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Abstract—One-bit massive MIMO has gained much attention

in the areas of wireless communication and sensing. Among the

various receiver designs, the maximum-likelihood-based receivers

achieve state-of-the-art performance. Through this work we

provide both analytical insight into the likelihood formulation,

and develop a one-bit MIMO receiver, motivated specifically from

this analysis. In particular, (i) Properties of the original Gaussian

CDF based likelihood function are analyzed, culminating in an

improved gradient descent (GD) algorithm for one-bit MIMO.

(ii) This improved GD update rule is further enhanced through

an accelerated GD method, improving convergence performance.

(iii) The likelihood analysis is extended to an effective surrogate

function for the Gaussian CDF, i.e., the logistic regression (LR).

The presented analytical framework for the CDF also serves as a

robust mathematical model to explain the enhanced performance

of the LR, when utilized as a surrogate likelihood. (iv) Detection

from a finite M-QAM constellation is incorporated by introducing

a Gaussian denoiser to project the detected symbols onto the M-

QAM subspace. This is implemented as a novel, unfolded, DNN

architecture for one-bit detection. Through our experimental

validation we demonstrate results on par with the current state-

of-the-art methods for one-bit MIMO detection.

Index Terms—Massive MIMO, one-bit ADCs, convex optimiza-

tion, accelerated gradient descent, unfolded DNNs.

I. INTRODUCTION

T
HE advent of massive MIMO communications has
brought in a new era of high speed communication

systems and interconnected devices [1], [2]. However, one of
the key challenges facing massive MIMO deployment is the
ensuing system cost and complexity. In this context, the use
of high-resolution and high-speed analog-to-digital converters
(ADCs) significantly contributes to the overall cost and power
consumption within the MIMO communication system [3],
[4]. Addressing these challenges, accompanied by several
advances in algorithm design and machine learning techniques,
research into robust communication system design is being
developed on the backbone of few-bit or low resolution ADCs
[3], [5]–[9]. A specific type of low-resolution ADC, the one-
bit ADC, has garnered significant attention in communication
system design and sensing due to its simple design and ease
of implementation.
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Advances in DNN technologies have enabled robust detector
designs for these few-bit MIMO receivers. The application of
DNNs to wireless communication systems has significantly
enhanced receiver performance and robustness. The general
parametric structure of DNNs, coupled with their advantage
as universal functional approximators [10], [11], makes these
an integral part of the future of robust wireless communication,
exploited for a variety of applications from beamformer design
[12]–[14], channel estimation [15]–[17] as well as end-to-end
detection [18]–[22]. In this work, we begin by analyzing the
detection process for one-bit MIMO receivers. Following this,
a robust detector utilizing a DNN-aided unfolded network is
developed for multi-user one-bit massive MIMO systems.

A. Prior work

One-bit MIMO was first used for sensing and channel
estimation algorithms [23]–[25]. Going beyond this, the main
focus of research into one-bit MIMO has been on receiver de-
sign. One-bit MIMO data detection gained a valuable advance
with the application of Bussgang’s theorem to linearize the
input-output relation [26]. Through means of this relation, a
class of linear receivers was developed for detection from one-
bit data [27]–[29]. Several works utilized this linearization to
characterize the one-bit system and evaluate the overall system
performance and capacity [30]–[32]. Additional robust model-
based detectors improving on the Bussgang linear detectors
have also been proposed in some works [33], [34].

However, presently, the state-of-the-art class of receivers uti-
lizes the nonlinear optimization of the likelihood function. The
one-bit maximum likelihood (ML) optimization was derived
using the Gaussian cumulative distribution function (CDF)
[35]. Utilizing this formulation, the work in [36] introduced
a near maximum likelihood (n-ML) detector based on a two
step iterative algorithm - gradient descent (GD) followed by
projection onto the unit sphere. Other works applying the
Gaussian CDF likelihood formulation have also been used
extending this idea [37], [38]. However, one of the limitations
of applying the GD iteration on the Gaussian CDF is its
numerical instability at high signal-to-noise ratio (SNR) values
[39]. One of the approaches to address this was through a
surrogate function for the Gaussian CDF, i.e., the logistic
regression (LR). The authors in [40] designed the detector,
the OBMNet, as an unfolded DNN, implementing the GD
algorithm for this approximate likelihood. Both the n-ML
algorithm as well as the OBMNet were limited in performance
due to the sub-optimal projection step onto the M-QAM
constellation. The work in [5] improved on the OBMNet
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by introducing a learnable M-QAM projection over the GD
iterations. The resulting unfolded DNN, the FBM-DetNet, is
the current state-of-the-art detector for one-bit MIMO systems.

Extending the model-based methods to learning-based
methods, DNNs have also been used to design robust detectors
for one-bit MIMO receivers. The OBMNet [40] and FBM-
DetNet [5] were implemented as unfolded DNNs, learning the
parameters for the GD iterations and the M-QAM projection,
respectively. The work in [41] utilized model-based unrolling
to learn the GD algorithm with a generalized Newton update.
Alternate DNN architectures for one-bit detection, not relying
on the likelihood framework, have also been developed [42]–
[45]. The general parametric structure of DNNs can also en-
hance the GD update step by enforcing a general regularization
at the end of each GD iteration. The framework in [46] utilizes
two unique networks - an unfolded DNN, the ROBNet, as
well as a recurrent network, the OBiRIM, to implement a
regularized GD algorithm. The mmWave extension of the
regularized GD, i.e., the mmW-ROBNet [47], demonstrates
the utility of the regularized GD framework for mmWave
channels. Here, the regularized framework, along with a novel
hierarchical training strategy is able to generate equitable user
performance for the mmWave one-bit MIMO receiver.

Although different strategies for detection of one-bit re-
ceived signals have been proposed, no work, to the best of the
authors’ knowledge, comprehensively looks at the properties
and convergence for the recovery algorithms. Bridging this
gap, this work aims to generate useful insights into the ML
framework for the one-bit MIMO receivers.

B. Contributions of this work
Through this work, we endeavor to bridge the gap between

theory and algorithm design for the one-bit MIMO receiver.
In particular, the following contributions are enumerated.

1) Characterizing ML optimization: We characterize the
properties of the CDF-based likelihood, namely, the con-
vexity, smoothness, and the nature of the solution space.
Different from prior works, this analysis enables struc-
tured algorithm design as well as convergence analysis.

2) Stabilizing CDF-based GD update: Implementing the GD
update for the CDF-based likelihood is shown to run
into computational instabilities. Utilizing the properties
of the CDF, a robust approximation of the gradient is
implemented, preserving the first order properties of the
CDF (necessary for GD).

3) Introduce accelerated GD update: This stabilized GD
update is utilized in the design of an accelerated GD algo-
rithm for faster convergence. To the best of the authors’
knowledge, this is the first work to utilize AGD in signal
recovery for one-bit MIMO receivers. The convergence
of the algorithms is analyzed using the properties of the
likelihood function.

4) Analysis of a robust CDF surrogate, LR: Prior works
have demonstrated the utility of the logistic regression
(LR) as an effective surrogate to the CDF for the one-bit
likelihood [5], [39], [40]. The insights from the CDF-
based likelihood are extended to explain the improved
performance of the LR-based likelihood.

5) DNN-aided Gaussian denoising: In order to address the
constrained optimization over the M-QAM symbols, we
extend and generalize the quantization-based M-QAM
projection from [5]. To this end, we expound the role
of the M-QAM projection step and develop a general
learnable two-tier projection framework for robust M-
QAM symbol recovery. This framework is implemented
as an unfolded DNN referred to as the A-PrOBNet.

Organization: This manuscript is organized as follows - Sec.
II introduces the system model and formulation of the one-bit
likelihood optimization. Sec. III analyzes the different proper-
ties of the CDF-based likelihood. This section also introduces
the improved GD algorithm and the AGD algorithm, as well as
the related convergence analysis for these algorithms. Sec. IV
analyzes the surrogates for the CDF-based likelihood, in par-
ticular, the LR-based likelihood. Sec. V introduces the general
Gaussian denoising for projection onto the M-QAM symbol
space. Sec. VI provides the experimental validation and Sec.
VII provides concluding remarks and future directions.
Notation: The abbreviation ML is used for maximum likeli-
hood, as opposed to machine learning. The latter has not been
abbreviated wherever utilized. We use lower-case boldface
letters a and upper case boldface letters A to denote complex
valued vectors and matrices respectively. The ith element
of the vector a is denoted by ai. The notation Re(·) and
Im(·) denote the real and imaginary parts, respectively. The
operation (·)T denotes the transpose of the array or matrix.
Unless otherwise specified, all scalar functions like tanh(·) or
sign(·), when applied to arrays or matrices, imply element-
wise operation. The diagonalization operator, denoted by
diag(·), when applied to an array a, creates a diagonal matrix
with the entries given by the elements of a. The notation x

(t)

is used to denote the value of the variable x at iteration t of
the algorithm. For the DNN training, the size of the training
set is given by Ntrain and the notation x̂n,train denotes the nth

sample from this set. Unless otherwise specified, the norm ||·||
represents the `2-norm for a vector or matrix.

II. SYSTEM MODEL AND GENERAL ONE-BIT LIKELIHOOD

Through this section the multi-user uplink MIMO model
is introduced, with one-bit ADCs at the base station (BS)
receiver. This is followed by the formulation of the ML
optimization that forms the basis of the detection algorithm.

A. One-bit MIMO system model
The Rayleigh fading channel with block flat-fading, as used

in most past works, e.g. [48], [49] is utilized here. The K
single antenna users transmit to a multi-antenna base-station
(BS) with N receive antennas. The MIMO channel H̄ 2
CN⇥K consists of i.i.d entries drawn from CN (0, 1). This
work assumes perfect unquantized channel state information
(CSI) at the BS.

As a part of the multi-user uplink, the kth user transmits
the signal x̄k drawn from the M-QAM constellation. The
multi-user transmitted signal is x̄ =

⇥
x̄1, x̄2, . . . , x̄K

⇤T. The
unquantized received signal at the BS is given by

r̄ = H̄x̄+ n̄, (1)
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where n̄ is the AWCGN1 with noise variance depending on
the system signal-to-noise ratio (SNR) ⇢ = E(||H̄x̄||2)

E(||n̄||2) . The
transformed signal due to the one-bit quantization is given by

ȳ = sign
�
Re(r̄)

�
+ j sign

�
Im(r̄)

�
. (2)

In order to express the algorithm design as a function of
real-valued inputs, we convert the received signal and the
observed channel matrix into real-valued forms as

H =


Re(H̄) �Im(H̄)
Im(H̄) Re(H̄)

�
, x =


Re(x̄)
Im(x̄)

�
,

r =


Re(r̄)
Im(r̄)

�
, y =


Re(ȳ)
Im(ȳ)

�
, n =


Re(n̄)
Im(n̄)

�
.

(3)

Thus, the modified received one-bit signal at the BS is

y = sign(Hx+ n). (4)

The detection algorithm recovers the M-QAM transmitted
symbols x from the one-bit received data y.

B. Signal detection - Maximum likelihood framework

The signal detection for one-bit MIMO is formulated as the
maximum likelihood (ML) optimization, derived in [35] as

x̂ML = argmax
x2M2K

2NY

i=1

�
�p

2⇢ yih
T
i x

�
. (5)

Expressing the maximization (5) as the minimization of the
negative log-likelihood gives the optimization of the form

x̂ML = argmin
x2M2K

2NX

i=1

�log�
�p

2⇢ yih
T
i x

�
, (6)

where �(·) is the Gaussian cumulative distribution function
(CDF) for N (0, 1) and M2K represents the set of the 2K-
dimensional vectors, consisting of the real-valued representa-
tion (see eq. (3)) of the K-dimensional vectors of M-QAM
symbols. In addition, the vector hi denotes the ith row of H.
Remark 1. Since the factor

p
2⇢ is a positive scalar and

does not affect the convergence of the optimization over the
constrained set M2K , we can eliminate this factor for ease
of representation. Thus, for all subsequent expressions and
analysis, the likelihood is expressed as a general function by
the form L =

P
i f(yih

T
i x).

In order to delve deeper into the analysis of the likelihood
function, and subsequent algorithm development, we consider
two key features with respect to the optimization (6).

1) Generalization of likelihood: In order to understand the
broader class of likelihood functions, including all surrogate
measures, a general likelihood formulation is presented as

L(x) =
2NX

i=1

⇣(yih
T
x). (7)

The scalar function ⇣(·) can take different values, depending
on the exact or surrogate value of the likelihood. Based on
this, two separate lines of analysis are presented.

1additive white complex Gaussian noise

• By substituting the CDF, we attain the original likelihood
expression (6). We provide detailed analysis into the
CDF-based likelihood expression in Sec. III.

• We can also substitute appropriate surrogates for the
CDF-based likelihood to overcome the limitations of the
former. This is elaborated in more detail in Sec. IV.

The general gradient rx and Hessian Hx expressions will be
utilized in the analysis later. For the general likelihood ⇣(·),
these expressions are given as

rx = G
T ⇣ 0(Gx) (8a)

Hx = H
T diag(⇣ 00(Gx))H, (8b)

where G = diag(y)H and the diag(·) operator notation for
both matrices and arrays is explained in Sec. I (see Notation).

2) Constrained vs unconstrained optimization: Since the
transmitted symbols are drawn from an M-QAM constellation,
a constrained optimization is performed over the set of M-
QAM symbols. However, for understanding the properties of
the likelihood framework and development of robust recovery
algorithms, unconstrained optimization over the entire set R2K

is initially considered. Specifically, we analyze

x̂ML = argmin
x2R2K

2NX

i=1

�log�
�
yih

T
i x

�
. (9)

The CDF-based likelihood and the different CDF surrogates
will first be analyzed via the unconstrained optimization
framework (9) in Sec. III-IV. Constrained optimization over
M2K is then detailed in Sec. V.

III. INSIGHTS INTO THE CDF-BASED ONE-BIT LIKELIHOOD

This section begins with the analysis of the CDF-based like-
lihood. This is followed by the design of a robust approximate
GD algorithm and accelerated GD algorithm, along with the
convergence analysis for both.

Substituting the CDF-based likelihood for the general ex-
pressions (7)-(8) gives

⇣(z) = �log�(z) (10a)

⇣ 0(z) = � �(z)

�(z)
(10b)

⇣ 00(z) =
�(z)

�(z)

⇣
z +

�(z)

�(z)

⌘
, (10c)

where �(·) is the probability density function (PDF) of the
standard normal distribution N (0, 1). Utilizing this in (7) and
evaluating the gradient gives the GD update, as derived in [36],

x
(t+1) = x

(t) + ↵(t)
G

T �(Gx)

�(Gx)
, (11)

where ↵(t) is the step size at the tth iteration.
One of the limitations of applying unconstrained GD to the

CDF-based likelihood function is the evaluation of the gradient
(10b) (explained in Sec. III-B). We construct a more robust
GD algorithm to overcome these limitations.

A. Characterizing the CDF-based likelihood
The various properties of the CDF-based one-bit likelihood

function, useful for deriving the different GD-based algorithms
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and analyzing the convergence properties, are enumerated.
Before enumerating these properties, the following inequalities
for the Gaussian CDF are provided, which will be frequently
utilized in the subsequent analysis.

Lemma 1. For the scalar argument z < 0, the CDF-gradient
⇣ 0(z), given by (10b), can be bounded by utilizing

�z <
�(z)

�(z)
< �z � 1

z
. (12)

Proof. If z > 0, then the following holds for the CDF,

1p
2⇡

exp
⇣
� z2

2

⌘ z

z2 + 1
< 1� �(z) <

1p
2⇡

exp
⇣
� z2

2

⌘1
z
.

(13)
Rearranging the terms above gives the inequalities in (12).

We now enumerate the various characteristic properties of
the cdf-based likelihood function.

1) Convexity: The Hessian for the CDF-based likelihood
(10c) is substituted in (8b). This can be separately analyzed for
both positive and negative arguments. For z > 0 the expression
(8b) is always positive. For z < 0, Lemma 1 is utilized to show

0 < ⇣ 00(z) < 1. (14)

Since each element of the matrix diag(⇣ 00(Gx)) in (8b) is
always positive, for the CDF-based likelihood, the Hessian
is positive semi-definite (PSD). Therefore, the CDF-based
likelihood is a convex function of x. Convexity of the CDF-
based likelihood is crucial for providing insights into the
solution space of (9), as explained next.

2) Solution space: Having showed the convexity of the
likelihood, the minimizer is now analyzed. Just as a set
of data points in an N -dimensional space can be linearly
separable or non-separable for binary classification, the one-
bit MIMO detection problem can also be analyzed as linearly
separable or non-separable, depending on the SNR. The set
of linearly separating hyperplanes for the data points {hi, yi},
i.e., X1 = {x |yihT

i x > 0, 8 i = 1, 2, . . . , 2N} is used to
analyze the solution space. The separable and non-separable
cases are further elaborated below.

• Case 1: Separable solution - There exists at least one
finite x, for which yihT

i x > 0, 8 i = 1, 2, . . . , 2N , i.e.,
the set X1 is not empty. This corresponds to operating in
a high SNR regime; the power of the AWGN added for
the received signal in (1) is low enough such that there
are no sign flips compared to the noiseless data, i.e.,

sign(Hx+ n) = sign(Hx). (15)

• Case 2: Non-separable solution - There exists no x, such
that yihT

i x > 0, 8 i = 1, 2, . . . , 2N , i.e., X1 is a null
set. This corresponds to low SNR operation, where the
noise added has sufficiently high power, such that there
are sign flips compared to the noiseless data, i.e.,

sign(Hx+ n) 6= sign(Hx). (16)

With regards to analyzing the optimal value for x for both
the cases above, the following analysis is presented.

• Case 1: Separable solution - Consider a value x
⇤, such

that yihix
⇤ > 0 8 i. For a scaling constant 1 < ↵ < 1,

the CDF-based likelihood, given by (9), decreases as

0 < L(↵x⇤) < L(x⇤). (17)

Further, as ↵ ! 1, L(↵x⇤) ! 0. Thus, there does not
exist a finite x

⇤, with ||x⇤|| < 1, such that L(x⇤) = 0.
Therefore, the minimum value of the likelihood cannot be
attained by any finite x. The high-SNR saturation of the
performance the GD algorithms is analyzed by operating
in this case, as seen in later sections.

• Case 2: Non-separable solution - For this case it follows
that for any x̃ 2 R2K and ↵ > 0, as ↵!1, L(↵x̃)!
1. Since the negative log-likelihood L(·) is convex, the
minimizing value x

⇤ is bounded, i.e., ||x⇤|| < 1. The
significance of analyzing this case is presented after the
smoothness analysis of the likelihood (see Remark 2).

3) Smoothness: The function L(x) is �-smooth if

L�(x) =
�

2
||x||2 � L(x) (18)

is convex [50]. Utilizing (8b) and (10c), the Hessian for L�(x),
H�

x
, is given by

H�
x
= � I�H

T diag(⇣ 00(Gx))H. (19)

In order to show the Hessian to be PSD, consider any vector
z 2 R2K . It follows that

z
TH�

x
z
T = � z

T
Iz� z

T
H

T diag(⇣ 00(Gx))Hz

> � z
T
Iz� z

T
H

T
Hz

= � ||z||2 � ||Hz||22
� ||z||2(� � ||H||22),

(20)

where ||H||2 is the `2-norm of the matrix H. The inequalities
in (14) and the Cauchy-Schwartz inequality are utilized in
deriving the inequalities in (20). The Hessian is PSD if

� � ||H||22. (21)

Thus, the cdf-based likelihood is a smooth function with the
smoothness parameter � lower bounded by ||H||2. Based on
this, the following points are presented.

• The smoothness parameter thus depends on the chosen
channel matrix. This captures the dimensionality of the
problem, i.e., the number of users and MIMO antennas.

• The optimal step size for the improved GD method, i.e.,
↵(t), is given by 1/� [50]. If the number of users or
antenna elements increases, the optimal step size reduces.

Remark 2. Note that this smoothness characterization is valid
for the likelihood, irrespective of the solution being drawn
from Case 1 or Case 2. The optimal value x

⇤ is bounded for
Case 2; hence the existing results for smooth functions [50]
can be applied to this case. For Case 1 however, the choice
of GD parameters and subsequent convergence analysis, in
the absence of a finite minimizer warrants, explicit analysis.
This case presents the high-SNR saturation regime of receiver
algorithm. Thus, for the remainder of this work, all subsequent
analysis and algorithm design is performed from the perspec-
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tive of operating under Case 1.

B. Improved Gradient Descent for log-CDF likelihood
One of the limitations of applying GD to the CDF-based

likelihood (9) is the evaluation of the gradient (10b) for large
negative arguments. The Gaussian CDF quickly decreases
to zero for decreasing negative values of z and thus the
numerical evaluation of the gradient runs into instabilities due
to inability of capturing such low values within floating point
precision. The significance of implementing an algorithm,
which computes the gradient in a numerically stable manner,
is the utilization of the same for one-bit MIMO detection
on practical hardware using finite precision arithmetic like
fixed point or floating point operations. Such finite precision
arithmetic is unable to capture the rapid decay of the Gaussian
CDF for low negative values, i.e., [Gx]i ! �1, which
is always rounded off to zero. One of the possible fixes to
address the gradient computation instability involves a scalar
denominator regularization, generating the gradient expression
of the form

rx = �GT �(Gx)

�(Gx) + ✏
, (22)

with ✏ as a fixed small scalar value, to prevent numerical errors
of dividing by zero. However, since the Gaussian PDF �(·)
also decays to zero for decreasing negative arguments, this
results in rx ! 0 as [Gx]i ! �18 i. This regularization
approach does not correctly compute the value of rx when
[Gx]i ! �1, as seen in the subsequent analysis. Thus, there
is a need to utilize an improved surrogate gradient that is both
numerically stable, and accurately computes the gradient value
for the GD algorithm.

A key observation here is that the gradient computation
of (10b) does not necessarily require the computation of the
individual PDF and CDF terms �(z) and �(z), respectively;
only the ratio of the two terms is essential. The core principle
to improve robustness for the CDF-based GD algorithm thus
involves a numerically efficient method to evaluate the ratio
�(z)/�(z) for z < zthresh. Here zthresh is an empirically
evaluated threshold such that the CDF cannot be numerically
evaluated accurately to floating point precision for negative
values beyond this value.

Lemma 1 derives an upper and lower bound for the ratio
⇣ 0(z) in (10b) for z < 0. Based on this lemma, it is evident
that the value of �⇣ 0(z) asymptotically approaches the linear
function f(z) = �z as z ! �1. For negative values below a
threshold zthresh, a surrogate value ⇣̂ 0(z), using an empirically
evaluated residual ✏(z), is evaluated as

⇣̂ 0(z) = �(�z + ✏(z)), for z < zthresh. (23)

As seen in Lemma 1, the value of ⇣ 0(z) is sandwiched between
�z and �z�1/z for z < 0. Thus ✏(z)! 0 as z ! �1. This
residual is empirically evaluated, utilizing the series expansion

✏(z) = �1

z
+

c2
z2

+
c3
z3

+
c4
z4

+ . . . (24)

Using the least squares fit, the coefficient values are evaluated
as c2 = �0.09, c3 = 1.80, c4 = 1.95. Further, we observe
that the computation of the residual up to 4 orders, i.e., c4

z4 is

(a) (b)

Fig. 1. Accuracy of the numerically stable gradient of the CDF-based
likelihood (a) Comparing the curve fit of (10b) and (25), (b) Mean square
error of using the approximation (25).

sufficient for the desired accuracy in gradient evaluation. The
plots in Fig. 1 illustrate the fit of the gradient using (23)-(24).

Based on Fig. 1, the evaluation of the gradient using (23)
approximates the actual gradient to a high degree of accuracy
for large negative values. Thus, the surrogate value ⇣̂ 0(z) to
compute the ratio ⇣ 0(z) = � �(z)

�(z) in (10b) is given by

⇣̂ 0(z) =

(
�
⇣
� z � 1

z + c2
z2 + c3

z3 + c4
z4

⌘
, for z < zthresh

� �(z)
�(z) , for z � zthresh.

(25)
Using the value of (25), the surrogate gradient is computed

using (8a). Since the gradient computation for large negative
arguments is now computed using linear and rational polyno-
mial terms, (25) presents an improved framework for CDF-
based gradient computation. In particular,

• Numerical stability: Deviating from the use of the Gaus-
sian CDF and PDF, the gradient computation can now
be computed for negative values with large magnitudes,
without running into divide-by-zero instabilities.

• Gradient value: As evidenced by the curve fitting and
MSE plots in Fig. 1, this surrogate gradient closely
matches the actual value, with this gap reducing as the
magnitude of z gets larger.

An improved GD algorithm for the log-CDF based likeli-
hood is presented in Algorithm 1, with the following salient
features.

• The vector Gx
(t) for the tth iteration is evaluated.

• Based on a pre-determined threshold 2 zthresh = �5, each
index of the vector Gx

(t) is classified as I+ or I� (see
line 2-3 in Algorithm 1).

• Depending on the classification of each index,
⇣ 0(

⇥
Gx

(t)
⇤
i
) is evaluated using (25).

• The final output x
(T ) is normalized to the M-QAM

magnitudes, as required.

C. Accelerated Gradient Descent for faster convergence
The general accelerated gradient descent (AGD) method for

a convex �-smooth function was first introduced in [51] as an
algorithm to attain the optimum oracle complexity for smooth

2empirically chosen threshold based on numerical results (see Fig. 1(b))
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Algorithm 1 Improved GD for log-CDF likelihood
Input: T , G, x(0) = 0, {↵(t)}T�1

t=0 , zthresh
Output: x

(T )

1: for t = 0 to T do

2: I+ = {i |
⇥
Gx

(t)
⇤
i
� zthresh}

3: I� = {i |
⇥
Gx

(t)
⇤
i
< zthresh}

4: if i 2 I�, evaluate ⇣ 0(
⇥
Gx̂

(t)}
⇤
i
) as (25), case 1

5: if i 2 I+, evaluate ⇣ 0(
⇥
Gx̂

(t)}
⇤
i
) as (25), case 2

6: Evaluate r(t)
x using (8a)

7: Update x
(t+1) = x

(t) � ↵(t)r(t)
x

8: end for

9: x
(T )  ⌘ x

(T )

||x(T )||

Algorithm 2 Accelerated GD for log-CDF likelihood
Input: T , G, x(0) = 0, d(0) = 0 {↵(t)}T�1

t=0 , zthresh, �
Output: x

(T )

1: for t = 0 to T do

2: Evaluate x̂
(t) = x

(t) + d
(t)

3: I+ = {i |
⇥
Gx̂

(t)}
⇤
i
� zthresh}

4: I� = {i |
⇥
Gx̂

(t)}
⇤
i
< zthresh}

5: if i 2 I�, evaluate ⇣ 0(
⇥
Gx̂

(t)}
⇤
i
) as (25), case 1

6: if i 2 I+, evaluate ⇣ 0(
⇥
Gx̂

(t)}
⇤
i
) as (25), case 2

7: Evaluate r(t)
x̂(t) using (8a)

8: Update x
(t+1) = x̂

(t) � ↵(t)r(t)
x̂

9: Update d
(t+1) = � (x(t+1) � x

(t))
10: end for

11: x
(T )  ⌘ x

(T )

||x(T )||

convex functions, and has since been widely applied to various
applications in signal processing [52].

Applying AGD to the CDF-based one-bit likelihood opti-
mization (9), gives the update

d
(t) = �(t) (x(t) � x

(t�1)) (26a)

x̂
(t) = x

(t) + d
(t) (26b)

x
(t+1) = x̂

(t) � ↵(t)rxL(x̂(t)). (26c)

Here, d(t) is the momentum update at the tth iteration, which
is a step taken in addition to the gradient step. The scalar �(t)

is the weighting coefficient for the momentum. The gradient
rxL(x̂(t)) is evaluated using the improved gradient method
described in Sec. III-B.

The AGD algorithm, utilizing the improved GD update for
the CDF likelihood, is presented in Algorithm 2. Different
from the GD, i.e., Algorithm 1, AGD is able to modify the
update step with an additional correction from the gradient
direction, determined by the previous estimates. The momen-
tum d

(t) in (26a) accumulates the gradients from the previous
iterations, preventing the algorithm slowdown due to vanishing
gradient [52]. The momentum endows a “speed" to the GD
algorithm, preventing saturation in such regions of very low
gradient values. This is particularly effective for speeding up
the likelihood decrease for the CDF-based likelihood optimiza-
tion without any finite minimizer, as detailed next.

Fig. 2. Comparing decrease in CDF-based likelihood for AGD vs GD.

D. Likelihood decay for the GD-based algorithms

Through this section we analyze the likelihood decay per-
formance for the unconstrained GD Algorithms 1 and 2.

1) Likelihood decay for GD: The likelihood decay for
smooth functions with a finite minimizer and minima has
been extensively analyzed [50]. In particular, the GD iterations
decrease the likelihood function at the rate 1/t. However, as
stated in Sec III-A, there is no value that achieves the infimum
of the likelihood, i.e., L(x) > 0 8x 2 R2K (see Remark 2).
The convergence is thus analyzed to a surrogate minimum ✏ of
the likelihood. The following theorem provides the likelihood
decay after T iterations of the improved GD algorithm.

Theorem 1. For a given surrogate minimum ✏, the likelihood
decay after T steps of the GD algorithm, i.e., Algorithm 1,
with step size ↵(t) = 1

� , is given by

L(x(T ))� ✏  �0(✏)

T + �1(✏)
, (27)

where the scalars �0(✏) and �1(✏) are dependent on ✏.

The proof3 follows the same steps as the general decay
rate analysis using a finite minimizer [50], with the surrogate
minimum ✏ for the likelihood appropriately chosen.

Theorem 1 provides the best possible convergence rate for
GD, utilizing the optimally chose step size, i.e., ↵(t) = 1/�,
for a finite horizon GD algorithm.

2) Comparing likelihood decay for GD and AGD: For a
general �-smooth function f(x), the AGD has been proven to
converge to the minimum as [50], [51]

f(x(T ))� f(x⇤) <
c1
T 2

. (28)

Applying the AGD to the recovery of symbols by minimizing
the one-bit likelihood (9) shows a similar gain in convergence
rate. This is empirically illustrated in Fig. 2, comparing the
likelihood convergence rate to the infimum for GD vs AGD.
As seen from the plots, the likelihood decays to a much lower
value for AGD, with the gap to the GD-based likelihood decay

3The derivation of the proof for Theorem 1 requires the definition of a
surrogate minimizer x⇤

✏ that attains the surrogate minima ✏. The complete
proof of likelihood decay, utilizing the analysis of the surrogate minimizer,
has been provided in [53].
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increasing with T . This empirically illustrates the strength of
using the AGD for the unconstrained optimization (9).

Through theoretical bounds on likelihood decay, as well as
the empirical results for AGD, we illustrate that unconstrained
GD-based techniques will be able to converge arbitrarily close
to the infimum, provided that there are no constraints on
the number of iterations. This greatly scales the GD horizon
T , proving infeasible for practical receivers, operating to
minimize computational complexity. Resilient and simplified
GD for practical receivers is added through (i) Improved
surrogate likelihoods to allow for larger step sizes and thereby
speed up convergence, and (ii) Projected GD to efficiently
converge to the solution within the constrained set M2K . Each
of these is elaborated in Sections IV and V, respectively.

IV. IMPROVED CDF SURROGATES FOR MODELING
ONE-BIT LIKELIHOOD

This section explores surrogate functions of the CDF, fo-
cusing primarily on the logistic regression (LR), to model an
approximate one-bit likelihood for signal recovery. Insights
into the improved likelihood decay for the LR are provided,
followed by the GD algorithms for this likelihood.

A. Modeling one-bit likelihood through logistic regression

The approximation for the Gaussian CDF using the sigmoid
function was first proposed in [54]. This was initially applied
to the one-bit MIMO receiver in [40], where, motivated by
the utilization of the sigmoid function as a prevalent nonlinear
activation in DNNs, the GD-based receiver was implemented
as an unfolded DNN, i.e., the OBMNet.

The LR-based likelihood expression is evaluated by substi-
tuting the value of the sigmoid function �(z) for the general
⇣(z) in (7), generating the following expressions

⇣(z) = �log �(z) (29a)
⇣ 0(z) = ��(�z) (29b)
⇣ 00(z) = �(z)(1� �(z)). (29c)

The unconstrained ML optimization is given by

x̂ML = argmin
x2R2K

2NX

i=1

�log �
�
yih

T
i x

�
. (30)

The following is the analysis the LR-based likelihood.
1) Convexity: On substituting the Hessian for the LR-

based likelihood (31) in (8b), it is evident that each element
of the matrix diag(⇣ 00(Gx)) is always positive. Thus the
Hessian is positive semi-definite (PSD). Therefore, the LR-
based likelihood is a convex function of x.

2) Smoothness: Analogous to (19), H� is evaluated as

H� = � I�H
Tdiag(�(Gx)(1� �(Gx)))H. (31)

Fig. 3. Comparing the values of ⇣00(z) for the LR and CDF-based likelihoods.

For any vector z 2 R2K . We have

z
TH�

x
z
T = � ||z||2 � z

T
H

Tdiag(�(Gx)(1� �(Gx))Hz

� � ||z||2 � ||diag
�p

�(Gx)(1� �(Gx))
�
Hz||2

> � ||z||2 � 1

4
||Hz||22

� ||z||2(� � 1

4
||H||22),

(32)
where we utilize �(z)(1� �(z))  1/4 8 z, and the Cauchy-
Schwartz inequality. The Hessian is PSD if

� � ||H||22
4

. (33)

Comparing this to (21) gives �LR = 1
4�CDF. Following the

model-based selection of the step size ↵(t) = 1/�, the LR
enables an increase of the step size by a factor of four.

B. Step size robustness of LR for GD
In addition to better smoothness characterization over the

CDF, the LR offers additional robustness to larger step sizes
↵(t) >> 1/�LR, resulting in faster likelihood decay without
diverging to the incorrect solution. This is attributed to the
properties of the Hessian matrix; the plots in Fig. 3 pictorially
show different behavior, which translates to increased robust-
ness for LR. This is further elaborated below.

Consider the general likelihood expression L(x), given by
(7). As described earlier, smoothness parameter � determines
the step size for the GD algorithm. Applying the analysis from
(20) and (32) to a general ⇣(z), we evaluate the following
bound on �

� � ||diag
�p

⇣ 00(Gx)
�
H||22. (34)

Further, the maximum value for the RHS of (34) is given by

�max = max
x2R2K

||diag
�p

⇣ 00(Gx)
�
H||22 =

h
max
z2R

⇣ 00(z)
i
||H||22.

(35)
Choosing the step size ↵(t) utilizing the value � = �max is
sufficient to guarantee convergence of GD over all x 2 R2K .
This is the model-based limit chosen for the CDF and LR-
based likelihoods, as given in Sec III-A and IV-A, respectively.
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Fig. 4. Illustrating likelihood decay via GD for CDF-based likelihood with
large step size, when compared to the model-based step size ↵(t) = 1/�.

However, a step size larger than this limit can be utilized by
analyzing the value of the x

(t) for the attainment of � =
�max. This, in turn, depends on the value of ⇣ 00(z(t)), which
is compared for both the LR and CDF-based likelihoods in
Fig. 3. Based on the plots, we analyze this further.

1) LR-based likelihood: As seen by the curve for the LR-
based likelihood in Fig. 3, the value for �max is attained
at z = 0, corresponding to the case x = 0. However, the
practical GD trajectory is considered via the attainment of the
values of ⇣ 00(z(t)) for two zones, as seen in Fig. 3: (i) The
convergence zone, corresponding to the positive z-axis, and
(ii) The divergence zone, corresponding to the negative z-axis.

• Convergence zone, i.e., [Gx]i > 0 8 i: It has been
shown that ||x(t)|| increases unbounded with each GD
iteration4. Thus the gap of the expression ⇣ 00(z(t)) to the
maximum value of 0.25 increases monotonically. This, in
turn allows a much larger step size, i.e., ↵(t) >> 1/�max.

• Divergence zone, i.e., [Gx]i < 0 8 i: The symmetry
of the plot for ⇣ 00(z(t)) plays an important role for
the divergence zone as well. With increasing divergent
behavior, i.e., increasing negative values of z(t), the gap
of ⇣ 00(z(t)) to the maximum value also increases. This
further increases the maximum value of the step size that
can be taken to move in the convergence direction. Since
the value of ⇣ 00(z(t)) can decrease to zero, there will
always exist a point after which the GD algorithm (with a
fixed step size) will move in the direction of convergence.

The same logic will also hold for intermediate behavior be-
tween convergence and divergence zones of the GD algorithm,
wherein the GD algorithm will never indefinitely diverge.

2) CDF-based likelihood: For the CDF-based likelihood
plots in Fig. 3, the same robustness as the LR will hold for the
convergence zone. However, for the GD algorithm dynamics
in the divergence zone, the dependence on the step size is
inverted compared to the LR-based likelihood. With increasing
negative values of ⇣ 00(z(t)), the gap to �max decreases. This
implies the need to take smaller step sizes for convergence;
using a larger step size will result in indefinite divergence of
the GD algorithm. The comparison of the likelihood decay
using the model based step size of ↵(t) = 1/� and a large
step size, i.e., ↵(t) = 10/� is illustrated in Fig. 4. As seen by

4Proof of Theorem 1 also proves monotonic decrease of ||x(t)�x(t�1)||.

Fig. 5. Comparing decrease in CDF-based likelihood vs LR-based likelihood,
with model-based step size and large step size, due to GD.

these plots, implementing GD with a large step size results in
an unstable increase in the negative log-likelihood (6).5 This
increased sensitivity to step sizes larger than 1/�max results
in use of step sizes smaller than LR, resulting in greater GD
iterations for convergence.

C. GD for LR-based likelihood and algorithm convergence

Applying GD to the likelihood (30) gives the GD update

x
(t+1) = x

(t) + ↵(t)
G

T�(�Gx
(t)). (36)

Similar to the application of the GD for the CDF-based
likelihood, the choice of the step size parameter ↵(t) is
dependent on �LR. In order to guarantee convergence of GD,
the step size is chosen such that, ↵(t) = 1/�max, as explained
in IV-A. However, the LR is more resilient to larger step sizes,
allowing for faster convergence, as explained in Sec. IV-B.

The convergence analysis for GD algorithm of the LR
follows the same analysis as the CDF-based likelihood, i.e.,
Theorem 1. However the specific constants will differ for the
LR, owing to the different likelihood function. This conver-
gence of the GD algorithm for the LR-based likelihood is
illustrated in Fig. 5. The plots compare the GD convergence of
the LR-based likelihood, using both the model-based step size
↵(t) = 1/�max and the large step size ↵(t) >> 1/�max, to the
CDF-based likelihood. All the GD-based algorithms decay as
1/t, validating Theorem 1. The similar decay performance for
the GD algorithms with the model-based step size ↵(t) = 1/�
is attributed to the fact that ↵(t)

LR = 4↵(t)
CDF. Specifically, the

chosen GD step sizes ↵(t)
LR and ↵(t)

CDF are within the same
order of magnitude. However, the larger step size resilience
for the LR-based likelihood is clearly seen by the significantly
improved convergence.
Remark 3. Although the OBMNet [40] learns the step sizes
↵(t) at each GD iteration, these do not need to be explicitly
learnt. The evaluation of the Lipschitz constant �, theorizes
the the required optimal step size. Additionally, empirical
comparison of the unconstrained GD algorithm (OBMNet)

5This unstable increase in the negative log-likelihood has also been vali-
dated by the work in [39].
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Fig. 6. Comparing decrease in LR-based likelihood for different variants of
the GD algorithms.

with learnt step sizes, and pre-defined step sizes, that aren’t
learnt, shows no difference in performance.

D. AGD for LR-based likelihood and algorithm convergence
The AGD algorithm, introduced in III-C, is applied to the

LR-based likelihood. The resulting GD update step is

x̂
(t) = (1 + �(t))x(t) � �(t)

x
(t�1) (37a)

x
(t+1) = x̂

(t) + ↵(t)
G

T�(�Gx̂
(t)). (37b)

The entire T -step AGD (37) can also be equivalently im-
plemented as a T -layer unfolded DNN, i.e., the accelerated-
OBMNet (A-OBMNet). Different from the original OBMNet
with individual disjoint subnetworks to implement (36), the A-
OBMNet also additionally links the each subsequent OBMNet
sub-network stage and adds increased robustness to the signal
recovery. At each iteration, we can learn the scalar coefficients
↵(t) and �(t) using the loss function (49). As stated in
Remark 3, for the A-OBMNet as well, we empirically observe
no difference in performance for learning the parameters
{↵(t), �(t)}Tt=1 or choosing and fixing the values through
the smoothness properties of the LR-based likelihood. The
performance comparison of the A-OBMNet to the original
OBMNet is given in Sec. VI.

V. PROJECTED GRADIENT DESCENT - DNN-AIDED
OPTIMIZATION FOR M-QAM SYMBOLS

This section begins by elucidating the significance of the
projection step. This is followed by the general two-tier projec-
tion strategy employed for the M-QAM constellation symbols.
Finally, the entire projected AGD algorithm is implemented as
an unfolded DNN, the A-PrOBNet.

A. Significance of M-QAM projection for GD
One of the main limitations of of applying the unconstrained

GD algorithm, optimizing over R2K , for the recovery of
symbols generated from the M-QAM constellation is symbol
recovery with large cluster spread. The recovered symbols are
illustrated in Fig. 7 for both the CDF-based as well as the
LR-based likelihoods. The consequences of this large clus-
ter spread on the unconstrained GD-based symbol recovery,
specifically Algorithms 1 and 2, are explained below.

(a) (b)

Fig. 7. Recovered 16-QAM constellation plots using unconstrained GD for
M-QAM constellations with K = 8 users and N = 128 BS antennas (blue -
correctly detected and red are incorrectly detected symbols). (a) CDF-based
likelihood (9) (b) LR-based likelihood (30).

1) Slow rate of gradient decay: We begin by first un-
derstanding the road to convergence, specifically through the
gradient decay. Consider the expression for the gradient at the
tth iteration for a general likelihood, i.e., (8a),

r(t)
x

= G
T ⇣ 0(Gx) =

2NX

i=1

gi ⇣
0(yih

T
i x

(t)), (38)

where gi and hi are the ith rows of the matrices G and
H, respectively. Firstly, the function ⇣ 0(·) is strictly positive-
valued and the rows are drawn from a normal distribution,
hence the gradient decays to zero if ⇣ 0(yihT

i x
(t)) ! 0, 8i.

Secondly, the elements of the input vector x are drawn from
the M-QAM constellation points. Both these factors imply
that for all i, yihT

i x
(t) should be large positively-scaled

constellation symbols, with very low cluster spread, in order
for the gradient to decay to zero.

The presence of large symbol cluster spread affects the
positivity of the expression yihT

i x
(t) for some indices, even

though the recovered symbols are within the right symbol
boundaries. This is an induced negative bias due to large
cluster spread. Due to this negative bias, the GD is significantly
slowed down, correcting for both incorrectly detected symbols
as well as reducing the cluster spread of correctly detected
symbols. This makes the GD process very slow and inefficient,
if applied by itself, as seen from the different convergence
results of Sec III and IV. The slow convergence is corrected
through the use of projected GD, as explained below.

2) GD step – projection step positive feedback: The effect
of the GD-step - projection step positive feedback is demon-
strated by applying the per-iteration projection on the AGD al-
gorithm for the CDF-based likelihood, i.e., Algorithm 2, owing
to its optimal performance for the unconstrained optimization
(9). The improvement in convergence via projected AGD is
pictorially illustrated in Fig. 8, portraying the symbol error rate
(SER) reduction over the AGD iterations. In the absence of
any projection step at each iteration, the SER quickly saturates
and further reduction is very slow, i.e., the rate of symbol
error correction doesn’t follow the rate of likelihood decay.
In the absence of projection, the AGD iteration itself works
towards reducing the cluster spread, which does not have
any bearing on the SER. On the other hand, the the two-tier
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Fig. 8. Iteration dynamics of SER: Comparing CDF-based AGD with and
without projection. Recovery of 16-QAM symbols received from K = 8
users at a BS antenna with N = 128 antennas for SNR = 25 dB.

projection (explained in Sec. V-B) improves performance and
speeds up convergence. The projection step, by itself, does not
help correct symbol errors; it is only responsible for improved
regularization of the recovered symbols into smaller clusters.
This reduces the negative bias and the AGD iteration is able to
efficiently correct the M-QAM symbol errors in the subsequent
step, which is further helpful to better regularize the recovered
M-QAM symbols, and so on. This creates positive feedback
with the projection step helping the GD step, and the AGD step
helping the projection step, to greatly speed up convergence.

Remark 4. Although the above analyzes symbol recovery
for Algorithms 1 and 2 for the CDF-based likelihood, these
observations are general to the unconstrained optimization and
also apply to the surrogate likelihood based on the LR.

B. Two-tier projected GD framework

The use of a learnt M-QAM projection has been applied
for one-bit MIMO in [5], which utilizes quantizers based
on the rectified linear unit (ReLU) function. However, one
of the major limitations of this approach is the absence
of a structure for the projection, causing the detection to
undergo unstable initial GD iterations, before being stabilized
in the later stages. Differently, this work introduces a two-tier
structured projection applied to the GD and AGD algorithms.
This is explained below.

1) Tier 1 - Hypercube projection: The Tier 1 projection
maps each GD iterand to the M-QAM 2K-dimensional hy-
percube, defined as Scube 2 R2K such that

Scube = {x | |x[i]|  smax, 8i = 1, 2, . . . , 2K}, (39)

where smax is the maximum value of the M-QAM quadra-
ture component. We define the projection operation Pcube :
R2K ! Scube through the element-wise transformation

⇥
Pcube(x)

⇤
i
=

(
x[i], if |x[i]|  smax

smax, otherwise.
, 8i = 1, 2, . . . 2K.

(40)

Applying this, we have the following projected GD update

x̂
(t+1) = x

(t) � ↵(t)r(t)
x

(41a)

x
(t+1) = Pcube(x̂

(t+1)). (41b)

Similarly, applying this projection to the AGD method gives

x̂
(t+1) = x

(t) + d
(t) � ↵(t)r(t)

x+d
(42a)

x
(t+1) = Pcube(x̂

(t+1)) (42b)

d
(t+1) = �(t)(x(t+1) � x

(t)). (42c)

The improvement to Algorithms 1 and 2 through Tier 1
projection is elaborated through the points below.

• Bounding each x
(t)[i] as �smax  x

(t)[i]  smax, the
GD update (41) converges faster due to the larger value
of the smoothness parameter � over the set Scube.

• The Tier 1 projection is linear inside the M-QAM
hypercube, which is a soft projection and hence not
too restrictive. This allows for more flexible symbol
recovery and error correction in the initial stages of the
GD algorithm. This flexibility in projection enables the
formation of the initial M-QAM constellation clusters for
the recovered symbols, which are efficiently fined-tuned
using the subsequent projection method.

2) Tier 2 - Gaussian denoiser: The Tier 2 projection PQAM

maps from the set Scube ! Scube through an exhaustive
weighted sum of all the symbols in M2K . This requires
modeling the posterior distribution of the transmitted symbols.

The vector of M-QAM transmitted symbols from the K
different users is given by s. Each GD iterand x

(t) after the
Tier 1 projection (40) is modeled as

x
(t) = s+4s

(t), (43)

where the residual 4s
(t) is the deviation from the transmitted

symbols, drawn from the Gaussian distribution N (0, (�(t))2I).
We assume that this residual component at the tth iteration
4s

(t) is independent of the previous residuals {4s
(t)}t�1

t=0.
Further, we consider a uniform non-informative prior over
all the symbols in M2K . The Tier 2 projection PQAM is
the MMSE estimate of the transmitted symbols using this
estimation model for x(t). Hence, using the modeled Gaussian
distribution with the independent increment assumption, the
Tier 2 projection at each iteration is given as

ŝ
(t) = PQAM(x(t)) = Es|x(t) (s), (44)

which is the posterior mean of the distribution Pr(s|x(t)).
Using the Gaussian likelihood f(x(t)|s) and the uniform prior
Pr(s) = 1/M2K , the MMSE estimate is given by

ŝ
(t) = c(t)

MKX

i=1

si exp
⇣
� ||x(t) � si||2

2(�(t))2

⌘
, (45)

where c(t) =
⇣PMK

i=1 exp
⇣
� ||x(t)�si||2

2(�(t))2

⌘⌘�1
is the normal-

ization constant and si is the ith element of M2K . The param-
eter �(t) is a learnt over each iteration (see Sec. V-C). Since
s
(t) consists of 2K independent components, corresponding

to the real and imaginary parts of K users, the element-wise
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Fig. 9. Block diagram for the A-PrOBNet - Unfolded DNN to implement the projected AGD update (42). The blue shaded blocks in each stage represent
the learnable parameters in the unfolded DNN.

evaluation of the Tier 2 projection is given by

ŝ[i] = c(t)

p
MX

k=1

sk exp
⇣
� (x(t)[i]� sk)2

2(�(t))2

⌘
, (46)

where sk is the kth quadrature component of the M-QAM con-
stellation. The equation (46) is the Gaussian denoiser, formed
by a convex summation of all the elements in M2K . This
convex projection clearly also maps to a point in the hypercube
Scube. Based on this projection, we have the following.

• Different from the Tier 1 projection (40), the Tier 2
projection is weighted by the `2 distance of the iterand
x
(t) to each constellation point, via a Gaussian kernel.

Thus, the values x
(t)[i] close to the constellation points

{sk} are compactly clustered around these points. This
enables reducing the cluster spread of the recovered
constellation symbols.

• The iteration-dependent parameter (�(t))2 quantifies the
cluster spread of the recovered symbols. The initial
iterations begin with a large value of (�(t))2, allowing for
flexible symbol error correction. The value of this param-
eter reduces with iterations, due to increasing confidence
in detected symbol values, resulting in more compact
clusters. This trend over the GD iterations is learnt from
training data, as explained in the subsequent sub-section.

A threshold value t0 represents the empirically evaluated iter-
ation index to switch from the Tier 1 to the Tier 2 projection.
Thus, the overall two-tier projected GD update is given by

x̂
(t+1) = x

(t) � ↵(t)r(t)
x

(47a)

x
(t+1) = P(x̂(t+1)) =

(
Pcube(x̂(t+1)), if t  t0
PQAM(x̂(t+1)), if t > t0.

(47b)

Similarly, the AGD update with the two-tier projection is

x̂
(t+1) = x

(t) + d
(t) � ↵(t)r(t)

x+d
(48a)

x
(t+1) = P(x̂(t+1)) =

(
Pcube(x̂(t+1)), if t  t0
PQAM(x̂(t+1)), if t > t0

(48b)

d
(t+1) = �(t)(x(t+1) � x

(t)). (48c)

The unfolded DNN implementing the AGD algorithms with

the two-tier projection is explained next.

C. Unfolded DNN implementation of projected AGD

Unfolding algorithms using DNNs have found much ap-
plicability in different areas of signal processing [55], [56].
These DNN frameworks leverage model-based information
and update equations to address model mismatches or enhance
algorithm performance through a DNN-aided step in the
original algorithm. A key advantage of unfolded DNNs is their
ability to significantly reduce the number of trainable parame-
ters and the training time compared to other DNN frameworks.
This efficiency makes unfolded DNNs particularly attractive
for real-time and resource-constrained applications.

In the projected AGD update in (48), the constraint of
projecting each GD iteration on the M-QAM subspace is
addressed by learning the parameters of the Tier 2 Gaussian
denoiser. As seen in Sec. III, the accelerated GD improves on
the convergence over conventional GD for the unconstrained
optimization (see Fig. 2). This advantage can also be utilized
for the constrained optimization. The combination of the well
tested framework for accelerated GD, combined with the
learnable Gaussian denoiser for M-QAM projection makes the
unfolded DNN framework ideally suited for implementation of
the projected GD.

The proposed accelerated projected one-bit network (A-
PrOBNet) is illustrated in Fig. 9. The following are the salient
features for this framework.

• The T -step AGD algorithm is unfolded as a T -stage
DNN, with each Stage t denoting a distinct sub-network.

• The initial inputs are provided as x
(0) = d

(0) = 0, em-
pirically shown to have a well-conditioned initial gradient
value to start the GD.

• Within each Stage t, the gradient is evaluated using
a shallow neural network, with the two static weight
matrices G and G

T and the hidden layer nonlinearity
⇣ 0(z). For the A-ProbNet, we implement the CDF-based
likelihood and hence the element wise nonlinearity ⇣ 0(z)
is evaluated using the improved gradient method (25).

• The learnable parameters (denoted by the blue shaded box
in Fig. 9) for the network are the scalers {�(t)}Tt=t0+1
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for the Tier 2 projection (46). The values of the different
static parameters {↵(t), �(t)} are chosen differently for
different M-QAM constellations. This is elaborated in
Sec. VI.

• Learning the Gaussian denoiser parameters {�(t)}t spe-
cializes each stage of the A-ProbNet to gradually reduce
the cluster spread of the recovered symbols. As explained
through Fig. 8 this has a significant effect on improving
the rate of convergence.

• The A-ProbNet parameters are trained in an end-to-end
manner, using the MSE loss for the ideal constellation
symbols, given by

L =
1

Ntrain

NtrainX

n=1

||x̃n � x̃train,n||2. (49)

We now present some finer points through means of a brief
discussion on the overall projected AGD framework.

D. Discussion
1) Significance of smax for Tier-1 hypercube projection:

The Tier 1 hypercube projection acts as a preconditioning step
for the Gaussian denoising. The role of the Tier 2 Gaussian
denoising is to reduce the cluster spread of the recovered
symbols centered around the M-QAM points. Thus the most
efficient utilization of this projection is observed for symbols
with clusters centered around the M-QAM points. To this
end, the use of projected GD or AGD with Tier 1 hypercube
projection restricts the recovered symbols to large clusters
around the M-QAM symbols. This simplifies the subsequent
reduction in cluster spread using Gaussian denoising. If the
value of smax is increased beyond the maximum M-QAM
quadrature value, the clusters are no longer centered around
the M-QAM symbols, which affects the subsequent Gaussian
denoising step (46). The Gaussian denoising, when applied to
symbols outside the hypercube boundaries, will itself map the
iterates x

(t) to the hypercube boundary. Particularly, the first
few iterations of Gaussian denoising, applied after the Tier
1 projection, will be utilized in projecting to the hypercube
and subsequently reducing the cluster spread, which isn’t an
efficient use of the Gaussian denoising. Thus the optimal
choice for smax for the Tier 1 hypercube projection is the
maximum value of the M-QAM quadrature component.

2) Generalization of the learnt quantization-based projec-
tion: As stated earlier, the work in [5] also introduced a learnt
quantization-based denoiser for M-QAM projection, utilizing
the nearest neighbor. The general Gaussian denoiser for the
proposed two-tier projection weights the symbol against all
the constellation symbol values, adding more robustness and
flexibility, especially in the initial iterations.

3) Loss function for end-to-end learning: The work in
[46] introduced a novel regularized DNN loss function that
captured both the MSE and symbol errors. This loss implicitly
captured the effect of projection during DNN training. How-
ever, differently, this work does not utilize this regularized loss
due to the explicit use of the projection operation. Further,
the application of the loss on the final symbols with sharp
Gaussian denoisers results in the MSE capturing the symbol

TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON OF THE A-PROBNET WITH

OTHER BENCHMARK ALGORITHMS.

Method Complexity

n-ML O(KNT )
OBMNet O(KNT )
FBM-DetNet O(KNT )
A-PrOBNet O(KNT ) +O(

p
MKT )

errors exclusively. However, the use of a regularized loss is
still relevant for iteration-dependent loss functions, utilizing
and fine-tuning all the intermediate estimates {x}Tt=1

6.
4) Generalized Gaussian denoising: Through the Gaussian

denoiser introduced in this work, a single scalar parameter �(t)

per iteration t denoises all the user symbols x(t)[i] of the multi-
user recovered signal estimate x

(t). This has the potential to be
generalized further, incorporating separate per-user denoising.

E. Computation complexity
The comparison of the computational complexities for the

different GD-based algorithms for one-bit MIMO detection is
given in Table. I. As seen from this table, the A-PrOBNet
possesses similar complexity as the existing benchmark algo-
rithms. However, there are are two key differences.

1) Tier-2 Gaussian denoising: The complexity of
O(
p
MKT ) depends on the modulation order. However,

with the use of massive MIMO systems, with large
N , the complexity of gradient gradient evaluation, i.e.,
O(KNT ), is the main rate-determining step.

2) Scalar operations: Optimizing the scalar operations in
gradient computation plays a key role in reducing the
execution time of the detection algorithm. In particular,
the OBMNet and FBM-DetNet utilize the sigmoid scalar
operation whereas the A-PrOBNet utilizes the evaluation
of the Gaussian CDF and PDF. Numerical optimization of
these scalar operations, or use of efficient approximations,
will be key in improving the computational complexity
of the A-PrOBNet.

VI. EXPERIMENTAL RESULTS

A. Simulation setup
All the different prior works for one-bit MIMO receivers

(see Sec. I) benchmark the algorithm for lower and higher
order M-QAM constellations, i.e., QPSK and 16-QAM. How-
ever, all these approaches perform comparably for QPSK
symbols. Hence, in order to show true robustness to higher
order M-QAM, we perform detailed testing and benchmarking
of this work for the 16-QAM constellation symbols.

The 16-QAM constellation symbols are transmitted from
K = 8 users, N = 128 BS antennas with SNR = E(||Hx||2)

E(||n||2)
in the range 10 to 45 dB. This setup follows the standard
multi-user 16-QAM simulations conducted in [36], [39], [40],
[46]. The Rayleigh fading channel H is considered with each
entry independently chosen from the CN (0, 1) distribution.

6outside the scope of this work
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1) Performance benchmarks: We compare the proposed
algorithm against the different model-based and learning based
frameworks. (i) The N-ML algorithm from [36] is used to
establish the original benchmark using the CDF-based like-
lihood. (ii) The OBMNet in [40] forms the original LR-
based likelihood benchmark. (iii) The FBM-DetNet from [5]
is the existing state-of-the-art benchmark, utilizing the learnt
quantization-based projection to the M-QAM set.

2) Benchmark algorithm and network parameters: The n-
ML [36] is executed for a maximum of T = 500 iterations,
with a step size of 0.001, (to ensure convergence). Consistent
with the benchmarks established in [40], the OBMNet is run
for T = 15 iterations. The same parameters are also taken for
the FBM-DetNet [5].

3) Improved GD, AGD and A-PrOBNet: The following
are the parameters chosen for the different algorithms and
networks introduced in this work in Sec. III-B, III-C and V-C.

• The improved GD, i.e., Algorithm 1, is run for T = 100
iterations, to ensure convergence of the likelihood. The
step size ↵ = 0.03.

• The AGD, i.e., Algorithm 2, is run for T = 20 iterations.
The momentum parameter � is taken as 0.63 and step
size ↵ = 0.03, based on empirical testing.

• The A-PrOBNet is run for T = 15 iterations. The
momentum parameter � = 0.63 and step size ↵ = 0.03.
The denoiser parameters {�(t)}T�1

t=0 are the only learnable
parameters. The training for the DNN is similar to the
training strategy in [46]. The network training is carried
out via minibatch gradient descent, with the chosen batch
size Ntrain = 32. In order to train the A-PrOBNet on
the set of randomly generated Rayleigh channel matrices,
each minibatch is generated from a different channel
matrix H, denoted by BH. Based on the described system
model (1)-(2), the minibatch set is generated as BH =
{x̄n, z̄n, ȳn}Ntrain

n=1 . We utilize the MSE loss function (49).
We practically implement minibatch gradient descent
with the Adam update [57] for each training minibatch to
keep a check on the learning rate. For regularization of
DNN weights, we utilize weight decay to further increase
resilience by preventing exploding network weights.

B. Intrinsic testing
In this sub-section the algorithms and DNNs proposed in

this work are tested by varying the different parameters.
1) CDF-based likelihood performance: The performance

for the improved GD and AGD, Algorithms 1 and 2 respec-
tively, is evaluated for different number of total iterations
in Fig 10. As seen from these plots, the improved GD
performance saturates beyond T = 50 iterations. In addition,
the the momentum-based GD clearly outperforms the GD,
with significantly fewer iterations. The performance of both
Algorithms 1 and 2 are limited due to the M-QAM amplitude-
scaled unit sphere normalization. Further improvement is only
possible by modifying the projection step as seen in the
subsequent tests.

2) Evaluating surrogate likelihoods: The performance plots
of the surrogate likelihood, i.e., LR-based likelihood, using

Fig. 10. Intrinsic comparison of improved GD and AGD performance for
CDF-based likelihood for given simulation setup.

Fig. 11. Testing the performance of AGD on surrogate likelihood using LR,
i.e., (37) for the given simulation setup.

both GD and AGD update (36) and (37), respectively, are given
in Fig. 11. As seen by the results, the LR-based likelihood
converges in a fewer number of steps using AGD (see Fig.
6). The BER performance for the AGD update is comparable
to the GD update using half the number of iterations. This is
attributed to the step size robustness for the LR-based likeli-
hood. However, as seen by the plots, increasing the number
of iterations for AGD doesn’t improve BER significantly. This
shows that in addition to the robustness in step size as well
as the advantages of accelerated GD, projection plays a vital
role in improving BER performance.

3) Performance of projected AGD framework: We evaluate
the role of the different projection strategies on the better per-
forming AGD algorithm. The role of the different projection
strategies is highlighted through the results in Fig. 12. As seen
from these plots, Tier 1 projection is a significantly better
strategy compared to projection on the M-QAM amplitude
scaled unit sphere. The two-tier learnt strategy of the A-
PrOBNet further improves on the BER by directly reducing
the cluster spread.

C. Detection for general channel
We now compare the performance of the A-PrOBNet to

the state-of-the-art recovery algorithms for a general channel
matrix drawn from the distribution of Rayleigh distributed
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Fig. 12. Testing the role of different projection strategies on the CDF-based
AGD for given simulation setup.

Fig. 13. Testing state of the art detection performance of all algorithms for
given simulation setup.

channels. The recovery performance is given in Fig. 13. As
can be seen from these plots, the performance of the proposed
A-PrOBNet matches the current state-of-the-art performance
of the FBM-DetNet with the same number of iterations (out-
performing the OBMNet and n-ML using unit sphere normal-
ization). However, differently, this algorithm does not make
any additional approximations on the likelihood like utilization
of a surrogate function. The A-PrOBNet thus establishes the
limit of optimum performance for the original CDF-based
likelihood without any additional approximations. Further, the
two-tier projection is developed as a generalization of the
quantization-based projection. The latter is clearly a better
strategy at lower SNR values owing to weighting by a fewer
M-QAM neighbors.

VII. CONCLUSIONS

This work provides insights into the ML optimization for
one-bit MIMO receivers, enabling a better understanding of
the GD-based signal recovery algorithm. The accelerated GD,
with faster convergence, is introduced into the class of differ-
ent algorithms. These insights are extended to the surrogate
likelihood function, the logistic regression, explaining the
improved robustness and speed of convergence. Finally, the
significance of an effective per-iteration projection step is
highlighted in the GD-based recovery. The accelerated GD,
with a novel two-tier projection is unfolded into a T-stage
DNN, the A-PrOBNet, to achieve state of the art performance.

Future work in this area involves the extension of this work
to mmWave channels. The challenge of non-uniform power
distribution among the different users makes joint-detection
especially challenging for one-bit MIMO systems.
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