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Abstract
The quantification of urban impervious area has important implications for the
design and management of urban water and environmental infrastructure sys-
tems. This study proposes a deep learning model to classify 15-cm aerial imagery
of urban landscapes, coupled with a vector-oriented post-classification process-
ing algorithm for automatically retrieving canopy-covered impervious surfaces.
In a case study in Corpus Christi, TX, deep learning classification covered an
area of approximately 312 km2 (or 14.86 billion 0.15-m pixels), and the post-
classification effort led to the retrieval of over 4 km2 (or 0.18 billion pixels)
of additional impervious area. The results also suggest the underestimation of
urban impervious area by existing methods that cannot consider the canopy-
covered impervious surfaces. By improving the identification and quantification
of various impervious surfaces at the city scale, this study could directly benefit a
variety of environmental and infrastructure management practices and enhance
the reliability and accuracy of processed-based models for urban hydrology and
water infrastructure.

1 INTRODUCTION

Satellite imagery plays a key role in land cover studies
(X. Li et al., 2019; Wulder et al., 2022; C. Zhang & Li,
2022). Landsat, a global observation program, offers con-
sistent and extensive coverage over large areas, making it
crucial for environmental monitoring and resource man-
agement (Amani et al., 2021; Roy et al., 2014; Shevyrev
& Carranza, 2022). Similarly, due to its comprehensive
coverage, the Sentinel program provides essential data
that serve similar objectives (Bergsma & Almar, 2020;
Scepanovic et al., 2021; T. Zhang et al., 2021). However,
their limited spatial resolution is less effective in urban
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studies, where capturing the intricate details of urban
landscapes is essential (D. He et al., 2022). This need for
greater detail has led to a shift toward higher resolution
imagery in the 1 to 4-m range, such as NAIP, IKONOS,
and WorldView images (Goetz et al., 2003; J. Li & Bor-
tolot, 2022; Zhu et al., 2022). Data of better resolutions
are crucial for urban studies emphasizing accurate infras-
tructure network representation and disaster assessment
(Braik & Koliou, 2024; Dunton & Gardoni, 2023; Kaur
et al., 2023). The resulting high-resolution identification
of impervious surfaces is essential for various urban water
studies, such as hydrological modeling, flood risk assess-
ment, and drainage infrastructure management (Du et al.,
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2 TECHAPINYAWAT et al.

2015; Ogden et al., 2011; Shust et al., 2005). It also plays a
crucial role in the studies of urban infrastructure systems,
particularly in estimating the potential of rooftop solar
photovoltaic systems and supporting automated building
damage assessments (Krapf et al., 2022; Q. Li et al., 2023;
Nofal et al., 2024). Furthermore, accurate land cover clas-
sification is paramount in enhancing disaster resilience by
providing critical input for models that predict the impacts
of natural disasters (Kimpton et al., 2024). The require-
ment for high-resolution land cover data becomes evident
as it highlights the effectiveness of these models, empha-
sizing their indispensable role in advancing the precision
of urban studies and planning.
Recent advancements in aerial imaging technology have

introduced remote sensing products with even higher res-
olutions at regional or national scales, for example, the
15-cm Hexagon aerial imagery (H x GN; Hexagon, 2021).
This surpasses the capabilities of earlier datasets and offers
broader coverage than small unmanned aircraft systems
(UAS), which are limited in their survey extent. While
using very high-resolution imagery in urban land cover
studies is still rare, it has been increasingly available for
many regions. This highlights a significant opportunity for
improving urban land cover estimates, which could have
substantial implications for urban planning and environ-
mental monitoring at the city scale. The introduction of
high-resolution aerial imagery suggests new research pos-
sibilities and the potential closure of a research gap in the
efficient and accurate analysis of the big dataset—billions
of pixels, compared to millions of pixels, in traditional
images. However, the potential of using such sub-meter
imagery for citywide land and infrastructure studies has
not yet been fully explored.
A more fundamental research gap lies in analyzing the

high-resolution imagery in urban land and infrastructure
studies. Recognizing the complexity of urban landscapes
presents a significant challenge for traditional classifica-
tion methods. Methods such as random forest and support
vector machine are foundational. However, they tend to
produce data that may not fully capture the nuanced and
varied nature of urban environments. Their inherent lim-
itations become apparent in processing the rich textures
and colors in high-resolution imagery (Khanwilkar et al.,
2023; Y. Liu et al., 2013; Rana & Venkata Suryanarayana,
2020). As satellite and aerial imagery resolution improves,
the demand for more advanced analytical techniques to
process these data effectively increases. This need has pro-
pelled the emergence of deep learning (DL) as a promising
field for urban land cover classification. DL’s ability to
analyze high-resolution imagery has been demonstrated
through semantic segmentation models such as DeepLab,
ResU-Net, and SegNet (Fu et al., 2021; Wang et al., 2021;
Yoo et al., 2022). Thesemodels have shown notable success

in classifying urban land cover with a level of detail previ-
ously unattainable, marking a significant advancement in
the field.
Image-based approaches are adept at capturing small

objects on the ground, yet they often fail to grasp the
complexities of 3-D urban landscapes fully. Specifically,
these methods struggle with accurately identifying fea-
tures obscured by vertical elements such as tree canopies,
which can conceal street pavements and roofs, often
underrepresenting impervious surfaces. Such discrepan-
cies can result in streets appearing narrower than their
actual dimensions, artificially reducing the apparent street
width and creating a bottleneck effect in land cover data
(Figure 1a). Additionally, sidewalks aligned with these
obscured areas may be depicted as disconnected, disrupt-
ing the continuity of the urban impervious surface net-
work. This discontinuity impacts the quantitative accuracy
of urban representation and poses significant challenges
in calculating hydrological connectivity, which is crucial
for accurately estimating surface runoff. Ensuring accu-
rate representation of these connections is vital for urban
hydrological studies, where the precise assessment of
impervious surfaces informs effective stormwatermanage-
ment strategies (Sohn et al., 2020). Moreover, tree canopies
can lead to overestimating vegetation areas by covering
parts of roof features, highlighting the need formethodolo-
gies to accurately delineate urban features beneath canopy
cover (Ning, Li, et al., 2022).
Despite advancements in urban feature classification,

integrating auxiliary surface datasets has proven essential
in enhancing the detection of features obscured by tree
canopies. Technologies such as vehicle-mounted cameras
provide street-level imagery capturing details oftenmissed
in aerial views (Ning, Ye, et al., 2022; Verma et al., 2021),
while LiDAR technology delivers detailed point clouds
that enhance the understanding of urban topography (Hu
et al., 2021; L. Li et al., 2022; W. Zhang et al., 2021). How-
ever, these methodologies require the amalgamation of
multiple independent processes, such as distinct analyses
for street, sidewalk, and roof features, due to the limi-
tations of using street imagery or altimetry LiDAR data
for comprehensive feature corrections. For instance, the
constraints imposed by the camera’s perspective prevent
street-level imagery from vehicle-mounted cameras from
accurately correcting roof edges (Hou & Ai, 2020), and
low point cloud density may not provide adequate detail
for features beneath dense tree canopies (Hu et al., 2021).
The reliance on extensive data collection and the need for
varied datasets for different urban features extend the seg-
mentation and labeling processes, complicating large-scale
urban projects. Additionally, integrating data from diverse
sources can challenge the consistency and accuracy of land
cover classifications.
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TECHAPINYAWAT et al. 3

F IGURE 1 (a) Examples of the urban landscape with tree canopies; (b) existing methods versus novel approach (this study) for land
cover feature correction under tree canopy; (c) study area. The black line indicates the coverage of HxGN images; (d) research framework.
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4 TECHAPINYAWAT et al.

In response to these challenges, this study introduces a
novel method that integrates raster and vector analyses to
improve the analysis of urban landscapes (Figure 1b). It is
new in two aspects:

1. Innovative algorithms for urban feature analysis—
Built on the topology of urban built features, the
proposed roof and sidewalk algorithms are new, and
the street algorithm is fundamentally different from
existing approaches. These algorithms are enabled
using state-of-the-art 15-cm aerial imagery at the
city level that allows for unprecedented detail in
urban feature analysis. In doing so, this method is
able to correct various built features across complex
urban landscapes at the billion-pixel level, contribut-
ing knowledge to engineering and geospatial big data
analytics.

2. Unified raster-vector processing—This method is the
first attempt to combine raster and vector domain pro-
cessing for delineating urban impervious surfaces, in
contrast to existing approaches that solely rely on raster
datasets. Through a seamless transition from pixel
classification to post-classification correction, it can
maintain data integrity and consistency across various
analysis stages and reduce dependency on additional
surface datasets required in traditional methods.

Through a city-level case study, this study aims (1)
to generate the most detailed city-scale land cover data
possible, capturing small urban features across extensive
cityscapes. These detailed data aid in urban hydrology
studies by providing precise inputs for modeling water
flow and flood risks, facilitating better water manage-
ment. Additionally, it enables precise assessments of
land use, urban planning, and infrastructure; and (2) to
develop a vector-oriented post-classification improvement
process that corrects misrepresentations of urban fea-
tures obscured by tree canopies. This approach not only
improves the accuracy of impervious surface identifica-
tion, crucial for effective stormwatermanagement, but also
reduces the reliance on additional surface data collection.
By combining the unprecedented detail of high-resolution
aerial imagery with sophisticated vector-based correction
processes, this study aims to achieve a more accurate and
comprehensive understanding of urban landscapes. This
enhanced understanding will leverage sights into existing
infrastructure, facilitating improved urban planning and
environmental management decision-making. Ultimately,
this approach could lead to more sustainable and resilient
urban development.

2 MATERIALS ANDMETHODS

2.1 Study area

The study area encompasses the city of Corpus Christi,
TX, spanning an urban region of approximately 312 km2

(Figure 1c). Zoning data reveal that this area predomi-
nantly consists of low-density and high-medium-density
residential districts (City of Corpus Christi GIS Services,
2018). The median parcel block size measures 700 m2.
Situated on the Gulf of Mexico coast, the city has an aver-
age annual temperature of 22◦ C and an average yearly
precipitation of 780 mm (National Centers for Environ-
mental Information (NCEI), 2023). Dominant tree species
in Corpus Christi vary in their canopy sizes, ranging
from Sabal palms to live oaks (Poole et al., 2005; Qin
et al., 2019). This poses challenges for effective land cover
classification.

2.2 Data

2.2.1 Aerial imagery

The study employed 15 cm resolution aerial imagery from
theHexagonContent Program. This imagery has four spec-
tral bands (red, green, blue, and near-infrared), enhancing
its capability to discriminate between vegetative and non-
vegetative surfaces. The images used in this study were
acquired in 2021, covering an area of 312 km2 with a total
size of 50 GB.

2.2.2 Vector data

The post-classification processing techniques for feature
improvement beneath tree canopies used two vector
datasets. The first dataset was a polyline shapefile of
the centerlines of roads, streets, and alleys and included
information on street width and connectivity (denoted by
“street from” and “street to” fields). The information on
connectivity facilitated the identification of cul-de-sacs.
The second dataset was a polygon shapefile of the bound-
aries of land parcels. This dataset served a dual purpose:
(1) delineating public right-of-way (comprising streets and
sidewalks) for improvements in street and sidewalk fea-
tures, and (2) distinguishing private property boundaries
for improving roof features. The City of Corpus Christi
provided both vector datasets (City of Corpus Christi GIS
Services, 2023).
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TECHAPINYAWAT et al. 5

2.3 Methods

The methods of this study included two primary phases
(Figure 1d):

1. Generation of the most spatially detailed city-scale land
cover data. The first phase involved image classifica-
tion using an open-source DL method for pixel-level
classification of 15-cm H×GN imagery. This phase sur-
passes the capabilities of conventional satellite andUAS
imagery, providing highly detailed data for extensive
cityscapes. It lays a solid foundation for the detailed rep-
resentation of urban features and accurate subsequent
analyses of feature corrections.

2. Development of a vector-oriented post-classification
improvement process. Following the initial classifica-
tion from Phase 1, the second phase involved post-
classification improvements based on a new vector-
oriented approach. This phase detects and quantifies
impervious surfaces hidden by tree canopies using sta-
tistical and GIS analyses integrated with public urban
infrastructure data. This approach minimizes reliance
on auxiliary surface datasets and enhances the correc-
tion accuracy at the feature level.

This studywas built on a set of four assumptions, reflect-
ing the characteristics observed within our study area,
and is based on the topology of roofs and streets (Dun-
ton & Gardoni, 2023). Assumptions include: (1) sidewalk
alignment runs parallel to streets; (2) sidewalk presence is
considered either entirely present or absent along corre-
sponding street segments; (3) sidewalk width is consistent
and in compliance with the city’s established engineer-
ing codes (Order of the City Council, 2004); (4) residential
roof geometry features orthogonal designs. Each phase
included validation, addressing classification accuracy at
the pixel level, and correction accuracy at the feature
level.

2.3.1 Image classification using deep
learning

The land cover was categorized into five classes: (1) paved
surface class, including various asphalt and concrete pave-
ments of streets, sidewalks, driveways, uncovered patios,
runways, and bridges; (2) building, including residential
properties, commercial properties, industrial properties,
containers, towers, and mobile homes; (3) vegetation,
including trees, grass, and shrubs; (4) non-vegetation,
accounting for bare soil, beaches, and ripraps; and (5)
water, consisting rivers, lakes, bays, ponds, and swimming
pools. A two-level hierarchical classification scheme was

adopted to reflect the main features observed in urban
areas. The first level distinguished between built-structure
impervious areas, non-built structure pervious areas, and
water surfaces. A further distinction was made between
paved surfaces and buildings in the built-structure imper-
vious category based on their geometric and color char-
acteristics. Pervious areas were subdivided into vegetation
and non-vegetation, based on their distinct responses
to near-infrared and red image bands. This structured
approach could benefit the deep learning model by help-
ing it learn and differentiate between these distinguished
patterns.
A comprehensive set of training samples was sys-

tematically established to reflect the diverse land cover
characteristics of the study area. A total of 16 training loca-
tions were chosen, each covering 40,000 m2 (Figure 1c).
Among these sites, four were labeled for representing res-
idential areas, two for commercial zones with low-rise
buildings, one for downtown areas with high-rise build-
ings, two for highways and airport runways, and seven for
areas of undisturbed land. After labeling, each site under-
went an augmentation procedure involving rotation to
ensure the model’s robustness against variations in orien-
tation, including the diverse orientations of urban layouts.
In detail, each site was segmented into smaller 112.5 ×
112.5 m image chips and subjected to a data augmenta-
tion procedure involving rotations at 0◦, 120◦, and 240◦,
incorporating vertical and horizontal strides of 11.25m that
accounts for 10% of the image dimension (Figure 2). This
led to a total of 1591 labeled samples from the 16 training
sites.
TheMMSegmentation toolboxwas employed to perform

detailed pixel classification, manipulating aerial imagery
with a resolution of 15 cm (MMSegmentation Contrib-
utors, 2020). The specified model, “DeepLabV3+,” was
configured with model weights set to false and utilized
a ResNet-101 backbone (Chen et al., 2018; K. He et al.,
2016). This backbone incorporates atrous convolution,
enabling the model to capture multi-scale information.
The training process was developed with a maximum of
60 epochs and an early stopping mechanism to halt train-
ing if no further model improvements were observed.
This mechanism used validation loss as an indicator for
improvement. Training was terminated if the validation
loss did not decrease significantly. Default early stopping
parameters were set to a delta of 0.01 and a patience of
5. Experimenting with higher epoch numbers could yield
improved results; however, it is essential to consider the
trade-off between potential improvement and increased
training time. The model employed a dynamic learning
rate, initially set within the range of 6.92 × 10−5 to 6.92 ×
10−4, and then adjusted adaptively based on the model’s
performance during training.
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6 TECHAPINYAWAT et al.

F IGURE 2 Image chips with orientation-based augmentation, labeled by class. The method involves generating labeled image chips,
rotating (0◦, 120◦, 240◦). Then, reposition it using an 11.25 m stride to apply the process at subsequent locations.

2.3.2 Vector-oriented post-classification
improvements

TheDL-derived original classification result was converted
from a raster to polygons. Street centerlines and land par-
cel boundaries (see Section 2.2.2) were integrated into the
landcover polygons using the same spatial reference. The
post-classification processing phase focused on enhanc-
ing classifications beneath tree canopies for three built
features: (1) streets, (2) sidewalks (including parallel and
cul-de-sac), and (3) building roofs.

Street improvement
Street improvement efforts focused on correcting misclas-
sified areas where tree cover was inaccurately identified
in place of streets. This was achieved using the vector
data of street centerlines with an embedded attribute indi-
cating street width (bold red line in Figure 3a). It was
essential to ensure the continuity of these street center-

lines. The analysis required dissolving broken centerlines
into continuous segments at each change in direction and
dividing extensive centerlines at intersections. In the case
of abrupt irregularities along the adjusted centerline, an
optional smoothing algorithm was applied to mitigate and
enhance the smoothness of the centerline. A Polynomial
Approximation with Exponential Kernel algorithm with a
tolerance setting of 10 m was utilized in this case (Bodan-
sky et al., 2002). Then, the centerline was buffered on both
sides by half the street width based on the city’s data.
The resulting buffer polygons were created to delineate the
dimensions of streets (Figure 3b). Finally, the buffer poly-
gons were merged at intersections to create a continuous
street polygon (Figure 3c).

Sidewalk improvement
Street improvement was followed by sidewalk improve-
ment. To improve the computational efficiency, the poly-
gons of classification results were clipped to the extent
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TECHAPINYAWAT et al. 7

F IGURE 3 The procedures of street and sidewalk improvements: (a) street centerline located in a public right-of-way; (b) generate a
buffer on both sides of the centerline with the street width field; (c) result of a street polygon; (d–i) parallel sidewalk improvement; (j–o)
cul-de-sac sidewalk improvement; (p–r) merging parallel and cul-de-sac sidewalks.
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8 TECHAPINYAWAT et al.

of public rights of way because sidewalks were exclu-
sively within the public right of way. The clipped polygons
were dominated by paved surfaces (such as asphalt and
concrete) and vegetation (including trees and sidewalk
gardens), while water and non-vegetation classes were
negligible.Notably, the clipped polygonswere not expected
to include any buildings. If building classifications were
encountered in this region, these building classifications
were reclassified as part of the paved surface class. This led
to the confined paved surface class within the public right
of way (Figure 3d).
To appropriately represent the sidewalks, any paved sur-

face polygons within the public right of way needed to be
removed where they overlapped with street polygons (Sec-
tion 2.3.2—Sidewalk Improvement). The resulting paved
polygons included sidewalks, such as parallel or cul-de-sac
variants.
For parallel sidewalks, the improvement included four

steps. First, the polygons of the paved surface derived from
the image classification were used to generate a medial
axis, an estimate of the sidewalk centerline (Figure 3e).
Even though tree canopiesmight partially cover some side-
walks, the positions of those sidewalks were still inferred
by determining the distance between their visible medial
axes and the associated street centerline. Second, sample
points were generated along the medial axis at 1-m inter-
vals to represent the sidewalk center. The sample points
close to street polygons (e.g., within 20 cm) were removed,
as they might represent curbs and gutters (Figure 3f).
Medial points were separated for left and right-side anal-
yses, and two buffer polygons were created for each side
(Figure 3g). Third, mode calculations were conducted to
predict the distance of sidewalks from the street. The
distances from each point to the street centerline were cal-
culated and labeled with respective distances and street
identifiers, then rounded to the nearest 0.5 m increments
(Equation 1). These rounded distances formed the set M,
consisting of distances D(i, rounded) for each point across a
street segment, with i ranging from 1 to n, where n is the
count of points measured on that particular side. Each dis-
tance in the set contributes a “1” if it matches the distance
x or “0” if not. The mode of these distances, Modedistance,
identifies the most frequent distance from the centerline
on either the left or right side.

𝑀𝑜𝑑𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = max
𝑥∈𝑀

𝑛∑
𝑖=1

{
1 𝑖𝑓 𝑥 = 𝐷𝑖,𝑟𝑜𝑢𝑛𝑑𝑒𝑑
0 𝑖𝑓 𝑥 ≠ 𝐷𝑖,𝑟𝑜𝑢𝑛𝑑𝑒𝑑

(1)

To determine the presence of sidewalks, the analysis
applied a threshold for medial axis points per street seg-
ment length. This threshold, set at 15%, meant that no
sidewalk was generated if the paved surface along a 100-m
street segment was less than 15m. This aimed to avoidmis-

taking driveways for sidewalks. Fourth, buffer zones were
created from street centerlines on both sides based on the
calculated modes of street-sidewalk distance (Figure 3h,i).
These polygonal boundaries indicated the positions of the
parallel sidewalks.
For cul-de-sac sidewalks, the process began with uti-

lizing the previously created paved surface class polygon,
street centerline, and land parcel (Figure 3j). The proce-
dure included five steps. First, the polygon of the paved
surface was clipped within the cul-de-sac areas, leading
to the intersecting points between the polygons of parcel
block vertices and the polygons of the public right-of-way
(shown as blue dots in Figure 3k) to help form these circles.
Second, dead-end street segments were identified using
street connectivity, followed by circular buffers around
their vertices, focusing on retaining only those at the dead
ends. Third, based on those vertices, a circle was generated
that solely enclosed the public right-of-way and cul-de-sac
area. Different vertex selections could yield different cir-
cles. Rijk is the radius of a circle defined by three vertices
(Pi, Pj, and Pk) from the set. Among all circles defined by
the available vertices, the optimal circle is the one with the
smallest radius, and the associated vertices are denoted as
Pa, Pb, and Pc (Equation 2). If there are only three ver-
tices, the only circle is considered optimal. Non-circular
cul-de-sacs were detected using spatial analysis to check
if the generated circles overlap surrounding land parcels.
The detected non-circular cul-de-sacs were excluded from
further analysis.

(𝑃𝑎, 𝑃𝑏, 𝑃𝑐) = min
(𝑃𝑖,𝑃𝑗,𝑃𝑘)

𝑅𝑖𝑗𝑘, if 𝑛 ≥ 3 (2)

Fourth, this optimal circle was selected to establish
the medial axis (Figure 3l). Where the medial axis lines
might represent driveways or extensions of parallel side-
walks, trimming of these lines using the parcel boundaries
occurred. Fifth, the remaining segments were converted
into medial points (Figure 3m). Finally, the minimum
bounding circle was created for the targeted cul-de-sac
sidewalk (Figure 3n,o).
Next, the established polygons of parallel and cul-de-

sac sidewalks were merged into a continuous network
through three steps. The first step was removing over-
lapping areas at transition zones and street intersections
(Figure 3p). The outer boundaries were converted into
a network of sidewalk centerlines. Centerlines intersect-
ing with the vegetation class were clipped for areas under
trees. Next, buffers aligned with observed or city-standard
sidewalk widths were applied. The post-classification pro-
cessed sidewalks are depicted in Figure 3q. Intersections
with the vegetation class were not clipped for a continuous
network as shown in Figure 3r.
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TECHAPINYAWAT et al. 9

F IGURE 4 The procedures of roof improvement: (a) original
roof outlines; (b) simplified roof outlines and their major
orientations; (c) rotated roof outlines to the X and Y axes; (d)
minimum bounding box of lines of roofs; (e) outer boundary of
dissolved bounding boxes; (f) result of improvement.

Roof improvement
The principle of roof improvement relies on the inherent
orthogonal shape of roofs, irrespective of their orienta-
tion. When an edge of a roof polygon derived from the
image classification is neither parallel nor perpendicular
to its orientation, the roof might be partially covered by
tree canopies. The gap between the assumed orthogonal
shape and the original roof shape indicates the need for
correction.
An axis-aligned minimum bounding box algorithm was

employed to identify the minimum orthogonal bound-
ing boundary for each building. This algorithm is based
on fixed X (West-East) and Y (North-South) axes, so a
four-step rotation procedure was applied.
First, roof polygons within parcel boundaries were

extracted from the classification results (Figure 4a). The
selected polygons were simplified to highlight their pri-
mary outlines by filtering out north-south and east-west
boundaries, a gridded raster classification conversion char-
acteristic. This was conducted using the Douglas–Peucker
method with tolerance levels ranging between centimeters
andmeters (Douglas & Peucker, 2011). While a lower toler-
ancemight capture only parts of roofs under tree canopies,
a higher onemight over-simplify andmisrepresent the roof
structures. The analysis began with a 50-cm tolerance and
was iteratively adjusted by 50-cm increments. The final

tolerance level selected was the one that best preserved
essential roof details.
Second, the simplified polygons were transformed into

line segments. Each roof polygon splits at every vertex to
create smaller roof segments. The orientations of these seg-
ments were adjusted from 0 to 360 degrees to 0 to 180
degrees; for example, east-west and west-east orientations
were described as 90 degrees. This approach simplified
analysis by focusing on segment orientation, not direction.
The adjusted orientation for each segment Θ′

𝑗
was defined

by Equation (3). The primary orientation, Θ𝑚𝑎𝑗𝑜𝑟, was
determined by the cumulative length of segments Sj shar-
ing similar orientations, iterating from j = 1 to m, where
m represented the total number of segments, as stated in
Equation (4). The result was recorded as the predominant
orientation for each roof (Figure 4b).

Θ′
𝑗
=

(
arctan

(
𝑦𝑗2 − 𝑦𝑗1

𝑥𝑗2 − 𝑥𝑗1

)
×

(
180

𝜋

))
mod 180 (3)

Θ𝑚𝑎𝑗𝑜𝑟 = max
Θ′

(
𝑚∑
𝑗=1

𝑆𝑗 ×

{
1 if Θ′

𝑗
≈ Θ′

0 if Θ′
𝑗
≉ Θ′

)
(4)

Third, the roof polygons were rotated around their cen-
troids (cx,cy) based on their predominant orientations to
align with the north-south or east-west axes (Figure 4c).
For each vertex (xi,yi), iterating from i = 1 to n (where
n represented the total number of vertices in the poly-
gon), the vertices were rotated to align with Θ𝑚𝑎𝑗𝑜𝑟.
(xi′,yi′) were the rotated coordinates for each vertex i
(Equation 5).

{(𝑥′
𝑖
, 𝑦′
𝑖
)}𝑛
𝑖=1

= {((𝑥𝑖 − 𝑐𝑥) ⋅ cos(−Θ𝑚𝑎𝑗𝑜𝑟)

−(𝑦𝑖 − 𝑐𝑦) ⋅ sin(−Θ𝑚𝑎𝑗𝑜𝑟) + 𝑐𝑥,

(𝑥𝑖 − 𝑐𝑥) ⋅ sin(−Θ𝑚𝑎𝑗𝑜𝑟)

+(𝑦𝑖 − 𝑐𝑦) ⋅ cos(−Θ𝑚𝑎𝑗𝑜𝑟) + 𝑐𝑦)}
𝑛
𝑖=1

(5)

Fourth, the rotated roof polygons were split into line seg-
ments at their vertices. An orthogonal bounding box was
generated for each line segment (Figure 4d). Any lines
that deviated from the north-south or east-west orienta-
tion would suggest the interference of tree canopy. A slight
buffer was added to these bounding boxes to ensure their
continuity. Each roof’s bounding boxes were merged to
generate a new roof polygon (Figure 4e). For the final step,
as depicted in Figure 4f, the roof polygons were rotated
back to their original orientations using Equation (6).
Here, (xi″,yi″) were the coordinates of vertex i after being
rotated back, indicating the final positions of each ver-
tex after adjustments to align with the roof’s predominant
orientation.
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10 TECHAPINYAWAT et al.

{(𝑥′′
𝑖
, 𝑦′′
𝑖
)}𝑛
𝑖=1

= {((𝑥′
𝑖
− 𝑐𝑥) ⋅ cos(Θ𝑚𝑎𝑗𝑜𝑟)

−(𝑦′
𝑖
− 𝑐𝑦) ⋅ sin(Θ𝑚𝑎𝑗𝑜𝑟) + 𝑐𝑥,

(𝑥′
𝑖
− 𝑐𝑥) ⋅ sin(Θ𝑚𝑎𝑗𝑜𝑟)+

(𝑦′
𝑖
− 𝑐𝑦) ⋅ cos(Θ𝑚𝑎𝑗𝑜𝑟) + 𝑐𝑦)}

𝑛
𝑖=1

(6)

2.3.3 Updating image classification

After obtaining feature correction polygons for streets,
sidewalks, and roofs, the next step was to update the orig-
inal classification accordingly. The original classification
was in raster format, so the vector corrections were con-
verted to rasters. This conversion demanded alignment as
depicted in Figure 5a. The process designated the retrieved
streets and sidewalks as the paved surface class and the
roofs as the building class. Both cell size and reference
coordinates were aligned with the original raster. When
combining these corrected rasters with the original clas-
sification, the system assigned the lowest priority to the
original classification during the union, indicating that dis-
crepancies were resolved in favor of the corrected data.
This approach directly impacted the classification result
by including additional impervious areas beneath tree
canopies, previously undetected in the original data. The
updating process improved the representation of impervi-
ous areas and enhanced the accuracy and connectivity of
ground features in urban landscapes.

2.3.4 Validation

Validation of image classification
The land cover classification was validated against ground
truth data generated through the on-screen digitalization
of H×GN imagery. This process involved two validation
sites, each encompassing 160,000 m2. These sites were
distinct from the areas used for training the DL model,
ensuring an unbiased assessment of the model’s perfor-
mance. Google Maps and Google Street Viewwere utilized
as additional resources to aid in the differentiation of bare
soils from concrete pavements. For a thorough evaluation,
10 million random points were selected across the valida-
tion sites and compared against the raster output of the
DL-based image classification.
A confusionmatrix assessed the agreement between the

classified results and the ground truth. The kappa statistic,
quantifying agreement beyondwhat is expected by chance,
was calculated using Equation (7). Here, xii represents the
number of instances correctly predicted for each class i.
The total number of observations is denoted by N, and k
is the number of classes determined from the confusion
matrix. The terms rowi and coli in the equation correspond

to the sum of the observations in the ith row (total actual
instances of class i) and the sum of the observations in
the ith column (total predicted instances of class i), respec-
tively. This kappa value, with a result close to 1, indicates a
near-perfect level of agreement between the classified and
actual data.

𝜅 =

∑𝑘

𝑖=1
𝑥𝑖𝑖 −

1

𝑁

∑𝑘

𝑖=1 (row𝑖 × col𝑖)

𝑁 −
1

𝑁

∑𝑘

𝑖=1 (row𝑖 × col𝑖)
(7)

Validation of feature correction
Each feature possesses distinct characteristics such as
area, length, and shape, necessitating varied validation
approaches. The results of street, sidewalk, and roof
improvements were evaluated separately. The ground
truth data were digitized using 15-cm resolution 4-band
aerial images, supplemented with high-resolution Google
satellite maps and Google Street View for all these valida-
tions. Additionally, LiDAR point cloud data were used for
roof validation.
Street validation involved comparing the classified street

areas with the ground truth. For this analysis, 50 streets
were randomly selected throughout the study area. The
ground truth was established by measuring the areas of
visible streets on aerial imagery, including those sections
obscured by tree canopies. Street features were validated
by comparing the areas from the original DL classifi-
cation (“before”) and the post-classification processing
improvement (“after”) to the ground truth. The valida-
tion process focused on ensuring the classified street areas
corresponded accurately to the actual streets. Key evalua-
tion metrics included mean absolute error (MAE), mean
absolute percentage error (MAPE), and R-squared (R2),
alongside completeness, aiming for 100% to demonstrate
that the algorithm has successfully identified and recon-
structed all street areas under tree canopies. Furthermore,
the Wilcoxon signed-rank test was utilized to assess statis-
tical significance in the differences between the “before”
and “after” classifications (Wilcoxon, 1992).
Sidewalk validation involved comparing the generated

lines and the ground truth concerning length. For this
study, 100 street segments were randomly selected across
the entire study area. Each segment could include side-
walks on both sides, a cul-de-sac, or neither. The ground
truth was established by measuring the lengths of visi-
ble sidewalks on aerial imagery, including those sections
obscured by tree canopies. The sidewalk features were
validated by comparing the lengths of the original DL clas-
sification (“before”) and the post-classification processing
improvement (“after”) to the ground truth. To be consid-
ered valid, sidewalk lines must overlap accurately with
the actual sidewalks. Validation metrics included MAE,
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TECHAPINYAWAT et al. 11

F IGURE 5 (a) Image classification updating procedure; (b) the results of image classification at three example locations.

MAPE, and R2, alongside completeness, which ideally
reaches 100% to indicate that the algorithm has success-
fully delineated and connected all sidewalk gaps under
tree canopies. Furthermore, theWilcoxon signed-rank test
was applied to assess statistical significance in the differ-
ences between the “before” and “after” sidewalk features,
underlining the effectiveness of the improvement.
Roof validation involved comparing the generated build-

ing class area within parcel blocks and the ground truth.

Roof validation focused on the building class. A sample of
200 random parcel blocks of varying sizes was analyzed.
Within each block, the area of the building class from
both the original and post-classification improvement was
compared against the ground truth. Moreover, roofs were
categorized into four distinct groups based on their design
and interaction with tree canopies: simple roofs not cov-
ered by vegetation (SN), complex roofs not covered by
vegetation (CN), simple roofs covered by vegetation (SV),
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12 TECHAPINYAWAT et al.

TABLE 1 Confusion matrix of the image classification results.

Class value
Predicted class

Total User’s accuracyPaved surface Building Vegetation Non-vegetation Water
Actual
class

Paved surface 1,890,847 127,810 279,060 5205 2369 2,305,291 82.02%
Building 65,609 1,771,164 58,877 943 2245 1,898,838 93.28%
Vegetation 169,500 217,278 5,281,476 21,308 431 5,689,993 92.82%
Non-
vegetation

7376 2896 11,885 72,959 0 95,116 76.71%

Water 883 1311 177 1 8390 10,762 77.96%
Total 2,134,215 2,120,459 5,631,475 100,416 13,435 10,000,000
Producer’s
accuracy

88.60% 83.53% 93.78% 72.66% 62.45% 90.25%

and complex roofs covered by vegetation (CV). The distinc-
tion between simple and complex roofs was that simple
roofs had fewer than seven corners. Validation metrics
included MAE, MAPE, and bias.

3 RESULTS

3.1 Image classification

The DL model was trained over 60 epochs on a comput-
ing setup that included an Intel Xeon Silver 4214R CPU
at 2.40 GHz, 32 GB of RAM, and an NVIDIA RTX A4000
GPU. The training was completed in 10 h, whereas the
testing phase was extended to 122 h. The model’s out-
put demonstrates its ability to accurately delineate urban
features such as streets, sidewalks, buildings, and water
bodies. Despite these strengths, the model exhibits limi-
tations in identifying features obscured by tree canopies
due to its reliance on pixel-based classification as shown
in Figure 5b.
Validation of themodel’s performance yielded an overall

accuracy of 90.25%, as documented in Table 1. Additionally,
a kappa statistic of 0.85 indicates a high level of agreement
between the model’s predictions and the actual classifica-
tions. This statistic confirms the model’s effectiveness, but
it struggles with features hidden under tree cover.
Buildings and vegetation demonstrated the highest

user’s accuracy among the classes, with vegetation also
achieving higher producer’s accuracy than buildings. The
relatively lower accuracy observed in vegetation and non-
vegetation classes may decrease from the gradational
nature of their boundaries. In contrast to the distinct
shapes and boundaries of other classes, such as paved
surfaces with distinct and clearly defined borders, the
boundary between vegetative and non-vegetative areas
(e.g., bare soils) is often present in the interlaced pattern.
This posed a challenge in digitizing and labeling images for
ground truth, leading to uncertainties in the classification
results.

3.2 Street improvement

The correction effort constructed the paved surface class
beneath the tree canopy. As demonstrated in Figure 6a–c,
the approach effectively connected the paved surface class
under trees covering both sides of a street. In the origi-
nal classification (Figure 6b), two pavement polygons were
separated by tree canopies. After applying the proposed
method, these pavement polygons were connected while
maintaining the consistent width of the street (Figure 6c).
This outcomewould help construct a fully connected street
network at the city scale.
Based on the validation results, the original classifi-

cation substantially underestimated the pavement sur-
face class across 50 randomly chosen streets. After the
post-classification improvement, street features had been
expanded to cover areas beneath canopies, resulting in a
closer alignment with the ground truth. The efficacy of the
post-classification improvements was underscored by the
substantial reductions inMAE from 244.90 to 57.17 m2 and
inMAPE from 6.79% to 1.83% as detailed in Table 2. The R2
value also improved to an ideal 1.00, indicating a perfect fit.
The completeness of the street classification had improved
markedly from 93.22% before the correction to 98.17% after
the correction. Furthermore, the Wilcoxon signed-rank
test yielded a p-value of less than .0001, signifying a statis-
tically significant difference in the classification accuracy
before and after the improvement.

3.3 Sidewalk improvement

Sidewalk improvement was notably enhanced by the
recovery of the paved surface class affected by tree canopy.
Three examples are shown in Figure 6d–f. In the two exam-
ples of parallel sidewalks (Figure 6d–e), the method accu-
rately captured the sidewalks on both sides of the street.
In the example of the cul-de-sac sidewalk (Figure 6f), the
correction was based on the circumcircle derived from
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TECHAPINYAWAT et al. 13

F IGURE 6 An example of street improvement: (a) the HxGN image of a street obscured by tree canopy; (b) discontinued street from the
original classification; (c) continued street after the correction. Examples of sidewalk improvement; (d) parallel sidewalks on both sides; (e)
parallel sidewalk on one side; (f) cul-de-sac sidewalk. Red lines highlight the retrieved pavement after the correction.

TABLE 2 Comparison of original and post-classification improvement metric values for street and sidewalk.

Feature
Comparison
basis

Mean absolute
error (MAE)

Mean absolute
percentage
error (MAPE) R2 Completeness Wilcoxon p-value

Before After Before After Before After Before After Before versus after
Street Ground truth

(area)
244.90 m2 57.17 m2 6.79% 1.83% 0.92 1.00 93.22% 98.17% <.0001

Sidewalk Ground truth
(length)

60.59 m 41.15 m 14.14% 12.43% 0.87 0.94 56.86% 81.85% <.0001

the medial axis of the sidewalk, and the merging process
successfully filled the gap between the retrieved sidewalk
segments (red lines) and the original classification result
(gray polygons).
The validation of sidewalk improvements involved

100 randomly selected street segments, with an average
segment length of 163.00 m. Among these, 57 segments
were affected by canopy cover, resulting in 3463.53 m of
sidewalks obscured by tree canopies. Initially, the MAE
and MAPE values before the correction were 60.59 m
and 14.14%, respectively, with a completeness of only
56.86%, as detailed in Table 2. After implementing the

post-classification improvement, these metrics improved
significantly. Post-classification processing improvement
reduced the MAE to 41.15 m and the MAPE to 12.43%.
Additionally, the R2 value increased to 0.94, indicating a
high level ofmodel accuracy. The completeness of the side-
walk classification also improved dramatically, rising from
56.86% to 81.85%. This increase in completeness signifies a
substantial enhancement in capturing the actual extent of
sidewalks. The improved detection reflects amore accurate
and usable representation of urban infrastructure for plan-
ning and navigation purposes. Furthermore, the Wilcoxon
signed-rank test confirmed a statistically significant
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14 TECHAPINYAWAT et al.

F IGURE 7 Examples of roof improvement: (a) simple roof—non-vegetation; (b) simple roof—vegetation; (c) complex
roof—non-vegetation; (d) complex roof—vegetation. Validation of roof improvement: (e) estimated roof area across all roof types; (f)
estimated roof area for each type. Light-color markers indicate the before correction, and dark-color markers indicate the after correction.

difference in the sidewalk classification accuracy before
and after the improvement, with a p-value of less
than .0001.

3.4 Roof improvement

The application of roof improvement successfully
increased the roof obscured by tree canopies for all
four roof types (Figure 7a–d). The correction improved
according to the validation based on 200 land parcels
(Figure 7e,f and Table 3). This post-classification improve-
ment method improved the MAE from 36.44 to 30.56,
the MAPE from 15.30% to 12.17%, and most notably, the
bias from −24.82 to 0.43, all indicating the improvement
of initial underestimation. The overall improvement is
also evident in terms of the probability density function

of the roof areas (Figure 7e). The probability density
function indicates a convergence of the mean deviation
toward zero, reflecting a post-classification improvement
alignment of roof area estimates with ground truth.
A closer analysis in Figure 7f and Table 3 revealed dis-

tinct outcomes for various roof types. The method excelled
with SV and CV roofs affected by tree canopies, with
bias significantly improving post-classification for SV roofs
to −17.80, indicating that half of the missing areas were
retrieved. The slight increases in MAE and MAPE for SN
roofs were caused by the classification performance in just
one parcel, where specific roof materials appeared to be
less distinguishable from the shadow of large buildings.
Excluding this outlier would lead to MAE and MAPE val-
ues lower than pre-correction levels as expected. Roofs not
covered by tree canopies, particularly SN and CN, showed
a slight oversimplification. The minor error increases for
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TECHAPINYAWAT et al. 15

TABLE 3 Additional performance metrics of roof improvement.

Roof type
MAE (𝐦𝟐) MAPE (%) Bias (𝐦𝟐)
Before After Before After Before After

Overall 36.44 30.56 15.30 12.17 −24.82 0.43
SN 33.64 38.05 13.87 12.73 −21.88 6.90
SV 40.31 23.10 19.08 11.43 −40.31 −17.80
CN 27.08 27.75 11.50 11.64 −4.79 18.75
CV 48.17 31.55 19.17 12.71 −43.58 17.80

Abbreviations: CN, complex roofs not covered by vegetation; CV, complex roofs covered by vegetation; SN, simple roofs not covered by vegetation; SV, simple roofs
covered by vegetation.

these roofs were due to their already well-defined outlines
from the initial classification; post-correction adjustments
primarily involved orthogonalizing these outlines, which
did not yield significant improvements. Ultimately, the
proposedmethod facilitated a systematic representation of
roof geometries across the study area, reducing the irregu-
larities of individual roof structures and contributing to a
more uniform urban topology.
The validation results for the three features of streets,

sidewalks, and roofs demonstrated successful recovery
based on the reduced error metrics from the post-
classification procedure. This confirms that retrieving
features under tree canopies to increase impervious area
is valid. Applying these post-classification improvement
techniques increased the impervious area, including paved
surfaces and building classes, by 4.98 km2 from 104.15
to 109.13 km2. This increase accounts for a 4.78% rise in
impervious surface, compared to the original classifica-
tion, and a 1.52% increase in the total impervious surface
of the study area.

4 DISCUSSION

4.1 Benefits of very high-resolution
imagery

This resolution enables the differentiation of crucial urban
features, such as buildings, streets, sidewalks, and even
sidewalk gardens. Distinguishing these features is essen-
tial for accurately identifying and quantifying impervious
surfaces, a major component of the urban landscape that
significantly influences the hydraulic and hydrological
processes underlying various green and grey stormwa-
ter infrastructures. Furthermore, very high-resolution
imagery facilitates the detection of built structures within
land parcels, revealing variations in their sizes and distri-
butions. This capability is crucial for accurately assessing
surface imperviousness at the individual parcel level and
has important implications for urban water management
practices such as stormwater fee calculations (Lee et al.,

2023). The recent availability of centimeter-level resolution
aerial imagery, such as Hexagon’s datasets, offers unprece-
dented detail for urban analysis. This work employs the
well-established DeepLabV3+ DL model as a strong base-
line for pixel classification (M. Liu et al., 2021; Tong et al.,
2023). While newer models might offer slight accuracy
improvements, this study focuses on demonstrating the
effectiveness of accessible algorithms paired with high-
resolution data. To further enhance our methodologies,
adapting end-to-end deep learning models and exploring
dynamic ensemble learning algorithms could improve the
management of urban landscape complexity (Alam et al.,
2020; Hassanpour et al., 2019). Similarly, incorporating
self-supervised learning techniquesmight enhance feature
extraction without the need for extensive labeled datasets
(Rafiei et al., 2024). However, pixel classification accuracy
remains limited bymisrepresenting surface features under
tree canopies, as the model can only classify what it sees
and cannot detect the features masked by the canopies.
Therefore, correcting the land cover data is essential to
improve the accuracy and connectivity of ground fea-
tures, highlighting the significance of post-classification
processing. In contrast, lower-resolution land cover data
generated from lower-resolution imagery cannot provide
the detail necessary for accurate feature correction. Over-
all, land cover data derived from very high-resolution
aerial imagery strike an optimal balance between detail
and coverage, surpassing the capabilities of both UAS and
satellite images.

4.2 Comparative analysis of urban
feature correction methods

To accurately delineate urban features obscured by tree
canopies, our method leverages readily accessible street
centerline and land parcel data. This approach offers sev-
eral advantages over methodologies that rely on auxiliary
surface datasets such as Google Street View (Ning, Li,
et al., 2022; Ning, Ye, et al., 2022; Verma et al., 2021).
While potentially valuable, Google Street View data can be
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16 TECHAPINYAWAT et al.

inconsistent due to varying acquisition dates (2011–2023)
in the case study area. This inconsistency can compromise
the accuracy of corrections, especially in rapidly chang-
ing urban landscapes. Furthermore, vehicles (both parked
and moving) often obstruct street-level imagery, limiting
its effectiveness in correcting features under canopies.
The labor-intensive processing requirements of street-
level panoramic imagery present significant challenges for
city-scale projects that require substantial resources. To
address the challenges of delineating features obscured
by tree canopies, our method leverages readily accessible
street centerline and land parcel data. This vector-based
approach offers several advantages. First, it can ensure
consistent data quality despite frequent updates of street
centerline and land parcel data and reflect the ensur-
ing alignment with the latest construction or landscape
changes. Second, unlike street-level imagery, which can be
obstructed by vehicles and affected by perspective issues,
vector data can delineate urban features without such
limitations. Finally, this method is integrated with the
initial image classification, and the seamless workflow
can reduce information loss, distortion, and uncertainty
during data conversion and exchanges. This approach
significantly reduces processing requirements, compared
to street-level image methods, which involve redundant
classification steps.
Airborne LiDAR datasets, while offering insights into

urban topography, also present limitations. First, their
availability is still restricted in many regions. Second, even
when the LiDAR datasets are available, their temporal
discrepancies with aerial imagery can pose challenges.
For example, in the case study area, the latest LiDAR
dataset dates to 2018 (United States Geological Survey,
2018). It cannot capture the changes in the residential
expansion that are evident in the 2021 aerial imagery.
This temporal mismatch highlights the challenges of rely-
ing on LiDAR for accurate feature correction in rapidly
changing urban environments. Furthermore, the avail-
able LiDAR point cloud density of the study area (2.5
points/m2) may be insufficient for delineating fine-scale
features covered by tree canopies, especially compared
to the high-resolution of our 15-cm land cover data. The
recent study indicates that higher point cloud densities (4–
123 points/m2) are necessary for accurate roof modeling
and feature correction, with the smallest detectable area
being determined by point density (Hu et al., 2021). How-
ever, the availability and cost of acquiring high-density
LiDAR data and the potential limitations of relying solely
on outdated or obstructed street-view perspectives high-
light the need for alternative approaches. Readily available
vector data sources such as TIGER (US-specific) and
OpenStreetMap (global) offer advantages for accurate fea-
ture extraction and ensure the broader applicability of

this method (OpenStreetMap Contributors, 2023; United
States Census Bureau, 2023). These readily available vec-
tor datasets provide a cost-effective and widely accessible
solution for accurate land cover correction.

4.3 Limitations and adapting our
method to different geographical contexts

The proposed method can be improved in several ways.
One of the most significant limitations of this method is
the dependency on high-resolution and high-quality land
cover data. The post-classification processing will be com-
promised if the resolution is coarser than typical urban
features (such as sidewalks) or too imprecise to delin-
eate actual building footprints. Therefore, ensuring an
appropriate source of high-resolution land cover data is
vital before applying this approach. Beyond land cover
data, the method relies on the availability and quality of
street centerline and land parcel vector data. Variations
in the detail and accuracy of these datasets across differ-
ent regions could necessitate adjustments to the approach.
For example, if street centerline data lack a street width
field, it might be necessary to omit post-classification
street improvements. Additionally, our method currently
relies on four assumptions about urban layout to predict
or project features obscured by tree canopies, and each
assumption presents specific limitations:

1. Sidewalk alignment (parallel to streets): The method
assumes sidewalks that run directly parallel to streets,
as it relies on a calculated distance value (mode) that
remains constant for each street segment. Example:
Curvilinear sidewalks that deviate significantly from
the street segments will be inaccurately predicted due
to inconsistent distances.

2. Sidewalk presence (entirely present or absent): The
method assumes a sidewalk that either runs the entire
length of a street segment between intersections or is
absent, as it delineates sidewalks by creating a buffer
along the whole street segment. Example: Sidewalks
that only exist for a portion of a street segment (e.g., dis-
appearing mid-block between intersections) will not be
accurately corrected.

3. Sidewalk width (consistent and city code compliant):
The method assumes sidewalks adhere to a predictable
width based on city guidelines. Example: Areas with
irregular sidewalk designs or violations of city codes
will result in errors in the predicted sidewalk area.

4. Residential roof geometry (predominantly orthogonal):
The method relies on the minimum bounding area,
which works best with orthogonal roof shapes covering
features partially obscured by tree canopies. Example:
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Unique architectural designs with circular, triangular,
or complex roof geometries might introduce inaccu-
racies during roof boundary extraction due to their
shape deviating from the orthogonal assumption. Fea-
tures completely covered by tree canopies may not be
corrected.

Despite these limitations, the core principles of this
method hold potential for broader application. Our study
in Corpus Christi, TX, highlights the potential for broader
application characteristics, including a grid-based street
layout and a prevalence of detached housing with asso-
ciated sidewalks. The reliance on readily accessible vec-
tor data and the streamlined correction process offers
advantages over methods dependent on auxiliary surface
datasets. Assessing how closely a city conforms to the
urban layout assumptions is critical. In cases of signifi-
cant deviation, algorithmic changes might be introduced.
One example where algorithmic adaptation may be nec-
essary is handling sidewalk segments obscured by tree
cover. Instead of relying on a simple distance-based pre-
diction, curvilinear regression models could be used to
capture sidewalk trajectories better. This involves gener-
ating a regression model using the measurable distances
between the street centerline and visible sidewalk portions
to predict the obscured sections. Another area for adap-
tation is roof analysis. The proposed approach relies on
identifying the minimum bounding box, which assumes
a predominance of orthogonal roof edges. This method
will be ineffective in locations with complex roof shapes
or where a large portion of the roofs are entirely obscured
by tree cover. In addition, open courtyards pose a chal-
lenge for the minimum bounding box concept. Their
internal features (vegetation and pavement) can lead to
misclassification, as our method may incorrectly identify
them as part of the building footprint. This is com-
mon in European cities with frequent courtyard designs
(Edwards et al., 2004). To address inaccuracies stem-
ming from deviations in our assumptions, incorporating
additional data sources or exploring adjustments to the
algorithm could provide solutions. Crucially, it is essential
to balance these algorithmic adaptations with computa-
tional costs. Complex methods can prove computationally
expensive and potentially impractical for large-scale city
analysis. It is best to assess the trade-offs carefully based
on the specific characteristics and scale of the city under
investigation.

5 CONCLUSION

The research presented marks a significant advancement
in urban land cover classification using 15-cm resolution
4-band aerial imagery. This approach comprehensively

depicted Corpus Christi, TX, covering a 312 km2 area and
employed theDeepLabV3+model with a ResNet-101 back-
bone. The training dataset, which accounted for 0.21% of
the total study area, was labeled across five classes. The
DL model achieved a total accuracy of 90.25%, reveal-
ing the potential of high-resolution imagery to capture
intricate urban details at the parcel level. Such an advance-
ment is particularly valuable for precise urban analysis and
planning.
Moreover, the study addressed the challenge of tree

canopy coverage in urban environments by integrating
statistical and geometrical analysis with vector data to
process the land cover dataset, focusing on accurately
representing impervious surfaces covered by canopies.
This post-classification correction significantly improved
the depiction of urban features, including streets, side-
walks, and roofs. It showed an increase in the impervious
surface area, accounting for 4.78% of the original imper-
vious surface classification or 1.52% of the total study
area. While these improvements may seem minimal, they
are crucial for enhancing data functionality, ensuring
continuity in impervious surfaces, preserving road areas
under canopies, networking sidewalks, and refining roof
geometries. Furthermore, this research converts raster
data derived from a unimodal surface dataset into vec-
tor formats, streamlining the land cover analysis process.
This approach improves urban landscape classification
and ensures accurate delineation of impervious surfaces
from a single surface dataset, enhancing data quality and
reducing issues related to temporal mismatches, compu-
tation time, and resource use. This study establishes a
new standard by advancing post-classification techniques
with high-resolution aerial imagery, significantly enhanc-
ing the delineation and analysis of urban features. These
improvements in detail and accuracy directly support
more informed decision-making in urban infrastructure
development and environmental planning.
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