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AbstractÐWe propose a novel sensing approach for the beam
alignment problem in millimeter wave systems using a single
Radio Frequency (RF) chain. Conventionally, beam alignment
using a single phased array involves comparing beamformer
output power across different spatial regions. This incurs large
training overhead due to the need to perform the beam scan
operation. The proposed Synthesis of Virtual Array Manifold
(SVAM) sensing methodology is inspired from synthetic aper-
ture radar systems and realizes a virtual array geometry over
temporal measurements. We demonstrate the benefits of SVAM
using CramÂer-Rao bound (CRB) analysis over schemes that
repeat beam pattern to boost signal-to-noise (SNR) ratio. We also
showcase versatile applicability of the proposed SVAM sensing by
incorporating it within existing beam alignment procedures that
assume perfect knowledge of the small-scale fading coefficient.
We further consider the practical scenario wherein we estimate
the fading coefficient and propose a novel beam alignment
procedure based on efficient computation of an approximate
posterior density on dominant path angle. We provide numerical
experiments to study the impact of parameters involved in the
procedure. The performance of the proposed sensing and beam
alignment algorithm is empirically observed to approach the
fading coefficient-perfectly known performance, even at low SNR.

Index TermsÐSingle radio frequency chain, virtual array
manifold synthesis, coherence interval, active sensing, direction
of arrival, hierarchical codebook, Bayesian estimation

I. INTRODUCTION

Millimeter wave (mmWave) technology is essential for

expanding the existing capabilities of cellular networks [1],

[2]. The availability of the large spectrum in the 30-300 GHz

spectrum range, and the ability to place many more antennas in

the same form factor on a device are very promising avenues

for the next generation wireless systems. This has propelled

the interest, both in the industry and academia. The envisioned

benefits include much higher throughput and low latency. The

impact of this technology can be gauged from the numerous

use cases enabled by the mmWave technology, which includes

industrial-IoT, virtual/augmented reality, biomedical applica-

tions, and non-terrestrial networks [3], [4].

MmWave technology also faces many challenges. The

mmWave channel incurs large propagation losses thereby

restricting coverage per base station (BS), and requiring ad-

ditional infrastructure compared to legacy cellular networks.
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A second challenge is the sparse nature of mmWave channel

consequently requiring accurate beam alignment. This chal-

lenge is only further exacerbated by the narrow beamwidths

and consequent large codebook size due to the large antenna

array dimensions. Several options are being considered for

enhancing coverage at low-cost such as integrated access

backhaul and intelligent reflective surfaces. On the other hand,

reducing the beam alignment phase duration is a critical and

active area of research. Hardware cost also impacts the ability

of the transceivers to sense the mmWave channel. The large

number of antenna elements are typically supported by only a

few Radio Frequency (RF) chains [5], and thus necessitates

for a low-dimensional projection of the received signal at

the antennas. Beam alignment using such a low-dimensional

signal is a challenging problem, and it is the main focus of

this work.

There is a need to build a better sensing approach coupled

with efficient inference mechanisms that exploit the array

geometry and channel characteristics under the hardware con-

straints. An interesting direction adopted in [6] formulates the

beam alignment problem under the posterior matching frame-

work, and actively learns the single path Direction of Arrival

(DoA). The work is shown to improve over the detection-based

algorithm in [7]. However, the authors in [6] assume that the

small-scale fading coefficient is perfectly known. Subsequent

effort build upon this work, and estimate both the DoA as well

as the fading coefficient [8]. The Kalman filter-based posterior

matching algorithm in [8] still requires good prior density

on the small-scale fading coefficient. Similar assumptions on

availability of good prior density was made in the variational

hierarchical posterior matching algorithm proposed in [9].

In this work, we reflect on the beam alignment problem

from the perspective of active sensing for improved estimation

performance. We do so without relying on additional informa-

tion such as good prior knowledge about the small-scale fading

coefficient. The contributions of this work are as follows:

• A novel sensing methodology, inspired from Synthetic Aper-

ture Radar (SAR), is proposed for the single RF chain

mmWave systems. Under the proposed sensing approach,

a virtual Uniform Linear Array (ULA) manifold is synthe-

sized over temporal measurements. Extension to construct a

virtual arbitrary array geometry such as Sparse Linear Array

(SLA) is also discussed. The proposed sensing is useful even

in the presence of multipaths and its operation under such

scenarios is briefly discussed.
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• Benefits of the proposed sensing are described, when the

channel small-scale fading coefficient is known, in terms of

i. its impact on the CramÂer-Rao lower Bound (CRB) on the

variance of estimation of the unknown dominant path angle,

when compared to a benchmark scheme, and ii. its ability

to be incorporated within existing active beam alignment

procedures. The improvement in terms of lower training

overhead is demonstrated using numerical experiments.

• A novel beam alignment procedure is proposed which

adapts the beamformer based on the current estimate of the

posterior on the unknown angle. The proposed algorithm

estimates a posterior on the small-scale fading along with the

angular posterior. Both, flexible and hierarchical codebook-

based beam alignment procedures are presented.

• Finally, the proposed sensing and beam alignment pro-

cedures are empirically studied, and compared with the

performance using perfect knowledge of the channel state

information. Impact of the parameters involved in the es-

timation procedure is also studied, which also reveal the

ability of the adaptive beam alignment procedure to self-

correct in case of premature misalignment during the early

phase of the training period.

A. Relevant Prior Work

A virtual array synthesis from spatial measurements under

the reduced number of RF chains constraint for mmWave

systems was proposed in [10]. A similar sensing scheme as

in [10], was proposed in [11] for mmWave multipath angle

estimation and in [12] for the DoA estimation problem. In [11],

the authors proposed using random precoders and combiners

that are submatrices of banded Toeplitz matrices. The work

focuses on mmWave systems with multiple RF chains, and

the ideas are extended to the single RF chain case. In [12],

the authors investigated the applicability of root-MUSIC and

ESPRIT algorithms, as a consequence of preserving the Van-

dermonde structure and the shift-invariance under the virtual

array synthesis procedure. These sensing methodologies can

be traced back to Silverstein [13] and Tkacenko [14]. The

sensing scheme proposed in this work synthesizes a virtual

array over temporal measurements, and considers the practical

single phased array system. To the best of our knowledge, the

presented adaptive sensing methodology is the first of its kind.

Many non-adaptive and adaptive beamforming approaches

have been proposed for the mmWave beam alignment problem

in the past. Random beamforming was proposed in [15]±

[17], wherein the inference was carried out using compressed

sensing algorithms. This approach does not exploit beamform-

ing gain needed to combat large path loss in the mmWave

channels. An exhaustive beam steering approach proposed in

IEEE 802.11ad and 5G standards improves the beamforming

gain, but can be slow in selecting the appropriate beam. The

acquisition time is improved in literature by replacing the non-

adaptive linear search with an adaptive binary (or in general

n-ary, n ≥ 2) search within a hierarchical codebook [7],

[18]±[20]. A comparison in terms of asymptotic misalignment

probability between the exhaustive search and the hierarchical

search was studied in [21]. For adaptive schemes using hi-

erarchical codebook, the inference at each hierarchical level

is typically carried out by comparing power at the output

of different beams within a hierarchical node. The inference

mechanism was improved in [6] by computing posterior on

the dominant path angle and selecting next beam based on the

posterior within the hierarchical codebook of [7]. The work

assumes that the small-scale fading coefficient is perfectly

known. However, such assumption is difficult to satisfy in

practice. The problem of estimating small-scale fading coef-

ficient (along with the unknown path angle) was considered

in later works [8], [9]. A grid-approach was also proposed

in [8], but the relevant issue on how to choose appropriate

grid on the small-scale fading coefficient was not addressed.

An adaptive beam search algorithm scheme based on posterior

computation to compare beams was proposed in [22]. Many

learning-based approaches have been proposed in literature

as well [23]±[25]. These include approaches that frame the

beam alignment problem as multi-armed bandit problem, or

train an end-to-end neural network to design a model-free or

codebook-free architecture. In this work, we emphasize the

model and propose novel sensing (for improved acquisition)

and inference procedures to estimate the unknown parameters.

The paper builds on our previous work in [26].

B. Organization of the Paper and Notations

We describe the problem tackled in this work, and introduce

the new sensing approach in Section II. In Section III, we

investigate the impact of the proposed sensing for the case

when the fading coefficient is perfectly known, and only the

unknown DoA is to be recovered. The more practical case,

when the fading coefficient needs to be estimated along with

the DoA is discussed in Section IV. We provide empirical

results in Section V, and present our conclusions in Section VI.

Notations: We represent scalars, vectors, and matrices by

lowercase, boldface-lowercase, and boldface-uppercase letters,

respectively. Sets are represented using blackboard bold letters.

(.)T , (.)H , (.)c denotes transpose, Hermitian, and complex

conjugate operation respectively. ⊗ denotes matrix Kronecker

product, and ⊙ denotes Hadamard product of two con-

formable matrices. ∗ denotes convolution operation. [M ] =
{0, 1, . . . ,M − 1},M ∈ Z

+.

II. PROBLEM STATEMENT & PROPOSED NOVEL SENSING

We consider a receiver (base station or user equipment)

equipped with a Uniform Linear antenna Array (ULA) of size

N and a single RF chain. We assume a flat fading channel,

with a single dominant path between the transmitter and

receiver. We further assume that the channel remains coherent

within the training duration due to low receiver mobility.

A. Problem Statement

The received signal at the antennas at instant l, xl ∈ C
N ,

is given by

xl =
√

PsαφN (u) + n̄l, l ∈ [L], (1)



0 1 2 3 4 5 6 7 8 9 10 11 12 13Snapshot index, l :

(virtual) ULA segment
index when Nv = 4, t(l) : 0 0 0 0 1 1 1 1 2 2 2 2 3 3

Fig. 1. A (virtual) ULA segment of size Nv = 4 is created using 4 snapshots. The beamformer, ft(l), is adapted once in every segment duration.

where L denotes the total training duration. Ps ≥ 0 denotes

the combined contribution of transmitted power and the large-

scale fading (path loss and shadowing), α ∈ C is the unknown

small-scale fading coefficient. Since the transmitted symbol is

known, it can be easily absorbed within the signal term of

xl in (1). Thus, we assume the transmitted symbol value to

be 1 without loss of generality. φN (u) is the array manifold

or response vector for an incoming narrowband signal along

the angle u; u = sin θ, u ∈ [−1, 1), where θ ∈ [−π
2 ,

π
2 )

denotes physical DoA. Noise, n̄l ∈ C
N , is distributed as

CN (0, σ2
nI) and i.i.d. over time. Since there is a single

RF chain, the received signal is processed using an analog

combiner, wl ∈ C
N . The output, yl ∈ C, available for

inference is given by

yl = wH
l xl=

√

Psαw
H
l φN (u) +wH

l n̄l

=
√

Psαw
H
l φN (u) + nl. (2)

The goal is to design wl and infer u; wl can be adapted

over time to improve the inference. For a ULA with λ/2
inter-element spacing1, where λ denotes the wavelength of the

received signal, we have

φN (u) = [1 exp (jπu) · · · exp (jπ(N − 1)u)]T . (3)

In this paper, we consider the ULA geometry for easier

exposition of ideas. However, these ideas can be extended to

planar geometries as well, such as uniform rectangular arrays

[27]. Next, we describe a high-level structure that we impose

when designing the beamformer, wl.

B. Synthesis of Virtual Array Manifold (SVAM) Sensing

The sensing methodology is inspired from SAR systems

used in remote sensing and automotive radar (see [28], [29]

and references within them). In typical SAR systems, the

sensor motion allows synthesis of larger aperture than physical

antenna, which helps to improve resolution. In this work,

we mimic the sensor motion by designing wl appropriately.

We exploit the coherence interval to synthesize virtual aper-

tures over time. An important consequence is that, such

measurements preserve phase information from the physical

antenna, which captures rich information about the DoA of

the incoming signal. The proposed sensing can be applied

more broadly to multi-path angles. Moreover, leveraging the

complex exponential structure present at the combiner output

yl, l ∈ [L], it is possible to apply an unlimited number of

digital filters on these measurements.

1λ/2 inter-element spacing prevents ambiguity in angular estimation.

1) Constructing a Virtual ULA with λ/2 Inter-element

Spacing: Let Nv denote the number of antenna elements in

the virtual ULA we wish to create. We assume that the total

training duration, L, is divisible by Nv for simplicity. Let

t(l) = floor(l/Nv) denote2 the (ULA) segment index (see

Fig. 1). We design a beamformer of size M = N −Nv + 1,

ft(l) ∈ C
M , such that ∥ft(l)∥2 = 1, initially spanning the

region of interest (RoI). A RoI incorporates any prior informa-

tion available about the DoA. In certain scenarios the receiver

may be interested in identifying paths in a narrow region, for

example, due to restricted mobility patterns for the transmitter.

As the system gathers information about the unknown DoA,

u, the design of the beamformer, ft(l), is adapted. The analog

combiner at instant l is given by

wl =
[

0T
mod(l,Nv)

fTt(l) 0T
Nv−mod(l,Nv)−1

]T

. (4)

Thus, within a segment duration, the beamformer slides along

the antenna aperture. In contrast to the work in [10], here only

a single RF chain is available and thus a virtual ULA segment

is synthesized over time. Let

βt(l)(u) = fHt(l)φM (u), (5)

denote the complex gain of the beamformer along the angle

u. The signal yl post-combining can be expressed as

yl = wH
l xl =

√

Psαβt(l)(u)·exp (jπumod(l, Nv))+nl. (6)

Note that the gain βt(l)(u) does not change within a segment,

but ‘exp (jπumod(l, Nv))’ varies within the segment.

Remark 1. The beamforming gain, measured in terms

of |βt(l)(u)|2, in the passband depends primarily on the

beamwidth of the beamformer, ft(l). For an ideal beamformer

design, the gain in the beamformer passband corresponding

to a beamwidth of 2
R , R ≥ 1, in u-space is given by

|βt(l)(u)|2 = R. As the beamformer size, M , increases the

beamformer response approaches the ideal response.

We drop the notation for dependence of t on l for simplicity.

We stack the measurements within a segment duration to form

yt =
[

ytNv
ytNv+1 · · · y(t+1)Nv−1

]T ∈ C
Nv , t ∈ [L/Nv],

yt=
√

Psαβt(u) [1 exp (jπu) · · · exp (jπ(Nv − 1)u)]
T
+ nt

=
√

Psαβt(u)φNv
(u) + nt. (7)

We identify the following design parameters: a) Nv ∈
{1, 2, . . . , N}, the virtual ULA size, and b) beamformer, ft,

design, which includes the beam direction and beamwidth.

2floor(·) denotes the floor function.



Nv = 1 reduces to the conventional beam design. Thus, the

proposed sensing strategy includes the methodology adopted

for sensing in [6], [7] as a special case. The hierarchical

codebook in [7] designed using a least squared error criterion

imposes a constant amplitude and phase in the passband.

The inference is improved by relaxing the constant phase

requirement in the passband. Thus, in this work we design the

beamformers as linear-phase Finite Impulse Response (FIR)

filter using the Parks-McClellan algorithm [30].

Let ỹt = [yT
0 , . . . ,y

T
t ]

T ∈ C
(t+1)Nv denote the measure-

ments until snapshot index, l = (t+ 1)Nv − 1. Then

ỹt =











y0

y1

...

yt











=
√

Psα











β0(u)φNv
(u)

β1(u)φNv
(u)

...

βt(u)φNv
(u)











+











n0

n1

...

nt











=
√

Psα
(

β̃t(u)⊗ φNv
(u)

)

+ ñt, (8)

where β̃t(u) = [β0(u), β1(u), . . . , βt(u)]
T

and ñt =
[nT

0 ,n
T
1 , . . . ,n

T
t ]

T . In Section IV we discuss how to estimate

u along with α using ỹt, and how to adaptively design the

beamformer i.e., ft+1 for the next segment.

Remark 2. It is important to highlight the significance of the

proposed sensing methodology. Given just two measurements,

it is possible to construct a virtual ULA under the proposed

sensing with Nv = 2. This is equivalent to a contrived single

snapshot measurement from a physical array of size 2. Owing

to the rich (array) geometrical information preserved in the

measurements, it is thus possible to estimate the dominant

path DoA in a gridless manner using existing techniques [31].

In contrast, the beam scan operation using Nv = 1 requires as

many measurements as the codebook size to detect the DoA.

2) Constructing a Virtual Sparse Linear Array: The con-

struction presented in the previous subsection can be extended

to form virtual ULAs with more than λ/2 spacing3. More

generally, a Sparse Linear Array (SLA) can also be realized as

the virtual array geometry, for example, minimum redundancy

arrays [32], nested arrays [33] or co-prime arrays [34]. These

can help to increase the virtual aperture and improve resolution

for the same segment duration. Let Nv denote the number

of antenna elements in the virtual SLA we wish to construct

over time. Let P = {Pi : 0 ≤ Pi < N,Pi ∈ Z, i ∈ [Nv]}
denote the set of sensor positions in the SLA ordered in an

increasing manner; P0 = 0, without loss of generality. We

design a beamformer, ft, of length M = N − PNv−1. The

analog combiner at time l, in the case of SLA, is given by

wl =
[

0T
Pmod(l,Nv)

fTt 0T
N−M−Pmod(l,Nv)

]T

. (9)

Using identical notation to describe the complex gain, βt(u),
as in (5), the signal yl post-combining can be expressed as

yl = wH
l xl =

√

Psαβt(u) · exp
(

jπuPmod(l,Nv)

)

+nl. (10)

3Any ambiguity in angular estimation can be resolved if the RoI is an
appropriate fraction of the spatial region.

Note that (10) generalizes (6) for the SLA case. Finally, the

measurements within the t-th SLA segment can be stacked as

yt=
√

Psαβt(u)[1 exp (jπP1u) · · · exp (jπPNv−1u)]
T + nt

=
√

Psαβt(u)SPφN (u) + nt, (11)

where SP ∈ R
Nv×N is a binary sampling matrix given by

[SP]m,n =

{

1 if n = Pm

0 otherwise
,m ∈ [Nv], n ∈ [N ]. (12)

In the remainder of the work, we focus on the virtual ULA

with λ/2 spacing-based sensing for ease of exposition, but the

ideas presented can be easily extended to the virtual SLA case.

We refer to the sensing methodology described in this

section as Synthesis of Virtual Array Manifold (SVAM).

Furthermore, we describe the SVAM sensing in conjunction

with the virtual ULA size (with λ/2 spacing) by SVAM-

Nv . For example, SVAM-2 indicates the sensing methodology

employed is as described in subsection II-B1 with Nv = 2.

C. Implications of Using SVAM sensing to multipath channels

The proposed SVAM sensing approach can be applied to

scenarios including multiple paths. In this subsection, we

briefly take a detour from (1) and consider the following more

general measurement model corresponding to a channel with

K paths (K ≥ 1)

xl =
√

Ps

K
∑

k=1

αkφN (uk) + n̄l, l ∈ [L], (13)

where the notations simply extend for K paths compared to

(1) and Ps denotes the average power value for the K paths.

A similar development as shown in Subsection II-B1 leads to

the following received measurement vector after beamforming

in the t-th virtual ULA segment duration

yt =
√

Ps

K
∑

k=1

αkβt(uk)φNv
(uk) + nt (14)

compared to (7). The combined measurements after (t+1)Nv

snapshots is given by

ỹt =











y0

y1

...

yt











=
√

Ps

K
∑

k=1

αk

(

β̃t(uk)⊗ φNv
(uk)

)

+ ñt, (15)

compared to (8), where β̃t(u) = [β0(u), β1(u), . . . , βt(uk)]
T

and ñt = [nT
0 ,n

T
1 , . . . ,n

T
t ]

T . The beamforming gain for

each path is a function of the beamformer design ft and the

path angle. Thus, all the paths within the passband of the

beamformer ft are boosted. This demonstrates the applicability

of the proposed SVAM sensing for more general channel

models beyond the scenario considered in (1). The remainder

of this work specializes to the single dominant path model in

(1) for tractability and ease of exposition. The more general

scenarios involving multipaths (such as [35]±[38]) is left as

future work.



III. BENEFITS OF SVAM FOR BEAM ALIGNMENT

We discuss some of the benefits of the proposed SVAM

sensing for estimating the DoA, u. We demonstrate the benefits

in two settings: i. agnostic to the adaptive scheme used, ii.

when hierarchical posterior matching (hiePM) [6] scheme

is used. In both settings we assume that α is known. We

also briefly discuss the role of virtual antenna size Nv for

improving the estimation performance. The more practical

scenario, where α is unknown, is discussed in the next section.

A. Adaptive Scheme-Agnostic Analysis

We begin by first deriving the CRB after L snapshots,

assuming α is known. Let W = [w0, . . . ,wL−1] ∈
C

N×L, ∥wl∥2 = 1 denote the matrix of beamformers used to

generate measurements y = [y0, . . . , yL−1]
T ∈ C

L as in (2).

Note that wl’s may be designed generally, and not necessarily

under SVAM for the following result to hold.

Theorem 1. The CRB(u) on the variance for estimating u
using the beamformer matrix W = [w0, . . . ,wL−1], ∥wl∥2 =
1 as in (2) over L snapshots when α is known is given by

CRB(u) =
σ2
n

2Ps|α|2

{

(

∂

∂u
φN (u)

)H

WWH ∂

∂u
φN (u)

}−1

.

(16)

Proof. The proof follows standard steps for deriving CRB and

provided in [39].

In this subsection, we compare two sensing strategies - both

deterministically modify the beamformer design after every

Nv snapshots. The proposed sensing strategy involves a shift

in space as described in (4), and requires the beamformer

to be fixed for Nv snapshots by design. The alternative

(benchmark) strategy designs the beamformer wl of size N
without inserting 0’s - used in SVAM to effect a linear time

invariant operation. The beamformer for the two strategies

considered here are to be designed with identical specifications

except the length. The SVAM beamformer ft has a size of

M(= N − Nv + 1), whereas the alternative strategy utilizes

the total antenna aperture of size N . We expect that for a

large antenna size N , which is typical in mmWave systems,

the slightly different length of the beamformers will have

negligible impact. The rest of the beamformer specifications,

which can change every Nv snapshots, may be chosen ar-

bitrarily for the discussion in this subsection. We defer the

discussion that involves using the specific adaptive scheme -

HiePM [6] to the subsection III-C. We specialize the CRB

expression in Theorem 1 for the benchmark strategy and the

proposed sensing strategy. This exercise helps to understand:

how informative are the measurements available post analog

combining about the unknown DoA using either of the two

techniques for designing the analog combiners? For both the

cases, we treat as if the same ordered set of L received signal

snapshots xl ∈ C
N , l ∈ [L] were available at the antenna.

1) CRB for the Benchmark Strategy: Let WB =
[wB

0 ,w
B
1 , . . . ,w

B
L−1] ∈ C

N×L be the L beamformers used to

generate the measurements as in (2); superscript B highlights

the benchmark sensing strategy. Note that

wB
l = wB

Nv×floor(l/Nv)
, (17)

under the benchmark scheme. Let FB =
[wB

0 ,w
B

Nv
, . . . ,wB

L−Nv
] ∈ C

N× L
Nv denote the matrix of

unique beamformers from WB. We have the following result.

Corollary 1.1. The CRB(u) using measurements in (2) from

the beamformer matrix WB under the constraint in (17) over

L snapshots when α is known is given by

CRB(u)

=
1

Nv

σ2
n

2Ps|α|2

{

(

∂

∂u
φN (u)

)H

FB(FB)H
∂

∂u
φN (u)

}−1

.(18)

Proof. Proof follows from simplifying (16) using (17), and is

provided in [39].

2) CRB for the Proposed Sensing Strategy: Let WP =
[wP

0 ,w
P
1 , . . . ,w

P
L−1] ∈ C

N×L be the L beamformers

designed under SVAM as described in (4); superscript

P highlights the proposed SVAM sensing. Let FP =

[f0, f1, . . . , fL/Nv−1] ∈ C
M× L

Nv denote the matrix of SVAM

beamformers. We have the following result.

Corollary 1.2. The CRB(u) using measurements in (2) from

the beamformer matrix WP under the construction in (4) over

L snapshots when α is known is given by

CRB(u)=
1

Nv

σ2
n

2Ps|α|2

{

(

∂

∂u
φM (u)

)H

FP(FP)H
∂

∂u
φM (u)

+G

}−1

, where (19)

G=
π2(Nv − 1)(2Nv − 1)

6
φM (u)HFP(FP)HφM (u)

−π(Nv − 1)Im

{

(

∂

∂u
φM (u)

)H

FP(FP)HφM (u)

}

(20)

Proof. Proof follows from simplifying (16) using (4), and is

provided in [39].

The CRB expression in (19) differs from the expression in

(18) in two ways. The first term in (19) involves an array of

dimension M = N −Nv + 1 instead of N in (18). For large

array sizes, N , which are typical in mmWave systems, we

expect this term to be similar to that in (18). Secondly, the

denominator in (19) has an additional second term ‘+G’. We

show that the conditions under which G ≥ 0 is not difficult to

satisfy, by deriving a sufficient condition to ensure the same.

Theorem 2. G in (20) is non-negative if

φH
M (u)FP(FP)HφM (u)

∥φM (u)∥2 ≥ λmax

(

(FP)HPu,⊥FP
)

4
, (21)



where λmax(X) denotes the largest eigenvalue of the matrix

X. Pu,⊥ = [φM (u) φ⊥
M (u)]

[

∥φM (u)∥2 0
0 ∥φ⊥

M (u)∥2
]−1

×[φM (u) φ⊥
M (u)]H denotes a projection onto the sub-

space of orthogonal vectors φM (u) and φ⊥
M (u) =

[

− (M−1)
2 (1− (M−1)

2 ) . . . (M−1)
2

]T

⊙ φM (u).

Proof. The proof is provided in Appendix section VII-A.

The following remark discusses the implication of Theorem 2.

Remark 3. If the left singular vectors of FP includes φM (u)
and φ⊥

M (u) (post-normalization), we can further simplify (21).

If φM (u) leads φ⊥
M (u), then (21) is trivially satisfied. If

the opposite is true, in that, φ⊥
M (u) leads φM (u), then (21)

describes the required gap in the two corresponding singular

values within FP. In practice, we expect an adaptive scheme to

choose beamformers close to the direction of the DoA. Also, it

was found out that G ≥ 0 very often even when FP contained

i.i.d. complex Gaussian random entries.

Theorem 2 emphasizes that the sufficient condition for

ensuring G ≥ 0 are not difficult to satisfy and highlights the

benefit from using SVAM sensing compared to the bench-

mark scheme. The benchmark analysis can be extended to

include more general scenario, wherein it need not repeat the

beamformer in Nv snapshots. Since the contribution from each

snapshot appears independent of other snapshots, as a linear

sum in the denominator in the general CRB expression in (16),

any time a beamformer is repeated in a benchmark scheme, it

can be replaced with the proposed scheme. A similar impact

and analysis can be carried out to reveal ensuing benefits.

B. Case Study: Combining SVAM with HiePM Framework

The hiePM algorithm [6] processes each new snapshot and

updates the beamformer based on the current estimate of the

posterior density on the unknown DoA. To incorporate the

proposed sensing, one approach is to update the beamformer

after every Nv snapshots, where Nv denotes the size of the

virtual ULA. Within each Nv interval, a SVAM beamformer,

ft, is designed; ft is simply a codeword from the hierarchical

codebook that satisfies the selection criteria within hiePM

framework. The beamfomer (of physical antenna size, N ) for

Nv snapshots within this interval is constructed as in (4). The

remainder steps in Algorithm 1 in [6] are compatible with

the proposed sensing. This modification also becomes crucial

when α is unknown; this is discussed in Section IV.

Remark 4. The impact of the modification can be understood

in the following manner. The hiePM strategy in [6] may

repeat the same beamformer multiple times until the posterior

condition triggers a new beamformer. While it repeats the

beamformer, it gains only in terms of the Signal-to-Noise Ratio

(SNR), which is also evident from the CRB analysis for the

benchmark scheme in (18). Nv multiplied with Ps in (18) indi-

cates a Nv-fold SNR boost. Instead of a repeated beamformer,

the proposed sensing aims to achieve both, a SNR boost and

at the same time an (virtual) aperture gain (‘+G’ term in

the CRB analysis). Since the adaptive beamformer sequence

is unknown apriori, analysis of the proposed modification to

hiePM in this subsection is more involved. Instead, we provide

empirical studies in the next subsection.

Remark 5. The proposed sensing can be incorporated in other

beam alignment procedures as well. The inference procedure

and adaptive strategy may require suitable modifications, or

be left unaltered as demonstrated using the hiePM case study

in this subsection.

C. Numerical Results

We numerically analyze the benefits of the proposed sensing

when used with the hiePM framework in [6], and when α is

assumed to be known. We compare the hiePM [6] approach

with i. the proposed modified algorithm in Section III-B, and

ii. the benchmark scheme where the beamformer is simply

repeated, as described in Section III-A. We also plot the CRB4

conditioned on the beamformers selected by the modified

algorithm with Nv = 2. We assume that the DoA, u, lies

in between [0, 1) i.e., RoI is 1
2 of the entire space. The

information about the RoI is incorporated into the posterior

calculation. We set the following parameters as: Physical

antenna size: N = 64, number of grid points uniformly spaced

in RoI: G = 64, number of random realizations for averaging:

Q = 1000. The main metric employed for comparison is

the root mean squared error (RMSE) computed in u-space as

RMSE =
√

1
Q

∑Q
q=1 (ûq − uq)

2
, uq and ûq denotes the true

and the estimated angle respectively, in the q−th realization.

The estimated angle is the on-grid angle corresponding to the

mode of the posterior density estimated by the algorithm for

each curve. In this work we define SNR as the signal power

to noise ratio at each antenna i.e., before combining.

1) Performance as a function of SNR: In Fig. 2 (a) we

plot the RMSE as a function of SNR for the modified-hiePM

under the proposed SVAM sensing using different virtual ULA

sizes. As observed in this plot, given L = 60 snapshots, the

curves using Nv ∈ {2, 3, 4, 5} improve over the hiePM in [6].

As the virtual aperture increases, the number of beamformer

updates, given by ‘L/Nv’, reduces. For Nv ∈ {10, 15},

the reduced number of updates or longer acquisition time

before a beamformer update, is seen to negatively impact the

performance. Studying the tradeoff between the virtual antenna

size and the frequency of update as they impact the beam

alignment performance is an important future direction.

2) Performance as a function of number of snapshots:

In Fig. 2 (b) and (c), we plot the RMSE as a function of

number of snapshots at SNR=−10 dB and −5 dB, respectively.

As observed from the Fig. 2 (b), the performance of hiePM

improves under the proposed sensing when Nv is set to 2.

Setting it to a higher value such as Nv = 10 degrades

the performance, for reasons similar to those discussed for

Fig. 2 (a). In red dashed curve we plot the performance for

hiePM with benchmark sensing scheme (in Section III-A).

4Note that since the posterior density is computed on a grid which includes
the ground truth angle, the performance may be biased. Thus, CRB is not a
valid lower bound but it is provided for insight.
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Fig. 2. (a) RMSE vs SNR: Proposed SVAM sensing with modified-hiePM improves over hiePM [6] when Nv ∈ {2, 3, 4, 5}. (b) RMSE vs number of
snapshots at SNR=−10 dB: Proposed sensing reduces the duration needed for beam alignment when Nv = 2. (c) RMSE vs number of snapshots at SNR=−5
dB: At high SNR, the proposed scheme still improves over the benchmark scheme, but takes slightly more time to converge.

Although the benchmark scheme improves the beam alignment

duration over hiePM (solid blue curve), it still is much higher

compared to setting Nv = 2 in the proposed sensing. This

indicates that the improvement under SVAM is not merely

due to more reliable beamformer adaptations caused by basing

adaptations on more measurements. It is inherent to the phase

response characteristics of the beamformer under SVAM, as

described in (6). Note that as we increase SNR to −5 dB, the

performance gains can be limited as seen from Fig. 2(b). This

highlights that SVAM is beneficial in reducing the training

time at low SNR. Also it is again observed that SVAM im-

proves over the benchmark scheme. Thus, a dynamic method

to adapt the virtual ULA size is an interesting future direction.

IV. BEAM ALIGNMENT ALGORITHM WITH UNKNOWN α

We begin with a wide RoI, u ∈ [ul, ur], ul < ur, ul, ur ∈
[−1, 1), and presume that the DoA lies within the RoI.

Therefore, we initially set the SVAM beamformer to span this

region and suppress any interference coming from outside the

RoI. This ensures that we incorporate any prior information

available about the DoA. The approach is also practical, as

base stations are typically deployed with dedicated antennas

to serve a specific RoI. We collect measurements over time

and process them to compute an approximate posterior on the

unknown angle. We adapt SVAM beamformer once we accrue

enough posterior mass around the mode of the posterior. We

now describe the methodology adopted in this work to estimate

the posterior and to adapt the SVAM beamformer over time.

A. Algorithm Preliminaries: Initializing Angular Grid and

Stochastic Modeling of both α and u

Since α is unknown but assumed to be fixed during the train-

ing phase, it can be estimated along with the DoA given two

or more measurements. We observe this from the conditional

CRB on variance for angle estimation when α is unknown.

Let W = [w0, . . . ,wL−1] ∈ C
N×L denote the beamformer

matrix used to generate measurements y = [y0, . . . , yL−1]
T ∈

C
L as in (2). The beamformers may be designed generally,

and not necessarily under SVAM. The CRB(u) is given by

CRB(u)

=
σ2
n

2Ps|α|2

{

(

∂

∂u
φN (u)

)H

W

×
(

I− WHφN (u)φN (u)HW

φN (u)HWWHφN (u)

)

WH ∂

∂u
φN (u)

}−1

, (22)

and can be derived from the conditional CRB expression

(Theorem 4.1) in [40] by stacking all L snapshots along a

column and replacing φN (u) and ∂
∂uφN (u) by WHφN (u)

and WH ∂
∂uφN (u), respectively. For L = 1, we can see that

the CRB is infinite. Furthermore, if the beamformer is kept

fixed over time i.e., if wl = w0, l ∈ [L], or in general if

W is rank-one, even then the CRB is infinite. This exercise

highlights a key requirement for being able to estimate both

DoA and α simultaneously. The magnitude or phase response

of the beamformer wl should have variation over time, and

it must vary differently for different angles. The requirement

is not satisfied in the case of hiePM algorithm, if initial

measurements are all taken using a fixed codeword, which

is possible, early on, within the hiePM framework5. In the

proposed sensing scheme this condition is naturally prevented,

as the phase response (over time) leads to the virtual array

manifold, which is sufficient to estimate both α and u when

Nv > 1 and given at least two measurements.

The two basic pre-requisities for adapting the SVAM beam-

former are the next beam direction to steer towards, and

the beamwidth. Since the problem-at-hand considers the sin-

gle path scenario, the beam direction can be estimated by

matching-based criteria which results in a maximum likelihood

estimate (MLE), and it also yields a deterministic estimate

for α. However, for a good beamwidth selection we need to

account for the uncertainty in the estimation procedure. The

bounds for the CRB analysis can be used. In this work, we

achieve this by modeling both α and the unknown DoA, u, as

stochastic variables. For the latter, we impose a uniform prior

5The CRB analysis is applicable when the unknowns (α, u) are estimated in
the maximum likelihood sense. The issues can be circumvented by imposing
a grid or strong prior information on α [8].



distribution in the wide RoI. We model α with a complex

circular Gaussian distribution with a parameterized prior.

We introduce a uniform grid, ugrid, of size G within the RoI,

[ul, ur]. Let ui, i ∈ [G], denote the i-th grid point. The initial

grid can be refined as we successively reduce uncertainty of

the estimate for u over snapshots. The grid refinement aspect

is not focused in this paper, and left as future work. For each

candidate DoA, ui, we estimate a corresponding value for the

complex path gain; let us denote the same as αi. We impose

the following parameterized prior on αi

αi ∼ CN (0, γi). (23)

Remark 6. Assigning a different complex gain, αi, per can-

didate angle, ui, is a non-trivial choice. By doing so, we

allow each candidate ui to explain the measurements at its

best. Going forward, we explicitly utilize the presence of a

single path by identifying suitable value for hyperparameters,

γi, separately, instead of jointly. A joint optimization is widely

adopted in the absence of knowledge of the model order [41].

A consequence of the prior imposed in (23) is that the

marginalized pdf of the measurements ỹt in (8) after (t+1)Nv

snapshots, conditioned on angle u = ui is given by

f(ỹt | u = ui; γi)

=

∫

f(ỹt | u = ui, αi)f(αi; γi) dαi

=
1

π(t+1)Nvdet(Σi,t)
exp

(

−ỹH
t Σ−1

i,t ỹt

)

, where (24)

Σi,t

= Psγi

(

β̃t(ui)⊗ φNv
(ui)

)(

β̃t(ui)⊗ φNv
(ui)

)H

+ σ2
nI

= Psγi

(

β̃t(ui)β̃t(ui)
H
)

⊗
(

φNv
(ui)φNv

(ui)
H
)

+ σ2
nI, (25)

where in the last line, we use the mixed product property of

Kronecker product, namely if matrix products AC and BD

are defined, then (A⊗B)(C⊗D) = AC⊗BD. Note that σ2
n

is assumed to be known6. In the absence of such knowledge,

it can be included in the estimation procedure (see [41]). We

focus on the estimation of α in this work, and study the impact

of imperfect knowledge of σ2
n in the simulation section.

B. Estimation of Hyperparameters under the MLE Framework

We find the hyperparameters of the imposed prior, namely

γi, i ∈ [G], in the MLE sense. The derivation is simple, and

similar to the work in [42], [43]. Since Σi,t in (25) can be

expressed as a rank-one perturbation to the noise covariance

matrix, the determinant can be expressed in closed-form as

det(Σi,t) = (Psγigt(ui)∥φNv
(ui)∥22 + σ2

n) · (σ2
n)

(t+1)Nv−1,
(26)

6This assumption is also made in other works [6], [8].

where gt(ui) =
∑t

t′=0 |βt′(ui)|2. Also, using matrix-inversion

lemma, we can simplify ỹH
t Σ−1

i,t ỹt as

ỹH
t Σ−1

i,t ỹt= σ−2
n ∥ỹt∥22 −

Psγi
σ2
n

× |φH
Nv

(ui)
∑t

t′=0 β
c
t′(ui)yt′ |2

(Psγigt(ui)∥φNv
(ui)∥22 + σ2

n)
. (27)

Using (26) and (27), we maximize f(ỹt | u = ui; γi) over γi
by setting the derivative w.r.t. the same as zero. We get

γ̂i,t = max

{

0,
1

Psgt(ui)∥φNv
(ui)∥22

×









∣

∣

∣

∣

∣

∣

∣

(

β̃t(ui)⊗ φNv
(ui)

)H

∥β̃t(ui)⊗ φNv
(ui)∥2

ỹt

∣

∣

∣

∣

∣

∣

∣

2

− σ2
n























. (28)

The above can be interpreted as normalized beamforming

output power that is compensated for the noise power. The

beamformer in this case is the conventional beamformer [27]

and takes into account the complex gain, β̃t(ui), from the

SVAM beamformer ft′ , t
′ ∈ [t + 1]. The posterior density of

αi is also complex circular Gaussian, and can be computed as

f(αi | ỹt, ui; γ̂i,t) =
1

πσ̂2
αi,t

exp

(

−|αi − µ̂αi,t|2
σ̂2
αi,t

)

, (29)

where µ̂αi,t =
√

Psγ̂i,t

(

β̃t(ui)⊗ φNv
(ui)

)H

ỹt

Psγ̂i,tgt(ui)∥φNv
(ui)∥22 + σ2

n

σ̂2
αi,t = γ̂i,t

σ2
n

Psγ̂i,tgt(ui)∥φNv
(ui)∥22 + σ2

n

.

(30)

C. Computing Posterior on u

We begin with describing the posterior probability, p(u =
ui | ỹt), and identifying the missing pieces for computing this

posterior. Using Bayes’ rule, we can write

p(u = ui | ỹt)=
p(u = ui)f(ỹt | ui)

f(ỹt)

(a)∝ f(ỹt | ui), (31)

where (a) follows from two facts: i. we rely on discrete

uniform (prior) distribution on u, ii. f(ỹt) does not depend on

u. Consequently, the goal is to be able to compute f(ỹt | ui)
as accurately possible. We explore this direction next.

Using marginalization and Bayes’ rule we get

f(ỹt | ui)=

∫

f(ỹt, α | ui)dα

=

∫

f(α | ui)f(ỹt | α, ui)dα. (32)

The integrand consists of two factors, of which, the second

factor, f(ỹt | α, ui), is well-defined, provided the distribution

of noise. However, the first factor, f(α | ui), is unavailable.

In the absence of this knowledge, we approximate the

unknown distribution with the best proxy available at-hand

that uses all the available measurements i.e., we replace

f(α | ui) with f(αi | ỹt, ui; γ̂i,t). The required quantity,



f(αi | ỹt, ui; γ̂i,t), was computed in the previous subsection,

and we update this proxy as we collect more measurements. In

other words, we compute the following approximate likelihood

f̂t(ỹt | ui)=

∫

f(αi | ỹt, ui; γ̂i,t)f(ỹt | αi, ui)dαi

=
1

π(t+1)Nvdet(Σ̃i,t)
exp

(

−ẽHi,tΣ̃
−1
i,t ẽi,t

)

, (33)

where ẽi,t = ỹt− µ̃i,t, µ̃i,t =
√
Psµ̂αi,t

(

β̃t(ui)⊗ φNv
(ui)

)

and Σ̃i,t = Psσ̂
2
αi,t

(

β̃t(ui)β̃t(ui)
H
)

⊗
(

φNv
(ui)φNv

(ui)
H
)

+σ2
nI. (µ̂αi,t, σ̂

2
αi,t) were estimated in the previous subsection.

Next, we demonstrate the procedure to compute the required

quantities in (33) efficiently. We provide the final result below

det(Σ̃i,t) = (Psσ
2
αi,tgt(ui)∥φNv

(ui)∥22 + σ2
n)

×(σ2
n)

(t+1)Nv−1 (34)

ẽHi,tΣ̃
−1
i,t ẽi,t= σ−2

n ∥ẽi,t∥22 −
Psσ

2
αi,t

σ2
n

× |φH
Nv

(ui)
∑t

t′=0 β
c
t′(ui)ẽi,t′ |2

(Psσ2
αi,tgt(ui)∥φNv

(ui)∥22 + σ2
n)

. (35)

Once the required quantities in (33) are computed, we compute

the likelihood estimate, f̂t(ỹt | ui), for all grid points ui, i ∈
[G], in the RoI. We get the estimate for the posterior as

p̂t(u = ui | ỹt) =
f̂t(ỹt | ui)

∑

i′ f̂t(ỹt | ui′)
. (36)

Let p̂t = [p̂t(u0 | ỹt), p̂t(u1 | ỹt), . . . , p̂t(uG−1 | ỹt)]
T . We

adapt the SVAM beamformer, ft+1, for the next snapshot based

on the computed posterior in (36). We discuss this step next.

D. Proposed Adaptive SVAM Beamforming Algorithm

The aim is to ensure that the DoA lies within the passband

of the SVAM beamformer, ft, so that effective received SNR

for inference is high. A high effective SNR helps further to

ensure a successful beam alignment. The presented approach

still may not ensure that the DoA always stays in the passband.

We circumvent this issue by evaluating the posterior p̂t(ui |
ỹt) over the entire RoI. This allows the posterior mass to

move freely and helps to recover when the SVAM beamformer

adapted prematurely in the incorrect region. In other words,

even if we adapt the SVAM beamformer, the RoI is kept fixed.

1) Proposed Algorithm: We initially set the beam direction

of the SVAM beamformer, f0, to the centre of the RoI, and

the beamwidth to BWf = BWinitial < 2 in u-space; BWinitial

chosen to cover the RoI. We adapt the SVAM beamformer only

if there is a sufficient posterior mass concentrated around the

posterior mode. More specifically, we adapt the beamformer

if the peak of the posterior mass in any contiguous span of a

specific beamwidth, that includes the posterior mode, exceeds

a fixed threshold pthresh. We begin with setting the beamwidth

for this search to BWcheck = 0.5 × BWf i.e., half of the

current beamwidth for the SVAM sensing. If the threshold

Algorithm 1: Proposed Adaptive SVAM Beamforming

Result: Beam direction: u∗

Input: L,Nv, Ps, σ
2
n, beam dir,BWf :=

BWinitial, pthresh
1 Initialize:

beam spec initial := {beam dir,BWf}, f0 :=
beamformer design(beam spec initial)

2 for l := 0 to L− 1 do

3 yl = wH
l xl (New measurement, wl as in (4))

4 if mod(l + 1, Nv) = 0 then

5 t := (l + 1)/Nv − 1
6 Form yt, then ỹt as in (7) and (8) respectively

7 (α Prior): Compute γ̂i,t as in (28), i ∈ [G]
8 (α Posterior): Compute µ̂αi,t, σ̂

2
αi,t as in (30)

9 (Likelihood | ui): Compute likelihood in (33)

10 (ui Posterior): p̂t :=Compute pmf in (36)

11 BWcheck := 0.5× BWf

12 [peak prob, beam spec] :=
cumul peak(p̂t,BWcheck) (Algorithm 2)

13 while peak prob < pthresh do

14 BWcheck := 2× BWcheck

15 [peak prob, beam spec] :=
cumul peak(p̂t,BWcheck) (Algorithm 2)

16 end

17 BWf := BWcheck

18 ft+1:=beamformer design(beam spec)
19 end

20 end

21 i∗ := argmaxi p̂L/Nv−1(ui | ỹL/Nv−1), u
∗ := ui∗

condition is not satisfied, BWcheck is doubled. This continues

until the posterior threshold condition is met. Note that in

the default scenario, the next beam resorts to the initial beam

specifications. When the posterior threshold condition is met,

the corresponding contiguous span of angular grid points is

selected, and the next SVAM beamformer, ft+1, is designed

to cover the selected region. The threshold parameter pthresh
may be set to a fixed value or chosen dynamically. A lower

value for pthresh allows the SVAM beamformer to adapt often,

whereas a higher value makes the adaptations more cautious.

We discuss the role of this crucial parameter in detail in

Section V. Algorithm 1 summarizes the overall approach.

Remark 7. The proposed adaptive beam search mechanism

has the ability to both refine, as well as correct erroneous

adaptations. In the case when the beam is adapted in the

wrong portion of the spatial region, the posterior mass along

with the mode is expected to either shift or widen as more

measurements are collected. The beam gets rectified within

the proposed scheme as the search is carried out around the

updated posterior mode, and it has the ability to widen the

beamwidth beyond the BWf presently in use for the sensing.

The presented approach to adapt the beamformer has

an equivalent representation within the compact hierarchical

codebook, and is discussed next.



Algorithm 2: Cumulative Posterior Peak

Result: peak prob, beam spec := {BD sel,BW′}
Input: p,BW′

1 Initialize: 1BW′ (vector of 1’s of size ≡ BW′)
2 mode := argmaxj p(j)
3 cumul prob := p ∗ 1BW′ (‘∗’: convolution operation)

4 [peak prob, k] := max(cumul prob(mode :
mode + size(1BW′)− 1)

5 BD sel := ugrid(mode + k)− BW′/2

Algorithm 3: Beam Search In Hierarchical Codebook

Result: lhfinal ∈ [log2 G], khfinal ∈ [2l
h
final − 1]

Input: lhinit (current level in hierarchy), p (posterior

pmf), G, pthresh
1 Initialize: lh := lhinit + 1, Glh := 2l

h

2 mode := argmaxj p(j)

3 (node at level lh): kh := floor
(

mode× G
lh

G

)

4 for l̄h := lh to 0 (descending) do

5 node k ind := G
G

lh
kh : G

G
lh
(kh + 1)− 1

6 if sum(p(node k ind)) ≥ pthresh then

7 break

8 else

9 kh := floor(kh/2)
10 Glh := Glh/2
11 end

12 end

13 lhfinal := lh, khfinal := kh

2) Using Hierarchical Codebook: The proposed scheme in

Algorithm 1 adopts a flexible beam design which requires

beam direction and beamwidth to design the SVAM beam-

former. In some cases, such flexible beam designs may not be

possible due to complexity, and a smaller codebook may be

desired. We take an example of the (binary) hierarchical code-

book [7] and demonstrate the procedure to select a codeword

based on the posterior computed in (36). The procedure closely

mimics the approach taken in Algorithm 1, while constraining

the beam to belong to the hierarchical codebook.

The basic idea is to begin at one level below in hierarchy

compared to the current level used for SVAM sensing, and

traverse up the hierarchy to satisfy the posterior condition.

At one-level below current, we begin with that node which

contains the posterior mode. The principle in doing so, is to

try and ensure that the DoA is included in the next beam. We

summarize this beam search in Algorithm 3 which can replace

line 11−18 in Algorithm 1. We also study the impact of using

a hierarchical codebook on the performance of the proposed

adaptive scheme in simulation Section V-E.

Remark 8. A variation on the beam search Algorithm 3 is to

initialize the search at a deeper hierarchical level, which can

be favourable to converge early at high SNRs, but may lead

to premature beam focusing at low SNRs. Similar idea can be

incorporated with Algorithm 1 as well. This is not explored

further in this paper, but left as future work.

3) On HiePM-based Beam Alignment: The posterior com-

puted in (33) involves approximating the posterior on α,

f(α | ui), using a Gaussian density, f(αi | ỹt, ui; γ̂i,t).
This allows to bypass a grid approach on α, which was

explored in [8] under Algorithm 1. Although the grid approach

can be more accurate, it is computationally expensive. Also

initializing an appropriate grid on α is a non-trivial problem.

Although the adopted prior on α in this work and within

Alg. 2 in [8], both are Gaussian distributed, there is an

important distinction. The presented approach utilizes a pa-

rameterized Gaussian prior unlike the fixed Gaussian prior

in [8]. This has a couple of implications: a) We allow the

framework to learn the relevant parameters directly from the

measurements without relying on any additional information

such as prior mean or variance, b) The choice of prior here

allows the framework to fit the best Gaussian posterior on α
using the measurements, in contrast to the fixed prior case

where only the posterior mean is learned from measurements

and the variance in the passband depends only on the prior and

the noise variance level. It is known that the inference is less

sensitive to the values of higher-level hyperparameters than

the values for the α-prior distribution (see [44] and references

therein). This leads to more robust learning.

Most importantly, the proposed approach processes mea-

surements jointly for computing the posterior on u (see (31)).

In contrast, in [8] the u-posterior is updated sequentially. Since

α is considered static in time, both in this work and within

Algorithm 2 in [8], and because the posteriors are approximate,

it was observed that processing measurements jointly instead

of sequentially performs better. In other words, the u-posterior

at previous snapshot is not a sufficient statistic when computed

approximately. The impact is studied in Section V-A.

V. NUMERICAL RESULTS

In this section we perform numerical experiments to study

the performance of the proposed sensing and beam alignment

Algorithm 1 under different scenarios, and the impact of the

parameters involved. The parameters that are central to the

performance include i. Size of the virtual ULA, Nv , ii. noise

variance parameter σ2
n, iii. posterior threshold, pthresh. In

Section III-C, we studied the role of Nv; we focus on the

parameters σ2
n and pthresh in this section. We assume that the

DoA lies in between [0, 1) i.e., RoI is 1
2 of the entire space. The

information about the RoI is incorporated into the posterior

calculation. Note that the RoI can be arbitrary, and one may

choose a wider or narrower RoI depending on the use case

specifications. The virtual ULA constructed here has the same

inter-element spacing as the physical antenna. Depending on

the RoI, a wider virtual inter-element spacing can be realized7,

but in the following simulation we do not exploit it further.

We set the following parameters, unless otherwise specified

as: Physical antenna size: N = 64, number of grid points

7For e.g., here a λ-spacing instead of λ/2 may be realized without causing

ambiguity in angular estimation, since the DoA lies in 1
2

of the spatial region.
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Fig. 3. RMSE as a function of SNR. Performance of Algorithm 1 is observed
to be close to the performance of algorithms using true α.

uniformly spaced in RoI: G = 64, virtual ULA size: Nv = 4,

total number of snapshots: L = 120, number of random

realizations for averaging: Q = 100. The SVAM beamformer

is designed using the Parks-McClellan algorithm [30] with the

passband edge set to realize the desired beamwidth, and the

transition width set as a fraction of the desired beamwidth.

A. Performance of Algorithm 1 as a function of SNR

In Fig. 3, we study the RMSE in u-space as a function of

SNR in dB. The red curve (with pentagram markers) plots

the performance of hiePM with the SVAM sensing scheme

(Section III-B). It is seen to improve over the hiePM algorithm

in blue curve with hexagram markers, at SNR={−15,−12.5}
dB. These two curves assume that α is known. At high SNR,

the schemes incur zero error in this experiment as the DoA

is on-grid. The green curves plots the performance of the

proposed approach when α is unknown. The different curves

correspond to different posterior threshold, pthresh, levels for

adapting the beamformer. At lower thresholds, the algorithm

has the ability to adapt often. This may lead to slightly unstable

performance, especially at low SNR, which is observed in the

green-dashed curve with ◦ markers where pthresh = 0.5 is

used. Setting a high pthresh requires a higher posterior mass to

be accumulated for the beamformer to adapt. This adds more

stability to the algorithm, but may incur slow beamformer

adaptations, especially at high SNR. This is seen in green-

dashed curve with x markers where pthresh = 0.8 is set.

Note that all the green curves are already close to the blue

and red curves, without assuming any knowledge of α. The

curve for the Algorithm 2 in [8] is plotted in purple with ∆
markers. The algorithm is provided with the true value of α
as mean along with variance set to 1 for the Gaussian α-

prior. It is competitive at low SNR as it hinges on the already

good prior information, whereas at high SNR it disregards

the provided prior. Another important reason behind the large

gap between this curve, and the blue curve with hexagram

markers is the fact that the static α-case considered in [8] is not
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Fig. 4. Beamforming gain over time (SNR=−10 dB).

exploited8. The proposed beam alignment procedure exploits

the same, and thus demonstrates a drastic improvement as

the resulting posterior on angle is more accurate. We plot

the (conditional) CRB on variance of angular estimation for

two schemes i. using a non-adaptive SVAM beamformer with

beam direction as 0.5 and beamwidth as 1 ii. using adaptive

SVAM beamformers chosen during runtime of Algorithm 1

with pthresh = 0.6. As seen in Fig. 3, the curves using

proposed approach attains (& surpasses) the CRBs as SNR

increases. Note that since the DoA is on grid which is also

employed by the algorithms, they are biased. Thus, CRB is

not a valid lower bound. Still it provides useful insight about

the performance of the proposed inference procedure.

B. Beamforming gain over time using Algorithm 1

In Fig. 4, we study the beamforming gain experienced by

the DoA using Algorithm 1 at SNR of −10 dB. We plot the

mean, maximum and the minimum beamforming gain over

time (in terms of the virtual ULA segment index t) over 100
random realizations. In Fig. 4 (a) and (b) we plot the results

when pthresh is set to 0.6 and 0.7, respectively. As expected, at

a lower posterior threshold the algorithm is more flexible, and

thus the maximum beamforming gain is achieved earlier than

compared to the case when a higher posterior threshold is set.

In contrast, the minimum beamforming gain may be less stable

when the beamformer is adapted frequently at such low SNR.

This is seen in plot (a) where the minimum gain fluctuates

even after 25 virtual ULA segments i.e., 25 × 4 = 100
snapshots. The solid curve representing the mean beamform-

ing gain indicates how the gain improves over time as the

beamwidth adaptively narrows. We also plot the beamforming

gain achieved by an ideal beamformer. A hierarchical level

lh ∈ {1, 2, . . . , 5} indicates a beam focused in 2/2l
h+1 of

the spatial region and consequently achieves a beamforming

gain of 2l
h+1/2, in absolute scale. As observed in both the

plots, beginning with a beamformer focusing on 1
2 of the space

(equivalently 10 log10(2) ≈ 3 dB gain), the beamformer is

able to adapt to 1/32-fraction, garnering a beamforming gain

of around 10 log10(32) ≈ 15 dB. Thus, the proposed algorithm

adds around 12 dB gain at −10 dB SNR.

8Posterior on α at current snapshot is used to compute likelihood of current
measurement, but not utilized to update likelihoods of previous measurements.



(a) SNR = −10 dB (a) SNR = 0 dB

Fig. 5. RMSE over time. Shaded region covers the RMSE ± root standard
deviation of squared error over time at every time index along x-axis.

C. Performance as a function of number of snapshots

In Fig. 5 we plot the RMSE over time (in terms of the

number of virtual ULA measurements t). We plot the hiePM

algorithms with α perfectly known for comparison. In Fig. 5

(a) and (b), we plot curves corresponding to SNR= −10 dB

and 0 dB, respectively. We study two curves corresponding

to the proposed scheme i. pthresh = 0.6 (green curve with

x markers) ii. pthresh = 0.8 (purple curve with ⋄ markers).

The former setting allows the beamformer to aggressively

adapt, which can be rewarding at high SNR, but can lead to

poor beamforming gain in the low SNR regime as it adapts

to incorrect regions. This is seen in the two plots, at high

SNR the curve corresponding to pthresh = 0.6 converges

quickly, whereas at low SNR it leads to larger error and

variance initially, compared to setting pthresh = 0.8. Note

that even at low SNR and low threshold setting (Fig. 5 (a)),

the yellow curve manages to adapt back to the correct spatial

region, which is indicated by a drop in RMSE around t = 25
and is able to retain the improvement over time. Overall,

it is observed that a high pthresh leads to stable yet slow

convergence, which is useful when the SNR is low and if

the training duration is short. At high SNR or if the training

duration is longer, a low pthresh pays off, as the algorithm is

robust to recover from its mistakes!

One may dynamically select pthresh such that it is set to

higher value initially during the training phase, but it may

be reduced over time as the beamformer narrows further and

enjoys a high beamforming gain. This is left for future work.

D. Studying Impact of Noise Variance Parameter

We plot the RMSE as a function of different settings for

the noise variance parameter in Fig. 6. The optimal value is

observed to be around the true noise variance value. We also

plot curves corresponding to different posterior thresholds.

For a low posterior threshold, the optimal value of the noise

variance parameter is observed to be slightly higher (×2)

than or equal to the true value. This is due to the aggressive

nature of the algorithm to adapt, which can be compensated by

setting a slightly higher noise variance parameter. On the other

hand, a high posterior threshold already imparts more stable

adaptations, and consequently does not need setting a higher

noise variance parameter. In fact, at such large thresholds,

the algorithm benefits from lower noise variance parameter

setting, which intuitively offsets the conservative posterior
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−10 dB, L = 200. As the posterior threshold increases, the optimal value
for the noise variance parameter is observed to be lower than the true value.
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threshold setting. This is observed by the curve corresponding

to pthresh = 0.9, where setting noise variance to 0.5×σ2
n leads

to much better performance than setting it to the true value.

E. Impact of compact hierarchical codebook (Algorithm 3)

In Fig. 7, we plot the curve corresponding to using a

hierarchical codebook (see purple curve with ⋄ markers). The

approach is described in Algorithm 3. We set pthresh = 0.6
and compare the performance with using the flexible codebook

(see green curve with ◦ markers). As observed in Fig. 7,

the two implementations have very similar performance. This

suggests that the superior performance is due to other ingredi-

ents, namely i. improved sensing (and filter design), ii. good

posterior estimate, and iii. good adaptive strategy. A large

codebook size helps, but is not the key to the performance

improvement demonstrated in this paper.

VI. CONCLUSION

We proposed a novel Synthesis of Virtual Array Manifold

(SVAM) sensing approach for the mmWave single RF chain

systems and discussed the ensuing benefits. More specifically,

the proposed sensing is demonstrated to lead to faster and more

robust beam alignment. We believe this contribution will have

significant impact on the traditional paradigm for sensing in

mmWave systems. We also proposed a novel inference scheme

that estimates a posterior density on the small-scale fading

coefficient and the unknown dominant path angle. Based on

the proposed inference procedure, an adaptive beamforming



scheme is provided that aims to collect high SNR measure-

ments. Finally, the performance of the proposed active sensing

scheme is evaluated under different scenarios, and a significant

improvement over various benchmarks is demonstrated. The

empirical study also reveals the impact of the different design

parameters on the beam alignment performance.

VII. APPENDIX

A. Proof of Theorem 2

Proof. We first note that the following holds

∂

∂u
φM (u) = jπ

{

(M − 1)

2
φm(u) + φ⊥

M (u)

}

, (37)

where φ⊥
M (u) =

[

− (M−1)
2 (1− (M−1)

2 ) . . . (M−1)
2

]T

⊙φM (u), ‘⊙’ denotes Hadamard product. Using the result in

(37) we simplify the second term in G as

−π(Nv − 1)Im

{

(

∂

∂u
φM (u)

)H

FP(FP)HφM (u)

}

= π2(Nv − 1)Re

{(

(M − 1)

2
φH

M (u) +
(

φ⊥
M (u)

)H
)

×FP(FP)HφM (u)

}

= π2(Nv − 1)

{

(M − 1)

2
φH

M (u)FP(FP)HφM (u)

+Re
{(

(

φ⊥
M (u)

)H
)

FP(FP)HφM (u)
}

}

≥ π2(Nv − 1)

{

(M − 1)

2
φH

M (u)FP(FP)HφM (u)

−
∣

∣φH
M (u)FP(FP)Hφ⊥

M (u)
∣

∣

}

= π2(Nv − 1)φH
M (u)FP(FP)HφM (u)

{

(M − 1)

2

−
∣

∣φH
M (u)FP(FP)Hφ⊥

M (u)
∣

∣

φH
M (u)FP(FP)HφM (u)

}

. (38)

Thus to ensure

G ≥ 0

=⇒ c

{

(2Nv − 1)

6
+

(M − 1)

2
≥ 0

−
∣

∣φH
M (u)FP(FP)Hφ⊥

M (u)
∣

∣

φH
M (u)FP(FP)HφM (u)

}

(39)

where c = π2(Nv − 1)φH
M (u)FP(FP)HφM (u). This implies

∣

∣φH
M (u)FP(FP)Hφ⊥

M (u)
∣

∣

φH
M (u)FP(FP)HφM (u)

≤
{

(3M + 2Nv − 4)

6

}

∣

∣

∣φH
M (u)FP(FP)Hφ⊥

M (u)∥φM (u)∥
∥φ⊥

M
(u)∥

∣

∣

∣

φH
M (u)FP(FP)HφM (u)

≤ C(N,Nv), (40)

where C(N,Nv) = ∥φM (u)∥
∥φ⊥

M
(u)∥

{

(3M+2Nv−4)
6

}

, ∥φM (u)∥ =

√
M, ∥φ⊥

M (u)∥ =

√
M(M2−1)

2
√
3

. Note that C(N,Nv) ≥
√
3

when Nv > 1. Let φ⊥
M,n(u) = φ⊥

M (u)∥φM (u)∥
∥φ⊥

M
(u)∥ . The LHS can

be further simplified to get
∣

∣

∣φH
M (u)FP(FP)Hφ⊥

M (u)∥φM (u)∥
∥φ⊥

M
(u)∥

∣

∣

∣

φH
M (u)FP(FP)HφM (u)

=

√

φH
M (u)FP(FP)Hφ⊥

M,n(u)(φ
⊥
M,n(u))

HFP(FP)HφM (u)

φH
M (u)FP(FP)HφM (u)

(a)
=

√

∥φM (u)∥2φH
M (u)FP(FP)HPu,⊥FP(FP)HφM (u)

(φH
M (u)FP(FP)HφM (u))2

− 1

(b)

≤
√

∥φM (u)∥2λmax ((FP)HPu,⊥FP)

φH
M (u)FP(FP)HφM (u)

− 1. (41)

where in (a) we express
φ⊥

M,n(u)(φ
⊥

M,n(u))
H

∥φ⊥

M,n(u)∥2 =

Pu,⊥ − φM (u)φM (u)H

∥φM (u)∥2 . Pu,⊥ = [φM (u) φ⊥
M (u)]

×
[

∥φM (u)∥2 0
0 ∥φ⊥

M (u)∥2
]−1

[φM (u) φ⊥
M (u)]. In (b) we

upper bound the quadratic term using the largest eigenvalue,

λmax

(

(FP)HPu,⊥FP
)

, of the Hermitian-symmetric matrix

(FP)HPu,⊥FP. Thus a more stricter condition that satisfies

the inequality in (40) is given by
√

∥φM (u)∥2λmax ((FP)HPu,⊥FP)

φH
M (u)FP(FP)HφM (u)

− 1≤ C(N,Nv) (42)

which implies

φH
M (u)FP(FP)HφM (u)

∥φM (u)∥2 ≥ λmax

(

(FP)HPu,⊥FP
)

C2(N,Nv) + 1
.(43)

Since C2(N,Nv) ≥ 3, an even stricter but simplified condition

than (43) is

φH
M (u)FP(FP)HφM (u)

∥φM (u)∥2 ≥ λmax

(

(FP)HPu,⊥FP
)

4
. (44)

This concludes the proof.
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