the
degree of topic overlap between the query and each document using
bitwise operations: Popcount(AND(b̂𝑞, b̂𝑑 )). Then, we filter out doc-
uments with low degrees of overlap, obtaining the reduced search
space D𝑆𝑆𝐴

𝑞 . The size of this space can be determined empirically.
We continue subsequent retrieval on D𝑆𝑆𝐴

𝑞 instead of D.
Remarks. Compared to using real-valued vectors ŷ∗, the pro-

posed SSA is more efficient as it uses bitwise operations of binary
vectors, largely reducing the need for floating-point operations. It
can be further accelerated using multi-index hashing for binary
codes [39]. As search speed acceleration is a distinct research topic,
we focus on the accuracy aspect in this work.

4.2.2 Class relevancematching (CRM) for retriever. The first-
stage retriever aims to find a set of candidate documents D𝑞 . In
this step, we exploit topical relatedness of the query and document,
which is the similarity between distributions of the relevant topic
classes. Topical relatedness focuses on the relevance of the central
subjects of the input texts identified using the class estimator. This
can help to handle lexical mismatches and fill in missing contexts,
providing a complementary aspect to semantic similarity. Formally,
we retrieve D𝑞 based on 𝑠 (𝑞, 𝑑), considering both semantic similar-
ity from dual-encoder 𝑠𝑑𝑒 (𝑞, 𝑑) and topical relatedness 𝑠𝐶𝑅𝑀 (𝑞, 𝑑):

𝑠 (𝑞, 𝑑) = 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝑠𝑑𝑒 (𝑞, 𝑑), 𝑠𝐶𝑅𝑀 (𝑞, 𝑑)),

𝑠𝐶𝑅𝑀 (𝑞, 𝑑) = 𝑠𝑖𝑚(ŷ𝑞 ⊙ b̂𝑞, ŷ𝑑 ⊙ b̂𝑑 ) .
(6)

We obtain the relevant class distribution using element-wise multi-
plication, denoted as ⊙, with the binary vector. Then, we compute
the similarity between the query and document distributions using
the 𝑠𝑖𝑚(·, ·) function, where we use inner-product. 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (·, ·)
denotes a function to consolidate two scores, and we adopt a sim-
ple addition with rescaling via z-score normalization.5 We also
explored reflecting the granularity of topics by exclusively focusing
on broad or specific topic classes in CRM. However, considering the
overall topic distribution, encompassing both broad and specific
topics, proved most effective. Please refer to Appendix A.4 for a
detailed study.

4.2.3 Query enrichment by core phrases (QEP) for reranker.
In this last stage, a reranker reordersD𝑞 based on their fine-grained
relevance to the query 𝑞. Since D𝑞 already have similar relevant
classes via CRM, in this step, we delve deeper into each topic by
focusing on class-related phrases. As discussed earlier, users familiar
with a domain often omit contexts in their queries, which makes it
difficult to find accurate relevance. To address this, we use phrase-
level knowledge to enrich queries.

A remaining question is how to identify phrases to complement
a given query. QEP is built upon the relevance model philosophy
[25], which assumes that both a query and its relevant documents
are generated from a shared underlying relevance model. Although
the true relevance model behind the query is unknown, it can
be inferred from the most relevant documents obtained from re-
trieval [50, 54, 60]. Based on this idea, we identify core phrases to
5A hyperparameter can be also used to balance two scores of varying magnitudes.
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Figure 2: Retrieval performance comparison on the academic and product domain.

enrich the query using both the topic class knowledge and top-
ranked retrieved documents. From the set of relevant class phrases
{𝑃 𝑗 |𝑏𝑞𝑗 = 1}, we collect the top-𝑘 core phrases 𝑃𝑞 that most fre-
quently appear in top-ranked documents.6 Then, we enrich the
original query with 𝑃𝑞 and use the enriched query for inference:

𝑠𝑐𝑒 (𝑞, 𝑑) = 𝑓𝜙 (𝑞𝑄𝐸𝑃 , 𝑑), 𝑞𝑄𝐸𝑃 = [𝑞; TMPLT(𝑃𝑞)], (7)

where TMPLT denotes the template of the hard prompt. In this work,
we use TMPLT(𝑃𝑞) = “, relevant topics: {𝑃𝑞}”. We also tried using
just the topic class names (i.e., the most salient phrase) for query en-
richment. However, we found that they are often too coarse-grained,
thus bringing limited information for fine-grained rankings.

5 EXPERIMENTS
We experiment to answer the following research questions:
RQ1 How does each strategy of ToTER affect retrieval accuracy?
RQ2 How does ToTER compare with other techniques that use

auxiliary corpus knowledge in terms of retrieval accuracy?
RQ3 Is ToTER compatible with a variety of PLM-based retrieval

models used for each retrieval stage?
RQ4 How does the labeled data affect the effectiveness of ToTER?
RQ5 How sensitive is ToTER to the taxonomy quality?
We provide details of setup and implementation in Appendix A.3.
Dataset.We simulate two theme-specific applications: (1) academic
paper search using SCIDOCS dataset [5], (2) product search in
e-commerce using Amazon ESCI dataset [41]. We provide data
statistics in Appendix A.3.
Retrieval setup and metrics.Without ToTER, the retrieval pro-
cess follows the standard (1) retrieval, (2) reranking pipeline (§2.1).
ToTER has an added SSA step to reduce the initial search space.
Thus, with ToTER, the retrieval process follows (1) SSA, (2) retrieval
(with CRM), and (3) reranking (with QEP). We employ various rank-
ing metrics for each retrieval stage. For SSA and the first-stage
retrieval, we use Recall (R@𝐾 ). For the second-stage reranking, we
additionally use NDCG (N@𝐾 ) and MAP (MAP@𝐾 ). In our experi-
ments, we set the size of search space adjustment |D𝑆𝑆𝐴

𝑞 | = 2500
and the candidate set for reranking |D𝑞 | = 100 [32].

5.1 Results and analysis (RQ1,RQ2, and RQ3)
5.1.1 Initial search space adjustment. We first assess the effi-
cacy of SSA in filtering out irrelevant documents from the corpus.
As this can be seen as a kind of retrieval with a large retrieval size,
we compare various retrieval methods. Note that SSA does not re-
quire backbone retrieval models, as it only uses the class estimator.
6The phrases related to each class (𝑃 𝑗 ) are provided in the topical taxonomy (§2.1).
The frequencies of phrases for each document are pre-computed.

Compared methods. (a) Lexical and sparse model: BM25 [44],
docT5query [38], (b) pre-trained PLMs for each corpus: SCIBERT [2]
& BERT-base [7], (c) unsupervised domain adaptation: GenQ [47],
(d) PLM-based retriever: Contriever-MS [16], TAS-B [13], ColBERT
[20], SPLADE++ [9]. GenQ uses synthetic data generated for the
target corpus7, and other retrievers in (d) are fine-tuned using
massive labeled data from the general domain [36].
Findings. Figure 2 presents recalls (R@𝐾 ) for varying sizes of re-
trieved documents (𝐾 ). SSA consistently achieves the highest recall
when 𝐾 is large (≥ 103), which shows its efficacy in accurately
filtering out irrelevant documents. Using class relevance learning,
ToTER categorizes documents based on the theme-specific taxon-
omy. This approach aids in identifying the central subject of doc-
uments, which may not be effectively captured by the lexical and
semantic similarity based on word overlap and contextual meaning.

Among the competitors, PLM-based retrievers, fine-tuned with
vast labeled data, consistently show high recalls. On the other hand,
GenQ, fine-tuned with synthetic data, shows limited performance.
This result also aligns with [4]. We find that the generated queries
are often trivial and fail to reflect the domain-specific knowledge,
which may lead to suboptimal results. Lastly, the effectiveness of
SSA rapidly declines when 𝐾 is small (≤ 5 × 102). This outcome
is expected, given that SSA only considers the overlap degree of
relevant topic classes.

5.1.2 Retrieval. We assess the effectiveness of CRM for the first-
stage retrieval. We select three backbone models, which show com-
petitive performance and also represent three different encoding
strategies: Contreiver-MS, SPLADE++, and ColBERT. These cor-
respond to single-vector, sparse, and multi-vector representation
models, respectively. We report results for both (a) without SSA
(i.e., retrieval from D) and (b) with SSA (i.e., retrieval from D𝑆𝑆𝐴).
Compared methods. We compare CRM with various state-of-the-
art methods to improve backbone retrievers using auxiliary corpus
knowledge. The first group leverages pseudo-relevance feedback.
• BERT-QE (BQE) [60] uses core text segments (or chucks) ob-
tained from top retrieval results to complement the original query.

• PRF has been separately studied for the single-vector [54] and
multi-vector representation models [50]. They exploit document-
and term-level knowledge for query enrichment, respectively. We
apply the corresponding PRF method for each backbone model.

The second group uses inter-document similarity via a corpus graph.
• GAR [32] uses nearest neighbors in the graph to refine the initial
ranking results. It is proposed for the reranking, but we apply it
to the retrieval as well, as it brings consistent improvements.

7We fine-tune Contriever-MS using BM25 negatives on the synthetic data.
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Table 2: Retrieval performance comparison on the academic and product domain. Significant differences with the baseline (i.e.,
retrieval without using ToTER framework) are marked with * (p-value < 0.05 in the one-sample t-test).

Search space Method Contriever-MS SPLADE++ ColBERT
R@100 R@500 R@1000 R@100 R@500 R@1000 R@100 R@500 R@1000

Retriever 0.3783 0.5498 0.6216 0.3705 0.5294 0.6004 0.3382 0.4864 0.5624
Entire corpus

(D)
w/ BQE 0.3846 0.5543 0.6280 0.3911 0.5523 0.6193 0.3484 0.4991 0.5783

Academic
domain

w/ PRF 0.3815 0.5510 0.6266 0.3852 0.5441 0.6146 0.3484 0.5011 0.5860
w/ GAR 0.3848 0.5499 0.6218 0.3772 0.5336 0.6033 0.3486 0.4912 0.5629
w/ LADR 0.3806 0.5626 0.6302 0.3763 0.5577 0.6264 0.3501 0.5339 0.6115
w/ TopicGQA 0.3835 0.5491 0.6261 0.3672 0.5271 0.5995 0.3393 0.4845 0.5581
Retriever 0.3887 0.5866 0.6793 0.3913 0.5809 0.6725 0.3586 0.5486 0.6502

Reduced corpus
(D𝑆𝑆𝐴 )

w/ BQE 0.3940 0.5861 0.6836 0.4086 0.5942 0.6856 0.3658 0.5557 0.6553
w/ PRF 0.3915 0.5862 0.6806 0.4032 0.5896 0.6806 0.3615 0.5547 0.6593
w/ GAR 0.3928 0.5862 0.6802 0.4099 0.5966 0.6815 0.3964 0.5887 0.6810
w/ TopicGQA 0.3933 0.5873 0.6802 0.3902 0.5772 0.6719 0.3584 0.5420 0.6382
w/ ToTER-CRM (ours) 0.4432* 0.6399* 0.7268* 0.4490* 0.6364* 0.7252* 0.4326* 0.6346* 0.7232*
Retriever 0.4992 0.6962 0.8294 0.5220 0.7129 0.7732 0.5342 0.7091 0.7685

Entire corpus
(D)

w/ BQE 0.5256 0.7258 0.8481 0.5582 0.7398 0.8056 0.5603 0.7593 0.8075

Product
domain

w/ PRF 0.5097 0.7444 0.8572 0.5244 0.7661 0.8383 0.5350 0.7331 0.8265
w/ GAR 0.5158 0.7231 0.8409 0.5455 0.7214 0.8067 0.5515 0.7421 0.8140
w/ LADR 0.5157 0.7228 0.8498 0.5377 0.7308 0.8215 0.5435 0.7228 0.8259
w/ TopicGQA 0.5172 0.7343 0.8298 0.5334 0.7235 0.7924 0.5252 0.7072 0.7818
Retriever 0.5009 0.7085 0.8555 0.5231 0.7264 0.8229 0.5303 0.7401 0.8394

Reduced corpus
(D𝑆𝑆𝐴 )

w/ BQE 0.5285 0.7411 0.8632 0.5608 0.7467 0.8462 0.5638 0.7602 0.8492
w/ PRF 0.5124 0.7462 0.8663 0.5311 0.7779 0.8603 0.5355 0.7649 0.8495
w/ GAR 0.5427 0.7593 0.8564 0.5606 0.7540 0.8416 0.5569 0.7634 0.8396
w/ TopicGQA 0.5186 0.7381 0.8493 0.5384 0.7286 0.8351 0.5390 0.7459 0.8598
w/ ToTER-CRM (ours) 0.5515* 0.7899* 0.8692* 0.5717* 0.7856* 0.8648* 0.5661 0.7997* 0.8625*

• LADR [24] uses lexical retriever in conjunction with the cor-
pus graph to gradually expand the search space for PLM-based
retriever. We use LADR-adaptive with no time constraints. As
LADR controls the search space, we apply it solely to D.

As discussed in §3, using topic knowledge for PLM-based retrievers
has not been studied well. Following a recent approach that uses
generative augmentation [33, 34], we devise a new baseline that
leverages topic knowledge discovered by PLMs.
• TopicGQA uses generative query augmentation [33, 34]. Given
a query, we extract its topic using PLMs, and enrich it by adding
the predicted topics using the same template to ToTER (Eq.7). We
use T0-3B with the prompt proposed in [33] (Appendix A.3.3).

Findings. Table 2 presents the retrieval results. First, we observe
that retrieval from the filtered corpus via SSA (D𝑆𝑆𝐴) consistently
yields higher recalls than retrieval from the entire corpus (D),
which again shows the effectiveness of our topic-based SSA. Sec-
ond, methods that utilize auxiliary corpus knowledge consistently
boost the retrieval performance. While BQE and PRF excel in the
product domain, corpus graph knowledge demonstrates superior ef-
fectiveness in the academic domain. Conversely, TopicGQA, which
leverages topic knowledge extracted using PLMs, shows limited
effectiveness and even degrades the performance (e.g., R@1000,
ColBERT in the academic domain). We notice that TopicGQA of-
ten fails to generate contexts reflecting domain knowledge. For
example, in Table 1(a), it generates topics like “data ownership” and
“prove”, while relevant they do not reveal the high-level contexts
of the academic paper. Lastly, CRM consistently shows the highest
recall in all setups. Based on the taxonomy, it can identify topic
classes reflecting domain knowledge (e.g., “cryptography”, “com-
puter security”). The topical relatedness is incorporated with the
semantic similarity, providing complementary knowledge to each
other. These observations collectively show the effectiveness of
using corpus taxonomy for theme-specific retrieval.

5.1.3 Reranking. We assess the effectiveness of QEP for the
second-stage reranking. Following [32, 47], we use two backbone

models: MiniLM-L-12 [49], MonoT5-base [37]. We report results for
reranking top-100 results from both (a) retriever and (b) SSA&CRM.8

Comparedmethods.WeuseGAR [32], the state-of-the-artmethod
proposed for the reranking stage, as our main competitor. We also
compare TopicGQA. Note that QEP and TopicGQA only differ in
the way of generating contexts to enrich queries.
Findings. In Table 3, similar to results in Table 2, TopicGQA shows
limited performance. For the query in Table 1(b), it generates con-
texts of “dye”, “peroxide”, and “ammonia”, failing to add new infor-
mation. The best performance is consistently achieved by using all
three strategies of ToTER. QEP differs from TopicGQA in that it
identifies core phrases using both the topic class knowledge and
top-ranked results, under the idea of relevance model [25]. These
processes are guided by the taxonomy reflecting user-interested
aspects, which may not be effectively revealed from the corpus
graph. Based on the findings in §5.1, we conclude that each strategy
of ToTER effectively enhances retrieval in each stage (RQ1, RQ2)
and also has great compatibility with PLM-based models (RQ3).

5.2 Study of ToTER (RQ4, RQ5)
We report the results with Contriever-MS and MiniLM-L-12 on the
product domain. We provide an ablation study in the Appendix A.4.

5.2.1 ToTER with labeled data. While this work focuses on
scenarios with no labeled data from the target corpus, ToTER can
use labeled data for its training process (Appendix A.2.2). Table 4
presents the performance of ToTER with varying amounts of la-
beled data. L0/L1/L2/L3 denote the setups using 0/33/66/100% of the
available training labels, respectively. We observe that the overall
performance of the retriever and reranker is largely improved by
fine-tuning with labeled data. Next, we observe that ToTER effec-
tively enhances the retrieval process in all setups. In specific, SSA
effectively narrows down the initial search space without hurting
recalls of the fine-tuned retriever. Furthermore, CRM and QEP con-
sistently improve both the retriever and reranker. These results
8We use the retrieval results of Contriever-MS (for the academic domain) and
SPLADE++ (for the product domain), which show the highest recalls within top-100.
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Table 3: Reranking performance comparison on the academic and product domain. Significant differences with the baseline
(i.e., reranking without using ToTER framework) are marked with * (p-value < 0.05 in the one-sample t-test).

Candidate set
generation

Method MiniLM-L-12 MonoT5-base
N@3 N@10 MAP@10 R@10 R@50 N@3 N@10 MAP@10 R@10 R@50

Retriever
no reranking 0.1589 0.1652 0.0966 0.1726 0.3166 0.1589 0.1652 0.0966 0.1726 0.3166

Academic
domain

Reranker 0.1695 0.1760 0.1030 0.1827 0.3347 0.1748 0.1835 0.1078 0.1936 0.3368
w/ GAR 0.1701 0.1767 0.1036 0.1841 0.3358 0.1752 0.1854 0.1093 0.1972 0.3368
w/ TopicGQA 0.1666 0.1753 0.1023 0.1822 0.3301 0.1727 0.1800 0.1060 0.1876 0.3309
no reranking 0.1748 0.1838 0.1074 0.1949 0.3633 0.1748 0.1838 0.1074 0.1949 0.3633

Retriever
w/

ToTER-SSA, CRM

Reranker 0.1780 0.1852 0.1090 0.1953 0.3634 0.1758 0.1868 0.1090 0.1997 0.3663
w/ GAR 0.1784 0.1870 0.1101 0.1979 0.3633 0.1794 0.1900 0.1118 0.2013 0.3671
w/ TopicGQA 0.1719 0.1829 0.1072 0.1918 0.3632 0.1752 0.1854 0.1087 0.1962 0.3634
w/ ToTER-QEP (ours) 0.1821* 0.1915* 0.1126* 0.2026* 0.3660* 0.1828 0.1930* 0.1137 0.2048 0.3732*

Retriever
no reranking 0.2917 0.2845 0.1592 0.2401 0.4425 0.2917 0.2845 0.1592 0.2401 0.4425

Product
domain

Reranker 0.2972 0.2937 0.1664 0.2513 0.4544 0.3317 0.3214 0.1883 0.2642 0.4965
w/ GAR 0.2972 0.2986 0.1697 0.2610 0.4741 0.3317 0.3217 0.1892 0.2642 0.5061
w/ TopicGQA 0.2965 0.2952 0.1658 0.2522 0.4621 0.3205 0.3043 0.1720 0.2621 0.4967
no reranking 0.3048 0.2856 0.1603 0.2459 0.4627 0.3048 0.2856 0.1603 0.2459 0.4627

Retriever
w/

ToTER-SSA, CRM

Reranker 0.2903 0.2942 0.1644 0.2601 0.4689 0.3317 0.3215 0.1889 0.2642 0.5048
w/ GAR 0.3047 0.3021 0.1714 0.2654 0.4759 0.3318 0.3253 0.1916 0.2699 0.5098
w/ TopicGQA 0.2978 0.3039 0.1734 0.2608 0.4785 0.3301 0.3185 0.1887 0.2626 0.5021
w/ ToTER-QEP (ours) 0.3189* 0.3139* 0.1818* 0.2701* 0.4891* 0.3416 0.3304* 0.1921 0.2729* 0.5227*

Table 4: Performance of ToTER with labeled data. Significant
differences with the baseline are marked with * (p-value <
0.05 in the one-sample (L0) /paired (L1-L3) t-test).

Method L0 L1 L2 L3

R@
10
0 Retriever 0.4992 0.5168 0.5179 0.5527

w/ ToTER-SSA 0.5009 0.5191 0.5202 0.5665
w/ ToTER-SSA, CRM 0.5515* 0.5502* 0.5865* 0.6098*

R@
50
0 Retriever 0.6962 0.7592 0.7801 0.8071

w/ ToTER-SSA 0.7085 0.7697 0.7802 0.8090
w/ ToTER-SSA, CRM 0.7899* 0.7823* 0.8179* 0.8434*

R@
1K Retriever 0.8294 0.8333 0.8442 0.8714

w/ ToTER-SSA 0.8555 0.8353 0.8468 0.8718
w/ ToTER-SSA, CRM 0.8692* 0.8636* 0.8671* 0.8906*

L3 N@3 N@10 MAP@10 R@10 R@50

Retriever & Reranker 0.3188 0.3107 0.1746 0.2616 0.5072
w/ ToTER 0.3241 0.3219 0.1907* 0.2778* 0.5249*

show that ToTER can effectively leverage the labeled data, yielding
a good synergy with the fine-tuned PLM-based models (RQ4).

5.2.2 Impacts of taxonomy quality. The power of ToTER is pri-
marily attributed to the topical taxonomy. While the methodology
for taxonomy completion has been extensively studied and well-
established, it’s crucial to assess the robustness of ToTER regarding
the quality of the given taxonomy. To this end, we consider two
aspects measuring taxonomy quality [26]: (1) topic completeness,
which assesses how fully the topic nodes cover the true topics,
and (2) term coherence, which assesses the semantic relatedness
of terms (or phrases) within a topic node. To impair completeness,
we apply random pruning, which randomly removes a node and
all its child nodes.9 To impair coherence, we apply level-wise node
shuffling, which randomly swaps nodes at the same level.10 Note
that such random shuffling corresponds to an extreme scenario.

In Figure 3, we observe that although both types of noise degrade
the effectiveness, ToTER has a considerable degree of robustness. In
particular, it shows a more stable performance for the pruning. We
conjecture this stability arises because the relevance to the removed
nodes can be partially inferred from the relevance to the remaining
topic nodes. For the node shuffling, noise at deeper levels has higher
impacts. This can be due to the increased node numbers at deeper
levels and the decreased number of child nodes which can help

9We apply pruning by controlling the ratio of removed nodes to the total nodes.
10The root node has level 0. We set the shuffling ratio as 10%.
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Figure 3: Retrieval results with taxonomy impaired in terms
of (left) topic completeness and (right) term coherence.
to reduce the impacts of shuffling. Based on the observations, we
conclude that ToTER has a certain degree of robustness to taxonomy
quality and can effectively enhance retrieval using the existing
taxonomy completion methods (RQ5).

6 CONCLUSION
We propose a new ToTER framework to enhance PLM-based re-
trieval in theme-specific applications using a corpus topical taxon-
omy. ToTER identifies the central topics of queries and documents
with the guidance of topical taxonomy via class relevance learn-
ing, and exploits their topical relatedness to complement semantic
matching by PLM-based models. ToTER introduces three strategies,
SSA, CRM, and QEP, which gradually focus on fine-grained ranking
following the retrieve-then-rerank pipeline. Our comprehensive
experiments on two real-world datasets ascertain the benefits of us-
ing topical taxonomy and demonstrate the effectiveness of ToTER.
In future work, we plan to explore diverse approaches to leveraging
the taxonomy in training retrievers and rerankers.
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A APPENDIX
A.1 Related work for taxonomy completion
Topical taxonomy represents the latent topic hierarchy of doc-
ument collections, providing valuable knowledge of contents in
many applications. Early methods build a corpus topic taxonomy
from scratch by extracting discriminative term clusters from the
corpus in a hierarchical fashion [56]. To generate user-interested
topic structure, recent approaches [14, 26, 27, 45] have started with
a seed taxonomy rooted in human knowledge of the application
and expanded it by discovering novel topics from the target cor-
pus. Specifically, [14] trains classifiers to capture user-interested
relations from parent-child topic pairs, [26] recursively clusters
phrases to identify new subtopics based on the known topic re-
lations. Very recently, [27] generates topic-conditioned terms by
leveraging hierarchical relations from the seed taxonomy.

A.2 Other details of ToTER
A.2.1 Training algorithm of ToTER. The training process of
ToTER is provided in Algorithm 1. We generate the silver labels y𝑠

𝑑
and use them to warm up 𝑔. After the warm-up, we train 𝑔 with the
collective knowledge distillation. In specific, for each document 𝑑 ,
we retrieve a set of similar documents D𝑑 with CRM, and generate
the collective labels y𝑐

𝑑
by averaging their class relevance distribu-

tions. In practice, we update the collective topic labels y𝑐
𝑑
every 𝑡

epochs, which makes the training process more efficient and robust.
In this work, we set |D𝑑 | = 10 and 𝑡 = 25.

A.2.2 ToTER with Labeled Data. While ToTER mainly focuses
on scenarios without available labeled data from the target corpus,
it can also benefit from harnessing (𝑞, 𝑑) labels. First, ToTER can
directly use 𝑞 for class relevance learning (Eq.5) by treating it as
an additional document. By using the class labels of its relevant
document 𝑑 , we can reflect their relevance into the class estimator.
Also, the enriched queries by ToTER can be directly used to enhance
the fine-tuning of the retriever and reranker. That is, we use 𝑞𝑄𝐸𝑃

instead of 𝑞 as model input, where the fine-tuning follows the
standard contrastive learning [19].

A.3 Experiment details
A.3.1 Dataset. We simulate two theme-specific applications: (1)
academic paper search using SCIDOCS dataset [5, 47], (2) product
search in e-commerce using Amazon ESCI dataset [41].11 SCIDOCS
dataset is widely used as a benchmark dataset evaluating the zero-
shot prediction capability of retrieval models [47]. Amazon ESCI
dataset is adopted from KDD Cup 2022-Task 1. We use the Eng-
lish (US) data and treat ‘E (exact match)’ as the relevant relation.
We evaluate the effectiveness of each method in ranking relevant
documents (products) above all non-relevant ones. Each document
contains the product title, product description, and product bullet
points. Table 5 summarizes the data statistics.

A.3.2 Corpus Topical taxonomy construction. The corpus top-
ical taxonomy is obtained by applying the existing taxonomy com-
pletion method [26] on a seed taxonomy. For the seed taxonomy,
we utilize the fields of study hierarchy from Microsoft Academic

11https://github.com/amazon-science/esci-data

Algorithm 1: Training algorithm of ToTER.
Input :A target corpus D, a corpus topical taxonomy T,

a retriever 𝑓 , a update period 𝑡
Output :Trained class relevance estimator 𝑔

1 Randomly initialize the training parameters of 𝑔
2 Generate silver labels y𝑠

𝑑
for all 𝑑 ∈ D // §4.1.1

3 Warm-up the estimator 𝑔 using only y𝑠
𝑑

// Eq.5

/* Collective knowledge distillation */

4 for 𝑒 = 1, ..., 𝑒𝑝𝑜𝑐ℎ𝑚𝑎𝑥 do
5 foreach 𝑑 ∈ D do
6 if 𝑒 % 𝑡 == 0 then
7 Retrieve D𝑑 using 𝑓 with CRM // §4.2.2
8 Compute class relevance as {ŷ𝑑 ′ | 𝑑 ′ ∈ D𝑑 } using 𝑔
9 Obtain collective labels y𝑐

𝑑
= AVG({ŷ𝑑 ′ | 𝑑 ′ ∈ D𝑑 })

10 Train the estimator 𝑔 using y𝑐
𝑑

// Eq.5

Table 5: Data statistics of two datasets. Avg. D/Q indicates the
average number of relevant documents per query.

Academic domain Product domain

#Corpus 25,657 601,354
#Training query - 20,888
#Test query 1,000 8,956
Avg. D/Q 4.9 8.83

Graph [46] (for the academic domain) and Amazon store taxon-
omy12 sourced from Amazon.com (for the product domain). Each
seed taxonomy mirrors user interest in each application. The for-
mer reflects researchers’ inclination towards structuring academic
concepts and studies, while the latter embodies customers’ interest
in browsing and selecting products.

Based on the seed taxonomy, we conduct taxonomy completion
which completes and adjusts the taxonomy for the target corpus.
This is a critical step to ensure the taxonomy aligns with the target
corpus. Note that the seed taxonomy is incomplete; it contains
numerous topics irrelevant to the corpus as well as failing to cover
all topics. For example, in the case of the SCIDOCS dataset, we
discovered that over 95% of topic classes from the seed taxonomy
have no (or a very weak) relevance to documents in the corpus.
Also, as it does not cover all specific topics in the corpus, we need to
expand it by identifying new topics not present in the original seed
taxonomy. We use the recently proposed technique [26] to obtain
the corpus topical taxonomy. We use the official implementation
provided by the authors.13 A notable change from the original
implementation is that we additionally use PLM knowledge for
more effective topic discovery [59]. Table 6 provides the statistics
of the constructed taxonomies.

Table 6: Taxonomy statistics of two datasets.

Academic domain Product domain

#Topic classes 4,028 14,954
#Edges 8,445 18,360
Depth 5 10

12https://www.amazonlistingservice.com/blog/amazon-store-taxonomy-
organization
13https://github.com/donalee/taxocom/tree/main
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A.3.3 Implementation details. In our experiments, we use BEIR
benchmark framework14 for evaluating all compared methods.
For BM25, we use Elasticsearch. For docT5query and GenQ, we
use T5 models with checkpoints provided by BEIR.15 For all com-
pared PLM-based retrieval and reranking models, we use check-
points that are publicly available: Contriever-MS16, TAS-B17, Col-
BERT18, SPLADE++19, MiniLM-L-1220, and MonoT5-base21. For
multi-vector representation models, we use ColBERT.v1 solely for
compatibility with the public ColBERT-PRF implementation.

To generate the corpus graph, we use Contriever-MS for the
academic domain and SPLADE++ for the product domain, as they
consistently show the highest recalls within top-100. The number
of neighbors in the graph is set as 10, as it shows stable results in
both GAR [32] and LADR [24]. For BERT-QE [60], we set both the
number of top-ranked documents and the number of core segments
(or chunks) as 10, following the paper. For PRF of the single and
sparse representation model (i.e., Contriever-MS, SPLADE++), we
set the number of documents for query enrichment as 5. For PRF
for the multi-vector representation model (i.e., ColBERT), we use
the official implementation and provided values. For other baseline-
specific hyperparameters, we follow the recommended values in
the original papers [24, 32, 50, 54]. For TopicGQA, we use T0-3B22
with the prompt suggested in [33]: "Based on the query, generate a
bullet-point list of relevant topics present in relevant documents:".

For fine-tuning with labeled data in the product domain (§5.2.1),
we use sentence_transformers framework [42]. We continue
fine-tuning for 10 epochs with a learning rate of 7𝑒−5. We dis-
covered that further increasing the training epochs consistently
degrades the retrieval accuracy. For ToTER, we set the retaining
percent 𝑚 = 10%, the number of core phrases 𝑘 = 5. Following
BERT-QE [60], the number of top-ranked documents (for collective
labels and QEP) is set to 10.

A.4 Ablation study
Table 7 and Table 8 present ablation results for the training and
inference phase, respectively. We report results with Contriever-MS
(for retriever) and MiniLM-L-12 (for reranker) on academic domain.
Training phase. We compare two ablations intended to verify
the effectiveness of our silver label generation and collective topic
knowledge distillation (CKD): (1) y𝑠 only solely uses the gener-
ated silver labels for the class relevance learning without CKD, and
(2) CKD → Self-training replaces CKD with the standard self-
training. The self-training is a well-established semi-supervised
learning technique used to achieve better generalization when the
given labels are incomplete [52]. The core difference between self-
training and CKD is that self-training generates additional train-
ing signals using model prediction on individual data instances,
whereas CKD uses collective knowledge of the averaged prediction
on semantically similar documents.

14https://github.com/beir-cellar/beir
15castorini/doc2query-t5-base-msmarco, BeIR/query-gen-msmarco-t5-base-v1
16facebook/contriever-msmarco
17msmarco-distilbert-base-tas-b
18https://github.com/terrierteam/pyterrier_colbert
19naver/splade-cocondenser-ensembledistil
20cross-encoder/ms-marco-MiniLM-L-12-v2
21castorini/monot5-base-msmarco-10k
22bigscience/T0_3B

Table 7: Ablation results for class relevance learning of train-
ing phase.

R@100 R@500 R@1000

ToTER-SSA, CRM 0.4432 0.6399 0.7268
y𝑠 only 0.3809 0.6080 0.7131

CKD→ Self-training 0.4327 0.6242 0.7226
w/o ToTER 0.3783 0.5498 0.6216

Table 8: Ablation results for each strategy of inference phase.
R@2500 R@5000 R@10000

SS
A ToTER-SSA 0.8439 0.9053 0.9599

Low-level focus 0.7832 0.8784 0.9505
High-level focus 0.5569 0.6964 0.8552

R@100 R@500 R@1000

CR
M

ToTER-SSA, CRM 0.4432 0.6399 0.7268
Low-level focus 0.3864 0.5739 0.6623
High-level focus 0.3361 0.4606 0.5087

w/o ToTER 0.3783 0.5498 0.6216
N@10 R@10 R@50

Q
EP

ToTER-SSA, CRM, QEP 0.1915 0.2026 0.3660
w/o top-ranked docs. 0.1759 0.1855 0.3549

w/o ToTER 0.1760 0.1827 0.3347

We observe that both silver labels and CKD play important roles
in class relevance learning. First, the class relevance estimator only
trained with y𝑠 consistently improves the retrieval performance.
This supports the effectiveness of our silver label generation strat-
egy. Also, we observe that exploring relevant but unlabeled classes
is highly important. Both self-training and CKD bring considerable
improvements compared to using only the silver label. However,
replacing CKDwith self-training consistently degrades the retrieval
effectiveness. We also find that self-training is rather unstable com-
pared to using CKD.
Inference phase.We compare ablations for SSA, CRM, and QEP.
For SSA and CRM, which utilize the estimated class relevance distri-
butions, we compare two alternative design choices: (1) low-level
focus emphasizes relevance to the more specific, narrower classes
found at the lowermost levels, specifically the lowest two levels. (2)
high-level focus is the opposite choice of the low-level focus. It
targets more general, broader classes closer to the root node, specif-
ically the top three levels. For QEP, we compare an ablation that
ablates the use of top-ranked documents in the core phrase identi-
fication, denoted as (3) w/o top-ranked docs. Specifically, from
the set of relevant class phrases {𝑃 𝑗 |𝑏𝑞𝑗 = 1}, we collect the top-𝑘
core phrases 𝑃𝑞 that most frequently appear across the corpus.

We observe that both low-level and high-level focus results in
suboptimal results, and considering both board and specific topics
consistently leads to the best recalls. In particular, ignoring low-
level classes (i.e., high-level focus) more drastically degrades the
retrieval accuracy. Also, we observe that using the frequency infor-
mation from top-ranked documents is indeed effective in finding
proper contexts to enrich queries. For example, for the query in
Table 1(a), w/o top-ranked docs identifies core phrases like “key”,
“scale”, “software”, “management”, and “system”, which are relevant
but not closely related to the query compared to the phrases ob-
tained from ToTER. These results support the validity of our design
choice that uses the overall topic class distributions for SSA and
CRM, and our core phrase identification based on the relevance
model for QEP.
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