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Abstract

Large-scale processing and dissemination of distributed acoustic sensing (DAS) data are
among the greatest computational challenges and opportunities of seismological
research today. Current data formats and computing infrastructure are not well-
adapted or user-friendly for large-scale processing. We propose an innovative,
cloud-native solution for DAS seismology using the MinlO open-source object storage
framework. We develop data schema for cloud-optimized data formats—Zarr and
TileDB, which we deploy on a local object storage service compatible with the
Amazon Web Services (AWS) storage system. We benchmark reading and writing per-
formance for various data schema using canonical use cases in seismology. We test our
framework on a local server and AWS. We find much-improved performance in compute
time and memory throughout when using TileDB and Zarr compared to the conven-
tional HDF5 data format. We demonstrate the platform with a computing heavy use
case in seismology: ambient noise seismology of DAS data. We process one month
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of data, pairing all 2089 channels within 24 hr using AWS Batch autoscaling.

Introduction

Distributed acoustic sensing (DAS) is an emerging technology
for measuring seismic vibrations. DAS is revolutionizing geo-
physical sensing, because it provides unaliased wavefield
images with resolution as fine as ~0.5 m along optical fibers
up to ~170 km in length (Waagaard et al., 2021). DAS utilizes
repeated laser pulses along optical fibers to measure phase
changes of light that are scattered from imperfections along
the length of the cable. These phase changes are proportional
to the rate of extensional strain along the axis of the fiber.
Typical sampling rates using DAS are in the range of
0.01 Hz-100 kHz, with longer cable lengths ultimately limiting
the highest possible sampling rate. DAS dramatically expands
the capability of dense seismic observation and has been used
for a vast range of applications, such as detecting new tectonic
faults (Lindsey et al., 2019), high-resolution subsurface imag-
ing (Atterholt et al., 2022; Yang, Zhan, et al., 2022), cataloging
earthquakes (Nayak et al, 2021), tracking marine mammal
vocalizations (Wilcock et al., 2023), observing ocean gravity
waves (Williams et al., 2022), and monitoring vehicular traffic
and infrastructure state of health (Lindsey et al, 2020; Wang
et al., 2021). DAS has the potential to transform geophysical
sensing in the broadest sense and push the frontiers of geo-
physical research.

DAS data rates vary widely depending on the observational
target. Data rates may be calculated as r = afL/dx, in which «
is the size of one sample on one channel, here assumed to be
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a = 4 Bytes, f is the sampling frequency, L is the total fiber
length, and &x is the spatial sampling interval (channel spac-
ing). DAS observations targeted to measure ocean surface
gravity waves (SGWs) need only be recorded at 1-10 s period
sampling rate to capture unaliased T = 2-20 s period SGWs.
Unaliased spatial sampling in the shallow water limit requires a
spatial sampling T'\/gH/2, in which g is the gravitational accel-
eration, and H is the water depth. In 100 m deep water, 2-20 s
period SGWs have wavelengths of ~30-300 m; the same peri-
ods have wavelengths 100-1000 m in 1 km deep water.
Assuming maximal DAS range ~150 km and that samples
are stored as single precision floating point numbers gives data
rates from 50 MB/d to 1.7 GB/d. As an example of an inter-
mediate data rate, we now consider DAS observations of tec-
tonic earthquakes. Here, although seismic Q limits observable
source frequencies to ~10 Hz (Shearer, 2019), azimuthal varia-
tion in seismic observables (Kaneko and Shearer, 2015) and
small-scale variation in near-surface structure (Spica et al.,
2020) may justify spatial sampling at 1-10 m; the total resulting
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data rates are on the order of 14-28 GB/d, assuming a shorter,
10-20 km long urban optical fiber span. Other applications
may result in much higher data rates. DAS observations tar-
geted to observe the vocalizations of marine mammals may
attempt to sample ~750 Hz signals with 2 m wavelengths
(Douglass et al., 2023) associated with the acoustic wave speed
in water. Such observations result in data rates of 19.4 TB/d.
Optical fading and other effects may, in practice, necessitate
greater spatial sampling intervals (e.g., as in Wilcock et al.,
2023); for that reason, we take this number to be an upper
bound estimate.

Managing 10-1000 TBs data volumes is presently the fore-
most barrier to democratizing DAS data access and research.
This poses a challenge for storage and sharing on multiple
fronts. First, the data volume is immense and surpasses today’s
total volume of seismic data stored at national archives (e.g., at
Incorporated Research Institutions for Seismology Data
Management Center [IRIS-DMC], Arrowsmith et al, 2022).
DAS metadata are largely unconventional and yet to be agreed
upon by the community. Furthermore, DAS data sharing has
been limited because, as of June 2023, no federally funded
facility accepts DAS data, and because enabling public access
to large datasets at an individual principal investigator (PI)
level is difficult. A pioneering effort to address these needs
led a collective of PIs to open a shared storage system for
heterogeneous DAS datasets (Spica et al., 2023). Similar to
the Department of Energy’s Geothermal Data Repository
(GDR; Weers et al., 2022), PubDAS uses GLOBUS endpoints
to transfer entire DAS data files to end users. Beyond data stor-
age, the processing of large volumes of DAS data is limited due
to impractical choices in data formats (detailed subsequently),
limiting the processing required for seismological research.
New DAS data analysis frameworks have been developed,
for example, DASCore that provides DAS data input/output
(I/0) and basic processing (Chambers et al, 2022), and
DAS data storage and analysis that enables parallel data
processing on modern supercomputers (Dong et al., 2020).

Cloud computing has revolutionized scientific computing
with large datasets. Seismological and, therefore, DAS research
typically handles subsets of data using identical workflows and
software. These workflows are perfectly suited for horizontal
parallelization, the optimal design for cloud computing
(MacCarthy et al.,, 2020). The rise of cloud computing also
fueled the development of data formats optimal for cloud-
native storage and parallel throughput. The combination of
cloud-native data formats and horizontal scaling of cloud
computing architecture is an attractive solution for DAS
seismological research.

This study proposes a novel data platform for DAS that
incorporates object storage with cloud-optimized data
formats: we store DAS data in Zarr (Miles et al, 2020) or
TileDB (Papadopoulos et al., 2016) file formats using the
MinlO open-source object storage. MinlO is compatible with
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Amazon Web Services (AWS) Simple Storage Service (S3)
object storage. The combination of these technologies repli-
cates on local Linux servers—a cloud-native framework that
can be seamlessly ported to AWS. We demonstrate below with
several canonical examples that typical DAS workflows can be
designed with low memory, parallelized jobs on a local Linux
server and AWS. The demonstration includes examples of
public access to the new DAS public archive of the University
of Washington (UW) FiberLab.

Background

A typical data flow in a DAS experiment begins at acquisition.
DAS interrogator units usually have built-in storage capable of
storing several TBs of data. Some installations may involve real-
time data streaming, as was the case for the Whidbey and
SeaDAS-N experiments at the FiberLab (Lipovsky, 2023a,b).
Given the typical configurations with the number of channels
and sampling rate, internal storage is insufficient for months-
long continuous recordings that can accumulate up to hundreds
of TBs. For this reason, it is common to use a separate network
attached storage (NAS) connected to the DAS interrogator via
ethernet to sync the data as the unit is recording. The NAS can
also serve as the primary data repository for further processing,
or data may be subsequently transferred to a separate archival
server or workstation. This last step necessitates transferring full
copies of the relevant HDF5 files, which could amount to hun-
dreds of TBs and even petabytes (PBs) worth of data. This is the
model, for example, of PubDAS and the GDR (Spica et al.,
2023). Still, the expectation is that data transfer will proceed with
single-thread requests and be limited by the internet speed.

Cloud storage
Cloud storage is a general term referring to services that allow
users to store data somewhere other than their local computers
but with the maintenance and upkeep of such storage systems
handled by the “cloud provider” (e.g., AWS) rather than the
end user or IT personnel affiliated with the end user. In this
arrangement, the cloud provider is responsible for storing,
managing, and maintaining the infrastructure and network,
ensuring that data are safely accessible with virtually unlimited
capacity. However, all of this is provided at a cost, and, con-
sequently, cloud providers will offer many storage models with
variations in flexibility to stretch the end-user’s dollar further.
One such type is “object storage,” which treats each data file as
an object identified by globally unique IDs. Because there are
no hierarchical structures across objects, this type of storage
appears simpler than a traditional networked file system. It
can be scaled up much larger for an order-of-magnitude reduc-
tion in cost. It is provided by most cloud platforms, usually
under individual brand names (e.g, AWS “S3,” Microsoft
Azure’s “Blob Storage,” and Google Cloud Platform’s “Object
Storage™). Several do-it-yourself server products allow users to
deploy local object storage systems. One example of these local
Volume 95 « Number 1 .
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storage systems is MinIO. This high-performance open-source
object storage implementation provides an “object storage”
abstraction across various modes of deployment. The single-
node single-drive is designed for a single machine, single drive,
and datasets typically up to 20 TBs on a workstation. The
single-node multiple-drive is designed for a single machine
with multiple drives and datasets typically up to 500 TB on
a rack-mounted server. Finally, the distributed multiple-node
multiple-drive is designed for a multiple-node server and
multiple drives with datasets typically at and above 1 PB on
multiple units of rack-mounted servers. MinlO is AWS
S3-compatible in that it uses an identical application program-
ming interface, which supports access control through the
credential keys and secrets granted to users with proper per-
missions. This compatibility facilitates researchers moving
between commercial cloud storage systems and locally hosted
options with minimal impact on their code or workflow.

Challenges in storing and formatting large
seismic data

Traditionally, seismic data repositories have mostly been hosted
by data centers managed partly by research institutions. One
example is that the IRIS-DMC and its data archive in Seattle,
Washington. The archive has grown over time and accumulated
~877 TB data as of 1 January 2023. The IRIS-DMC has shipped
7.2 PB data cumulatively between 1 January 1990 and 1 January
2023, and more than 1 PB data in the single year of 2022. Other
seismic archives face similar challenges, especially driven by
user-specific research and trends toward tackling larger and
larger datasets (Quinteros ef al., 2021; Arrowsmith et al., 2022).
Supporting this level of data growth has already greatly chal-
lenged the DMC and has prevented the archive from hosting
more voluminous DAS datasets.

Another example of a large seismic archive on the cloud is
the AWS Open Data of the Southern California Earthquake
Data Center (SCEDC; see Data and Resources), which has pro-
vided its entire archive of continuous time series and curated
dataset, including an earthquake sequence dataset recorded on
DAS stored in DAS-native format (Hauksson et al., 2020; Yu
et al., 2021). The SCEDC has not changed the formats the seis-
mic instruments provide, which suit cloud storage with small
(~10 MBs) single-day, single-channel files. Another example
of a large seismic archive is that of PoroTomo (Feigl et al,
2016), which was collected in 2016, and is hosted in DAS-
native SEG-Y and HDF5 formats as an AWS Open Data
(see Data and Resources). The DMC is transitioning to cloud
storage on AWS in 2023 and will adopt a new cloud-optimized
data format for future incoming data. Thus, there has been a
trend of moving data to the cloud where storage is available,
albeit oftentimes at significant financial cost.

In seismology, variants of HDF5 schema (e.g., adaptable
seismic data format [ASDF], Krischer et al, 2016; HDFb5eis,
White et al., 2023) have been introduced to accommodate
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multidimensional time series with no dataset size restrictions.
However, the monolithic nature of all HDF5 variants introduces
data access latency, whether on local drives or the commercial
cloud. Because the hierarchical data structure must be flattened
to be stored on disks, HDF5 readers must first read several byte
blocks to decode the structure and find the address of the actual
data in the file. Therefore, there are trade-offs in chunking the
data: the smaller the chunk, the smaller the memory require-
ment, but the longer it takes to read the data schema map
(Collette, 2013). Latency is made worse when compression is
enabled. Another bottleneck of HDF5 is that the entire file
has to be downloaded locally to be read. The downloading effec-
tively duplicates data on local drives and is dramatically limited
by the data volume (e.g., file size), the network connectivity or
speed, and the storage availability on the local computing server.
The computing overhead of copying large volumes of data is
wasted if users only need a subset out of the whole data, which
defeats the purpose of designing a single large file with small
datasets within. Similar formats used in the geoscience commu-
nity suffer the same issues on the cloud, such as NetCDF (Rew
and Davis, 1990) and GeoTIFF (Ritter and Ruth, 1997).

Efforts have been made to optimize reading HDF5 on the
cloud. One example is made by the Kerchunk project (see Data
and Resources) to scan the HDF5 structure (byte ranges and
compression information) and saves this information as index
files to locate datasets directly without changing the original
HDF5 file. In addition, the National Aeronautics and Space
Administration (NASA)-supported sliderule project has devel-
oped a cloud-optimized read-only HDF5 library—H5-coro.
H5-coro is currently used to read data from the ICESat-2 laser
altimeter, stored directly as HDFb5 files, into AWS S3 (Swinski
et al., 2023). Although both of these projects are under ongoing
and rapid development, neither approach generalizes well for
diverse H5 structures and data schema types (Ni, Swinski, and
Denolle, 2023).

The ability to efficiently read small space-time subsets
of data is essential for many scientific studies using DAS.
This issue occurs with DAS, because, for example, the
complexity of the cable geometry may challenge traditional
seismic data processing. Rather than using the entire cable,
DAS analysts may therefore select linear segments for sur-
face-wave dispersion analysis (Fang et al., 2023), velocity mon-
itoring (Rodriguez Tribaldos and Ajo-Franklin, 2021), and
beamforming (Nayak et al., 2021). Furthermore, various fac-
tors affect the noise level of the DAS data, including the cou-
pling between the cable and the ground and proximity to
anthropogenic or natural noise sources. Finally, a cable may
be long enough to span regions with different wave physics,
for example, seafloor cable that extends onshore, offshore,
and deep water regions (Tonegawa et al., 2022). These effects
naturally split the full cable into multiple segments that can be
separately analyzed, which further necessitates a data-sharing
system that favors such a reading pattern.
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Figure 1. Workflow for DASstore: distributed acoustic sensing (DAS) data are converted into Zarr or
TileDB format in the MinlO object storage server. The computing server sends a data request to the
MinlO object storage and loads the data directly into the memory. A conventional workflow would
be downloading the HDF5 file from the raw data server and loading data to memory on the server
where computing is performed (gray dashed arrows). The data attributes converted from the raw
HDF5 files are stored in the new format, which in the Ocean Observatories Initiative (OOI) examples
are: RawData—2D DAS data, RawDataTime—1D time axis, with four customized datasets: GpBits,
GpsStatus, PpsOffset, and SampleCount. These datasets are specific to the OptaSense interrogator
of the OOI data. The color version of this figure is available only in the electronic edition.

MinlO object storage and con-
vert raw DAS data into cloud-
optimized formats. We find
that this data platform outper-
forms a traditional, dedicated
storage server (with a file sys-

Computing
server

tem) for three reasons. First,
we avoid having a local copy
on the compute server and
allow data chunks to be loaded
directly into memory from the
remote storage. Second, both
cloud-optimized formats are
highly compatible with the
widely used Python data science
and scientific computing envi-

DASstore: Object Storage and Format
for DAS

This study proposes to develop and test an object storage
framework for DAS; we deploy S3-compatible object storage
locally and on AWS, and optimize data chunking for the per-
formance of two cloud-optimized data formats—Zarr and
TileDB (see Fig. 1).

Object storage for DAS

Object storage has seen increasing use as a framework for large
geophysical archives. National archives of large datasets, such
as data products from NASA, have migrated to cloud object
storage to improve data access delivering over 100 PB on
the cloud. The EarthScope Consortium Data Service (formerly
IRIS-DMC and UNAVCO) is migrating to AWS S3 Cloud
Storage and will deliver almost 2 PB of data upon their merger.
Paired with object storage is the necessity for a cloud-opti-
mized data format. Choosing a hierarchical data format such
as HDF5 requires high-memory virtual machines and for users
to load or download the entire HDF5 in memory locally.

502 Seismological Research Letters

Downloaded from http://pubs.geoscienceworld.org/ssalsrl/article-pdf/95/1/499/6201439/srl-2023172.1.pdf
bv lniversity of Washinaton vser

www.srl-online.org

ronment, thereby enabling
a  user-friendly computing
workflow with a shallow

learning curve (e.g, NumPy, Dask, Xarray; Hoyer and
Hamman, 2017). Third, the S3-compatibility of MinlO facili-
tates an effortless migration to the commercial cloud, for exam-
ple, for heavier computation.

Data schema
Organizing data in a file is the first-order design choice for read
and write performance. The chunking pattern is particularly
determinant for formats like Zarr to perform well on object
storage. A file may contain many data arrays representing dif-
ferent variables, which are split into chunks that form the mini-
mum units to be read and processed in parallel. The size of a
chunk is the minimum requirement for the memory of the
computing unit. A small chunk will necessitate low memory,
and a large chunk will necessitate a large memory. Thus, the
number of processing units and memory allocation to each
should be defined appropriately for the chunk size and file
design.

Seismic data, in general, are multidimensional; it has a spa-
tial dimension that may refer to the channel location and a
Number 1
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time dimension that refers to the time series that the instru-
ment records. The schema of data containers for seismology
is designed to organize the data according to either dimension
(e.g., ASDF organizes the data as a dataset per channel). DAS
data are, by nature of being constrained along the arc of a fiber,
a 2D array with a time dimension and a channel dimension
(i.e., arclength along the fiber). The HDF5 stored by the
DAS interrogator has a simple data schema for which the
RawData object is the 2D DAS data, and the RawDataTime
object is the 1D time axis.

Acquisition
| - - Raw][0]
| |- - RawData (47500, 12000), int32
| |- - RawDataTime (12000,), int64
|
| - - Custom
| - - GpBits (12000,), uint8
| - - GpsStatus (12000,), uint8
| - - PpsOffset (12000,), uint32
| - - SampleCount (12000,), int64

Three strategies exist for chunking a 2D array with spatial
and temporal dimensions. The first strategy aims to optimize
long-time series data investigations (sometimes referred to by
the community as “large-T,” red arrow in Fig. 2): the optimal
way would be to have chunks that are elongated on the time
axis and narrow along the spatial axis. A second strategy would
Number 1 www.srl-online.org

Volume 95 « January 2024 .

Downloaded from http://pubs.geoscienceworld.org/ssal/srl/article-pdf/95/1/499/6201439/srl-2023172.1.pdf
bv lniversity of Washinaton vser

Figure 2. Chunking data in the three formats. The raw data are
stored from the interrogators as a single file for each minute of
recording. The Zarr schema separates each HDF5 dataset into a
number of chunks; each chunk is a single object. The TileDB
schema collects the entire data into a single array; the chunks are
“tiles” and are concatenated in time. The red arrow represents
the case for a “large-T"” analysis with a subarray of the DAS cable.
The green arrow represented a “large-N" analysis with a smaller
time window. The color version of this figure is available only in
the electronic edition.

be to focus on spatial investigations (sometimes referred to by
the community as “large-N,” green arrow in Fig. 2): the optimal
way would be to have chunks that are short on the time axis but
long on the spatial axis. A third strategy would be to compro-
mise between the first two.

Formatting the metadata

There are three types of metadata in this context. The first is
associated with each object in the object storage, which is used
to identify objects and their properties. The storage server
globally manages the object metadata and is part of the
MinIO built-in design. The second is the format-specified
metadata that is inherently part of the format, for example,
the ARRAY_DIMENSIONS field in Zarr metadata to be com-
patible with Xarray. The third is the research-defined metadata
that describes the DAS experiment. Here, we focus on the
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TABLE 1
Linux Servers Used in the Tests

Main
Server Network CPU RAM Storage
Raw data server 1 Gbps 96 754 GB 16 TB HDD
Object storage 10 Gbps 16 92 GB 16 TB HDD
server
Compute server 10 Gbps 112 1007 GB 1 TB NVMe
Elastic compute Upto10Gbps 4 15 GB 8 GB SSD

cloud (m5.xlarge)

CPU, central processing unit.

convention proposed by the DAS Research Coordination
Network (RCN)—a National Science Foundation-supported
community effort to define common metadata for DAS.
As of December 2022, the DAS-RCN defined five levels of
metadata describing an experiment under this convention:
Overview, Cable, Fiber, Interrogator, and Acquisition. These
metadata are saved as key-value-pair attributes with the raw
data. In addition, channel-specific information (channel num-
ber, location, and uncertainty) is saved in a separate comma-
separated values file.

Performance Test on DASstore

We design performance tests based on seismological use
cases to optimize the DAS data chunking schema for the
best performance of the object storage. We consider data
(1) converting data from HDEF5 to Zarr or TileDB, and
(2) implementing a feature extraction workflow. Three local
servers are used for the benchmark tests: one raw data server
storing HDF5 DAS data, one object storage server deployed in
a single hard disk drive (not distributed), and one computing
server as the client to request the data and perform computing.
Table 1 lists the hardware specification of these servers relevant
to the optimization criteria, including an AWS EC2 instance
for the test on the cloud.

We conducted these tests using the Ocean Observatories
Initiative (OOI) DAS experiment that was conducted in the
first week of November 2021 on two ocean-bottom cables
(north cable and south cable) of the OOI Regional Cable
Array (Wilcock and the Ocean Observatories Initiative, 2023).
We focus on the records of a 95 km long segment of the south
cable, which goes from the land station westward until an
optical repeater at a water depth of ~1500 m. The data were
recorded by an OptaSense interrogator unit with a gauge
length of 51.05 m, a channel spacing of 2.04 m, 47,500 chan-
nels, and a sampling rate of 200 Hz. The data are stored in
HDF5 files every minute (~1.2 GB each), and 7.1 TB was col-
lected. Almost 50,000 channels are rather large for typical DAS
experiments (Spica et al., 2023), and reading a single HDF5 file
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only gives 1 min of data and already requires large memory. To
reconstitute longer time series requires selecting subarrays
(groups of channels) within the file, which is computationally
expensive using HDF5. This makes OOI DAS data ideal for
testing our platform.

We design two performance tests to emulate potential use
cases. First, a writing test evaluates the costs of converting the
DAS HDF5 data into Zarr or TileDB, and whether it can be
done in near-real time. Second, we conduct a reading test that
evaluates the computational costs of the minimal seismological
workflow that performs simple feature extraction (peak ampli-
tude) after preprocessing (detrending, demeaning, and filter-
ing). This second test aims to represent the use case of
selecting a group of channels (e.g., a subarray of the DAS cable)
and extracting features. More specifically, we extract 10 min
subarray data with 5000 channels, and apply the typical
processing steps of detrending and tapering to each channel,
followed by a second-order [0.01, 1] Hz Butterworth band-pass
filter and output the maximum amplitude of each channel. We
perform these tests on our local Linux servers (see Table 1),
emulating the case of a DAS experiment and archives being
run by an individual investigator’s computing system.

Baseline

We choose a baseline test that emulates how researchers tradi-
tionally access remote HDF5 data. We first download the OOI
DAS data from the storage server to the computing server.
The total downloading time depends mostly on the ethernet
bandwidth between the two servers. Using a single process that
saturates the full bandwidth, it takes 110 s to download all
files (11.7 GB, 106.3 MB/s on average). The feature extraction
workflow takes an additional 12.9 s on average with a single
process. We also chunk the data into HDF5 files with varying
chunk sizes (byte shuffle filter and LZ4 compressor enabled).
Then, we download and run the feature extraction workflow
separately on the compute node. This baseline test demon-
strates that data download is a bottleneck and particularly inef-
ficient when selecting several channels out of the array.

Writing test: data conversion costs
To test the I/O performance of the platform, we first test data
conversion from the raw data server to the object storage. We
sequentially convert 10 HDF5 files on the raw data server to the
object storage in Zarr and TileDB formats. We use a single proc-
ess to ensure that neither network nor disk I/O is saturated. The
test demonstrates the feasibility of collecting and converting
DAS data in real time. The test also represents the canonical
workflow for users interested in earthquake waveforms: each
HDF5 file is only 1 min of data, typically shorter than the seis-
mic waveforms of moderate-to-large-size tectonic earthquakes.
To measure the expense of converting and hosting DAS data in
these formats, we track the conversion time, array size, and the
number of objects after conversion. We do not test on AWS S3
Volume 95 « Number 1 .
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TABLE 2

Ocean Observatories Initiative (OOI) Distributed
Acoustic Sensing (DAS) Data Conversion from HDF5
into Zarr and TileDB Formats

Zarr TileDB
Chunk or Writing Number Writing Number
Tile Size Time (s) of Objects Time (s) of Objects
12000 x 1 1349.0 475,004 196.8 33
12000 x 2 894.1 237,504 1932 33
12000 x 3 833.1 158,344 196.5 33
12000 x 4 695.4 118,754 197.3 33
12000 x 5 5519 95,180 202.4 33
12000 x 10 460.8 47,504 - -
12000 x 50 2794 9,504 - -
12000 x 100  326.3 4,754 - -
12000 x 500 2488 954 - -
12000 x 1000 2424 660 - -

HDFS files are converted directly to the object storage from the raw data server. The
underlined numbers highlight the writing time shorter than the data duration,
indicating the configurations that would allow real-time conversion.

servers to emulate the case of researcher-level data acquisition
without edge computing capabilities.

We first test using different chunk-size configurations. We
define a single Zarr array and concatenate DAS data along
the time axis. To have a more straightforward data schema
and have the Zarr compatible with more existing tools (e.g.,
Xarray), we group all datasets that are described in Figure 1
(10 min of data and all channels) and flatten the hierarchical
structure of the HDF5 file. Zarr saves each chunk as an individ-
ual object (each 1 min long). For a fixed data size, choosing a
chunk size determines the number of objects after conversion.
The test begins with a small chunk (12,000 x 1, equivalent to
1 min of data at 200 Hz), and the conversion takes ~22 min
with ~0.48 million objects (each a single channel for 1 min
of recording or 25 KBs). Because we increase the chunk size
to 1000 channels per chunk, each object size increases, the num-
ber of objects in the Zarr array decreases, and the writing time
decreases. Table 2 demonstrates that the data conversion would
become as short as the duration of the record (e.g., near-real
time) for a small chunk size of five channels per object.

Selecting an optimal chunk size is critical for Zarr to per-
form well. A larger chunk size could bring more network over-
head and slow down reading. On the other hand, small chunks
have better reading performance, but many small objects could
slow down the object storage as data grows. This latter latency
may be due to our choice of hardware and may not exist on
AWS S3. Tt is recommended to have at least a 1 MB chunk size,
corresponding to grouping 50 channels in our case. The size of
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the Zarr array after conversion is almost equivalent to the
original HDFS5 files using a byte shuffle filter and LZ4 compres-
sor. Thus, the conversion does not create more storage needs
for the storage.

Next, we test the TileDB format using different tile size con-
figurations. We concatenate DAS data along the time axis for a
10 min window and store it in a single TileDB array. Similar to
the chunks in the Zarr format, a tile is the atomic unit of read-
ing and writing for TileDB. This array has 10 tiles of 1 min data
for each channel group. For the OOI DAS, we define the time
dimension as an unsigned 32-bit integer (uint32), which allows
2%2 — 1 time index in the array (equivalent to ~248 days for a
200 Hz sampling rate). We use the same byte shuffle filter and
LZ4 compressor as the test for Zarr when writing the data,
which generates slightly bigger objects after conversion. As
a result, TileDB generates only 33 objects for all tile size con-
figurations: 10 objects correspond to 10-time data (called frag-
ments, including data and data schema) and two additional
objects per writing operation that store the changes and com-
mits. In our case, we do not have data that gets updated over
time and do not need to leverage the data versioning capabil-
ities of TileDB. Unlike the Zarr format, the conversion keeps
relatively steady at about 20 s as the tile size increases.

Reading test: seismological use case of feature
extraction

We request a 5000-channel subarray (adjacent arrays in space
and the data) on the computing server from the storage server
to conduct the feature extraction workflow using the same 10-
min OOI DAS data in Zarr and TileDB format. We detrend,
taper, and [0.01, 1] Hz Butterworth band-pass filter each chan-
nel data. Here, we use Open-Message Passing Interface (MPI)
to distribute the channel indexes to each process and parallelize
the workflow using a different number of processes. The results
are shown in Figure 3. Each run reads the same amount of data
(5000 channels for 10 min) and is distributed over a variable
number of processes.

The performance tests of Zarr indicate a sweet spot in terms
of chunk size and the number of MPI processes for optimal read
time. A small chunk (under 50 channels) requires large query
times but decreases as a function of MPI processes. This may be
attributed to the accumulated object storage latency, because a
small chunk size corresponds to more S3 requests to get the
same amount of data. On the contrary, a large chunk read is
faster, but the network overhead and compute times increase
with the number of MPI processes. Grouping more channels in
a single object effectively increases the data granularity, poten-
tially creating more network overhead, especially when a smaller
subset of the data is requested (e.g., as processes increase). A
similar pattern is visible on the AWS test (see the Testing
the migration to commercial cloud section).

TileDB is fully parallelized internally. The format indexes the
array and supports byte-range requests, and there is minimal
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extra network overhead. The performance with respect to tile
sizes up to five channels was almost identical throughout the test.

Testing the migration to commercial cloud

We test our platform on AWS. We upload the OOI DAS data to
AWS §3 and query data on an m5.xlarge EC2 instance (general
purpose, 4 vCPU, 15 GB RAM) from the S3 bucket. We use
12,000 x 5 tile size for TileDB and 12,000 x 50 chunk size
for Zarr, which we found optimal between read and write tests.
Figure 4 shows the reading test implemented on AWS. The
results are similar to those implemented through MinIO and
match well with a strong scaling fitting (dotted line in Fig. 4a),
assuming the network transmission time stays constant.

We identify three advantages of using the commercial cloud
service to host the DAS data. First, there is usually no cost for
the data transmitted into the cloud (no ingress cost), and stor-
ing data on the cloud for short periods of time is relatively
cheap. For example, it costs $25 U.S. per month per TB on
AWS S3; the storage costs would be less than $1 U.S. per
day for a one-day experiment. Second, cloud storage services
do not impose a space limit, which is different from local stor-
age, for which the quotas are set by the hardware or the cluster
centers. Therefore, cloud storage is an ideal repository for
write-once-read-many scientific data. Third, commercial cloud
storage has better back-end support and can handle a higher
data request rate than the local object storage deployment (e.g.,
MinlO introduced in the previous section).

For most seismological applications, almost no network
bottleneck exists between the computing instance and the
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Figure 3. Results of the reading test for (a) chunked HDF5, (b) Zarr,
and (c) TileDB format. For chunked HDF5, the compute server
downloads the entire HDF5 file, reads a subarray of 5000
channels, and then performs the feature extraction on each
channel. The compute server requests a subarray of 5000
channels from the object storage and performs the same feature
extraction workflow. The upper panels show the time to finish
the test, and the lower panels show the total bytes received by
the compute server. The line color indicates the chunk or tile size
for Zarr or TileDB arrays. All lines are overlapping with each other
for the chunked HDF5 test. The black dashed line in the lower
section shows the theoretical data size after compression.

object storage within the same AWS region, even on the low-
est-tier virtual machine. If the computing is performed in the
same region of the data, the data transmission is free. This is
equivalent to having a massive file storage server with fast data
query rate.

Application: SeaDAS-N Cross
Correlation on AWS

We next carry out a standard ambient noise cross-correlation
analysis using DAS data. We use the continuous records of an
urban DAS experiment, SeaDAS-N, collected by the UW
FiberLab between April 2022 and March 2023. The dark fiber
used is owned by the University, and runs from the
Atmospheric and Geophysics (ATG) building in the UW
Seattle campus to the UW Bothell campus. The fiber runs
mostly underground, but the cable segments are above ground,
Volume 95 « Number 1 .
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Figure 4. Results of the scaling reading test on Amazon Web Service (AWS). Panel (a) shows that the
reading time averaged over 5 runs. The dotted line indicates a strong scaling fitting, assuming that
the network transmission time stays constant. Panel (b) shows the total bytes received from the
object storage averaged over five runs. The line color indicates the data format (Zarr and TileDB).
The black dashed line in the right panel (b) shows the theoretical data size after compression.

data product as designed in
NoisePy, each task writes the
three hourly-stacked cross cor-
relations directly to another S3
bucket in TileDB format.
Figure 6 shows a daily stacking
of the correlation function
using channel 500 as the virtual

MPI process

which can be observed in the raw DAS amplitude and con-
firmed by independent distributed sensing measurements
(temperature and strain sensing). The data were collected using
a Sintela Onyx interrogator v.1.0 with 2089 channels (4.78 m
channel spacing, 9.56 m gauge length) at a 100 Hz sampling
rate. Figure 5 shows one-hour SeaDAS-N data as an example.

We select data from December 2022 and perform a typical
workflow for ambient noise seismology applied to DAS data.
This type of analysis is common for seismometers to construct
surface waves and perform tomography (Shapiro et al, 2005;
Ritzwoller et al., 2011; Lee et al, 2014; Sager et al., 2020;
Cheng et al., 2021; Zeng et al, 2021; Yang, Atterholt, et al,
2022) or allow for monitoring changes in the subsurface
(Sens-Schonfelder and Wegler, 2006; Donaldson et al., 2019;
Rodriguez Tribaldos and Ajo-Franklin, 2021; Cheng et al,
2022). For DAS data, most cross-correlation analyses have used
a subset of the data (Tonegawa et al., 2022; Viens et al., 2023),
and only a few examples exist today of full cable cross correla-
tions (Rodriguez Tribaldos and Ajo-Franklin, 2021).

We test the seismological use case of ambient noise seismol-
ogy with our data platform on AWS. One month of SeaDAS-N
data stored on local drives is converted to Zarr and uploaded to
an AWS S3 bucket in the us-west-2 region (Oregon). One
minute of 100 channels is chunked into a single object on
S3. It takes 5 hr to upload 1.7 TB SeaDAS-N data using four
processes. A modified version of NoisePy (Jiang and Denolle,
2020) is containerized and submitted to the AWS Batch service
for parallelization. Using all 2089 channels (~9.98 km), the
correlation of one-month data is split into 248 small tasks.
We distributed the tasks using AWS autoscaling: a service that
automatically manages the type and number of EC2 instances
based on the job requirements. Each task contains the
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source.
All tasks run on AWS
memory-optimized (R-family) EC2s in the us-west-2 region
(collocated with the data). The typical cost (r5.arge;
2 vCPU; 15 GB RAM) is $0.0348 U.S. per hour on average,
using preemptible SPOT instances (unused virtual machines
sold at a much lower rate). On average, it takes 24 hr per task
to compute 393 million cross correlations, with ~98 billion
correlation operations performed in total. Because more tasks
are completed, the autoscaling group automatically shuts down
idling instances to optimize cost. Because the data I/O is fully
implemented through our data platform, no extra local storage
(“block storage”) is required for each computing instance. In
addition, there is no cost during data uploading and transmis-
sion within the cloud, but it costs on average $1.3 U.S. and
$2.8 U.S. per day storing 1.7 TB DAS data and 3.7 TB corre-
lation function on the cloud. Researchers may download the
data product (egress cost applied) or conduct further analysis
on the cloud. Overall, we spent ~$430 U.S. to cross correlate
and download the stacked data. Although SPOT instances are
preemptible, in our experience the small instances (r5.large)
are rarely recalled. When they are recalled, batch automatically
restarts new instances to relaunch the job that was interrupted.
Furthermore, minimizing each job run on batch decreases the
risk to lose intermediate results.

The cross correlation between channel 500 and all other
channels of the DAS cable segment (see Fig. 5) is shown in
Figure 6. We filter the data between 1 and 20 Hz. We find
a typical cross-correlation image: waves propagate from the
virtual source at about 400-500 m/s. The most likely wave type
in this context is surface waves. Given the frequency band, it is
not unusual to see slow-moving surface waves in shallow sedi-
ments, particularly in this area (Stephenson et al., 2019). DAS
correlations also often exhibit coherent, zero-lag signals that
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are instrumental and can be removed with an f-k filter
(Tonegawa et al., 2022). Parts of the cable are above ground
(e.g., between channels 1100 and 1700), and therefore there
is no correlation between channel 500 and these channels.
Additional analysis of these data may involve a more careful
analysis of the wave type (Rayleigh vs. Love waves, Fang et al.,
2023), the generation of dispersion curves, and shear-wave
inversion for a velocity model.

Conclusions

This study presents the first cloud-native workflow for DAS
research. We developed a cloud-optimized data platform
using object storage and cloud-optimized data formats appli-
cable to DAS seismological research. We attempted to
represent a range of seismological use cases focusing on writ-
ing (I-input) tests for the archives and reading (O-output)
tests for the users. Our benchmark tests demonstrate that
one-time costs for data conversion from HDF5 (a common
DAS data format) to Zarr or TileDB are manageable in
near-real time.

Data chunking is the first-order controlling factor in I/O
performance. The I/O performance for Zarr indicates a sweet
spot of 50-100 channels per chunk to be manageable for object
storage for a typical 200 Hz sampling rate DAS experiment.
Performance scaling in I/O is also favorable for Zarr and
TileDB. TileDB natively parallelizes I/O. We distribute I/O
using MPI for TileDB, and we demonstrate its good scaling
performance up to 16 concurrent processes, after which latency
becomes cumbersome, and our single disk object storage may
not respond well under such concurrency. In whichever case,
the performance has been dramatically improved. Researchers
may find the optimal format and chunk or tile size that favors
their data through a similar I/O benchmark and back-end
specification.

This study focuses on performance using cloud services. We
anticipate that users will seek to lower costs by minimizing

508 Seismological Research Letters

Downloaded from http://pubs.geoscienceworld.org/ssal/srl/article-pdf/95/1/499/6201439/srl-2023172.1.pdf
bv lniversity of Washinaton vser

1400

-
Iy
>
3

—
@
o
£
| S
S
3
c
c
]
<
O

15

1.0

0.5

0.0

Distance along cable (m)

Time (min)

Figure 5. (a) Map showing the location of the SeaDAS-N cable
(solid line) connecting Seattle and Bothell campus of the
University of Washington, United States. Only the red segment
was interrogated in December 2022 for data collection. The inset
shows the location of the state of Washington in the North
America. (b) One-hour SeaDAS-N raw data of all 2089 channels
(in radians unit, a data volume of ~2.7 GB). The image starts 15
December 2022 at 13:30:00 UTC. The gray region indicates a
one-minute data gap. The clipped data (channel ~1100-1700)
are from the segment where the cable is above ground. The color
version of this figure is available only in the electronic edition.

compute time, memory requirements, and number of vCPU
in the thread. However, long-term storage of 100 TBs data sets
on the cloud is still cost prohibitive, there we have demon-
strated a way for individual researchers to archive DAS data.
We demonstrated an example using ambient noise cross cor-
relations. We developed the workflow using an existing Python
package (NoisePy) that we modified by moving intermediate
data products from local storage (i.e., the most common
workflow) to cloud storage, which greatly improved the per-
formance.

The integration of DASstore with other DAS community
tools in Python can be straightforward: DASstore is only a
package for data query, and data are returned as NumPy
arrays—a generic type for Python processing. We will use
GitHub as the conduit for collaboration to initiate issues or
discussions, and to support new cloud-native projects.

Data and Resources

The scripts of benchmark workflows are available through distributed
acoustic sensing (DASstore’s) GitHub repository (https://github.com/
niyiyu/DASstore, Ni, Ragland, and Fatland, 2023). Chengxin Jiang
adapted NoisePy to NoisePy4DAS, which we modified for cloud envi-
ronments. The scripts to run the cross correlation on Amazon Web
Services (AWS) and instructions on how to run AWS Batch using
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autoscaling are available at https://github.com/niyiyu/NoisePy4DAS-
SeaDAS. The Ocean Observatories Initiative (OOI) DAS data are avail-
able at http://piweb.ooirsn.uw.edu. The SeaDAS-N data from December
2022 are freely accessible (Lipovsky, 2023b) through our Python appli-
cation programming interface (API) using the endpoint (https:/
dasway.ess.washington.edu), for which a tutorial can be found on the
project repository page. The Kerchunk project is hosted at https://
github.com/fsspec/kerchunk. DAS Research Coordination Network
(RCN) is hosted at https://www.iris.edu/hq/initiatives/das_rcn.
The information about the Southern California Earthquake Data
Center (SCEDC) data on the AWS is available at https:/
registry.opendata.aws/southern-california-earthquakes/. The informa-
tion about PoroTomo data on the AWS is available at https://
All  websites

registry.opendata.aws/nrel-pds-porotomo/. were last

accessed in October 2023.
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Figure 6. An example of ambient noise cross-correlation functions
of SeaDAS-N using channel 500 as the virtual source. The
channel number is labeled on the left y axis, and the distance
along the cable is labeled on the right y axis. The black dashed
line indicates the location of the virtual source. The color version
of this figure is available only in the electronic edition.
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