
Optimal Load-Splitting and Distributed-Caching
for Dynamic Content over the Wireless Edge

Bahman Abolhassani, John Tadrous, Atilla Eryilmaz

Abstract—In this work, we consider the problem of ‘fresh’
caching at distributed (front-end) local caches of content that
is subject to ‘dynamic’ updates at the (back-end) database.
We first provide new models and analyses of the average
operational cost of a network of distributed edge-caches that
utilizes wireless multicast to refresh aging content. We attack
the problems of what to cache in each edge-cache and how to
split the incoming demand amongst them (also called “load-
splitting” in the rest of the paper) in order to minimize
the operational cost. While the general form of the problem
comes with an NP-hard Knapsack structure, we were able
to completely solve the problem by judiciously choosing the
number of edge-caches to be deployed over the network
This reduces the complex problem to a solvable special case.
Interestingly, our findings reveal that the optimal caching policy
necessitates unequal load-splitting over the edge-caches even
when all conditions are symmetric. Moreover, we find that edge-
caches with higher load will generally cache fewer but relatively
more popular content. We further investigate the tradeoffs
between cost reduction and cache savings when employing
equal and optimal load-splitting solutions for demand with
Zipf(z) popularity distribution. Our analysis reveals that equal
load-splitting to edge-caches achieves close-to-optimal for less
predictable demand (z < 2) while also saving in the cache
size. On the other hand, for more predictable demand (z > 2),
optimal load-splitting results in substantial cost gains while
decreasing the cache occupancy.

Index Terms—Content Distribution Networks, Caching, Age
of Information, Dynamic Content

I. INTRODUCTION

With the emergence of new services and application
scenarios, such as Youtube, augmented reality, social net-
working, and online gaming, which produce dynamically
changing data over time, serving the most recent version
of data to end-users is becoming the main challenge due to
the massive device connectivity. To alleviate the latency of
data transmission between the servers and end-users, many
applications utilize edge-caches close to the end-users to
deliver dynamic contents, reducing the network latency and

Manuscript received November 15, 2021; revised August 29, 2022, and
accepted January 11, 2023; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor Longbo Huang. Date of publication –, 2023; date of
current version January 11, 2023. This work is supported in part by the NSF
grants: NSF AI EDGE Institute grant 2112471, CNS-NeTS-2106679, CNS-
NeTS-2007231, CNS-SpecEES-1824337; and the ONR Grant N00014-19-
1-2621;

B. Abolhassani and A. Eryilmaz are with the Department of Electrical and
Computer Engineering, The Ohio State University, Columbus, OH 43210
USA (e-mail:abolhassani.2@osu.edu; eryilmaz.2@osu.edu).

J. Tadrous is with the Department of Electrical and Com-
puter Engineering, Gonzaga University, Spokane, WA 99202 (e-
mail:tadrous@gonzaga.edu).

system congestion during the peak traffic time [1]. Usually,
several edge-caches are deployed over the edge networks
and the data required by end-users can be cached at one or
multiple edge-caches [2], [3]. By caching a large number of
dynamic contents in the edge-caches, the average response
time can be reduced, benefiting from higher cache hit rates.
However higher hit rates come at the expense of less fresh
content, resulting in higher overall system cost.

One possible solution for tackling this problem is to
cache popular contents at the edge-caches to reduce the total
response time to data requests [4], [5]. Content Distribution
Networks (CDNs) utilize a large mesh of edge-caches to
deliver content from locations closer to the end users [6],
[7]. Existing caching strategies rely on the assumption of
static (or quasi-static) nature of the stored content and aim
to simply maximize the cache hit rate [8], [9]. These works
are based on the promise that the content stored in the
cache will ultimately be used (see [10], [11] and [12]).
An important factor that may greatly affect the caching
decision is the content generation dynamics. In many real-
world scenarios, such as news updates in social networks
and system state updates in cyber-physical networks, the data
content is subject to updates at various rates, which render
the older versions of the content less useful [13]. In these
types of dynamic contents, users prefer to have the most
fresh version of the content while also making sure that the
total cost of the network remains low [14], [15]. Hence,
there is a growing need to develop new caching strategies
that account for the refresh characteristics and ageing costs
of content for efficient dynamic content distribution.

Numerous works study the dynamic content delivery in
caching systems such as [13], [16]–[31] and effective strate-
gies have been proposed. In particular, authors in [26] pro-
pose two metrics to measure the cached content freshness:
age of synchronization (AoS) and age of information (AoI).
Most existing research regarding the freshness of the local
cache focus on the AoI metric and often the objective is to
minimize the average AoI [32]. As such, these works focus
mainly on minimizing the miss rate [21] or minimizing the
average age of the cached content (see [33], [16]). Kam et al.
[21] propose a dynamic model in which the rate of requests
depends on the popularity and the freshness of information
to minimize the number of missed requests.

While AoI is a meaningful metric for measuring the
freshness of content in some systems [34]–[37], there are
many real-world scenarios where a content does not lose its

value simply because time has passed since it was put into
the cache. These types of dynamic contents include news and
social network updates where the users prefer to have the
most fresh version but so long as there is no new update, that
content is considered to be the most fresh version. Kompella
et al. [38] study the information freshness at the monitoring
station for applications that rely on information freshness
such as networked monitoring and automated control (e.g.,
tactical networks, sensor networks, airplane/vehicular con-
trol, and Cyber-Physical Systems) applications. They con-
clude that while AoI is indeed a good metric for freshness,
optimizing the AoI metric does not always guarantee optimal
signal reconstruction at the monitoring station [39].

In this work, we use a new freshness metric called Age-of-
Version (AoV) which counts the integer difference between
the versions at the database and the local cache. We also
introduce a new cost function for dynamic content caching
which captures both the cost due to the miss event and the
cost due to content freshness [40] which grows with the
AoV metric. Moreover, our model utilizes the multicasting
property of the wireless medium to opportunistically update
the cached contents over the edge-caches. Finally, our model
extends the traditional caching paradigm to allow for varying
generation dynamics of content, and calls for new designs
that incorporate these dynamics into its decisions.

In particular, we focus on wireless networks that utilize
edge-caches to serve dynamic contents to a group of end-
users and edge-caches can update their caches content with
no additional cost by overhearing that content being served
to other edge-caches. we propose a freshness-driven caching
model for dynamic content, which accounts for the update
rate of data content and provide an analysis of the average
operational cost.

This work is related to our earlier work [13], which also
considered optimal distributed caching over the wireless
edge. However, the setting in [13] is complementary to this
one, with each local cache having its separate demand to
serve without a possibility of splitting the load. Here, by
allowing such a split, the setting as well as the nature of the
problem and its solution are completely different. Not only
do they lead to new challenges, such as a Knapsack problem
appearing within it, but it also results in new insights on how
to serve a common edge user population with distributed
edge-caches. A special case of the problem comprising only
one user group was investigated in [41] and an optimal
caching policy was presented for this special case. In the
current version we extend the previous model by allowing
multiple user groups, each with a different popularity profile,
request dynamic content from a shared database. We also add
channel failure to incorporate multicast outage for a more
realistic system model [42], [43].

By intelligently choosing the number of edge-caches, we
propose a policy that jointly optimizes the distributed edge
caching and load-splitting between those edge-caches. The
proposed optimal policy reveals counter-intuitive insights
on the nature of the distributed edge caching for dynamic

content. In particular, for the practical case of Zipf popu-
larity, load and cache capacity are generally split unequally
between the edge-caches, and edge-caches with higher load
will store less items in their cache, however, they are the
more popular ones. We aim to reveal the trade-off between
our proposed optimal policy and the more practically imple-
mented policy where the load is split equally between the
edge-caches. Our contributions, along with the organization
of the paper, are as follows.
• In Section II, we present a tractable caching model
that utilizes distributed edge-caches for serving dynamic
content over wireless broadcast channels in which edge-
caches take advantage of the wireless multicasting to keep
their cached content fresh. Such cache update mechanism
is subject to wireless channel failure and is not always
successful.

• In Section III, we provide a full characterization of the
optimal caching policy which jointly optimizes the num-
ber of edge-caches, load-splitting, and cache placements
over the network. The solution is achieved by intelligently
manipulating a group of intractable 0-1 Knapsack prob-
lems to remove all the inequality constraints that renders
such problems NP-hard. The outcome is a policy that
achieves the global minimum average cost. We show that
the general case of multiple user groups can be simplified
to a single user group with the aggregated demand profile,
letting us to focus on the single user group in the rest of
paper. Also, our findings reveals the nature of the unequal
load-splitting between the edge-caches and dependence of
the content caching on the load allocated to each edge-
cache.

• In Section IV, we provide the optimal content placement
for the special case of the equal load-splitting. We also
characterize the cost-cache trade-off between the optimal
policy and the equal load-splitting policy. Our findings re-
veal that as the number of edge-caches increases, the equal
load-splitting cost decreases at the expense of increasing
the cache occupancy.

• In Section V, comparing the average cost and the cache
occupancy of the proposed optimal policy to the equal
load-splitting policy, we investigate trade-off using numer-
ical simulations for the practical case of Zipf popularity
and highlight scenarios in which each of these approaches
are more cost or cache effective. Our findings reveal
that for less predictable demand, i.e., more uncertainty
about the demand, equal load-splitting can potentially
have significant cache savings while achieving a close-to-
optimal cost. On the other hand, as the certainty about
the demand increases, the optimal policy can achieve
significant gains on the cost without increasing the cache
occupancy. Finally, we conclude the work in Section VI.

II. SYSTEM MODEL

We consider the generic hierarchical setting depicted in
Fig. 1, whereby: the (limited) local cache serves multiple
groups of user population where each user group generates

…

𝑝1 𝑝2 𝑝3 𝑝4

𝑷𝟏

Front-End
Local Cache

ሺ𝒂𝒈𝒆ሻx𝒄𝒂

𝑴 Group of End Users

Aging cost

... λ1

Source
N items

𝜷𝟏

miss 𝒄𝒇 hit

Fetching cost
Back-End Database

.

.

.

s1
1

sK
1

K Edge Caches

Refresh rates …

𝑝1 𝑝2 𝑝3 𝑝4

Popularity
Distribution

𝜷𝑴

𝑷𝑴

.

.

.

.

.

.

s1
M

sK
M

.

.

.

𝜶

Wireless
Channel Failure

Fig. 1: Setting of Fresh Caching for Dynamic Content

requests to content according to a popularity distribution;
while the back-end database receives updates to refresh the
content with different rates. In the following, we will provide
the details of this generic model, followed by the goal of our
work.
Demand Dynamics: We assume that a set N of N unit-
sized data items (with dynamically changing content) are
being served to the user population through a hierarchical
caching system as depicted in Fig. 1. In particular, a set K of
K edge-caches are distributed over the network that supply
local content to the neighboring users. Users are divided into
different groups based on their interest, e.g., different age
segments, cultural background, etc. The set M of M user
groups with different popularity profile request content from
edge caches. Each user group m ∈ M generates requests
according to a Poisson process1 with rate βm ≥ 0, which
captures the request intensity of that user population served
by the edge-caches. An incoming request from user group
m ∈ M targets data item n ∈ N with probability pmn .
Accordingly, the probability distribution pm = (pmn)Nn=1

captures the popularity profile of the data items for user
group m. Furthermore, for each user group m ∈ M, we
define smk to be the fraction of the user group m’s requests
served by the edge cache k ∈ K. Accordingly, the vector
sm = (sk)

K
k=1, ∀m ∈ M captures the load-splitting between

the edge-caches for the user group m.
Generation Dynamics: At the database, each data item may
receive updates at random times to replace its previous con-
tent. We assume that data item n receives updates according
to a Poisson process with rate λn ≥ 0. Note that λn = 0
encapsulates the traditional case of static content that never
receives an update. We denote the vector λ = (λn)

N
n=1 as

the collection of update rates for the database.
Age Dynamics: Since the data items are subject to updates
at the database, the same items in the local caches may be
older versions of the content. To measure the freshness of
local content, we define the age ∆k

n(t) ∈ {0, 1, . . .} at time
t for item n stored at the edge-cache k as the number of
updates that the locally available item n has received in the
database since it has been most recently cached. We name

1Accordingly, we assume that the system evolves in continuous time.

this freshness metric as the Age-of-Version (AoV), since it
counts the integer difference between the versions at the
database and the local cache. The incoming request to an
item that is stored in edge-cache k is served from the local
cache, but potentially with a positive AoV value ∆k

n(t).
Fetching and Ageing Costs: Now that we have the dy-
namics defined, we can introduce the key operational and
performance costs associated with our caching system. On
the operational side, we denote the cost of fetching an item
from the database to the local cache by cf > 0. On the
performance side, we assume that serving an item n from
the edge-cache k with age ∆k

n(t) incurs a freshness/age cost
of ca × ∆k

n(t) for some ca ≥ 0, which grows linearly2

with the AoV metric. This ageing cost measures the growing
discontent of the user for receiving an older version of the
content she/he demands.
Content Multicasting: We stress that broadcast nature of
the wireless medium enables transmission of content made
to one edge-cache to be received and used to update content
in other edge-caches at no additional cost. This multicast-
ing property non-trivially couples the decisions across the
distributed cache space for optimal caching solution. More-
over, due to the wireless channel imperfections, such cache
update mechanism is subject to failure. We assume α is the
probability that each edge cache can successfully update its
cache when the content is being served through multicast
to another edge cache. These successful update events are
independent over the edge caches. As such, the age of item
n at the edge cache k, i.e., ∆k

n(t), would be different among
the edge-caches that hold item n. Furthermore, we assume
that upon each failed fetching attempt, the database will
reattempt fetching until the content is successfully delivered
to the user requesting that content, not disregarding any user
request.

Our broad objective in this work is to develop efficient
distributed edge caching strategies for the above setting that
optimally balance the tradeoff between the cost of serving
the fresh item from database and the cost of providing
potentially older content to the users from the local cache.

A. Problem Formulation

Let In ⊆ K, ∀n ∈ N be the set of edge-caches that have
stored item n and |K| = K is the total number of edge-
caches deployed over the network. Note that due to high
refresh rates, edge-caches may not necessarily fill their cache
to avoid excessive freshness costs. As such,

∑N
n=1 |In| will

be always finite for the dynamic content even if there is un-
limited cache storage capacity. For each user group m ∈ M,
the arrival request rate βm is split between the edge-caches,
such that each edge-cache k receives a fraction smk of the to-
tal incoming requests. Therefore, sm = (smk)Kk=1, ∀m ∈ M
is the vector of load-splitting between the edge-caches for
user group m where

∑K
k=1 s

m
k = 1, ∀m ∈ M.

2While this linearity assumption is meaningful as a first-order approxi-
mation to ageing cost and facilitates simpler expressions in the analysis, it
can also be generalized to convex forms to extend this basic framework.

Lemma 1: Let CD({In}n, {sm}m) be the average caching
cost of a system composed of K edge-caches where each
item n ∈ N is stored in the set In ⊆ K of edge-caches and
each user group m sends the fraction smk of its request to
the edge-cache k ∈ K. Then:

CD({In}n, {sm}m) =
M∑

m=1

N∑
n=1

(
cfβmpmn

α

(
1−

∑
k∈In

smk

))

+
M∑

m=1

N∑
n=1

(
βmpmn

(
caλn

(∑
k∈In

smk
)∑M

m=1

(
βmpmn

(
1−

∑
k∈In

smk
)))) .

(1)
Proof. Let {Πn,k

In
(t), t ≥ 0}, ∀n ∈ N be the Markov

process describing the freshness age of cached item n
stored at the edge cache k ∈ K at time t under the
cached set In. The evolution of this process is shown in
Fig. 2 where µn =

∑M
m=1

(
βmpmn

(
1−

∑
k∈In

smk
))

. As

𝟎 𝟏 𝟐

𝝁𝒏

𝝀𝒏 𝝀𝒏 𝝀𝒏

𝝁𝒏

𝝁𝒏

Fig. 2: Markov chain diagram for freshness {Πn,k
In

(t), t ≥ 0}
of item n at edge cache k ∈ In under the cached set In.

discussed earlier, in the distributed edge caching scenario,
the broadcast capability of wireless service acts as a natural
update mechanism. In other words, edge-caches update their
cached content for free by overhearing that content while
being fetched to the users requesting that content at the
time of miss event. For any item n in the cache, since
In is the set of edge-caches that have stored item n, the
fraction

∑
k∈In

smk , ∀m ∈ M of the total request for item n
generated by user group m is served from the edge-caches.
Thus, 1 −

∑
k∈In

smk , ∀m ∈ M is the miss probability for
item n due to the incoming request from user group m for
that item to those edge-caches that have not stored item
n. Each miss event for item n triggers a fetching from
the database which is successfully delivered to the user
with probability α. Upon each failed fetching attempt, we
will reattempt the fetching until the content is successfully
delivered to the requesting user. Thus, resulting in a service
rate of βmpm

n

α (1−
∑

k∈In
smk), ∀m ∈ M for that item from

user group m. As it can be seen in Fig. 2, every service of
item n acts as an update mechanism for the edge-caches that
hold item n in their cache and upon occurrence, the multicast
service of item n from the database, with probability α
will move the system back to state zero, the most fresh
version. This is due to the fact that each multicast service
is successfully received by edge caches with probability α.
Thus, the effective cache update rate resulted by user group
m is α

βmpm
n

α (1 −
∑

k∈In
smk) = βmpmn (1 −

∑
k∈In

smk).
Adding the cache update rate over all the users, give the

total rate µn =
∑M

m=1

∑N
n=1

(
βmpm

n

α

(
1−

∑
k∈In

smk
))

to
state zero. Every arriving content update to the item n in
the database that occurs with rate λn increments the age of
that item in the cache by one.

Since Πn.k
In

(t)
d−−−→

t→∞
Π̄n

In
, ∀k ∈ In, and using the steady

state distribution of Πn,k
In

(t), define πn
i (In) = P (Π̄n

In
=

i), i ∈ {0, 1, 2, . . .} to be the probability of item n having
the age of i under the cached set In. Then the average age
of item n is given by:

E[Π̄n
In
] =

λn∑M
m=1

(
βmpmn

(
1−

∑
k∈In

smk
)) . (2)

The average system cost in the distributed edge caching
where each item n ∈ N is stored in the set In ⊆ K
of edge-caches and the load of each user group m is
split between the K edge-caches according to the vector
sm = (sm1 , ..., smK), ∀m ∈ M, comprises two main terms
and is given by:

CD({In}n, {sm}m) = cf

N∑
n=1

M∑
m=1

(
βmpmn
α

(
1−

∑
k∈In

smk

))

+ca

N∑
n=1

E[Π̄n
In
]

M∑
m=1

(
βmpmn

(∑
k∈In

smk

))
.

(3)

The first term in Equation (3), shows the average fetching
cost under any cached set {In}n as a function of the total
miss rate

∑M
m=1

∑N
n=1

(
βmpmn

(
1−

∑
k∈In

smk
))

. For any
of the K edge-caches, if a requested item is in the edge-
cache of the user requesting that item, it will be immediately
served from the cache with the freshness cost, otherwise it
will be fetched from the database and the urgent fetching
cost cf is incurred. Each fetching attempt is successful with
probability α and we will keep attempting to fetch until the
content is successfully delivered to the user requesting that
content.

The second term in Equation (3) shows the average
freshness cost under any cached set {In}n. For each item n,
the total arrival request rate is

∑M
m=1 βmpmn and the fraction∑M

m=1

(
βmpmn

(∑
k∈In

smk
))

will be served from the local
cache with a freshness cost. since the item with age i incurs
the cost of i · ca, the average freshness cost for item n will
be caE[Π̄n

In
]. Thus, the total freshness cost incurred by item

n is given by caE[Π̄n
In
]
(∑M

m=1

(
βmpmn

(∑
k∈In

smk
)))

.
Summing over all the items gives the total freshness cost
of the system. Substituting Equation (2) in Equation (3) and
changing the order of summation, gives the average cost of
the system.

The cost minimization problem for such system would
thus be:

min
{sm}m,{In}n,K

CD({In}n, {sm}m),

s.t. 0 ≤ smk ≤ 1, ∀m ∈ M, k ∈ K,
K∑

k=1

smk = 1, ∀m ∈ M,

In ⊆ K,

K ≥ 0.

(4)

Minimizing the average caching cost requires finding the
optimal value for the number of edge-caches, how to split
the load of each user group between those edge-caches and
which items should be stored at each edge-cache.

In the following sections, we use the caching cost defined
in Equation (1) and propose an optimal caching strategy that
jointly optimizes distributed edge caching and load-splitting.

III. JOINTLY OPTIMAL DISTRIBUTED CACHING AND
LOAD-SPLITTING OF DYNAMIC CONTENT

In this section we tackle the general problem formulated
in (4). The characterization of the optimal caching strategy
under this setting will not only yield interesting insights
about the impact of generation dynamics, but we will also
provide an upper bound on the cache occupancy of the
proposed optimal caching strategy.

First, in order to gain an insight into the optimal caching
policy, we consider the case when there is only one user
group with the vector of load-splitting s = (s1, ..., sK).
Moreover, we tackle the problem in a special case by
assuming that the number of edge-caches K and the vector
of load-splitting s = (s1, ..., sK) is given and s is not
necessarily uniform, i.e., unequal load-splitting between the
edge-caches. Our objective is thus for the given load-splitting
vector s to choose the cached sets In(s) ⊆ K, ∀n ∈ N to
be stored at the K edge-caches in order to minimize the
average cost of the system.

min
{In}n∈KN

CD({In}n, s). (5)

Proposition 1: The policy {I∗
n(s)}n ∈ KN that solves (5)

is given by:

I∗
n(s) =


I ′
n(s), sk′′ ≥ (1−

∑
k∈I′

n(s)
sk)

−α caλn

βpncf
1

1−
∑

k∈I′
n(s) sk

,

I ′
n(s) ∪ {k′′}, oth,

where I ′
n(s) has the form of 0− 1 knapsack problem given

by:
I ′
n(s) = argmax

In∈K

∑
k∈In

sk

s.t.
∑
k∈In

sk ≤ max

(
0, 1−

√
α caλn

βcfpn

) (6)

and k′′ = argmin
k∈K\I′

n(s)

sk.

Proof. To prove this, we define δDn (In, {k′}) to be the
marginal cost of adding item n already stored in the set

In ⊂ K of edge-caches to the new edge-cache k′ ̸⊂ In that
does not have item n in its cache. In other words:

δDn (In, {k′}) := CD({I ′
n}n)|I′

n=In∪{k′}−CD({I ′
n}n)|I′

n=In

Using the average caching cost in Equation (1), we have:

δDn (In, {k′}) =

sk′

(
caλn(

1−
∑

k∈In
sk
) (

1−
∑

k∈In
sk − sk′

) − βpncf
α

)
.

In the case of δDn (In, {k′}) < 0 for a given cached set
In ⊂ K, adding item n to the edge-cache k′ will reduce
the average caching cost. On the other hand, items with
positive δDn (In, {k′}) can only increase the cost if added
to the edge-cache k′. Therefore, the sufficient condition for
the optimality of set In(s) of the edge-caches to store item
n is given by:

δDn (In, {k′}) > 0, ∀k′ ⊂ K \ In (7)

Using the definition of δDn (In, {k′}), for this to not hold we
should have:

caλn(
1−

∑
k∈In

sk
) (

1−
∑

k∈In
sk − sk′

) − βpncf
α

≤ 0,

for some k′ ⊂ K\In. Since sk ≥ 0, ∀k ∈ K, we can rewrite
this as:
α caλn

βpncf
≤ (1−

∑
k∈In

sk)(1−
∑
k∈In

sk − sk′) ≤ (1−
∑
k∈In

sk)
2,

which gives the condition as:∑
k∈In

sk ≤ max

(
0, 1−

√
α caλn

βcfpn

)
.

We define the set I ′
n(s) as in Equation (6) such that

it maximizes
∑

k∈In
sk while also satisfying the above

condition. For I ′
n(s) to be optimal, the sufficient condition

for optimality given in Equation (7) should hold. In other
words:

sk′ ≥ (1−
∑

k∈I′
n(s)

sk)−
α caλn

βpncf

1

1−
∑

k∈I′
n(s)

sk
, ∀k′ ⊂ K\I ′

n

(8)
Defining k′′ = argmin

k∈K\I′
n(s)

sk, if Equation (8) holds for k′′,

then it will hold for ∀k′ ⊂ K\I ′
n and the set I∗

n(s) = I ′
n(s)

satisfies the sufficient condition for optimality and therefore
is the optimal set of edge-caches to store item n.

On the other hand, if Equation (8) does not hold for
k′′, it means that adding item n to the edge-cache k′′ will
reduce the average cost. In this case we prove that the set
I ′
n(s)∪{k′′} satisfies the sufficient condition for optimality.

According to the definition of I ′
n(s) given in Equation (6),

and assuming that sk′′ > 0, we will have that:∑
k∈I′

n∪{k′′}

sk > max

(
0, 1−

√
α caλn

βcfpn

)
. (9)

The sufficient condition for optimality would thus be:

sk′ ≥ (1−
∑

k∈I′
n∪{k′′}

sk)−
α caλn

βpncf

1

1−
∑

k∈I′
n∪{k′′} sk

,

for ∀k′ ⊂ K\{I ′
n∪{k′′}}. Because of Equation (9), the right

hand side is always negative and the sufficient condition for
optimality holds. Therefore, the set I∗

n(s) = I ′
n(s) ∪ {k′′}

is the optimal set of edge-caches to store item n.
The 0-1 knapsack problem in (6) is known to be NP-

hard and is generally intractable [44] due to the nature
of the inequality constraint. In the rest of this section, we
consider the general case of the M user groups and focus
on solving the typically intractable optimization problem (6)
by intelligently choosing the number of edge-caches K and
vectors sm = (smk)Kk=1, ∀m ∈ M such that the inequality
constraints for all n ∈ N becomes equality constraints.
Doing so will remove the complexity that arises by knapsack
problems in their general form. Our analysis shows that by
intelligently choosing the number of edge-caches and the
fraction of the load directed to each edge-cache, we can
achieve the global minimum average system cost by our
proposed caching strategy.

The following theorem provides the sufficient condition
for a caching strategy to optimally solve the general problem
formulated in (4).

Theorem 1: In a system composed of a data set N of N
items with update rates λ = (λn)

N
n=1 and a set M of M user

groups with popularity distribution pm = (pmn)Nn=1, ∀m ∈
M, assume without loss of generality that items are ordered
such that y∗1 ≥ y∗2 ≥ ... ≥ y∗N where y∗n is defined as
y∗n =

(∑M
m=1 βmpmn

)
max

(
0, 1−

√
αcaλn

cf
∑M

m=1 βmpm
n

)
. Let

Q = max (n : y∗n > 0) ≤ N , then any caching strategy that
satisfies the following, where K∗ = Q+1, optimally solves
(4).
M∑

m=1

βmpmn (smk)
∗
=

{
y∗k − y∗k+1, k ∈ {1, . . . ,K∗ − 1}∑M

m=1 βmpmn − y∗1 , k = K∗,

(10)

I∗
n =

{
{n, . . . ,K∗ − 1} , n ∈ {1, 2, . . . ,K∗ − 1} ,

{}, n ∈ {K∗, . . . , N} ,
(11)

where (smk)
∗ and I∗

n are the fraction of allocated user group
m’s load to the edge-cache k and the set of edge-caches
that have stored item n respectively. Under such policy, the
optimal caching cost C∗ and the upper bound on the cache
occupancy B∗ are given by:

C∗(λ, p) =
cf
α

M∑
m=1

βm−
Q∑

n=1

√caλn −

√√√√cf
α

M∑
m=1

βmpmn

2

,

(12)

B∗(λ, p) ≤ 1

2
Q(Q+ 1). (13)

Proof.
We start the proof by defining the variable yn =∑
k∈In

∑M
m=1 βmpmn smk , ∀n ∈ N , where it captures the

fraction of total requests for item n that are served from
the edge caches. Next, we rewrite the average cost defined
in (1) as:

CD((yn)n) =
N∑

n=1

(
yn

(
caλn∑M

m=1 βmpmn − yn
− cf

α

))

+
cf
α

M∑
m=1

βm.

Due to the dynamic nature of the content, items that are
placed in the cache must frequently receive updates to
prevent them from getting obsolete. In our model, such cache
updates occur when there is a miss event, i.e., a request
arrives to an edge cache for an item that is not in the cache.
Therefore, there must be a balance between serving requests
from the cache and fetching them from the database due to
miss events. Accordingly, yn, which captures the fraction of
total requests for item n that are served from the edge caches,
is the parameter that should be optimized. Optimizing the
cost over yn for all data items, can be expressed as:

min
(yn)n

CD((yn)n),

s.t. 0 ≤ yn ≤
M∑

m=1

βmpmn .
(14)

This is a convex optimization problem whose solution is
given as:

y∗n =

(
M∑

m=1

βmpmn

)
max

(
0, 1−

√
αcaλn

cf
∑M

m=1 βmpmn

)
.

(15)
On the other hand, yn is a function of smk where smk is the
fraction of the user group m’s requests served by the edge
cache k. Therefore, to achieve the minimum cost, we must
choose smk , ∀k,m such that total requests for each item n
that are served from the edge caches is y∗n. Taking that into
account, we intelligently assign {sm}m, {In}n and K to
guarantee that the following holds for all data items.

∑
k∈In

M∑
m=1

βmpmn smk = y∗n, ∀n ∈ N . (16)

Doing so will render all the inequalities in the 0-1 knapsack
problems given in Equation (6) to equality constraints.
Therefore, Proposition 1 in the general case gives:

∑
k∈I∗

n(s)

M∑
m=1

βmpmn smk = y∗n, I∗
n(s) = I ′

n(s), ∀n ∈ N .

To guarantee that Equation (16) holds ∀n ∈ N , we define
Q = max (n : y∗n > 0) ≤ N and choose the number of
edge-caches as K∗ = Q + 1 which is the upper bound
on the number of different values that y∗n can take. Then,

by hypothesis, since y∗1 ≥ y∗2 ≥ ... ≥ y∗N , we choose
(smk)

∗
, ∀1 ≤ k < K∗, ∀m ∈ M such that:

y∗K∗−1 =
M∑

m=1

βmpmn
(
smK∗−1

)∗
,

y∗K∗−2 =
M∑

m=1

βmpmn

((
smK∗−1

)∗
+
(
smK∗−2

)∗)
,

.

.

.

y∗1 =
M∑

m=1

βmpmn

((
smK∗−1

)∗
+
(
smK∗−2

)∗
+ ...+ (sm1)

∗
)
.

Comparing this with Equation (16), where∑
k∈In

∑M
m=1 βmpmn (smk)

∗
= y∗n, will give I∗

n, 1 ≤
n < K∗ as in (11). Since

∑
k∈K (smk)

∗
= 1, ∀m ∈ M,

then
∑

k∈K
∑M

m=1 βmpmn (smk)
∗

=
∑M

m=1 βmpmn . Thus,∑M
m=1 βmpmn (smK∗)

∗
=
∑M

m=1 βmpmn − y∗1 and no item
will be stored in this edge-cache. Replacing the results in
the average cost given in Equation (1) yields the optimal
cost C∗(λ, p) as in Equation (12). Finally, the upper bound
on cache occupancy of the optimal policy is given by:

B∗(λ, p) =
N∑

n=1

|I∗
n(s

∗)| ≤ Q+(Q−1)+...+1 =
1

2
Q(Q+1),

(17)
and the inequality in the equation is due to the fact that∑M

m=1 (s
m
k)

∗ can be zero for some k ∈ K, meaning the
edge cache k will receive no traffic from the user groups. In
that case, the edge-cache with no load will store no item in
its cache. This completes the proof.

Remark 1: The extra edge-cache k = K∗ that does not
cache any items contributes to enhancing content freshness
since all the load directed to this edge-cache is served fresh
from the database. Due to broadcast property of wireless
channel, this acts as a freshness mechanism to keep the
content in other edge-caches from getting obsolete.
In the following we propose an easy to implement caching
strategy that satisfies the necessary condition for optimality
given in Theorem 1.

Proposition 2: In a system composed of a data set N
of N items with update rates λ = (λn)

N
n=1 and a set

M of M user groups with popularity distribution pm =
(pmn)Nn=1, ∀m ∈ M, assume without loss of generality that
items are ordered such that q∗1 ≥ q∗2 ≥ ... ≥ q∗N where
q∗n is defined as q∗n = max

(
0, 1−

√
αcaλn

cf
∑M

m=1 βmpm
n

)
. Let

Q = max (n : q∗n > 0) ≤ N , then the following caching
strategy where K∗ = Q + 1 and (smk)

∗
= s∗k, ∀m ∈ M

optimally solves (4).

s∗k =

{
q∗k − q∗k+1, k ∈ {1, . . . ,K∗ − 1} ,
1− q∗1 , k = K∗,

(18)

I∗
n =

{
{n, . . . ,K∗ − 1} , n ∈ {1, 2, . . . ,K∗ − 1} ,

{}, n ∈ {K∗, . . . , N} .
(19)

Such caching policy attains the minimum achievable caching
cost given in (12).

Proof. We just need to show that the proposed caching
policy satisfies the optimality condition given in Theorem 1.
First, we define q∗n as:

q∗n = max

(
0, 1−

√
αcaλn

cf
∑M

m=1 βmpmn

)
. (20)

Note that q∗n is defined such that y∗n = q∗n
∑M

m=1 βmpmn .
Therefore, max (n : q∗n > 0) = max (n : y∗n > 0) and all we
need to show is that the proposed load-splitting strategy
given in (18) satisfies the condition given in equation (10).
We let each edge cache receive the same fraction of the
load from all the user groups, i.e., (smk)

∗
= s∗k, ∀m ∈ M.

Putting this in Equation (10) and dividing both sides of the
equation by

∑M
m=1 βmpmn gives the proposed load-splitting

of Equation (18) for all the user groups.
This reveals a key insight on the optimal caching policy

when there are multiple user groups requesting dynamic
content from a shared database but each with a different
popularity profile. According to Proposition 2, the optimal
caching policy in such a case can be achieved by first
aggregating the load of all the user groups, and then applying
the proposed caching policy as if there is only one user group
with demand profile

(∑M
m=1 βmpmn

)
n

requesting dynamic
content from database with refresh rates (λn)n. As such, the
case of multiple user groups can be simplified to only one
user group with aggregated demand profile.

In the following we consider the case of only one user
group and omit the upper indices m. Applying the proposed
algorithm to some special cases gives us very interesting
results.

Proposition 3: In the special case of λn

pn
= λ

p , ∀n ∈ N ,
the optimal caching strategy is to have two edge-caches,
i.e., K∗ = 2 where the load is split according to s∗1 =

max
(
0, 1−

√
α caλ
βcfp

)
and s∗2 = 1 − s∗1. In the case of

s∗1 > 0, the first edge-cache will store All the N items in its
cache, i.e., I∗

n = {1}, ∀n ∈ N , otherwise if s∗1 = 0, the first
edge-cache will store no items, i.e., I∗

n = {∅}, ∀n ∈ N . The
second edge-cache will never store any items. The purpose
of the second edge-cache is to utilize multicasting as a
freshness mechanism to keep the cached content of the first
edge-cache from getting obsolete.
Proof. Since λn

pn
= λ

p , ∀n ∈ N , according to Equation (20)
all q∗n, ∀n ∈ N will be identical.

q∗1 = q∗2 = ... = q∗N = max

(
0, 1−

√
α caλ

βcfp

)
.

Now we show how Equation (16) holds ∀n ∈ N .
In case of q∗1 = 0, no caching will be employed, i.e.,
I∗
n = {∅}, ∀n ∈ N . But if q∗1 > 0, then since all q∗n have

same value, we can guarantee that Equation (16) holds for
∀n ∈ N by choosing an edge-cache that receives the fraction
s∗1 = q∗1 and then placing all the items in this edge-cache,
i.e., I∗

n = {1}, ∀n ∈ N . The other edge-cache will receive

the remaining load and will have no items stored in its cache.

The case of uniform popularity with constant refresh rates
is a special case of this. According to Proposition 3, the
optimal policy in this case will deploy two edge-caches over
the network and split the load and cache space unequally
between those edge-caches, even though the popularity and
refresh rates are uniform. This reveals the counter-intuitive
nature of the optimal policy that benefits by splitting the
load and cache capacity unequally between the edge-caches
to fully leverage the wireless broadcast as a free cache update
mechanism.

Proposition 4: In the case of item popularity distributed
according to Zipf with parameter z and constant update rates,
i.e., pn = p0

nz and λn = λ, ∀n ∈ N with p0 = 1∑N
n=1

1
nz

< 1,
the proposed optimal caching strategy of Theorem 1 reduces
to:

s∗k =


√

α caλ
βcfp0

(
√

(k + 1)z −
√
kz),k ∈ {1, . . . ,K∗ − 2} ,

1−
√

α caλ
βcfp0

√
kz, k = K∗ − 1,√

α caλ
βcfp0

k = K∗,

(21)

where K∗ = min

(
⌊ z
√

βcfp0

α caλ
⌋, N

)
+ 1.

Proof. For the case of Zipf popularity distribution with
constant update rate, p1 ≥ p2 ≥ ... ≥ pN , then q∗n given in
(20) can be written as:

q∗n = max

(
0, 1−

√
α caλ

βcfp0

√
nz

)
≤ 1, ∀n ∈ N , (22)

which results in Q as:

Q = max (n : q∗n > 0) = min

(
⌊ z

√
βcfp0
α caλ

⌋, N

)
which gives K∗ = Q + 1. Replacing q∗n in Equation (18)
will give the s∗k as in (21).

This reveals very interesting insights on the nature of the
proposed optimal policy. The optimal policy will split the
load unequally between the edge-caches and will completely
discard the less popular items, i.e., less popular items will
not be stored in any of the edge-caches. More interestingly,
edge-caches with higher load will generally store less items
in their cache, however, they are the more popular ones.
This is counter-intuitive, because one may guess that putting
more items on the edge-caches with higher load will result in
cost reduction over the network. However, the optimal policy
which aims to minimize the cost by balancing the freshness
and fetching cost, not only avoids to fill up the edge-caches
with higher load, but it puts less items into edge-caches as
their load increases. Yet, by intelligently deciding to put the
most popular items into edge-caches with higher load while
keeping the cache small, the optimal policy achieves the
optimal cost over the network.

Remark 2: In the special case of Zipf popularity distribu-
tion with parameter z = 2, the optimal caching strategy is

to have K∗ = ⌊
√

βcfp0

α caλ
⌋+1 and then split the load equally

between the edge-caches such that each edge-cache receives
the fraction sk =

√
α caλ
βcfp0

≈ 1
K∗ of the total load.

The results of Remark 2 motivates us to investigate the
performance of equal load-splitting more deeply. It may not
always be possible to split the load unequally between the
edge-caches due to complexity of the implementation. In the
next section, we propose an optimal policy for the special
case of the equal load-splitting and investigate under what
conditions such a policy can be beneficial.

IV. OPTIMAL DISTRIBUTED CACHING FOR EQUAL
LOAD-SPLITTING OF DYNAMIC CONTENT

In this section, we attack the problem in (4) for the special
case when the total number of edge-caches |K| = K is given
and there is only one user group and its load is split equally
between the edge-caches. In this case, sk = 1

K , ∀k ∈ K.
This equal load-splitting is simple to implement and yields
interesting insights on the cost and cache occupancy trade-
offs. We first characterize the optimal caching strategy and
then provide insights on the cache occupancy of the proposed
strategy.

For K edge-caches, each receiving a fraction sk = 1
K , k ∈

{1, 2, ...,K} of the total load, we define rn = |In| to be
the number of edge-caches that have stored item n and let
r = (r1, ..., rN) be the vector of replication.

Define the feasible set of solutions as:

FK = {r = (r1, . . . , rN) | rn ∈ {0, 1, . . . ,K}} ,

where each item can be stored at most once in each edge-
cache.

Lemma 2: Let CS(K, r) be the average expected system
cost in the equal load-splitting scenario with K edge-caches
and vector of replication r ∈ FK . Then:

CS(K, r) =
βcf
α

+
N∑

n=1

rn

(
caλn

K − rn
− βpncf

αK

)
. (23)

Proof. Since the number of replica rn is defined to be
rn = |In|, and the load is split equally between the K
edge-caches, we have: ∑

k∈In

sk =
rn
K

.

Replacing this in the general cost defined in Lemma 1
gives the average cost of the caching system with K edge-
caches and under vector of replication r as CS(K, r).

Our objective is thus to choose the content to be stored
at the K edge-caches in order to minimize the average cost
of the system, that is:

min
r∈FK

CS(K, r). (24)

Proposition 5: The policy r∗ = (r∗n)n ∈ FK that solves
(24) is given by:

r∗n = ⌊K +
1

2
−

√
1

4
+K2

α caλn

βcfpn
⌋+, ∀n ∈ N , (25)

where ⌊x⌋+ = max(0, ⌊x⌋), and ⌊x⌋ is the greatest integer
less than or equal to x.
Proof. We define δSn (l) to be the marginal cost of adding
item n to the caches given that l of the edge-caches have
already cached item n. In other words:

δSn (l) := CS(K, r)|rn=l+1 − CS(K, r)|rn=l

Therefore, we have:

δSn (l) =
Kcaλn

(K − l)(K − l − 1)
− βpncf

αK
∀n ∈ N . (26)

In the case of δSn (l) < 0 for a given integer l, adding item n
to one more edge-cache will decrease the average cost. On
the other hand, items with positive δSn (l) can only increase
the average cost if cached. Therefore, we can add item n
to the edge-caches, as long as δSn (l) is negative. Such δSn (l)
reveals the effect of refresh rate alongside the popularity on
gains that can be achieved by caching an item. The optimal
caching strategy will keep filling the cache for each item n
until δSn (l) turns positive. Therefore, the optimal number of
replica for item n would be:

r∗n = 1 +max{l ∈ {0, 1, ...} : δSn (l) < 0}, ∀n ∈ N .

Using δSn (l) defined in (26) yields r∗n as (25).
Next we study the trade-off between the average system

cost and cache occupancy of the optimal policy for the equal
load-splitting compared to the optimal caching policy for the
general case when the load is allowed to be split unequally
between the edge-caches.

Proposition 6: In a system composed of a data set N
of N items with popularity distribution p = (pn)

N
n=1 and

update rates λ = (λn)
N
n=1, assume 3 q∗1 ≥ q∗2 ≥ ... ≥ q∗N

where q∗n, ∀n ∈ N is defined in Equation (20). Let Q =
max (n : q∗n > 0) ≤ N which is independent of the number
of edge-caches K, then we have:

CS(K, r∗)− C∗ ≤

2
βcf
α

√
βcf
α ca

Q∑
n=1

√
p3n
λn

 1

K2
, (27)

where CS(K, r∗) is the optimal cost in the equal load-
splitting and C∗ is the minimum achievable cost in Theorem
(1). Also we have:

BS(K, r∗)−B∗(λ, p) ≥
Q∑

n=1

⌊K +
1

2
−

√
1

4
+K2

α caλn

βcfpn
⌋+ − 1

2
Q(Q+ 1),

(28)

where BS(K, r∗) is the cache occupancy under the optimal
policy in the equal load-splitting and B∗(λ, p) is the cache
occupancy of the proposed optimal policy in Theorem (1).

3This already holds without assumption in Zipf with constant refresh
rates.

Proof. To prove Equation (27), we use the following
Taylor approximation.

CS(K, r∗) ≤ C∗+

βcf
α

N∑
n=1

pn|
r∗n
K

− q∗n|(1−
1

1 + | r
∗
n

K − q∗n|
√

βcfpn

αcaλn

)

≤ C∗ + 2
βcf
α

√
βcf
αca

N∑
n=1

(

√
p3n
λn

|r
∗
n

K
− q∗n|2)

where q∗n = max(0, 1−
√

α caλn

βcfpn
). In the case when q∗n = 0,

we have α caλn

βcfpn
≥ 0 and according to Equation (25), r∗n = 0,

which gives | r
∗
n

K − q∗n| = 0. In the case when q∗n > 0, we
can show that |Kq∗n − r∗n| < 1 which gives | r

∗
n

K − q∗n| < 1
K .

Since, by hypothesis, q∗1 ≥ q∗2 ≥ ... ≥ q∗N , we can write:

CS(K, r∗)− C∗ ≤

2
βcf
α

√
βcf
α ca

Q∑
n=1

√
p3n
λn

 1

K2
,

where the terms inside the parentheses are independent of
K and this shows a cost reduction with the rate 1

K2 .
Also, since the cache occupancy of equal load-splitting

is equal to BS(K, r∗) =
∑N

n=1 r
∗
n, where r∗n is given in

Equation (25), and as we showed that in the case of q∗n = 0,
we have r∗n = 0, therefore, using the definition of Q and
the lower bound on the cache occupancy of our proposed
optimal policy in (13), we can write the lower bound on the
cache saving of our proposed policy compared to the equal
load-splitting as in Equation (28).

This shows that as the number of edge-caches K in-
creases, the cost of the equal load-splitting converges to the
optimal cost with rate 1

K2 but its cache occupancy increases
with the rate of up to K2.

V. NUMERICAL RESULTS: PERFORMANCE COMPARISON

In this section we compare the performance of the equal
load-splitting to the optimal case of general load-splitting
between the edge-caches using numerical simulations. We
consider the simulation parameters to be β = 5 for the
average total request rate, α = .9 for the channel reliability,
and the normalized fetching and aging costs to be cf = 1
and ca = 0.01 respectively. We assume that the database
consists of N = 106 items and there is only one user group
requesting items from the database. We use Zipf distribution
to capture the popularity of items, i.e., users send their
request to the database according to a Zipf distribution with
parameter z.

We compare the average cost achieved by the optimal
caching policy and the average cost of the equal load-
splitting policy under the number of edge-caches K = K∗

and the same system variables declared above. We adopt the
percentage cost gain of the optimal caching to the equal load-
splitting strategy’s cost as our performance metric. Such a
metric is defined as:

Cost Gain(%) = 100× CS(K∗, r∗)− C∗

C∗ .

Fig. 3: Percentage cost gain of the optimal caching policy

Fig. 4: Percentage cache loss of the optimal caching policy

The percentage cost gain is depicted in Fig. 3. The figure
shows that gains are negligible for small Zipf parameters.
In other words, if the item demand is less predictable, i.e.,
more uncertainty about the demand, the equal load-splitting
policy performs almost as good as the optimal caching
and the difference vanishes as the refresh rate decreases
and items become less dynamic. But as the Zipf parameter
increases and the certainty about the demand increases,
the cost reduction gain increases. It also reveals that the
gain becomes more substantial as the refresh rate of items
decreases. The figure reveals a dip in the cost reduction gain
at the Zipf parameter z = 2, which agrees with the results
of the Remark 2.

Next we compare the cache occupancy of the optimal
caching policy and the equal load-splitting policy under the
number of edge-caches K = K∗ and the same system
variables declared above. We adopt the percentage cache loss
of the optimal caching to the equal load-splitting strategy’s
cache occupancy as our performance metric. Such a metric
is defined as:

Fig. 5: Percentage cost gain of the optimal caching policy

Cache Loss (%) = 100× B∗ −BS(K∗, r∗)

B∗ .

The percentage cache loss is depicted in Fig. 4. The
figure shows that for small Zipf parameters, more uncertainty
about the demand, equal load-splitting policy occupies sig-
nificantly less cache space compared to the optimal caching
policy and the differences increases as the refresh rate
decreases and items become less dynamic. If parameter z
approaches zero, content popularity becomes almost uniform
and both policies may decide not to cache any items at
all. On the other hand, as the Zipf parameter increases and
certainty about demand increases, the percentage cache loss
of the optimal policy decreases and the optimal policy which
achieves the global minimum cost, will occupy less cache
space compared to the equal load-splitting policy. The figure
reveals that both optimal and equal load-splitting policies
achieve almost same cost and same cache sizes at the Zipf
parameter z = 2, which agrees with Remark 1.

According to Fig. 3 and 4, when item demand is less
predictable, i.e., z < 2, equal load-splitting policy achieves
almost the same average cost of the optimal caching policy
while potentially saving in the cache occupancy. On the
other hand, as item demand becomes more predictable, i.e.,
z > 2, optimal caching policy results in substantial gains
in the caching cost while simultaneously reducing the cache
occupancy.

Notice that in Figs. 3 and 4, we have assumed K = K∗

both for the optimal and equal load-splitting policies. Ac-
cording to Proposition 6, increasing K for the equal load-
splitting policy, such that K > K∗, the resulting average
cost approaches the optimal cost but this is achieved at the
expense of increasing the cache occupancy.

Fig. 5 shows the percentage cost gain as the function of the
channel reliability α for the Zipf(4) popularity distribution.
The figure shows that the gain increases as the wireless
channel becomes less reliable. In other words, as the reli-
ability of the wireless channel decreases, the cost optimal
caching policy which splits the load unequally between

Fig. 6: Total cost of a system with M = 5 user groups

the edge caches, suffers less compared to the equal load-
splitting policy. This is yet another reason to show the
superiority of the optimal unequal load splitting policy for
more predictable item demand.

Finally, Fig. 6 shows the total system cost when applying
the single group caching strategy separately to each user
group [41], and then adding the costs versus applying the
proposed optimal caching strategy given in Proposition 2 to
the system. Here we assume there are M = 5 user groups
requesting items from a shared database according to Zipf
distribution with parameter z. First, we treat each user group
independently and apply the single group caching strategy
separately to them and then add the costs to obtain the total
system cost. Then we consider the same system consisting
of five user groups and apply the proposed optimal caching
policy given in Proposition 2 to obtain the total system cost.
As we can see in Fig. 6, the proposed optimal caching
policy outperforms the single group caching policy applied
separately to user groups. According to the figure, under
uniform popularity profile, both caching strategies obtain the
same system cost. Moreover, as the demand profile becomes
more predictable, the total system cost under both of these
caching policies decreases. However, the proposed caching
policy that achieves the optimal cost outperforms the single
group caching policy. The gain is shown only for M = 5
user groups and as the number of user groups increases, the
gain will also increase. This shows that in a system including
multiple user groups, it is better to make the caching decision
based on the whole system rather than making the caching
decisions for each user group separately.

Next, we compare the cost reduction gains of the proposed
policy compared to a well-known caching policy, namely
cache-the-most-popular strategy. The objective of the cache-
the-most-popular strategy is to try to minimize the cost by
caching only the items that have the highest probability of
being requested by the users. Such a policy is defined in
[13] and [45] as following.

Definition 1 (Cache-The-Most-Popular): Define the Ip
B ⊆

N to be the set of B ≤ N most popular items. Then cache-
the-most-popular strategy for the K edge caches and total
cache capacity B, is given by:

rpn :=

{
1, n ∈ Ip

B ,
0, n ∈ N \ Ip

B ,

with rp := (rp1 , ..., r
p
N) being the vector of replication

and CP(K,B) is the cost under the cache-the-most-popular
strategy when there are K edge caches and the total cache
capacity is B.
Such strategy does not consider the freshness of items,
yet by caching only the most popular items, it focuses on
minimizing the number of cache misses.
We compare the average cost achieved by the proposed
caching policy and the average cost of the cache-the-most-
popular strategy under the number of edge-caches K = K∗

and the total cache capacity B = B∗ defined in Theorem 1.
We assume the same system variables declared above and
adopt the percentage cost gain of the optimal caching to the
cache-the-most-popular strategy’s cost as our performance
metric. Such a metric is defined as:

Cost Gain(%) = 100× CP(K∗, B∗)− C∗

CP(K∗, B∗)
.

The percentage cost gain is depicted in Fig. 7 as the
function of the Zipf parameter z. The figure shows that
gains are negligible for small Zipf parameters. In other
words, if the item demand is less predictable, i.e., more
uncertainty about the demand, the cache-the-most-popular
strategy, which focuses on minimizing the cache misses,
performs almost as well as the optimal caching. Moreover,
the difference vanishes as the refresh rate increases and
items become more dynamic. But as the Zipf parameter
increases and the certainty about the demand increases, the
cost reduction gain increases. The figure reveals that if the
demand profile is predictable enough, i.e., z > 1.5, the gain
is almost 100 percent. In other words, the proposed policy
almost achieves half of the cost incurred from cache-the-
most-popular strategy.
Fig. 8 shows the percentage cost gain as the function of the

channel reliability α for the Zipf(2) popularity distribution.
The figure shows that the gain increases as the wireless chan-
nel becomes less reliable. In other words, as the reliability of
the wireless channel decreases, the proposed caching policy,
which splits the load unequally between the edge caches,
suffers less compared to the cache-the-most-popular strategy.
This is yet another reason to show the superiority of the
proposed policy for more predictable item demand in the
presence of wireless channel imperfections.

VI. CONCLUSION

In this work, we have proposed and investigated an
increasingly important caching scenario for serving dynam-
ically changing content. We introduced the age-of-version
metric to capture the served content’s freshness and track the
number of stale versions per content. We have addressed the

Fig. 7: Percentage cost gain of the proposed caching policy
compared to the cache-the-most-popular strategy.

Fig. 8: Percentage cost gain of the proposed caching policy
compared to the cache-the-most-popular strategy.

problem of developing optimal caching strategies for mini-
mizing the system’s cost which is shaped by a combination
of the service cost of fetching fresh content directly from a
back-end database and the aging cost of cached, potentially
older, content from a front-end cache. By utilizing the
broadcast nature of the wireless medium, our model reveals
the benefits of the multicasting property as a mechanism
to update the cached content. We have characterized the
optimal caching policy both in the general case and also
in the special case of the equal load-splitting. Moreover, we
have explored the trade-off between the cost minimization
and cache savings gain of these two policies. Our results
demonstrate that for more predictable demand, splitting the
cache and load unequally between the edge-caches results
in significant cost gains without increasing the total cache
occupancy. On the other hand, for less predictable demand,
equal load-splitting achieves a close-to-optimal cost while
saving in cache occupancy.

REFERENCES

[1] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. Leung, “Cache
in the air: Exploiting content caching and delivery techniques for 5g
systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 131–
139, 2014.

[2] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through dis-
tributed caching helpers,” IEEE Transactions on Information Theory,
vol. 59, no. 12, pp. 8402–8413, 2013.

[3] V. Sourlas, L. Gkatzikis, P. Flegkas, and L. Tassiulas, “Distributed
cache management in information-centric networks,” IEEE Transac-
tions on Network and Service Management, vol. 10, no. 3, pp. 286–
299, 2013.

[4] W. Meizhen, S. Yanlei, and T. Yue, “The design and implementation
of lru-based web cache,” in 2013 8th International Conference on
Communications and Networking in China (CHINACOM). IEEE,
2013, pp. 400–404.

[5] G. S. Paschos, G. Iosifidis, M. Tao, D. Towsley, and G. Caire, “The
role of caching in future communication systems and networks,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 6, pp.
1111–1125, 2018.

[6] J. Zhang, “A literature survey of cooperative caching in content
distribution networks,” arXiv preprint arXiv:1210.0071, 2012.

[7] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in 2010 Proceedings IEEE INFOCOM.
IEEE, 2010, pp. 1–9.

[8] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–
2867, 2014.

[9] W. Jiang, G. Feng, and S. Qin, “Optimal cooperative content caching
and delivery policy for heterogeneous cellular networks,” IEEE Trans-
actions on Mobile Computing, vol. 16, no. 5, pp. 1382–1393, 2016.

[10] Z. Zheng and Z. Zheng, “Towards an improved heuristic genetic
algorithm for static content delivery in cloud storage,” Computers &
Electrical Engineering, vol. 69, pp. 422–434, 2018.

[11] M. Rabinovich and O. Spatscheck, Web caching and replication.
Addison-Wesley Boston, USA, 2002, vol. 67.

[12] T. Tang, “Multicast enabled caching service,” Oct. 10 2002, uS Patent
App. 09/934,013.

[13] B. Abolhassani, J. Tadrous, and A. Eryilmaz, “Achieving freshness in
single/multi-user caching of dynamic content over the wireless edge,”
in IEEE International Symposium on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks (WiOpt), 2020.

[14] B. Abolhassani, J. Tadrous, A. Eryilmaz, and E. Yeh, “Fresh caching
for dynamic content,” in IEEE INFOCOM 2021-IEEE Conference on
Computer Communications. IEEE, 2021, pp. 1–10.

[15] ——, “Fresh caching of dynamic content over the wireless edge,”
IEEE/ACM Transactions on Networking, 2022.

[16] E. Najm and R. Nasser, “Age of information: The gamma awakening,”
in 2016 IEEE International Symposium on Information Theory (ISIT).
Ieee, 2016, pp. 2574–2578.

[17] K. S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and D. Agrawal,
“Enabling dynamic content caching for database-driven web sites,”
in Proceedings of the 2001 ACM SIGMOD international conference
on Management of data, 2001, pp. 532–543.

[18] W. Shi, R. Wright, E. Collins, and V. Karamcheti, “Workload
characterization of a personalized web site and its implications for
dynamic content caching,” in Proceedings of the Seventh International
Workshop on Web Caching and Content Distribution (WCW’02).
Citeseer, 2002, pp. 1–16.

[19] W.-S. Li, O. Po, W.-P. Hsiung, K. S. Candan, and D. Agrawal,
“Freshness-driven adaptive caching for dynamic content web sites,”
Data & Knowledge Engineering, vol. 47, no. 2, pp. 269–296, 2003.

[20] P. Wu, J. Li, L. Shi, M. Ding, K. Cai, and F. Yang, “Dynamic content
update for wireless edge caching via deep reinforcement learning,”
IEEE Communications Letters, vol. 23, no. 10, pp. 1773–1777, 2019.

[21] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and
A. Ephremides, “Information freshness and popularity in mobile
caching,” in 2017 IEEE International Symposium on Information
Theory (ISIT). IEEE, 2017, pp. 136–140.

[22] X. Xu, C. Feng, S. Shan, T. Zhang, and J. Loo, “Proactive edge
caching in content-centric networks with massive dynamic content
requests,” IEEE Access, vol. 8, pp. 59 906–59 921, 2020.

[23] J. Gao, S. Zhang, L. Zhao, and X. Shen, “The design of dynamic
probabilistic caching with time-varying content popularity,” IEEE
Transactions on Mobile Computing, vol. 20, no. 4, pp. 1672–1684,
2020.

[24] S. Mehrizi, A. Tsakmalis, S. ShahbazPanahi, S. Chatzinotas, and
B. Ottersten, “Popularity tracking for proactive content caching with
dynamic factor analysis,” in 2019 IEEE/CIC International Conference
on Communications in China (ICCC). IEEE, 2019, pp. 875–880.

[25] S. Kumar and R. Tiwari, “Optimized content centric networking for
future internet: dynamic popularity window based caching scheme,”
Computer Networks, vol. 179, p. 107434, 2020.

[26] J. Zhong, R. D. Yates, and E. Soljanin, “Two freshness metrics
for local cache refresh,” in 2018 IEEE International Symposium on
Information Theory (ISIT). IEEE, 2018, pp. 1924–1928.

[27] X. Zhang, G. Zheng, S. Lambotharan, M. R. Nakhai, and K.-K. Wong,
“A reinforcement learning-based user-assisted caching strategy for
dynamic content library in small cell networks,” IEEE Transactions
on Communications, vol. 68, no. 6, pp. 3627–3639, 2020.

[28] A. Masood, D. S. Lakew, and S. Cho, “Learning based content
caching for wireless networks,” in 2020 International Conference on
Information Networking (ICOIN). IEEE, 2020, pp. 74–75.

[29] S. M. Azimi, O. Simeone, A. Sengupta, and R. Tandon, “Online edge
caching and wireless delivery in fog-aided networks with dynamic
content popularity,” IEEE Journal on Selected Areas in Communica-
tions, vol. 36, no. 6, pp. 1189–1202, 2018.

[30] X. Zhang, G. Zheng, S. Lambotharan, M. R. Nakhai, and K.-K.
Wong, “A learning approach to edge caching with dynamic content
library in wireless networks,” in 2019 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2019, pp. 1–6.

[31] M. S. H. Abad, E. Ozfatura, O. Ercetin, and D. Gündüz, “Dynamic
content updates in heterogeneous wireless networks,” in 2019 15th
Annual Conference on Wireless On-demand Network Systems and
Services (WONS). IEEE, 2019, pp. 107–110.

[32] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-
class queueing system,” in 2015 IEEE International Symposium on
Information Theory (ISIT). IEEE, 2015, pp. 1681–1685.

[33] C. Kam, S. Kompella, and A. Ephremides, “Age of information
under random updates,” in 2013 IEEE International Symposium on
Information Theory. IEEE, 2013, pp. 66–70.

[34] A. Maatouk, M. Assaad, and A. Ephremides, “On the age of informa-
tion in a csma environment,” IEEE/ACM Transactions on Networking,
vol. 28, no. 2, pp. 818–831, 2020.

[35] X. Chen, C. Wu, T. Chen, H. Zhang, Z. Liu, Y. Zhang, and M. Bennis,
“Age of information aware radio resource management in vehicular
networks: A proactive deep reinforcement learning perspective,” IEEE
Transactions on wireless communications, vol. 19, no. 4, pp. 2268–
2281, 2020.

[36] M. Bastopcu and S. Ulukus, “Age of information for updates with dis-
tortion,” in 2019 IEEE Information Theory Workshop (ITW). IEEE,
2019, pp. 1–5.

[37] H. H. Yang, A. Arafa, T. Q. Quek, and H. V. Poor, “Age of information
in random access networks: A spatiotemporal study,” in GLOBECOM
2020-2020 IEEE Global Communications Conference. IEEE, 2020,
pp. 1–6.

[38] S. Kompella and C. Kam, “Special issue on age of information,”
Journal of Communications and Networks, vol. 21, no. 3, pp. 201–
203, 2019.

[39] ——, “Age of information: Control and estimation,” NAVAL RE-
SEARCH LAB WASHINGTON DC WASHINGTON United States,
2020.

[40] D. Wessels, Web caching. ” O’Reilly Media, Inc.”, 2001.
[41] B. Abolhassani, J. Tadrous, and A. Eryilmaz, “Optimal load-splitting

and distributed-caching for dynamic content,” in IEEE International
Symposium on Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks (WiOpt), 2021.

[42] ——, “Wireless multicasting for content distribution: Stability and
delay gain analysis,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 2019, pp. 1–9.

[43] ——, “Delay gain analysis of wireless multicasting for content
distribution,” IEEE/ACM Transactions on Networking, vol. 29, no. 2,
pp. 529–542, 2020.

[44] S. Sahni, “Approximate algorithms for the 0/1 knapsack problem,”
Journal of the ACM (JACM), vol. 22, no. 1, pp. 115–124, 1975.

[45] B. Abolhassani, J. Tadrous, and A. Eryilmaz, “Single vs distributed
edge caching for dynamic content,” IEEE/ACM Transactions on
Networking, vol. 30, no. 2, pp. 669–682, 2021.

Bahman Abolhassani received the B.Sc. and
M.Sc. degrees in electrical engineering from
Sharif University of Technology (SUT), Tehran,
Iran, in 2015 and 2017, respectively. He is cur-
rently pursuing the Ph.D. degree with the Electri-
cal and Computer Engineering Department, The
Ohio State University, Columbus, OH, USA. Be-
tween 2015 and 2017, he was a researcher at
the Optical Networks Research Laboratory, SUT.
His research interests include communication net-
works, optimization theory, caching and algorithm

design.

John Tadrous is an associate professor of electri-
cal and computer engineering at Gonzaga Univer-
sity. He received his Ph.D. degree in electrical en-
gineering from the ECE Department at The Ohio
State University in 2014, MSc degree in wireless
communications from the Center of Information
Technology at Nile University in 2010, and BSc
degree from the EE Department at Cairo Univer-
sity in 2008. Between 2016 and 2021 he served as
an assistant professor of electrical and computer
engineering at Gonzaga University. From May

2014 to August 2016, he was a post-doctoral research associate with the
ECE Department at Rice University. In 2020, Dr. Tadrous was elevated
to a Senior Member of the IEEE. In addition, he received the Gonzaga
University’s Faculty Award for Professional Contributions. His research
interests include modeling and analysis of human behavior’s impact on data
networks in various timescales from seconds to hours, and how to harness
that behavior for improved network resource management. Dr. Tadrous’
served a technical program committee member for several conferences such
as Mobihoc, COMSNETS, and WiOpt.

Atilla Eryilmaz (S’00 / M’06 / SM’17) received
his M.S. and Ph.D. degrees in Electrical and Com-
puter Engineering from the University of Illinois
at Urbana-Champaign in 2001 and 2005, respec-
tively. Between 2005 and 2007, he worked as a
Postdoctoral Associate at the Laboratory for Infor-
mation and Decision Systems at the Massachusetts
Institute of Technology. Since 2007, he has been
at The Ohio State University, where he is currently
a Professor and the Graduate Studies Chair of the
Electrical and Computer Engineering Department.

Dr. Eryilmaz’s research interests span optimal control of stochastic net-
works, machine learning, optimization, and information theory. He received
the NSF-CAREER Award in 2010 and two Lumley Research Awards for
Research Excellence in 2010 and 2015. He is a co-author of the 2012
IEEE WiOpt Conference Best Student Paper, subsequently received the
2016 IEEE Infocom, 2017 IEEE WiOpt, 2018 IEEE WiOpt, and 2019
IEEE Infocom Best Paper Awards. He has served as: a TPC co-chair
of IEEE WiOpt in 2014, ACM Mobihoc in 2017, and IEEE Infocom in
2022; an Associate Editor (AE) of IEEE/ACM Transactions on Networking
between 2015 and 2019; an AE of IEEE Transactions on Network Science
and Engineering between 2017-2022; and is currently an AE of the IEEE
Transactions on Information Theory since 2022.

	Introduction
	System Model
	Problem Formulation

	Jointly Optimal Distributed Caching and load-splitting of Dynamic Content
	Optimal Distributed Caching for Equal Load-Splitting of Dynamic Content
	Numerical Results: Performance Comparison
	Conclusion
	References
	Biographies
	Bahman Abolhassani
	John Tadrous
	Atilla Eryilmaz

