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Abstract— The ever-growing end user data demands, and the
reductions in memory costs are fueling edge-caching deploy-
ments. Caching at the edge is substantially different from that at
the core and needs to consider the nature of individualized data
demands. For example, an individual user may not be interested
in requesting the same data item again, if it has recently requested
it. Such individualized dynamics are not apparent in the aggre-
gated data requests at the core and have not been considered
in popularity-driven caching designs for the core. Hence, these
traditional caching policies could induce significant inefficiencies
when applied at the edges. To address this issue, we develop new
edge caching policies optimized for the individualized demands
that also leverage overhearing opportunities at the wireless edge.
With the objective of maximizing the hit ratio, the proposed
policies will actively evict the data items that are not likely to be
requested in the near future, and strategically bring them back
into the cache via overhearing when they become popular again.
Both theoretical analysis and numerical simulations demonstrate
that the proposed edge caching policies could outperform the
popularity-driven policies that are optimal at the core.

Index Terms— Edge caching, broadcasting, overhearing.

I. INTRODUCTION

ATA demands are growing exponentially, driven by the

rapid proliferation of edge devices such as the Internet
of Things (IoT), and increasingly capable hand-held devices.
Meanwhile, memory is becoming cheaper, larger, and faster.
These two forces are creating an ideal environment for the
large-scale deployment of edge caching to support fast data
retrieval [1], [3], [4]. While, extensive studies [5], [6], [8] have
been conducted to optimize caching strategies for relatively
stationary data demands at the network core, caching at the
edges due to its individualized demand dynamics, is quite
different from the core, and therefore should be studied in
their own right. In this paper, we will propose new caching
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Fig. 1. Caching at the core v.s. caching at the edge.

policies optimized for the individualized data demands at the
wireless edges.

A. Challenge: Individualized Demands at Network Edges

At the network core, data demands are aggregated from
a large number of end-users, as shown in Fig. 1. Thus, the
demand dynamics of each individual user could become negli-
gible, which leads to relatively stationary data popularities for
the population. Various popularity-driven policies have been
proposed for optimizing caching at the core [6], [9]. Inspired
by the observation that data items recently requested by one
user are very likely to be requested again by others, the least
recently used (LRU) policy estimates the popularity by the data
recency and caches the most recently requested data items. The
LRU policy and its variants have been widely implemented at
the core, and validated to achieve good performance [10], [11],
[12].

In contrast, edge caching serves a small group of users, or
even a single user, where the data demands are more individu-
alized. Those have fundamentally different dynamics than the
population demand models. In particular, after requesting a
data item, the user may not be likely to request the same data
item again in the near future. One supportive reason is that
users may lose interest in seeing similar content repeatedly.
A common methodology applied by recommendation systems
is to avoid presenting similar content consecutively [13],
[15]. Another evidence is that users may need some time
to process the recently requested data. A trace analysis on
Yelp has demonstrated considerable time gaps between users’
actions [16]. Hence, data popularities at the edges could
change dramatically even after every request. The popularity-
driven policies designed for the core cannot make adaptive
decisions for such individualized demands, and may achieve
poor performance at the edges.

In Fig. 2, we illustrate an example showing that the LRU
policy could make irrational decisions for edge caching,
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Degenerate performance of LRU when serving a small group of

since the recently requested data items typically have small
popularities at the edges, which is opposite to the experience
at the core. Assume that an individual user will not request
the same data item in the near future after each request.!
We simulate the hit ratio achieved by a single LRU cache
serving aggregated data requests from a group of users. The
LRU policy achieves good performance when the number of
users is large (i.e., the network core scenario). However, the
performance degenerates significantly as the number of users
decreases (i.e., the network edge scenario). Interestingly, when
the cache serves one user, the hit ratio will decrease to zero,
which indicates that the LRU policy almost always makes the
wrong decisions.

B. Solution: Active Eviction and Strategical Overhearing

To address this issue, we develop new adaptive edge caching
policies customized for the individualized demands. In an ideal
case, the policy should frequently update the cache content and
only store data items that are most likely to be requested in
the near future. We will leverage the overhearing opportunities
at the wireless edges to mimic this ideal design.

Specifically, an edge cache can overhear the broadcasted
data items over the wireless channels, even when it is not
the intended receiver. To achieve high caching efficiency,
we may actively evict the recently requested data items
that will not be needed in the near future, and strategically
bring them back into the cache later through overhearing
when their popularities rise up sufficiently again. With the
objective to maximize the overall hit ratio, we optimize the
eviction and overhearing decisions for two different settings
depending on how the overhearing opportunities are generated.
Under the time-driven overhearing setting (cf. Section III), the
overhearing opportunities are described by Poisson processes
that are independent of the data requests and out of the
designer’s control. Under the event-driven overhearing setting
(cf. Section IV), the overhearing opportunities are generated
when an item is requested and is unavailable at a user,
which triggers its broadcast over the wireless channel, hereby
generating an overhearing opportunity for all other users. Our
contributions are summarized as follows.

o With the objective to maximize the overall hit ratio, we

propose an optimal caching and overhearing policy for
the time-driven overhearing setting. Specifically, we first

IThe data requests are generated with N = 1000,b = 50,s; =
5000,8; = c-i~ Y c=1/3N i714 =0.3392,1 < i < N, where the
detailed parameter definitions are introduced in Section II-A.
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prove that the hit ratio maximization problem is noncon-
vex. By exploiting an informative structure of the optimal
solutions, we then convert the nonconvex problem to a
convex one and propose efficient algorithms to solve it
(see Section III).

o We propose an asymptotically optimal caching and over-
hearing policy for the event-driven overhearing setting.
Although the overhearing process is not fully tractable
under this setting, we are inspired by the structure of
the optimal policy under time-driven overhearing and
propose a policy for event-driven overhearing, which is
asymptotically optimal when the number of edge caches
in the system is sufficiently large (see Section IV).

e« We extend our main results for both time-driven and
event-driven overhearing scenarios to a more general
data demand setting, where different users can have
heterogeneous demand patterns (see Section V).

o« We conduct extensive simulations to validate that the
proposed policies can achieve better performance than
a few benchmarks (see Section VI).

C. Related Works

Conventional caching analysis for stationary data demands
typically assumes an independent reference model (IRM),
where the data requests are assumed to be generated from
a stationary popularity distribution independently. Popularity
driven caching policies are proposed for such scenarios in
different systems [6], [17]. Historical request information
including data recency and frequency are commonly leveraged
to estimate the popularity, and inspire the design of LRU,
LFU, LIRS and other variants [9], [18], [19], [21]. Among the
various caching policies, the time-to-live (TTL) based policies
have garnered significant attention, since they are not only easy
to implement in real practice, but also provide tractability and
flexibility to optimize different system goals [22], [23], [24],
[25]. However, how to design a good TTL-based policy for
edge caching with individualized demand dynamics still lacks
a systematic study.

To characterize the non-stationary data demands whose
popularities may evolve over time, a shot noise model (SNM)
is proposed in [26], where the request process of a data
item is described by a time-inhomogeneous Poisson process.
Compared to IRM, SNM could better characterize the temporal
locality and is validated by real data traces collected from
more than 10000 IPs. However, under the general SNM, the
theoretical analysis of some caching strategies may become
intractable. To address this issue, an ON-OFF traffic model is
proposed in [27], which captures time-variant data popularities
and supports efficient analysis for a number caching strategies.
An age-based threshold (ABT) caching policy is proposed for
small user populations under SNM [28].

Numerous studies have explored methods for tracking
dynamic data demands and optimizing caching decisions to
achieve better efficiency [29], [30], [31], [33]. However,
they are different from this paper in the following aspects.
1) Existing works typically consider the aggregated demands
from a group of users and attempt to track the dynamic
demands over a relatively long time period by collecting
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historical requests from different users. The individualized
demands that could change dramatically in a short time period
(e.g., after each request for the data item) have not been
well addressed by existing works. 2) These works did not
explore the joint optimization of overhearing and caching
decisions when demands are dynamically changing. In this
paper, we fill the gap by proposing a new model to describe
the individualized demand dynamics and designing new edge
caching policies that achieve provably better performance by
leveraging overhearing opportunities at the wireless edges.

Another prevalent category of dynamics in caching prob-
lems is the content dynamics, where each data item could
be occasionally refreshed, rendering older versions obsolete.
Different caching strategies have been explored to optimize
caching efficiency and content freshness [34], [35], [36].
We note that such content dynamics are different from the
demand dynamics investigated in this paper, because the
data popularity changes under content dynamics are triggered
by the refresh of content sources, while popularities under
demand dynamics are changing with users’ actions (e.g., recent
requests). Furthermore, edge caching with overhearing oppor-
tunities have been shown great potential to improve energy
efficiency, transmission delays and data freshness [37], [38],
[40], [41], but these designs didn’t consider the individualized
demand dynamics.

II. MODEL DESCRIPTION
In this section, we will first formally model the edge demand
dynamics by ON-OFF processes. Then we will introduce TTL
based caching and overhearing policies and formulate a hit
ratio maximization problem.

A. Individual Demand Dynamics

Consider M edge caches connected to a base station through
wireless channels, as shown in Fig. 3. Each edge cache serves
data requests from a single user. We use m, 1 < m < M,
to index an edge cache or the user served by the edge cache
interchangeably. Let {d;, 1 < ¢ < N} denote a set of N
distinct data items. Assume that the data items are of unit size
and each edge cache has a size of b, 0 < b < N. Each edge
cache serves an individual user independently. If the requested
data is stored in the cache, then the request could be served
immediately with a low latency, which is called a cache hit.
Otherwise, the requested data has to be obtained from the
backend data storage and sent back to serve the user’s demand,
which is called a cache miss.

To characterize the demand dynamics of individual users,
we model the requests for the data item d;, 1 < ¢ < N,
generated by each user as a renewable ON-OFF process.

1%t request for d; 2nd request for d; 3" request for d;

OFF ON OFF ON

0 2 4 6 7  Time

Fig. 4.
processes.

Individualized demands characterized by renewable ON-OFF

Specifically, after the user requests d;, he/she will not request
it again within s; units of time, which is the OFF period.
The OFF period can effectively capture the transfer of user
interests as well as the time gaps between users’ actions as
demonstrated by a trace analysis on Yelp [16]. After the OFF
period, the next request for d; will be generated based on a
Poisson process with rate 3;, which is the ON period. Without
loss of generality, we assume that the data items are indexed
such that 3;’s are decreasing with respect to 7. When a new
request is generated in the ON period, a subsequent OFF
period starts immediately and the ON-OFF process is renewed.

For example, Fig. 4 illustrates a sequence of requests for
the data item d; with s; = 2 and 8y = 1. The first request
for d; is initiated at epoch 0. After the first request, there is
an OFF period of a fixed duration 2, during which, the user
is not interested in requesting d;. Starting from epoch 2, the
first OFF period ends, ushering in an ON period, where the
user would request d; again. Within the ON period, the next
request for d; will be generated based on a Poisson process
with a rate §; = 1. In this example, the next request occurs
at epoch 4, at which time, the second OFF period starts and
the whole process is renewed.

The proposed renewable ON-OFF process describes how a
user’s demand for a data item will evolve based on the user’s
recent requests for it. The proposed model could characterize
different demand patterns depending on the value of s;

e When 0 < s; < 400, the data item won’t be requested
again in the near future, if the user has recently made
a request for it. However, over time, the user might
regain interest in it. For example, music within a playlist
typically follow this demand pattern.

e When s; = +o00, d; will never be requested again
after the first request for it. For example, the weather
information for today is rarely in demand beyond the
current day.

e When s; = 0, the requests for data item d; will be
generated following a Poisson arrival process with a con-
stant rate (3;, which indicates that users are consistently
interested in such data items. This setting corresponds
to the conventional accumulated demand patterns at the
network core.

In this paper, we assume that the parameters s; and (; are fixed
and known, and focus on how we should update the edge cache
content for a set of candidate data items with different demand
patterns (i.e., different 3;, s; values). In real practice, s; and 3;
could be unknown and different approaches could be applied
to estimate them. As an illustration, we can employ clustering
algorithms to group users with similar interests, enabling us
to leverage the observed historical requests from similar users
to estimate parameters for others [29].
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In the main paper, we consider the homogeneous demand
dynamics, where different users have the same request pattern
(i.e., s;, B; only depend on the data item d; and are identical
for different users). This setting is particularly relevant to
scenarios where individual users have common data interests
(e.g., on-trend music and TV series). The homogeneous setting
helps us focus on the impact of individualized demands at the
network edge as opposed to the aggregated demands at the
network core. Later, in Section V, we will show that most
of the theorems and insights obtained for the homogeneous
setting are also valid when users have heterogeneous demands.

B. Overhearing Opportunities

To improve the edge caching efficiency under such dynamic
data demands, we will leverage overhearing opportunities
over the wireless channels. Specifically, the base station can
broadcast data items from time to time. When the cache
overhears a data item, it may decide to store it or not based on
the adopted caching and overhearing policies. Since the users
are assumed to have common data interests, the overheard data
item could potentially satisfy the demand of multiple users,
and therefore, improves the caching efficiency. Note that the
privacy concerns or the data encryption are not considered
in this paper. Developing efficient edge caching policies with
privacy protection is a crucial avenue for future research.
However, this topic falls outside the scope of this paper.

In this paper, we will investigate optimal caching and over-
hearing policy under the following two different overhearing
scenarios depending on how the overhearing opportunities are
generated.

Scenario 1 (Time-driven overhearing): In this scenario,
we assume that the base station will broadcast each data
item based on independent Poisson processes with given fixed
rates. The caches could passively overhear and need to decide
whether to store the overheard data items. Note that the over-
hearing processes in this scenario are fixed and independent of
caching decisions. The time-driven overhearing opportunities
are given by the environment and our goal is to find good
policies to leverage these opportunities. This simple setting
could provide us informative insights to optimize caching
decisions with overhearing opportunities, which inspires the
policy design for more realistic settings in Scenario 2.

Scenario 2 (Event-driven overhearing): In this scenario,
we consider a more realistic setting. When a cache miss
happens for some data item, e.g., di, the base station will
fetch d; from the backend storage and send it back to the cache
over the broadcast channel. Meanwhile, the other caches could
overhear d; and decide whether to cache it or not. Unlike time-
driven overhearing, the event-driven overhearing opportunities
are not fixed or given by the environment. They are shaped
by the miss behaviors, which, in turn, are determined by the
caching policies. Thus, the policy design for this scenario is
more challenging.

C. TTL-Based Caching and Overhearing Policies

To achieve as many hits as possible, the key question to
answer is how to update the cache content. In this paper,
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Fig. 5. TTL-based caching and overhearing policy.

we consider the design where each data item can be updated
separately based on its own rule. Formally, we use a vector
7 = (71,7, -+ ,mn) to denote the policy for managing the
N data items, where each element 7; is the update rule for a
data item d;, 1 < ¢ < N. To avoid possible confusion, we call
7 a policy and each 7; an item policy.

First, consider the item policies that belong to the following
TTL based caching and overhearing item policy set. Define

I = {7°°(1,w) :w > 7 > 0}, (1)

where an item policy 7°(7,w) is determined by two param-
eters, i.e., the caching TTL 7 and the deaf TTL w. The
superscript “co” stands for caching and overhearing.

In particular, assume that the data item d; is served by the
item policy 7°(7;,w;). Then every time the data item d; is
requested, it will be loaded into the cache regardless of a hit or
a miss. Meanwhile, a caching timer with duration 7; and a deaf
timer with duration w; (w; > 7;) will be initiated. In Fig. 5,
we illustrate an item policy 7 (71, wq) for dy with 7, = 3 and
w1 = 7.

1) Until the caching timer expires, d; will be cached but

promptly evicted once the timer runs out. In Fig. 5,
d; will be cached during the period [0, 3] and evicted
at epoch 3.

2) Before the deaf timer expires, the cache refrains from
loading d; into cache via overhearing. In Fig. 5, although
dy is broadcasted at epoch 5, it will not be loaded into
cache based on the chosen policy.

3) After the deaf timer expires, the cache will opportunis-
tically store d; via overhearing when it is broadcasted.
Once a request for d; is generated and fulfilled, both two
timers will be reset, and the procedure will be renewed to
serve the next request. In Fig. 5, d; will be overheard and
loaded into the cache at epoch 8, if the second request
for d; is not generated before epoch 8.

It is easy to observe that whether the next request for d; is
a hit or a miss depends on when it arrives. We still use the
example in Fig. 5 to illustrate this process.

1) Request before eviction: If the second request for
dy arrives before the caching timer expires (i.e., epoch
3), then it is a cache hit since d; has not been evicted
yet.

2) Request during the deaf period: If the second request
for dy arrives in the period [3, 7], then a cache miss
occurs. To serve the request, d; has to be fetched from
the backend storage.

3) Request before overhearing: If the second request for
dy arrives in the period [7, 8], then d; is still a cache
miss.
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4) Request after overhearing: If the second request for
dy arrives after epoch 8, then it is a cache hit and the
request can be served from the cache.

Note that how to strategically choose 7; and w; parameters
is crucial to efficiently utilize the limited cache space. For
example, if w; is very large, the next request for d; is very
likely to be generated before the deaf period expires, and the
hit ratio will be low. Instead, if w; takes a small value, we could
overhear and load it into the cache at the very early stage, but
it would be a waste of cache space if d; will not be requested
in the near future.

To further expand the design space, we allow randomization
for the item policies. Let

HI‘CO é

{Wrco((qu),... Lg™), (r D e M) (M) M)

0<q¥ < 17Zq(j) =1,0< 79 < Wb,
j=1

1§j§n,n€N}

denote the set of all possible randomized item policies
based on II*°, where the superscript “rco” stands for ran-
domized caching and overhearing. Each randomized item
policy is a randomization of n deterministic item policies
in II°°, where n could be any positive integer and ¢7) is
the probability to apply the j-th deterministic item policy
7% (1) w)). Suppose d; is served by 7°(q;, Ti, w;) with

i = (qZ(l)v to ’ql("))’ T = (Ti(l)v o

(wil), e ,win)). Every time the data item d; is requested, a
deterministic item policy 7r°°(7'7;(] ),wl(] )) will be selected with
a probability qu ) and applied to update the cache content,
1 < 5 < n. Notably, each item d; can be served by its
customized item policy with carefully-selected parameters q;,
T; and w;. And the caching decisions for different data items
are independent. Thus, we can analyze the hit ratio of each data
item separately. Since the caches are homogeneous, we assume
that the item policies for the same data item are identical on
difference caches.

,Ti(n)) and w; =

D. Hit Ratio Maximization

For each data item d;, 1 < ¢ < N, we define its expected
hit ratio achieved by an item policy 7; on an edge cache as
hi (’/T z)
Number of hits for d; during [0, 7] under ;

A .
=E| lim
T—oo

Number of requests for d; during [0, 7

Let p; denote the probability that a request is for data item d;,
1 <4 < N, which can be calculated as

1 Y
. S 2
P Y/ /z_:1 sj +1/; @)

J

Since the demand dynamics are homogeneous across different
caches, the overall expected hit ratio of all M caches is equal
to the expected hit ratio of a single cache, which can be

expressed by Zf\il pihi(m;). We would like to maximize the
overall expected hit ratio under the cache capacity constraint.
For an edge cache, define the expected cache occupancy for
d; as

a

1
i (m;) E[ lim — - (Duration when d; is stored

T—o0

in the cache during [0, T])},

which characterizes the average cache space used for storing
d;. The cache capacity constraint states that the expected cache
occupancy of all data items should not exceed the cache size.
Notably, the cache capacity constraint considers the average
cache occupancy rather than the real-time cache occupancy.
We adopt the cache capacity constraint in an average sense
for the following reason:

o It simplifies the analysis of the hit ratio maximization
problem, which enables us to design efficient caching
policies with provable performance.

e The caching policy obtained under the average cache
capacity constraint could be easily generalized to satisfy
to real-time cache capacity constraint with minor perfor-
mance regressions. For example, if loading an overheard
item into cache will violate the real-time cache capacity
constraint, we have the option to reject the operation.

Formally, we propose the hit ratio maximization problem

N
1 Zpi < hi(m;)
i=1

max

subject to m; € TI'°)
ri(ms) < b. 3)
i=1
The objective is to maximize the overall hit ratio of an
edge cache by selecting the optimal item policy for each
data item from the item policy set II"°. Since the demand
dynamics are homogeneous across different caches, applying
the optimal policy of the proposed problem to all M caches
should maximize the overall hit ratio of the entire system.
Note that the optimal caching policies will not change over
time, instead it captures the statistics of the demand dynamics
and maximizes the expected overall hit ratio. However, if the
statistics used to characterize the demand dynamics (i.e., s;
and (3;) are time varying, it would necessitate the optimal
policy to change over time. Such a topic, however, falls outside
the scope of this paper’s discussion. Next, we will investigate
this problem under the two different overhearing settings, i.e.,
time-driven and event-driven overhearing.

III. EDGE CACHING WITH TIME-DRIVEN OVERHEARING

In this section, we consider the time-driven overhearing
scenario where the overhearing processes of the users are gov-
erned by independent processes. This is particularly relevant
to scenarios where the base station broadcasts the items at
a regular rate. In particular, we assume that the overhearing
opportunity of the data item d; is a Poisson process with
rate \;, 1 < ¢ < N. Each cache may decide to load the
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overheard item into its cache or not, depending on the caching
and overhearing policy.

A. Hit Ratios and Cache Occupancies

Since the caches are homogeneous and the overhearing
process is independent of the number of caches, it suffices to
analyze the system with a single cache. To simplify the nota-
tions, we use h$°(7;,w;) = hi(m°(1;,w;)) and 7$°(7;, w;) 2
r;(7°(7;,w;)) to denote the expected hit ratio and cache
occupancy of the data item d;, if it is served by the determin-
istic item policy 7°°(7;,w;). In Theorem 1, we characterize
h$° (7, w;) and r$°(T;,w;) explicitly.

Theorem 1: For time-driven overhearing, if the data item
d; is served by a deterministic item policy 7°(7;,w;) € 11,
we have

(1) for 7 < w; < s,

Bi

b (Ti,wi) =1 —
i (Ti wi) NG

exp(—Ai(si — wi)),

co _ 1 /81
(T, w;) = E[X] (Ai(Ai ) exp(—A;(s; — wi))

+ 8 —w; — —

(2) for 7; < s; < w;,

hi? (i, w;) = ﬁ exp(—PBi(wi — 84)),

1 A
EXi] Bi(\i + B)
exp(—Bi(wi — 54)),
(3) for s; <7 < wy,
R (1i,wi) = 1 — exp(=Bi(i — i)
42 exp(=Bi(wr — 52),

i + B
1 by

E[X;] (ﬂi(/\i + Bi)
exp(~i(ws = 50) = 5 exp(—i(r = s.).
K3
where X; is defined as the inter-request time for d; and
E[X;] = s;i +1/B;.

The proof of Theorem 1 is presented in Appendix A. Note
that for a fixed 7; < s;, hi® is concave with respect to w;
when w; < s; — 7; and convex when w; > s; — 7;. Therefore,
the original problem (3) is a nonconvex optimization problem,
which is difficult to solve in general. However, for this specific
problem, we could find the global optimum by exploiting an
informative structure of the optimal solution, which will be
presented in Section III-B.

Next, we will leverage Theorem 1 to calculate the expected
hit ratio and cache occupancy for randomized item policies.
Consider a randomized item policy 7°(q;, T, w;) for the data
item d; with q; = (qgl),~~~ ,qin)), T = (Ti(l),"' ,Ti(")),
w; = (wgl), e 7%@ ). Let I® and 75 denote the expected
hit ratio and the expected cache occupancy achieved by 7.
We derive the explicit expression for h;° and 7} in the
following theorem.

Cco

T (Ti,wi) =

r(ri,wi) =1+
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Theorem 2: For time-driven overhearing, if the data item d;
is served by a randomized item policy 7'°(q;, T;,w;), then
we have

R (i, Tiy wi) = qu@ . hf"(Ti(j),ng)),
j=1

z(j) . go(,]_i(j)’wl(j)%

Tzw(ql‘,ﬂ,wi) = q; r;

I

Il
—

J

where h;-‘”(TZ-(j),wfj)), Tf"(T-j),wl(j)

terized by Theorem 1.

It is shown that the expected hit ratio and cache occupancy
of a randomized item policy can be calculated as the linear
combination of the ones of its basic policies.

—~

) can be explicitly charac-

N

B. Informative Structure of Optimal Policies

In this section, we will prove a special structure of the
optimal caching and overhearing policies, which significantly
simplifies the optimization problem. Intuitively, for each data
item, an item policy utilizes the cache space as the resource
to achieve a high hit ratio which can be viewed as the
revenue. Thus, to evaluate how efficient an item policy is,
a straightforward approach is to characterize the relationship
between the hit ratio and the cache occupancy achieved by it.

For each data item d;, the hit ratio and the cache occupancy
that can be achieved by some item policy in the set II"° can be
described by an achievable region in a two-dimensional space.
Formally, define the achievable region for the data item d; as

R;® = {(r, h) : there exists m; € II"° such that

m; achieves a cache occupancy r and a hit ratio h for d;}.

To better characterize the achievable region R:°, we inves-
tigate two specific item policies. Define

7°(7) = 7°(1,00) and 7°(w) = (0, w).

The caching-only item policy 7¢(7) is a specific case of
7°(7,w) with a caching TTL 7 and an infinite overhearing
TTL, i.e., never overhearing. The overhearing-only item policy
7°(w) is also a specific case with an overhearing TTL w and
a caching TTL zero, i.e., evicting the item immediately after
serving its request.

If we restrict the item policy to be selected from the item
policy set {n°(7) : 7 > 0} or {7°(w) : w > 0}, then the
achievable region will degenerate to a curve, since it can
be parameterized in one variable (i.e., 7 or w, respectively).
Therefore, the hit ratio achieved by #°(7) and 7°(w) can be
viewed as a function of the cache occupancy. Formally, for
each data item d;, define

hS(r) 2 he° (7, +00) and KO(r) 2 h(0,w;),

where 7; is selected such that r$°(7;, +00) = r, and w; is
selected such that r$°(0,w;) = r. For an item d;, h$(r)
(respectively, h9(r)) is the expected hit ratio achieved by
the item policy 7°(7;) (respectively, 7°(w;)) such that the
average cache space used to store d; is 7. The h$(r) and hQ(r)
functions can be easily derived based on Theorem 1. We plot
these two functions in Fig. 6.
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Fig. 6. Hit ratio and cache occupancy achieved by the caching-only item
policies and the overhearing-only item policies with s; = 3; = A\; = 1.

Note that, by setting 7; = +oo, the item policy 7°(7;)
can achieve its maximal hit ratio 1 and the maximal cache
occupancy 1. Under this setting, the data item will always be
stored in the cache. By setting w; = 0, the item policy 7°(w;)
can achieve its maximal hit ratio h2(r$°(0,0)) = h$°(0,0),
which is smaller than 1. The reason is that the request of d;
may arrive before the overhearing opportunities even when
we set w; = 0. Based on Theorem 2, any points on the
line segment connecting (1,1) and (r$°(0,0), h{°(0,0)) can
be achieved by a randomization of 7¢(40c) and 7°(0).

Formally, we define a randomized caching and overhearing
item policy set

ﬁrco — {WO(w) tw > O}
U{m™((q,1 — q), (+00,0), (+00,0)) : 0 < ¢ < 1}.
“)

The item policy set I contains all overhearing-only item
policies and all possible randomizations of 7¢(+o00) and 7°(0).
The achievable region of II"° can also be characterized by a
curve. We define the h[°(r) function as the hit ratio achieved
by an item policy from II"® when the cache occupancy is
r. For r € [0,7°°(0,0)], we have hl°(r) = hQ(r). For
r € (r°°(0,0), 1], hi*°(r) is the line segment connecting the
points (7$°(0,0), h$°(0,0)) and (1,1). In Fig. 6, hi°(r) is
the curve labeled by “overhearing only” and the line segment
achieved by randomization. Notably, every point on the curve
hi*(r) corresponds to exact one policy in the set II*°, and vice
versa. Based on Theorems 1 and 2, we can easily calculate
the parameters (i.e., w, ¢) for an item policy from II"° that
achieves a given hit ratio or cache occupancy.

Next, we show an insightful characteristic of the achievable
region R5°.

Lemma 1: For any (r,h) € RS, we have h < hi*(r).
The proof is presented in Appendix B. Lemma 1 shows that the
upper boundary of the achievable region RS° is characterized
by the function hl°(r), based on which, we can prove an
informative structure of the optimal policies.

Theorem 3: For time-driven overhearing, there must exist
a caching and overhearing policy 7 = (n},--- ,7x) which
is the optimal solution of problem (3) and satisfies 7] € II"
forany 1 <i < N.

Theorem 3 is a direct application of Lemma 1. It shows
that an optimal solution of problem (3) can be found from
the set II"°, which significantly narrows the design space.

By leveraging this informative structure, we solve the optimal
caching and overhearing policy in the next section.

C. Optimal Policy for Time-Driven Overhearing

Directly replacing the policy set in problem (3) with [Iree
will still result in a nonconvex optimization. Instead, we will
solve this problem by following two steps.

Step 1: Solve the optimal r’s of the following problem (5)

N
max Z pi - byl (r;)
i=1
subject to 0<r; <1, 1 <i <N,
N
Zri S b. (5)
i=1

Note that the original problem (3) is trying to find the optimal
policy parameters (i.e., q, 7 and w). In Step 1, the original
optimization problem in the domain of policy parameters is
converted into a new problem in the domain of the cache
occupancies (i.e., 7). Recall that hi°(r;) captures the rela-
tionship between the hit ratio and the cache occupancy for
item policies in the set II'*°. Using Theorem 3, we can prove
that the optimal occupancies found by problem (5) are actually
the occupancies achieved by the optimal item policies of the
original problem (3). More importantly, Theorems 1 and 2
indicate that the hl*°(r) functions are concave, 1 < § < N.
Therefore, the optimization problem (5) is convex and can
be solved using standard tools (e.g., KKT conditions and the
water-filling algorithm [42]).

Step 2: Once the optimal solution r}’s of Step 1 is solved,
then based on Theorems 1 and 2, we can easily find the
item policies from the set II'° that achieve 7’s. And these
item policies form an optimal solution of the original hit ratio
maximization problem (3). We use w;’s and ¢;’s to denote
the parameters for these item policies. An optimal policy for
time-driven overhearing is formally proposed as follows.

Caching and overhearing policy for time-driven over-
hearing (wT): Serve each data item d;, 1 < i < N, by a
randomized item policy 7'°(q;, T;,w;) where q; = (q;,1 —
q}), T; = (+00,0) and w; = (+o0,wy).

The proposed optimal policy reveals the following insights:

1) We should either evict a data item immediately after
serving a request for it (i.e., set 7; = 0) or always store
it in the cache (i.e, set 7, = 4+00). Setting 7; € (0, +00)
will be suboptimal.

2) If we decide to bring an item back into the cache by
overhearing (i.e., set w; < +0o0), then that item should
be evicted immediately after serving each request for it
(i.e., set 7; = 0).

These insights will guide us in the more complex scenario of
event-driven overhearing, which is tackled next.

IV. EDGE CACHING WITH EVENT-DRIVEN OVERHEARING

In this section, we consider a more realistic overhearing
setting. When a cache miss happens, the data item will be
fetched from the backend and sent to the user over broadcast
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Fig. 7. Hit ratio and cache occupancy achieved by the caching-only item
policies and the overhearing-only item policies with s; = [B; = 1 and
M = 10.

channels. Meanwhile, the other caches could overhear and
decide whether they would like to store this data item. Since
the overhearing opportunities are triggered by cache misses,
the event-driven overhearing process depends on the caching
decisions as well as the number of caches in the system. It can
be easily verified that the overhearing process are not Poisson
under this setting. As a result, the analysis for time-driven
overhearing cannot be directly applied for the event-driven
scenario.

A. Hit Ratios and Cache Occupancies

It is difficult to derive the hit ratio and the cache occupancy
for a general caching and overhearing policy, since the over-
hearing process is not tractable under this setting. However,
we are able to characterize a few key properties for some
specific policies, which inspires us to design a provably good
policy.

Similar to the notations in Section III, we still use h;’(-),
h$(), h$°(+), hi*°(-) to denote the hit ratios achieved by the
item policies 7°, 7€, 7, 7 for the data item d;, respectively.
The same rules will also be applied to the notations for cache
occupancies. However, the expression of these functions will
be different from those in Section III, since the overhearing
processes have been changed.

Lemma 2: Consider the event-driven overhearing. If d; is
served by the item policy 7°(w;), then we have

hi(r) = (Bisi + 1)r

for 0 < r <7r9(s;). If d; is served by the item policy w°(T;),
then its hit ratio and occupancy are exactly the same as those
achieved by m°(t;) for time-driven overhearing, and can be
directly calculated using Theorem 1.

In Lemma 2, we analyze the item policies 7°(7;) and
7°(w;) under event-driven overhearing. The proof is presented
in Appendix C. For the caching-only item policy 7°(7;),
the hit ratio and the cache occupancy are exactly the same
as the ones under time-driven overhearing, since 7°(7;) sets
w; = 400 and is independent of the overhearing process. For
the overhearing-only item policy 7°(w;), the hit ratio of d; is
a linear function with respect to the cache occupancy when
0 <r <r°s;) = r°(0,s;), or, equivalently when w; > s;.
When w; < s;, the overhearing-only item policy becomes
intractable. We plot the hit ratio and the cache occupancy that
can be achieved by 7°(w;) with w; > s; and 7°(7;) with 7; > 0
in Fig. 7.

IEEE/ACM TRANSACTIONS ON NETWORKING

In Lemma 2 we characterize the relationship between hit
ratios and cache occupancies for event-driven overhearing, but
we are not able to analytically solve the parameter w; that
achieves a given cache occupancy r. To address this issue,
we first assume that the policy parameter w; to achieve any
r < r°°(0,s;) is solvable. With this assumption, we will
propose provably good policies in Section IV-B. Then, in
Section IV-C, we will discuss how to implement these policies
in real practice without the proposed assumption.

B. Asymptotically Optimal Policy for
Event-Driven Overhearing

Although the hit ratio and the cache occupancy under
event-driven overhearing are not fully tractable, we could
still design provably good polices by leveraging the insights
obtained from the optimal structure under time-driven over-
hearing. The general idea is to first construct a shrunken
policy set, which contains less item policies but retains some
tractability under event-driven overhearing. Then, we will find
the best policy from the shrunken policy set and analytically
characterize its performance.

For each data item d;, 1 < ¢ < N, define a policy set

ﬁfo ={n%(w;) : w; > s;}
U {ﬂ_rco((qi’ 1— Qi); (—FO0,0), (+0075i)) :0<¢g; < 1} (6)

The set ﬁ§°° contains overhearing-only item policies 7°(w;)
with w; > s; and all possible randomizations of 7°(s;) and
7¢(+00). The reason to construct such policy sets is that we
could characterize the relationship between hit ratios and cache
occupancies for these item policies based on Lemma 2. Instead
of solving the original problem (3), we would like to find
the best policy from the shrunken policy sets by solving the
following problem

N
max Zpi < hi(m;)
¢ i=1
subject to w € f[,rf", 1<i<N,
N
ri(ms) < b. (7
=1

Define ﬁ;w(r) as the hit ratio of d; achieved by an item
policy from the set IIi** such that the cache occupancy is r.
We have h°(r) = (s;8; + 1)r for 0 < r < r$°(0, s;), and
— (siBi + 1)r§°(0, 54) 8:8ir5°(0, 81)

1—1r°(0,s;) 1—1r°(0,s;)

~ 1
() =

for r$°(0,s;) < r < 1. The /i\zg“’(r) curve is illustrated in
Fig. 7 as the line segments achieved by overhearing only and
randomization. Every point on the curve hi°(r) corresponds
an item policy in the set Aﬁ;°°, and vice versa. To find the
best item policies from II}*°, we formulate the following
optimization problem.

max
i

N o~
PR ()
=1

subject to 0<n <1< N,
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al C. Di ] Impl tati
. Discussion on Implementation
> m<b. (8) p
i=1 Since the overhearing process is difficult to analyze, in order

Since /HECO(T’) functions are concave, problem (8) is convex
and can be solved by the same approach that solves prob-
lem (5). Let r}’s denote the optimal solution to problem JE2
We can easily identify the item policy from the set Hm"
that achieves r;, 1 < ¢ < N. We propose a caching and
overhearing policy as follows.

Caching and overhearing policy for event-driven over-
hearing (wF): Let each data iterg d;, 1 <1i < N, be served
by the item policy from the set II{° that achieves the cache
occupancy 7, i.e., the solution of (8).

To analytically characterize the performance of the proposed
policy 7, we first introduce an upper bound for the achiev-
able hit ratio. For a system consisting of M caches, let h* (M)
denote the overall hit ratio achieved by the optimal solution of
problem (3) under event-driven overhearing. In the following
lemma, we prove that 2*(M) is upper bounded by a constant
which is defined as h"PPeT,

Lemma 3: Consider a system of M caches where each
cache has a size b. We have

K

K
1
W (M) < pitpci (Brpasian + 1) (b -2 m)
i=1 =17
& pupper. ©))

where K is the integer such that

K+1
Zﬂzsz+1—b< Z@ 11

The proof of Lemma 3 is presented in Appendix D. The
upper bound proposed in this lemma is actually the hit ratio
achieved by an idealized policy. The idealized policy assumes
that we could always overhear any data item at any time
and attempts to find the best overhearing time based on the
anticipated arrival time for the next request.

Let h¥ (M) denote the expected overall hit ratio achieved by
¥ in a system consisting of M caches. We characterize the
distance between h¥ (M) and h"PP" in the following theorem.

Theorem 4: For the proposed policy ©F and K defined in
Equation (10), we have, as the number of caches M — 400,

0 < h*(M) — hE (M)

< pMPPer hE(M) < max 2
1<i<K+1

(10)

(Bisi +1)/M,

which implies that
lim AP(M)= lim h*(M

M —+o00 M —+o00

In Appendix E, we prove Theorem 4 by showing that
the expected inter-overhearing time for each date item will
converge to zero as M goes to infinity. Theorem 4 tells us that
the proposed policy ¥ for event-driven overhearing setting
is asymptotically optimal as the number of caches goes to
infinity. Intuitively, as the number of caches in the system
increases, it will be more likely to overhear a data item.
The proposed policy could efficiently utilize the overhearing
opportunities and achieve asymptotically optimal performance.

) — hupper.

to design provably good policies, we previously assumed in
Section IV-A that the cache occupancy achieved by the item
policy 7°(w;), w; > s;, can be analytically solved. Based
on this tractability assumption, we propose and analyze 7%
in Section IV-B. In this section, we will discuss how to
implement the proposed policies without this assumption.

First, we note that it is impractical to estimate the cache
occupancy for all possible 7°(w;)’s, since w; can take any real
numbers. In contrast, we will show that a good performance
can be guaranteed by leveraging an accurate estimation of the
cache occupancy achieved by a specific item policy 7°(s;).

For the convex problem (8), KKT conditions show that the
optimal solution satisfies that

21 £ r9(s;)and 0 < rf <1) <1, (11)
=1

where 79(s;) is the cache occupancy achieved by the
overhearing-only item policy 7°(w;) with w; = s;. It indicates
that there is at most one r; that takes a value other than
r9(s;), 0 and 1. In other word, except for one item policy,
the other item policies in the optimal solution must be the
overhearing-only item policy 7°(s;) or a randomization of
7m°(s;) and w°(+00). As a result, we could further narrow
down the policy set by considering 7°(s;) and randomizations
of 7°(s;) and 7°(+00), i.e

{m (@i, 1 =

Once we have a good estimation of 79(s;), all item policies
in this set are tractable.

Therefore, to implement the caching and overhearing policy
¥ proposed in Section IV-B, we could solve the hit ratio
maximization problem based on the policy set (12) rather than
the one defined in (6). The solved policy is an approximation
of w¥. By applying (11), we can prove that the overall hit
ratio achieved by this approximated policy is within 1 — 1/b
fraction of %, where b is the cache size.

The remaining problem is how to estimate 79(s;) values.
A simple idea is to first run an estimation phase to approximate
r?(s;) and then solve the modified policies using the estimated
values. In the estimation phase, for each data item d;, we may
run 7°(s;) for T units of time, and estimate r{(s;) by

73 (si) =

The proposed implementation solution could introduce per-
formance losses compared to the original policy ¥ due to
the following two reasons:

qi), (+00,0), (+00,5;)) : 0 < ¢; < 1}, (12)

(Duration of time when d; is cached) /7.

1) The implemented policy is an approximation of % by
considering the policy set (12) rather than (6).

2) The caching and overhearing decisions are biased since
the estimation 79(s;) is not accurate.

However, these performance losses could be ignored as long
as the cache size b and the length of the estimation phase T’
are sufficiently large.
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V. GENERALIZATION FOR HETEROGENEOUS
DEMAND DYNAMICS

In the main paper, we focus on the homogeneous demand
dynamics, where different users have the same demand pattern
(i.e., s;, 3;) for a given data item d;. The obtained insights and
theorems can be easily generalized for heterogeneous demands
with minor modifications.

We use m, 1 < m < M, to index an edge cache or the user
served by the corresponding edge cache interchangeably, since
each edge cache is assumed to serve a single user. Our first
step is to extend the proposed ON-OFF processes to allow
for different demand patterns of the same data item among
different users. For the user m, we use the proposed ON-OFF
process with a OFF-period length sl(-m) and ON-period request
rate ﬁi(m) to describe the demand dynamics of the data item
d;. The popularity of d; for user m can be evaluated by

/Z ) g1/

p™ = (s +1/8)
Define v(™) as

N
P =5 (s 4 1/0M) /ZZ (0™ 4 1780 !

i=1 m=11i=1

v(™) represents the ratio of requests that are from user m.
We have "M p(m) =1,

Similar to the hit ratio and the cache occupancy defined in
Section TI-D, we use 1" () and r™ () to denote the hit
ratio and the cache occupancy of the data item d; in the edge
cache m achieved by the item policy 7, respectively.

Our goal is to find the optimal policy such that the overall hit
ratio of the entire system is maximized. We formally propose
the problem as follows.

M N
ZZV p(m) h(m)( (m))
=1

max
™ 1<m<MI<i<N o1 5
subject to 7™ eI 1<m< M1<i<N,
N

)<b, 1<m<M. (13)

A. Time-Driven Overhearing

The time-driven overhearing process is independent of the
edge caching policy. Under time-driven overhearing, the cache
hit ratio and occupancy of an edge cache are determined by
its own policy and are independent of other caches. Therefore,
maximizing the overall hit ratio of the entire system is equiva-
lent to maximizing the hit ratio of each edge cache separately.
Formally, we can propose M sub-problems, where the m-th
problem is defined as follows.

N
S (a1
i=1

(m) c Hrco

max
™ 1<i<N

subject to 1<i <N,

)

v
Zr ™) (m) <b.

i=1

(14)
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Let {ng)* :1 <4 < N} denote the optimal solution of the
sub-problem (14), then {7\"™* : 1 < i < N,1 < m < M}
would be the optimal solution of the original problem (13).
Notably, solving the sub-problem (14) is equivalent to solving
problem (3) that was proposed for the homogeneous set-
ting previously. Therefore, our analysis for the homogeneous
demand setting in Section III is still valid for the heteroge-
neous setting with time-driven overhearing. And the proposed
77" policy would be the solution to the sub-problem (14),

where the policy inputs s;, 3; are replaced by s{™ and g™

B. Event-Driven Overhearing

The event-driven overhearing process becomes more com-
plicated when the demand dynamics are heterogeneous across
different edge caches. We are not able to split the origi-
nal overall hit ratio maximization problem to independent
sub-problems designed for each cache, since the policy for
one cache will impact the overhearing processes as well as
the optimal decision of other caches.

Due to the increased complexity, the policy P proposed for
homogeneous demand dynamics cannot be directly extended
for heterogeneous settings. Fortunately, the key properties of
hit ratios and cache occupancies characterized in Lemma 2
are still valid for each edge cache. In particular, for the edge
cache m, Lemma 2 holds if we replace s;, §; by s ﬂ(m)
Similar to the idea of proposing policy 7% for homogeneous
demands in Section IV, we will leverage Lemma 2 and the
informative structure characterized in Section III-B to design
a provably good policy.

For the cache m and the data item d;, let ((i,m) be a
reordering of the data index, such that ((i,m) takes dlstmct
integer values in [1, N] for different input ¢, and 5( (i) =

N. Define the set of items

ﬁé??m) forany 1 < i < j <
K(m)}, where K(™) is an

DM = {d; : 1 < ¢(i,m) <
integer such that

K41

<b< > (m);

=1 Be(iim)Si

i=1 ﬁg(zm) % )+1
We say the data item d; is a popular data item for user m, if
¢(i,m) < K™ Define C; = {m : ((i,m) < K™} to be the
set of users, for which d; is a popular data item. We propose
the policy wF~© as follows.

Overhearing only policy for event-driven overhearing
(~9): For each edge cache m, apply the overhearing only
item policy wo(sgm)) to serve the data item d;, if d; € D(™).
Do not overhear or cache the data items that are not in D).

7P~0 imitates the overhearing decisions of 7, which is
proposed for homogeneous demand dynamics in Section IV-B.
However, to simplify the analysis, 7w ~© forgoes the caching
only options of w¥. For M caches under event-driven over-
hearing, let h* (M) and h¥~C (M) denote the overall expected
hit ratio achieved by the optimal policy and the proposed pol-
icy wF~9, respectively. Assume that ﬂi(m) is upper bounded

and define B0 = maxi<i<ni<m<m B; . We can prove
that hE=C(M) is close to h*(M).
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o

Theorem 5: For the proposed policy wF=C, we have

0 < h*(M)—hEP=9(M)
2 \Y 6max

-1
S, (54178
The proof of this theorem uses a similar approach that
proves Theorem 4, and therefore is omitted due to the
page limit. The detailed proof can be found in the tech-
nical report [43]. Theorem 5 indicates limp; oo h*(M) —
hE=O(M) = 1/b, if we have, for any 1 <i < N

Z (ng) + 1/,61-(7"))71 — 400.

meC;

1
< -+ max
b 1<i<N

(16)

lim

M —+o00
Condition (16) states that as the user population grows, the
overall request rate for d; from the user set C; also keeps
increasing. Under such conditions, we would have more
and more overhearing opportunities as the user population
increases. Theorem 5 reveals an insight that near optimal
caching performance can be achieved by strategically leverag-
ing the overhearing opportunities (i.e., 7%~©), if the demand
of each data item increases consistently when it is exposed to
a larger user population.

Unlike the policy 7 that can achieve asymptotically opti-
mal performance for homogeneous demand settings, the policy
PO designed for heterogeneous settings always has a 1/b
hit ratio gap with the optimal policy. The reason is that
7E~O adopts an overhearing only mechanism and restricts
the overhearing TTL wim) to take either value sgm) or 400
for the ease of analysis. Considering that the cache size b is
typically large, 7¥~© achieves reasonably good performance.

VI. EVALUATION

We will validate the theoretical results by evaluating the
empirical performance of the proposed w7 and 7¥ policies
and comparing them with the following benchmarks:

o The optimal overhearing-only policy: this policy is the
solution of problem (3) with an additional constraint
7 = 0,1 <14 < N, and can be easily solved using
the same approach that solves w7 and 7w¥. The optimal
overhearing-only policy evicts the data item immediately
after a request for it.

o The optimal caching-only policy: this policy is the solu-
tion of problem (3) with an additional constraint w; =
400, 1 <4 < N, and can be easily solved using standard
convex optimization tools. It turns out that the optimal
caching-only policy caches data items with the largest
long term popularities. and achieves better performance
than various conventional policies (e.g., LRU, LFU)
under the setting of this paper.

o LFU policy: the policy caches the most frequently used
data items, which is an approximation of the optimal
caching-only policy.

o LRU policy: the policy caches the most recently used data
items.

In Experiments 1 and 2, we evaluate the performance of
these policies under time-driven and event-driven overhearing
settings, respectively.

0.5
S b ¢ G ———tp—t—d
© 0.4 . .
_: —A— Caching & overhearing
< Caching only
0.3 —©&— Overhearing only
5 —— LFU
>
—— LRU
© 0.2
Aw 4 X7 Aw i XL Aw X7 Aw i \7 Aw X7
0']0.0 0.5 1.0 1.5 2.0 2.5
Overall overhearing rate
(@
1.0
o
©0.8
—
£
<
<06 Cachi .
© —A— Caching & overhearing
g Caching only
o 0.4 —©— Overhearing only
—— LFU
—— LRU
0'20 200 400 600 800 1000
Cache size

(b)

Fig. 8. Overall hit ratio with time-driven overhearing.

Experiment 1: In this experiment, we consider the
time-driven overhearing setting. Set b = 50, N = 1000,
Bi = c-i7%% with ¢ = 1/ Zf;l i~98 and s; = 1/3;. Let
Ai = v - B, where v = Zf\il A; is the overall overhearing
rate. Since the number of caches M does not impact the
performance for time-driven overhearing, we simply set M =
1. We evaluate the overall hit ratios under different v values
and depict the results in Figure 8a. It can be observed that
the proposed optimal caching and overhearing policy w7
always outperforms the other benchmarks. The overhearing-
only policy achieves similar performance as w7 when ~ is
large, which validates that when there are sufficient over-
hearing opportunities, the overhearing-only policy can achieve
near optimal performance. However, when ~ is small, the
overhearing-only suffers a lot. The overall hit ratios achieved
by the caching-only policy, LFU and LRU are constant, since
they are independent of the overhearing process. LFU achieves
similar performance as the caching-only policy. However, LRU
achieves much worse performance, since the most recently
used data item may not be popular in the near future due to
the individualized demand dynamics.

Next, we fix v = 1 and change the cache size b. The results
are plotted in Fig. 8b. The caching and overhearing policy 77
still outperforms the other benchmarks. As for the overhearing-
only policy, the hit ratio will be a constant less than 1, when
the cache size is larger than a threshold. The reason is that
the overall overhearing rate is too low, and cache is not full
even when we maximize the overhearing utilization (i.e., set
w; = 0). As a result, further increasing the cache size will not
lead to a higher hit ratio. The caching-only policy, LFU and
LRU can achieve a hit ratio 1, when the cache is large enough
to store all items (i.e., b = N = 1000).
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Fig. 9. Overall hit ratio with event-driven overhearing.

Experiment 2: In this experiment, we simulate the event-
driven overhearing. Consider N = 1000 data items with
Bi = c-i %8 ¢ = 1/2?;1 i98 and s; = 1/83; for
1 <4 < N. We evaluate the overall hit ratios achieved by
the proposed overhearing and caching policy 7% as well as
other benchmarks, and compare them with the upper bound
of the optimal hit ratio derived in Equation (9). Note that the
policy ¥ is solved using an estimation phase with duration
10000 based on discussions in Section I'V-C.

First, we set the cache size b = 50 and evaluate the
hit ratios for different numbers of caches. The results are
plotted in Figure 9a. The proposed caching and overhearing
policy always achieves the best performance. When M is
small, the overhearing-only policy achieves a much lower
hit ratio than the caching-only policy. When M is large, the
overhearing-only policy outperforms the caching-only policy.
In addition, the hit ratios achieved by the caching and over-
hearing policy are getting closer to the upper bound A"PP¢
as M increases, which validates the asymptotic optimality.
LFU achieves similar performance to the optimal caching-only
policy and LRU achieves the worst performance.

Next, we set M = 50 and evaluate the hit ratios for
different cache sizes. The results are presented in Figure 9b.
The proposed caching and overhearing policy 7% always
achieves the best performance. When the cache size is less
than 500, the overhearing-only policy outperforms the caching-
only policy, because M is relatively large to generate sufficient
overhearing opportunities. However, for b > 500, when we
further increase the cache size, the overhearing-only policy
cannot achieve a larger hit ratio. At this time, the overhearing
opportunities become the bottleneck of the system, and the
cache space cannot be fully utilized due to the lack of
overhearing opportunities. In contrast, the proposed caching
and overhearing policy, the caching-only policy, LFU and LRU
can always benefit from a larger cache size.
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VII. CONCLUSION

Edge caching typically serves a very small group of users
with individualized data demand. Hence, caching schemes for
an edge need to be substantially different from those at the core
that serves a large population of users. In this paper, we devel-
oped new caching policies optimized for individualized data
demand at the wireless edges. With the objective to maximize
the overall hit ratio, we proposed to actively evict the data
items that are not likely to be requested in the near future
and bring them back into the cache through overhearing when
they become popular again. In particular, when the overhear-
ing opportunities are time-driven, the optimization problem
turns out to be non-convex. Nevertheless, by exploiting an
informative structure of the optimal solution, we converted the
original problem to a convex one and found the optimal policy
7. When the overhearing opportunities are event-driven, the
overhearing processes become intractable. Still, inspired by the
optimality structure of the time-driving overhearing setting,
we proposed a caching and overhearing policy w% which is
asymptotically optimal as the total number of caches increases.
Both theoretical and numerical results verified that the caching
policies designed specifically for edges could substantially
improve the caching efficiency and outperform the policies
designed for the core.

APPENDIX A
PROOF OF THEOREM 1

Let 7°(7;) = 7 (7;, +00) denote a caching-only policy that
never overhears. Let h$(7;) and r{(7;) denote the expected
hit ratio and cache occupancy of the data item d; when it is
served by the policy 7¢(7;). Similarly, we can define 7°(w;) =
7°(0, w;), h9(w;) and hQ(w;). We will establish the following
lemma before proving Theorem 1.

Lemma 4: The expected hit ratio and cache occupancy
achieved by 7°(7;,w;) with 7, < w; can be calculated by
he(Ti,wi) = hS(mi)+he(w;) and (T3, wi) = r5(T)+7(w;).

Proof: [Proof of Lemma 4] Assume there is a request for
the data item d; at time O and the next request for d; will
arrive at time o > s;. We will first analyze the probability of
having a cache hit of d; at time o, as well as the expected
time when d; is stored in the cache in the time interval [0, o].

P[cache hit at time o| d; is served by 7°°(7;, w;)]
=Plo > s; + w; and d; is overheard during [w;, o]]
+Plo < s; + 74
P[cache hit at time o| d; is served by 7°(7;)]
=Plo < s; + 7]
Plcache hit at time o| d; is served by 7°(w;)]
=P[o > s; + w; and d; is overheard during [w;, o]].
Hence, we have
P[cache hit at time o] d; is served by 7% (7;, w;)]
= IP[cache hit at time o| d; is served by 7°(7;)]
+ IP[cache hit at time o| d; is served by 7°(w;)],

which indicates h°° (7, w;) = h$(1;) + h9(w;), since the policy
is renewed after each data request.

Authorized licensed use limited to: Purdue University. Downloaded on March 06,2024 at 21:55:59 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

QUAN et al.: OPTIMAL EDGE CACHING FOR INDIVIDUALIZED DEMAND DYNAMICS 13

Let T, T° and T° denote the amount of time when d;
is stored in the cache during [0, o], if 7°°(7;,w;), 7°(7;) and
m°(w;) are applied, respectively. We have T = T° 4 T°,
which indicates 7 (7;, w;) = r$(1;) + r9(w;). O

Proof: [Proof of Theorem 1] In order to prove Theorem 1,
we will derive the expected hit ratio and cache occupancy
achieved by 7°(7;), 7°(w;) in different parameter regions.

Case 1: 7, < w; <s;

In this case, the cached data item d; is evicted dur-
ing the OFF period. Thus, the caching-only policy 7¢(7;)
always achieves a 0 hit ratio and cache occupancy. For the
overhearing-only policy 7°(w;), without loss of generality,
we assume that the most recent request arrives at time 0.
We will analyze the probability that the next request for d;
is a hit, and its expected cache occupancy. Let X; denote the
time when the next request for d; arrives, and Y; denote the
time when we overhear d; for the first time after the deaf
period. We have

()

P[The next request for d; is a hit under 7°(w;)]
PlY; + w; < Xj]

PlY; +w; < s;] +P[s; <Y +w; <X

1 —exp (—Ai(s; — wi))

Ai
e (Ails — ) 1o
=1—exp(—XA(s; —wi)) - s ﬁﬂ

The cache occupancy of 7°(w;) is

7y (wi) = (PY; + wi < 5]

E[X;]
CE[X; =Y —wi|Y; +w; < s
+Pls; <Y 4w <X
ElX; —Y; —wils; <Y +w; < Xj])

B [i(i] ((1 — exp(=Ai(si —wi)))

&=

S; — Wj 1 1
. (1 —exp(—Ai(si —wi) N * ﬂi)

+exp(—Ai(si —wi))

*11)
Ai + B Bi

11
N Bi)

Case 2: 7; < s; < w;

In this case, the expected hit ratio and cache occupancy of
the caching-only policy are all 0 similar to Case 1. For the
overhearing-only policy, we have

h?(w;) = P[The next request for d; is a hit under 7°(w;)]
:P[Sl <Y +w; < Xz]

Ai
=exp (—Ai(si —wj)) - N+ B
1

E[X; =Y —wilsi <Y +w; <X

i 1
a Wi)>/\i + B Bi

— E[AIXZ] exp(—X;(s;

Case 3: s; <7; < w;
In this case, h9(w;) and r?(w;) are exactly the same as those
in Case 2. As for 7°(7;), we have
hi(1;) = P[The next request for d; is a hit under 7°(7;)]
=1- exp(fﬂi(n — 51))
The expected cache occupancy can be calculated as
1
TZ?TZ' = PX12T171+PXZ<T,LEX1XZ<T,L
() = g (BU%s 2 7l -7+ BLX; <] ELXIX, < )
1
E[X;]
+ ]P[Xi < Ti] ]E[XAXZ < Tz])

1
= ——(-PX; > 1| - E[X; — 7| X; > 7] + E[X;
sy (P = 7l EBLX — il X 2 7] 4 EIX)
13 (- (=Bl — 51))
= — eXp(—P;\T; — S; .
EX ]G
Then applying Lemma 4 completes the proof. O

APPENDIX B
PROOF OF LEMMA 1

The proof of Lemma 1 consists of two steps. In Step 1,
we will show that for 7; < s;, there exists w; such that
h‘;“(Ti,wi) < h?(@l) and T?O(Ti,wi) = T?(@i); for 7, > s,
there exists 7; such that h{®(7;, w;) < h$(7;) and r$°(7;, w;) =
r$(7;). Next, in Step 2, we will show that the h°(-) function
characterizes the upper boundary.

Step 1: For 7; < s, it is easy to observe that w; = w;
will satisfy the property. By applying Theorem 1, we can
verify that h$°(7;,w;) = h{°(0,w;) = hS(®;) and r$°(7;,w;) =
ri°(0,w;) = r(wi).

For 7; > s;, we may first solve 7; as the unique solution
to the equation 7$°(7;,w;) = r$(7;). Then, we will prove that
h$o(7i,wi) < h$(7;). By applying Lemma 4, it is equivalent
to prove h$(m;) + h9(w;) < (7).

Since 7$°(7;, w;) = ri(7) + rd(w;) = r$(7;), we have
ri(wi) = ri(7e) —ri(n) = (Bi(7e) — hi(7:)) /(Bisi + 1),
where the second equation holds due to the fact that 7; >
7; > s; and the linear relationship between h; and 7%,
which is illustrated in Fig. 6 and can be easily proved using
Theorem 1. Moreover, Theorem 1 also indicates that rf(w;) >
hQ(w;)/(Bisi + 1). Therefore, we have h$(7;) — h$(m) >

hQ(w;), which completes Step 1.

Step 2: First of all, we will show that for any randomized
item policy 7°(q;, T, w;) with |q;| = |7i| = |wi| =n > 2,
there exist q;, 7; and w; with |q;| = |7;| = |w;i| = 2, such
that h;co(q“ Ti, (.«JZ) < hl;-co(ai, ;h (:37) and T§C0(qi, Ti, wz) =
o (Qi, Ti, Wi)-

The item policy 7°(q;, T;,w;) is a randomization of n
deterministic item policies 7r°°(7'i(J ),w§] )), 1 < j < n
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Fig. 10. Randomized policies achieving hit ratios and cache occupancies in
a convex polygon.

As shown in Fig. 10, we may plot the cache occupancies
and the hit ratios achieved by the deterministic item policies
7r°°(7'i(] ),ng )), 1 < j < n, in a two-dimensional Cartesian
coordinate system where the x-axis represents the cache
occupancy and the y-axis represents the hit ratio. Based on
Theorem 2, the cache occupancy and hit ratio achieved by
any randomized item policy 7"°(q;, T;,w;) must be in the
convex hull of these n points (i.e., a convex polygon).

Next, we may find 7"°(q;, 7, w;) as the item policy that
maximizes the expected overall hit ratio, while the cache
occupancy is the same as the one achieved by 7™ (q;, 7;, w;).
We can observe that 75°°(q;, 73, w;) must be on the boundary
of the convex polygon and is achieved by the randomiza-
tion of two deterministic policies. For example, in Fig. 10,
T°(q,, T4, w;) is a randomization of WCO(Ti(l),wfl)) and

co((4) (4
T W)

Therefore, for any item policy in the set II"°, there must

exist an item policy from the set

ﬁrco é{ﬂ,rco ((q7 1 — q)7 (7_(1)77_(2))7 (w(l)’w(Q))) .
0<¢<1,0<7Y <0 1< <2},

that achieves the same cache occupancy and a higher (or the
same) hit ratio. An item policy in the set II'° is a random-
ization of two deterministic item policies 7°(7(1), w(1)) and
7(r®, w®@). We have I C II*°. Based on the result
of Step 1, we may know that the any point on the upper
boundary of R must be achieved by a randomization of
an overhearing-only item policy 7°(w;) and a caching-only
item policy 7¢(7;) for some w; > 7; > 0. Based on the result
of Step 1, we can further conclude that for any item policy in
the set II"°, there must exist an item policy from the set

{7 (a.1-0). (7,0, (+o0,0))
0§q§LO§T§+mﬁ§w§+m}

that achieves the same cache occupancy and a higher (or
the same) hit ratio. By applying Theorem 1, we can show
that h9(r) > h$(r) for 0 < r < 72(0) and hQ(r9(0)) <
h$(r$(400)) = 1. Therefore, for any item policy in the set
II"°, there must exist an item policy from the set

I = {7°(w) : w > 0}
U{m™((g:1 = q), (+00,0), (+00,0)) : 0 < ¢ < 1}
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that achieves the same cache occupancy and a higher (or the
same) hit ratio.

APPENDIX C
PROOF OF LEMMA 2

Consider the overhearing-only item policy 7°(w;) with w; >
s; under the event-driven overhearing setting. Without loss of
generality, we assume that the most recent request arrives at
time 0. We will analyze the probability that the next request
for d; is a hit, and its expected cache occupancy. Let X;
denote the time when the next request for d; arrives, and Y;
denote the time when we overhear d; for the first time after
the non-overhearing period (i.e., after time w;). We have

h?(w;) = P[The next request for d; is a hit under 7°(w;)]
=P[Y; + w; < Xj]

The cache occupancy of 7°(w;) is

1
r?(wi) = E[X}P[Y; +w; < Xi]
BIX =Y —wilY; +wi < X
1
IE[XAP[YZ +w; < X;)
‘EEX; - Y —w|Y; +w; < X;]|Y]]
1
— PV +wi < Xi]-E[1/3]Y;
E[X;] [Yi +wi < X [1/8:]Y]

=PlY; +wi < Xil/(sifi +1).

Therefore, we have h¢(r) = (s;0; + 1)r for w; > s;, or
equivalently, for 0 < r < 7$°(0, s;).

Since the caching-only item policy 7¢(7;) is independent of
the overhearing process, the hit ratio and the cache occupancy
are the same as those in time-driving scenarios.

APPENDIX D
PROOF OF LEMMA 3

We want to show that for a given cache size b, any
achievable overall hit ratio must be no larger than A"PP®.
Consider an idealized setting, where we can always overhear
d; and store it in the cache, 1 <1 < N, immediately after its
OFF period. Let hi%(r) be the expected hit ratio of d; when
the cache occupancy is r under the overhearing only item
policy 7°(w;). hi%(r) is defined for 0 < r < 1/(B;s; + 1).
We can show that hi%(r) = (3;s; + 1)r. Note that a hit ratio
1 and a cache occupancy 1/(3;s; 4+ 1) are achieved by 7°(s;).

By applying Theorems 1 and 2, it is easy to prove that
for any (r,h) € RI°, we have h < hitd(r). Therefore, the
maximal overall hit ratio of problem (3) should not exceed the
maximal overall hit ratio of the following problem

N .
Zpi . h;dea](ri)
=1

0<r <11<i<N,

N
Z i S b.
i=1

max
T

subject to

a7
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Based on Equation (2), we have p; - hi%(r;) = p;(8;s; +
Dr; = ﬂ,;m/(ZéV:l 1/(s; +1/83;)). Since the data items are
sorted such that f3; is decreasing with respect to i, the optimal
solution to problem (17) is to set r; = 1/(s;53;+1) for 1 <14 <
K, rgi1 = b—ZiK:j 1/(sjB;+1) and r; = 0 for s > K + 1.
And the achieved optimal overall hit ratio is

i=1
which is an upper bound for the overall hit ratio that achieved

by any feasible solution to problem (3). Therefore, we have
h* (M) < h'PPe* for VM > 0.

APPENDIX E
PROOF OF THEOREM 4

Consider M edge caches with event-driven overhearing
opportunities. Assume that the data item d; is served by the
item policy 7°(s;). We define H; as

oAy Number of hits for d; during [0, T
; — 11m - .
T—oo Number of requests for d; during [0, 7]

We first introduce the following lemma, where the proof the
provided in the technical report [43].

Lemma 5: Consider M edge caches with event-driven over-
hearing opportunities. If the data item d; is served by the item
policy ©°(s;), then we have 0 <1 — H; < 2./(B;s; + 1)/M
almost surely.

Proof: [Proof of Theorem 4] First, define an overhearing
only policy as follows. Let the overhearing only element policy
m°(s;) serve d;, 1 < i < K, where K in defined in (10). Based
on the definition of K, we have Zf; r2(s;) < b, where r9(s;)
is the cache occupancy of d; under 7°(s;). We serve dy 1 by
7 (sK41), if Zfilr?(si) < b. Otherwise, we serve dx i1
by 7°(wk41), such that r§ (wri1) = 1 — Zfil r2(ss).
We note that

o if dg4q is served by 7°(wg41) Wwith w11 # Sk+1

under the proposed overhearing only policy, then based

on Lemma 2, we have hQ(wx+1) > h;'', where h;"*"

is the hit ratio of d; under the idealized policy defined in

Section IV-B;

« the proposed overhearing only policy cannot outperform
¥, since the overhearing only policy is a feasible

solution of problem (8), while 7 ¥ is the optimal solution.
Let h)(M) = E[H;] denote the expected hit ratio of d;
achieved by the proposed overhearing only policy. By applying
Lemma 5 and the fact that H; is bounded, we have
BO(M) = 1 — 2y/(Biss + 1)/M.

Under the idealized policy proposed in Section IV-B, the
hit ratios for d;, K +1 < 7 < N, must be zeros. Therefore,
we can conclude that

N
Jupper _ hE (M) < Jupper _ szhg(M)
=1

K+1

< Z pi(1 = h3(M))

K K
1 A upper
Zpi+pK+1 (6K+15K+1+1) (b—gm_’_:l) :hpp y

K+1

Z 2 piv/ (Bisi +1)/M

IN

< i8S .
< | Joax 2/ (Bisi +1)/M
O
ACKNOWLEDGMENT

The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation herein.

REFERENCES

[1] F. Qian et al., “Web caching on smartphones: Ideal vs. reality,” in Proc.
10th Int. Conf. Mobile Syst., Appl., Services, 2012, pp. 127-140.

[2] D. Niyato, D. I. Kim, P. Wang, and L. Song, “A novel caching

mechanism for Internet of Things (IoT) sensing service with energy

harvesting,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2016,

pp. 1-6.

X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung, “Cache

in the air: Exploiting content caching and delivery techniques for 5G

systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 131-139, Feb. 2014.

K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Cooperative

content caching in 5G networks with mobile edge computing,” IEEE

Wireless Commun., vol. 25, no. 3, pp. 80-87, Jun. 2018.

[5]1 Q.Jia, R. Xie, T. Huang, J. Liu, and Y. Liu, “Efficient caching resource
allocation for network slicing in 5G core network,” IET Commun.,
vol. 11, no. 18, pp. 2792-2799, 2017.

[6] S.Li,J. Xu, M. Van Der Schaar, and W. Li, “Popularity-driven content
caching,” in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun.,
Apr. 2016, pp. 1-9.

[71 Q. Huang, K. Birman, R. Van Renesse, W. Lloyd, S. Kumar, and
H. C. Li, “An analysis of Facebook photo caching,” in Proc. 24th ACM
Symp. Oper. Syst. Princ., 2013, pp. 167-181.

[8] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti, “Dynacache:

Dynamic cloud caching,” in Proc. 7th USENIX Conf. Hot Top-

ics Cloud Comput. (HotCloud). Santa Clara, CA, USA: USENIX

Association, 2015, p. 19. [Online]. Available: https://dl.acm.org/doi/

10.5555/2827719.2827738

S. Jiang and X. Zhang, “LIRS: An efficient low inter-reference recency

set replacement policy to improve buffer cache performance,” ACM

SIGMETRICS Perform. Eval. Rev., vol. 30, no. 1, pp. 31-42, 2002.

[10] R. Nishtala et al., “Scaling memcache at Facebook,” in Proc.
10th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2013,
pp. 385-398.

[11] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Proc. 12th
ACM SIGMETRICS/PERFORMANCE Joint Int. Conf. Meas. Modeling
Comput. Syst., Jun. 2012, pp. 53-64.

[12] P.R. Jelenkovi¢, “Asymptotic approximation of the move-to-front search
cost distribution and least-recently used caching fault probabilities,” Ann.
Appl. Probab., vol. 9, no. 2, pp. 430-464, 1999.

[13] G. Adomavicius and Y. Kwon, “Improving aggregate recommendation
diversity using ranking-based techniques,” IEEE Trans. Knowl. Data
Eng., vol. 24, no. 5, pp. 896-911, May 2011.

[14] N. J. Hurley, “Personalised ranking with diversity,” in Proc. 7th ACM
Conf. Recommender Syst., 2013, pp. 379-382.

[15] X. Qian, D. Lu, Y. Wang, L. Zhu, Y. Y. Tang, and M. Wang, “Image re-
ranking based on topic diversity,” IEEE Trans. Image Process., vol. 26,
no. 8, pp. 3734-3747, Aug. 2017.

[16] J. Tadrous, A. Eryilmaz, and A. Sabharwal, “Action-based scheduling:
Leveraging app interactivity for scheduler efficiency,” IEEE/ACM Trans.
Netw., vol. 27, no. 1, pp. 112-125, Feb. 2019.

[17] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack, “WAVE:
Popularity-based and collaborative in-network caching for content-
oriented networks,” in Proc. IEEE INFOCOM Workshops, Mar. 2012,
pp. 316-321.

[3

=

[4

=

[9

—

Authorized licensed use limited to: Purdue University. Downloaded on March 06,2024 at 21:55:59 UTC from IEEE Xplore. Restrictions apply.



(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K page
replacement algorithm for database disk buffering,” ACM SIGMOD Rec.,
vol. 22, no. 2, pp. 297-306, 1993.

E. Friedlander and V. Aggarwal, “Generalization of LRU cache replace-
ment policy with applications to video streaming,” ACM Trans. Model.
Perform. Eval. Comput. Syst., vol. 4, no. 3, pp. 1-22, 2019.

N. Beckmann, H. Chen, and A. Cidon, “LHD: Improving cache hit rate
by maximizing hit density,” in Proc. 15th USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2018, pp. 389—403.

G. Quan, J. Tan, A. Eryilmaz, and N. Shroff, “A new flexible multi-flow
LRU cache management paradigm for minimizing misses,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 3, no. 2, pp. 1-30, 2019.

G. Domingues et al., “The role of hysteresis in caching systems,” ACM
Trans. Model. Perform. Eval. Comput. Syst., vol. 6, no. 1, pp. 1-38.
A. Ferragut, I. Rodriguez, and F. Paganini, “Optimizing TTL caches
under heavy-tailed demands,” ACM SIGMETRICS Perform. Eval. Rev.,
vol. 44, no. 1, pp. 101-112, 2016.

M. Dehghan, L. Massoulié, D. Towsley, D. S. Menasché, and Y. C. Tay,
“A utility optimization approach to network cache design,” IEEE/ACM
Trans. Netw., vol. 27, no. 3, pp. 1013-1027, Jun. 2019.

J. Jung, A. W. Berger, and H. Balakrishnan, “Modeling TTL-based inter-
net caches,” in Proc. 32nd Annu. Joint Conf. IEEE Comput. Commun.
Societies (INFOCOM), vol. 1, 2003, pp. 417-426.

S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and
S. Niccolini, “Temporal locality in today’s content caching: Why it
matters and how to model it,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 5, pp. 5-12, Nov. 2013.

M. Garetto, E. Leonardi, and S. Traverso, “Efficient analysis of caching
strategies under dynamic content popularity,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2015, pp. 2263-2271.

M. Leconte, G. Paschos, L. Gkatzikis, M. Draief, S. Vassilaras, and
S. Chouvardas, “Placing dynamic content in caches with small popula-
tion,” in Proc. IEEE INFOCOM 35th Annu. IEEE Int. Conf. Comput.
Commun., Apr. 2016, pp. 1-9.

D. T. Hoang, D. Niyato, D. N. Nguyen, E. Dutkiewicz, P. Wang, and
Z. Han, “A dynamic edge caching framework for mobile 5G networks,”
IEEE Wireless Commun., vol. 25, no. 5, pp. 95-103, Oct. 2018.

K. Qi, S. Han, and C. Yang, “Learning a hybrid proactive and reactive
caching policy in wireless edge under dynamic popularity,” IEEE Access,
vol. 7, pp. 120788-120801, 2019.

S. Kumar and R. Tiwari, “Optimized content centric networking for
future internet: Dynamic popularity window based caching scheme,”
Comput. Netw., vol. 179, Oct. 2020, Art. no. 107434.

J. Gao, S. Zhang, L. Zhao, and X. Shen, “The design of dynamic
probabilistic caching with time-varying content popularity,” IEEE Trans.
Mobile Comput., vol. 20, no. 4, pp. 1672-1684, Apr. 2021.

T. Zong, C. Li, Y. Lei, G. Li, H. Cao, and Y. Liu, “Cocktail edge caching:
Ride dynamic trends of content popularity with ensemble learning,”
IEEE/ACM Trans. Netw., vol. 31, no. 1, pp. 208-219, Feb. 2023.

B. Abolhassani, J. Tadrous, and A. Eryilmaz, “Single vs distributed edge
caching for dynamic content,” IEEE/ACM Trans. Netw., vol. 30, no. 2,
pp. 669-682, Apr. 2022.

M. Bastopcu and S. Ulukus, “Information freshness in cache updating
systems,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1861-1874,
Mar. 2021.

S. Zhang, L. Wang, H. Luo, X. Ma, and S. Zhou, “Aol-delay tradeoff
in mobile edge caching with freshness-aware content refreshing,” IEEE
Trans. Wireless Commun., vol. 20, no. 8, pp. 5329-5342, Aug. 2021.
K. Poularakis, G. losifidis, V. Sourlas, and L. Tassiulas, “Exploiting
caching and multicast for 5G wireless networks,” IEEE Trans. Wireless
Commun., vol. 15, no. 4, pp. 2995-3007, Apr. 2016.

Y. Cui and D. Jiang, “Analysis and optimization of caching and multi-
casting in large-scale cache-enabled heterogeneous wireless networks,”
IEEE Trans. Wireless Commun., vol. 16, no. 1, pp. 250-264, Jan. 2017.
B. Zhou, Y. Cui, and M. Tao, “Optimal dynamic multicast scheduling
for cache-enabled content-centric wireless networks,” IEEE Trans. Com-
mun., vol. 65, no. 7, pp. 2956-2970, Jul. 2017.

M. M. Amiri and D. Giindiiz, “Caching and coded delivery over
Gaussian broadcast channels for energy efficiency,” IEEE J. Sel. Areas
Commun., vol. 36, no. 8, pp. 1706-1720, Aug. 2018.

B. Abolhassani, J. Tadrous, and A. Eryilmaz, “Delay gain analysis of
wireless multicasting for content distribution,” IEEE/ACM Trans. Netw.,
vol. 29, no. 2, pp. 529-542, Apr. 2021.

S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

IEEE/ACM TRANSACTIONS ON NETWORKING

[43] G. Quan, A. Eryilmaz, and N. Shroff, “Optimal edge caching for
individualized demand dynamics,” 2023, arXiv:2310.14631.

Guocong Quan received the Ph.D. degree in electrical and computer engi-
neering from The Ohio State University in 2021. Then, he joined Meta as
a Research Scientist. His research interests include resolving challenges in
distributed networking and computing systems. He received the 2019 IEEE
INFOCOM Best Paper Award.

Atilla Eryilmaz (Senior Member, IEEE) received the M.S. and Ph.D. degrees
in electrical and computer engineering from the University of Illinois at
Urbana—Champaign in 2001 and 2005, respectively. From 2005 to 2007,
he was a Post-Doctoral Associate with the Laboratory for Information and
Decision Systems, Massachusetts Institute of Technology. Since 2007, he has
been with The Ohio State University, where he is currently a Professor
and the Graduate Studies Chair of the Electrical and Computer Engineering
Department. His research interests include optimal control of stochastic
networks, machine learning, optimization, and information theory. He received
the NSF-CAREER Award in 2010 and the two Lumley Research Awards for
Research Excellence in 2010 and 2015. He is the coauthor of the 2012 IEEE
WiOpt Conference Best Student Paper, subsequently received the 2016 IEEE
INFOCOM Best Paper Award, the 2017 IEEE WiOpt Best Paper Award,
the 2018 IEEE WiOpt Best Paper Award, and the 2019 IEEE INFOCOM
Best Paper Award. He has served as the TPC Co-Chair for IEEE WiOpt
in 2014, ACM MobiHoc in 2017, and IEEE INFOCOM in 2022; and
an Associate Editor for IEEE/ACM TRANSACTIONS ON NETWORKING
from 2015 to 2019 and IEEE TRANSACTIONS ON NETWORK SCIENCE AND
ENGINEERING from 2017 to 2022. He has been an Associate Editor of IEEE
TRANSACTIONS ON INFORMATION THEORY since 2022.

Ness B. Shroff (Fellow, IEEE) received the Ph.D. degree in electrical
engineering from Columbia University, New York, NY, USA, in 1994.
He joined Purdue University, West Lafayette, IN, USA, immediately thereafter
as an Assistant Professor with the School of Electrical and Computer
Engineering. At Purdue, he became a Full Professor of ECE and the Director
of the University-Wide Center on Wireless Systems and Applications in
2004. In 2007, he joined The Ohio State University, Columbus, OH, USA,
where he was the Ohio Eminent Scholar Endowed Chair of networking
and communications with the Department of ECE and the Department of
CSE. He is currently the Institute Director of the NSF Al Institute for
Future Edge Networks and Distributed Intelligence. He holds or has held
a Visiting (chaired) Professor position with Tsinghua University, Beijing,
China; Shanghai Jiaotong University, Shanghai, China; and Indian Institute
of Technology Bombay, Mumbai, India. He was a recipient of numerous
best paper awards for his research and is listed in Thomson Reuters’ on
The World’s Most Influential Scientific Minds and has been noted as a
Highly Cited Researcher by Thomson Reuters in 2014 and 2015. He was
also a recipient of the IEEE INFOCOM Achievement Award for seminal
contributions to scheduling and resource allocation in wireless networks.

Authorized licensed use limited to: Purdue University. Downloaded on March 06,2024 at 21:55:59 UTC from IEEE Xplore. Restrictions apply.



