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Abstract—We consider a scenario whereby the state of a
common source is being updated at multiple distributed devices.
We are particularly interested in the tradeoff that exists between
the freshness of the updates at the distributed devices and the
synchrony of the updates across them. In this paper, we explore
this tradeoff in a wireless downlink setting whereby the transmit-
ter can choose between unicast transmissions (with given success
probabilities) to particular users and broadcast transmissions
(with a smaller success probability) to all users. After discussing
the Linear Programming (LP)-based optimal design and extreme
choices of “always-unicasting” and “always-broadcasting” poli-
cies, we note that the optimal design is not scalable and the
extreme policies are inefficient. This motivates us to develop
two classes of policies, namely a “mixed randomized policy”
and a “feature-based learning policy”, which have desirable
performance and computational-complexity characteristics. We
perform extensive numerical studies to compare the performance
of these designs over the benchmarks to reveal their gains.

I. INTRODUCTION

In recent years, the exponential growth of connected devices
for the next-generation wireless networks and the advent of
latency-sensitive applications, such as industrial automation,
vehicular networks, and the Internet of Things (IoT), have
shifted the focus from traditional communication metrics like
throughput to more nuanced performance indicators. Age
of Information (AoI) is one such metric that quantifies the
freshness of information by measuring the time elapsed since
the generation of the most recent update received by a user
(see, for example, [1]–[3]).

Since the introduction of the AoI metric, numerous related
studies emerged in various networking scenarios, including
wireless random access networks (e.g., [4], [5]), content
distribution networks (e.g., [6], [7]), scheduling (e.g., [8]–
[10]) and queuing networks (e.g., [11], [12]). More recently,
various extensions and variants of the AoI metric have been
proposed to address different aspects of information freshness.
Peak Age of Information (PAoI in [13]) is one such metric
that captures the worst-case AoI by considering the maximum
value of AoI over a time window and is especially important in
applications where information staleness could lead to severe
consequences. The Weighted Age of Information (WAoI, see
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[14]) is another extension that assigns different weights to
updates, reflecting their relative importance in the system. The
AoI violation rate metric (see [15]) describes the time ratio of
AoI violating a fixed level and is used in scenarios where the
AoI for each source can tolerate occasional violations.

In this paper, we will introduce and study the measure of age
of synchronization among distributed users in a wireless down-
link system, which measures how similar the age (and hence
the freshness) levels are at the users. In particular, we explore
the trade-off between the freshness and the synchrony of the
updates under different transmission policies. Synchronization
is a critical aspect of future wireless communication systems
since accurate synchronization is essential for coordinating
time-sensitive operations among different users (see [16]).
There are many scenarios where synchronization among users
takes precedence over AoI, such as in distributed control
systems, cooperative communication networks ( [17]) and so
on (e.g., Vehicular Networks [18], Wireless Sensor Networks
[19] and Precision Agriculture [20]). For example, in industrial
automation and process control applications, distributed con-
trol systems involve multiple sensors, actuators, and controllers
that need to coordinate their actions in real-time. Accurate
synchronization among these users is critical for maintaining
the stability and efficiency of the system, while the AoI may
be of secondary importance (see [21]).

Thus, achieving a balance between AoI and synchroniza-
tion is therefore of paramount importance for the effective
functioning of these systems. The remainder of this paper is
organized as follows:

• In Section II, we build our system model in a discrete-
time wireless downlink setting whereby the transmitter
can choose between unicasting and broadcasting with
different transmission success probabilities. We formulate
our problem as minimizing the weighted sum of the AoI
and age of synchronization (AoS) to study the trade-off
between the freshness and the synchrony.

• In Section III, we study the optimal solutions via Linear
programming for small number of users n due to the com-
putational complexity of the optimal solution for large n.
In section IV, we analyze the performance of two extreme
policies: always unicasting and always broadcasting, and
make comparisons. In section V and Section VI, we



propose a mixed randomized policy and a feature-based
learning policy, both with good scalability characteristics
and non-negligible performance gains compared with
extreme policies with meaningful success probabilities.

• In Section VII, we execute simulations and compare all
the mentioned policies. We observe that, with different
number of users, success probability and weights, we
may prefer different policies for optimizing the tradeoff.
Counter-intuitively, we note that unicasting can be more
preferable to broadcasting when aiming to minimize
the synchronization under an unreliable communication
environment. And in Section VIII, we conclude the paper
and mention the potential future works.

In related literature, many works (e.g., [22]–[24]) have
studied different types of the clock synchronization in a de-
centralized system, such as reference-broadcast synchroniza-
tion (RBS) and time-stamp synchronization (TSS), but they
focus on the structure of the protocols instead of considering
transmission successes and failures. In [25], [26] and many
other works, the authors have aimed to decrease the synchro-
nization and other metrics with time-sensitive 5G networks,
but by the means of improving the transmission architecture
and mechanisms to provide ultra-reliability and low-latency
communications (URLLC). More recently, [27] have presented
an efficient window-based resource allocation method for the
end-to-end time-sensitive network scheduling problem under
the uncertainty of the channel. This work aims to reduce large-
scale fading correlation across the devices which is different
from our scope. There are other works that aim at minimizing
other AoI metrics under fading channels which is different
from our focus. To our best knowledge, there is no prior
work considering the trade-off between the freshness and the
synchrony among the users in an unreliable communication
environment under different transmission strategies.

II. SYSTEM MODEL

In this paper, we will consider the operation of a discrete-
time wireless communication system, whereby a Base Sta-
tion(BS) sends information updates to n users at the beginning
of every time slot t ∈ {1, 2, 3, · · · } either by broadcasting the
information to all the users with a relatively lower individual
success probability (that are generated independently for each
user) or by unicasting the information to a specific user with
a relatively higher success probability. We assume that the BS
refreshes its status and creates a new packet at the beginning
of every time slot t. Accordingly, the BS always sends the
freshest status to all the users. This assumption is especially
reasonable for the scenarios where the state of the source is
observable or accessible at the BS. More complicated models,
such as randomly generated new packets, add more complexity
and can be considered in the future extensions. Our goal is to
find an effective strategy that can keep the information at the
users fresh as well as the age of information amongst the users
as synchronized as possible. We describe the key terminology
and the essential system dynamics in the rest of this section.
Then, in the following sections we formulate the problem and

Figure 1. Base Station updates its status to n users by either broadcasting or
unicasting to keep the age levels at users low and synchronized.

propose different strategies with different performance and
complexity characteristics for its solution.

A. AoI AoS metrics

First, define the Age-of-Information(AoI) of user i as Ui[t],
which is the number of time slots elapsed at time t since the
user i last received a successful update from the station. The
AoI is updated as follows:

Ui[t+ 1] =

{
0, if transmission of source i succeeds
Ui[t] + 1, otherwise.

Define A[t] as the average AoI of all the users at time
t, A[t] = 1

n

∑
Ui[t]. To study the information freshness

difference between users, we will additionally define the Age-
of-Synchronization metric S1[t] as the 1st−order average Age-
of-Synchronization,

S1[t] =
1(
n
2

) ∑
i̸=j

|Ui[t]− Uj [t]| .

B. Broadcast/Unicast Model

We assume that in our model the base station will choose
one of the actions x[t] ∈ X at every time slot t, where X =
{0, 1, · · · , n}, x[t] = 0 represents that the station chooses to
broadcast to all n users and x[t] = i means that the station
chooses to unicast with the ith user.

Under the broadcasting model, we let P{Ui[t+ 1] = 0} =
pb be the probability of success, whereby the success/failure
outcomes of each user is independently determined1. Under
the unicasting model, when x[t] = i, P{Ui[t+ 1] = 0} = pd,
P{Uj [t+ 1] = 0} = 0 for j ̸= i.

C. Objective

In this paper, we focus on minimizing the weighted
sum of the long-term Age-of-Synchronization and Age-of-
Information, which allows us to study the trade-off between
the information freshness of the users and the information
synchronization between users. Define the cost at t to be a
function of the weight α ∈ [0, 1):

Cα[t] ≜ (1− α)A[t] + αS1[t].

1In reality, users may have different success probabilities under the broad-
casting model due to user locations, which can be discussed in future works.



Notice that α is not allowed to be 1 in our model, since
only minimizing AoS can push the system into an unstable
operating mode where none of the users wants to get updates
when their AoS is small. We will study the optimal solution
to the problem of minimizing the long-term average:

lim
T→∞

1

T

T∑
t=1

E [Cα[t]]

via Linear Programming in Section III, extreme policies with
either always broadcasting or always unicasting with the oldest
users in Section IV, a mixed randomized policy in Section V,
and feature-based learning policies in Section VI. We will
compare the theoretical and simulation performance of these
designs in Section VII.

III. OPTIMAL DESIGN

In this section, we formulate the minimization problem
under the Markov Decision Process(MDP) setup. Let the state
be the current age of n users: U = [Ui[t]]

n
i=1 ∈ [0, D]n where

D is an upper bound on the ages2 and P (X) is the probabilistic
policy on set X. Then, the MDP problem for n users can be
formulated as:

min
x[t]∈P (X)

lim
T→∞

(1− α)
1

T

T∑
t=1

E [A[t]] + α
1

T

T∑
t=1

E
[
S1[t]

]
Theoretically, this problem can be solved by transforming the
MDP in an appropriate Linear Program (LP). However, this
approach is not scalable due to the exponential growth of the
problem size the n. Nevertheless, using this solution for small
n values will allow us to use it as a benchmark for our designs
to compare against. As such, for completeness, we provide the
optimal solution LP for n = 2 users, which can be generalized
to n > 2 with increasing notational complexity.

Theorem 1: The solution to the 2 users minimization
problem can be obtained by solving the following linear
programming problem:

min
yk
a1,a2

D∑
a1,a2=0

2∑
k=0

[
1− α

2
(a1 + a2) + α|a1 − a2|

]
yka1,a2

s.t: 0 ≤ yka1,a2
≤ 1 ∀0 ≤ a1, a2 ≤ D, 0 ≤ k ≤ 2,∑D

a1,a2=0

∑2
k=0 y

k
a1,a2

= 1,

Qy = 0,

where y is a column vector of size 3(D + 1)2 with y =
(y00,0, y

1
0,0, y

2
0,0, · · · , y0D,D, y1D,D, y2D,D)T as its components,

D is an upper bound on the age state in the system which
can be set sufficiently large so that the probability of reaching
D is vanishing. And Qy = 0 is the matrix representation of
the (Markov balance) equations in Appendix. A. If this LP is
feasible and y is an optimal solution, then the optimal policy

2In reality, D can be viewed as an upper bound where ages older than D
make no difference to the system. Theoretically, as D approaches infinity,
the solution approaches the solution of the infinite CMDP where ages are
unbounded.

is a probabilistic policy P (X), whereby the probability fk
a1,a2

of choosing x[t] = k when the age is at state (a1, a2) equals:

fk
a1,a2

=



yk
a1,a2

2∑
k=0

yka1,a2

, if
2∑

k=0

yka1,a2
̸= 0

1
3 , if

2∑
k=0

yka1,a2
= 0

for (a1, a2) ∈ [0, D]n.
Proof: The proof follows directly from the equivalency
between MDP and LP problem and is omitted here (refer to
[28]).

Since the computational complexity is high for solving the
Linear Programming problem in a high dimensional setup, we
will study more policies with better scalability in following
sections.

IV. EXTREME POLICIES

To develop an understanding of the broadcasting and uni-
casting decisions, in this section, we study the performance
of age and synchronization metrics for two extreme policies
as a function of n for different pb and pd, and compare
the theoretical results at the end of this section. The related
simulation performance can be found in Section VII.

A. Always-Broadcasting Policy

In this section, we study the policy that selects x[t] = 0
for all t, i.e., the BS always chooses to broadcast the current
information to n users. We will analyze the long-term average
of A[t] in Theorem 2 and the long-term average of S1[t] in
Theorem 3.

Theorem 2: The long-term average of A[t] for always-
broadcasting equals to:∑∞

k=0(1− pb)
k · 1

2k(k + 1)∑∞
k=0(1− pb)k(k + 1)

=
(1− pb)

pb
,

which remains constant as n increases.
Proof: Since each user is statistically identical with respect
to age and user successes are independent, it is sufficient to
calculate the long-term average of U1[t]. The result follows
from the characteristics of the associated geometric distribu-
tion. Details are omitted due to limited space.

Theorem 3: The long-term average of S1[t] for always-
broadcasting equals to:

lim
T→∞

1

T

T∑
t=1

E{S1[t]} = lim
t→∞

E{S1[t]}

=
∞∑
k=0

2pb(1− pb)

1− (1− pb)2
pb(1− pb)

k(k + 1) =
2(1− pb)

1− (1− pb)2
.

Proof: Since each user pairs are identical, it is sufficient
to calculate the long-term average of the absolute age gap
between any two users. Details are omitted due to space.



B. Always-Unicasting Policy

In this section, we study the policy that selects x[t] =
argmaxi Ui[t] for all time slots t, i.e., the BS always chooses
to unicast information to the user with the highest age. We will
analyze the long-term average of A[t] in Theorem 4 and the
long-term average of S1[t] in Theorem 5. This policy will be
more complex than the previous always-broadcasting policy
since this is a state-dependent policy.

Theorem 4: The long-term average of A[t] for always-
unicasting equals to:

lim
T→∞

1

T

T∑
t=1

E{A[t]} = lim
t→∞

E{A[t]} =

∞∑
k=0

pnd (1− pd)
k

(
n+ k − 1
n− 1

)
1

2
(n+ k)(n+ k − 1)

∞∑
k=0

pnd (1− pd)
k

(
n+ k − 1
n− 1

)
(n+ k)

=
1
2 · −np−n−2

d (−n+ 2pd − 1)

np−n−1
d

=
n− 2pd + 1

2pd
.

Note that the average AoI is linear in n for a fixed success
probability pd.
Proof: By symmetry, we only need to calculate the long-term
average of user 1. Since the Markov Chain U1[t] is positive
recurrent, thus the sequence of entry times to state U1[t] = 0
can be viewed as the arrival epochs of a renewal process.
Define TN as the time of the N th entries to state 0 with T0 =
0, N ∈ N and define ∆N = TN+1−TN to be the time interval
between two entries.

Since we always perform direct transmission, after a success
at user 1, U1[t] will keep increasing by one until another
success happens at user 1, and since we always choose the
user with the largest age to transmit, between two successes
at user 1, all the other n− 1 users must succeed once. Based
on the above description, independent of the starting points,
the steady-state probability distribution of the interarrival time
P (∆N = k) = 0 when k = 0, 1, · · · , n−1; P (∆N = n+k) =

pnd (1 − pd)
k

(
n+ k − 1
n− 1

)
, when k = 0, 1, · · · . And when

∆N = n+ k, U1[t+ τ ] = τ for τ = 0, · · · , n+ k − 1 in this
renewal, so by the Wald’s identity ( [29]), we get the claimed
formula of the average age.

Theorem 5: The long-term average of S1[t] equals to:

lim
T→∞

1

T

T∑
t=1

E{S1[t]} = lim
t→∞

E{S1[t]} =
n+ 1

3pd
, which is

linear in n for a fixed probability pd.
Proof: The proof is more involved and is moved to
Appendix B to avoid disrupting the flow of the main text.

C. Discussion on the Performance of Extreme Policies

By comparing the long-term average of the average AoI
A[t] of always-broadcasting and always-unicasting policies,

we can see that when the broadcasting success probability
pb >

2pd

n+1 , always-broadcasting policy provides better average
AoI performance. Assume that the expected number of suc-
cesses is unchanged for always-broadcasting when n increases,
i.e., assume that pb = µ

n ∈ [0, 1] where µ is a positive
constant, then the average AoS under the broadcasting policy
will become:

lim
T→∞

1

T

T∑
t=1

E{S1[t]} =
2(1− pb)

1− (1− pb)2
=

2(n− µ)n

(2n− µ)µ
.

Recall that for always unicasting policy, the average AoS
equals n+1

3pd
. Therefore, asymptotically speaking, average AoS

approaches n
µ and n

3pd
respectively for always-broadcasting

and always-unicasting. Combining both metrics together to
minimize the long-term average of C(α) = (1−α)A[t]+αS[t]
for a given α, we get for always-broadcasting policy:

lim
n→∞

1

n
lim

T→∞

1

T

T∑
t=1

E{Cα[t]} = (1− α)
1

µ
+ α

1

µ
=

1

µ
,

and for always-unicasting policy:

lim
n→∞

1

n
lim

T→∞

1

T

T∑
t=1

E{Cα[t]} =
(1− α)

2pd
+

α

3pd
. (1)

Hence, when 1 is larger than 1
µ or pb decays slower than

µ
n , we would prefer always-broadcasting eventually, otherwise,
always-unicasting policy eventually becomes better, see Sec-
tion VII for simulation results. We also observe that, when one
of the success probabilities pb and pb is large enough so that
the average performance of one extreme policies is much better
than the other one, extreme policies perform good enough
compared to LP solutions. It is because this case implies that
broadcasting or unicasting dominates the other on most of the
age states. However, when 2pd ≤ npb ≤ 3pd (from 1), the
average performance of the extreme policies are comparable,
in which case we need to find other policies to achieve better
performance. This motivates us to develop new policies in the
following sections.

V. MIXED RANDOMIZED POLICIES

In this section, we introduce a mixed randomized policy
that employs a combination of randomization and the current
age state to make broadcasting or unicasting decisions. In
particular, in each time slot t, suppose the policy decides
to broadcast, i.e., sets x[t] = 0, with probability p ∈ [0, 1];
and otherwise unicasts the update with the largest age, i.e.,
sets x[t] = argmaxi Ui[t]. As such, this policy randomizes
between broadcasting to all users and unicasting to the user
with the oldest age. This policy, being state-dependent, is
far more difficult to analyze when compared to the extreme
designs of the previous section. Next, we provide a detailed
analysis of the average age performance of the two-user case.

Theorem 6: The long-term average AoI under n = 2 will
be, ∑∞

i=1
i(i−1)

2 ρ(i)∑∞
i=1 ρ(i) · i

, (2)



where ρ(1) = P0|0P0,:|Eq + P+|0P0,:|Sm, and for i ≥ 2,

ρ(i) =P0|0(P
i−1
+,+P0,:|Eq + P0,+|EqP0,:|La

P i−1
+,:|La − P i−1

+,+

p · pb(1− pb)
)

+P+|0(P
i−1
+,+P0,:|Sm + P0,+|LaP0,:|La

P i−1
+,:|La − P i−1

+,+

p · pb(1− pb)
).

The definitions of the notations can be seen in Appendix C.
Proof: Same as in theorem 4, the sequence of entry times

to state 0 for U2[t] can be viewed as the arrival epochs of a
renewal process. In this section, define TN as the time of the
N th entries to state 0 with T0 = 0, N ∈ N for user 2 and
define ∆N = TN+1−TN to be the time interval between two
entries. For simplicity, use ∆ to denote the interarrival times
under the steady-state distribution.

Under the event where ∆ = i, there are two cases, U1[t] = 0
and U1[t] ̸= 0. Then P (∆ = i) = P0|0P (∆ = i|U1[t] =
0)+P+|0P (∆ = i|U1[t] ̸= 0). Since the relationship between
the age of the two users will affect the success probability of
each user, in each case, there are two sub-cases: user 1 never
succeeds in time slots t+1 to t+∆− 1 and user 1 succeeds
at least once in time slots t+1 to t+∆−1 (the probability of
the second sub-case equals 0 when i = 1). So, P (∆ = 1) =
P0|0P0,:|Eq + P+|0P0,:|Sm. And for i ≥ 2, P (∆ = i|U1[t] =

0) = P i−1
+,+P0,:|Eq + P0,+|EqP0,:|La

i−2∑
j=0

P j
+,+P

i−2−j
+,:|La , where

i−2∑
j=0

P j
+,+P

i−2−j
+,:|La =

P i−1
+,:|La − P i−1

+,+

P+,:|La − P+,+
=

P i−1
+,:|La − P i−1

+,+

p · pb(1− pb)
.

Similarly, we can calculate P (∆ = i|U1[t] ̸= 0) =

P i−1
+,+P0,:|Sm + P0,+|LaP0,:|La

i−2∑
j=0

P j
+,+P

i−2−j
+,:|La for i ≥ 2. And

finally, since when ∆ = i, i = 1, 2, · · · , we will have
U1[t + τ ] = τ for τ = 0, 1, · · · , i − 1 in this renewal, so
the long-term average AoI equals to 2 followed by the Wald’s
identity ( [29]), where ρ(i) denotes P (∆ = i).

For higher dimensional cases, we will explain how the
above two-user case approach can be extended with increasing
notational complexity. Take n = 3 as an example to explain
the difficulty and why the same method can be applied to the
higher dimensional cases. The difficulty for higher dimensions
comes from the fact that, conditioned on the case where
U1[t] = 0 and U2[t], U3[t] ̸= 0, we cannot easily calculate the
probability of the sub-cases of U2[t] ̸= U3[t] or U2[t] = U3[t].
And whether U2[t] = U3[t] or not will affect the success
probability of user 2 and 3 under the unicasting model and
further affects the success probability of user 1. However, by
carefully calculating the conditional probabilities, we find that
whether U2[t] = U3[t] or not will not affect the probability
distribution of the slots until user 1 succeeds next time, so the
same methods can be applied to higher dimensions as well.

The performance of the policy can be seen in Fig. 2 and
5. Notice that all the terms in Eqn 2 are in the form of
arithmetico-geometric series ( [30]), so the result can be

simplified as an explicit expression without summations. For
higher dimensional cases, the result is much more complicated
but is still an explicit expression, unlike what would be
obtained from solving the steady state of the Markov chains.

For the long-term average of synchronization when n =
2, we have to utilize the steady-state distribution of S1[TN ].
Through the steady-state balance equation, it is only possible
to find a recursive formula of P (S1[t] = i), i ∈ N. This is
omitted here due to page limitation.

VI. FEATURE-BASED LEARNING POLICY

Since formulating the Linear Programming problem in
Theorem 1 is very complicated even for n > 2, in Figure 3
and 4, we perform Monte Carlo tabular learning on state space
U = [Ui[t]]

n
i=1 ∈ [0, D]n for n = 3, 4 cases to compute

the performance of the optimal solution that minimizes C(α).
However, Monte Carlo tabular learning algorithm becomes
much slower with higher n > 4, so instead of seeking the exact
solutions, we next introduce a feature-based learning algorithm
which is based on the (A[t], S1[t]) state and compare the
performance with other policies.

A. Feature-based learning policy

Intuitively speaking, when one of the users Ui[t] is much
higher, and all the other users are at a much lower age level,
the Age of Synchronization is relatively high and the average
AoI is relatively low. Then, to reduce the synchronization
metric, we would intuitively unicast with the user i. In contrast,
when all the users have relatively high age levels, but their
age is closer to each other, we would prefer broadcasting
to all of the users. Based on this, we will perform the
following feature-based learning algorithm where the feature
state Z[t] = ([A[t], S1[t]]) is used to decide x[t]. In the

Algorithm 1 Feature-based Monte Carlo learning
1: Initialize policy π0 randomly
2: for i = 0, 1, . . . , number of episode do
3: Run policy πi and observe sequence of states {U}0:T ,

actions {x}0:T , costs {Cα}0:T
4: Calculate the feature {Z}0:T with {U}0:T
5: Run Monte Carlo with ({Z}0:T , {x}0:T , {Cα}0:T and

get the state-action value function Qi(Z, x)
6: Update policy by πi+1(Z) = argminQi(Z, x)
7: end for

next section, we will see that when n is small, the feature-
based learning policy provides near-optimal performance, for
moderate n, the feature-based learning policy still performs
better than the mixed randomized policy.

VII. SIMULATION

First of all, we compare the AoI and AoS performance
trade-off of all policies (optimal solutions via LP, two ex-
treme policies, mixed randomized policy, and the feature-based
learning policy) under a two-user scenario in Figure 2. In
this simulation, we set the broadcasting success probability to
pb = 0.32 and the unicasting success probability to pd = 0.4.



The ends of the mixed randomized policy represent the per-
formance of two extreme policies (the left end is always-
broadcasting). The black dots are the feature-based learning
results with different α values, since the feature state Z[t]
and age state U[t] is a one-to-one mapping in the two-user
case, the black dots are very close to the optimal solutions.
Through the figure, the minimum long-term average of C(α)
can be easily found by finding the lowest line intersects with
the policy curve with the slope being − 1−α

α .
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Figure 2. The trade-off between average age and synchronization for all
policies when n = 2, pb = 0.32, pd = 0.4.
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Figure 3. Performance comparison against increasing n when pd = 0.3,
pb = 0.7/n, α = 0.9.
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Figure 4. Performance comparison against increasing n when pd = 0.6,
pb = 1.5/n, α = 0.5.

Secondly, we plot C(α) the weighted sum of long-term
average AoI and AoS under different policies against an
increasing number of users n. In Figure. 3, we set α = 0.9,
pd = 0.3 and pb = 0.7/n with different n. In Figure. 4, we set
α = 0.5, pd = 0.6 and pb = 1.5/n with different n. In figures,

the performance of the mixed randomized policy is with the
best choice of p for different n, and the optimal solutions are
solved via LP for n = 2, and from the Monte Carlo Tabular
learning algorithm for n = 3, 4.

Before making observations about these two figures, notice
that in both cases, we set npb in the range of 2pd to 3pd
in order to make a meaningful comparison for large n as
explained in Section IV-C after Eqn 1. For this range of
values, the performances of optimal solutions, mixed random-
ized policy, and feature-based learning policy overlap with
the broadcasting policy when n is small. This choice of
probabilities also makes the performances of policies to be
comparable, because in those cases the performance of two
extreme policies does not differ significantly from each other.
See Figure 5 as a reference. 5(a) shows that the feature-based
learning policy outperforms the mixed randomized policy by
10% and is much closer to the optimal level while mixed
randomized policy outperforms always-broadcasting by 2.5%
when n = 4. 5(b) shows that the feature-learning based policy
can outperform the mixed randomized policy (left ends of blue
curve is p = 1) for n = 10 where the optimal solution is
unknown.

0 0.2 0.4 0.6 0.8 1

Probability of broadcasting p

4.5

5

5.5
W

e
ig

h
te

d
 s

u
m

 o
f 
A

o
I 
a
n
d
 A

o
S

Mixed randomized policy

Optimal solution

Feature-based learning

(a) Weighted sum of AoI and AoS
when α = 0.9, n = 4, pd = 0.3,
pb = 0.7/n.
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Figure 5. Performance comparisons between mixed randomized policy,
feature-based learning and Optimal solution for given n.

With the comparison of the weighted sum against n, we
find: (i) Matched with our finding in Section IV-C, when
α = 0.9, pd = 0.3 and pb = 0.7/n, (1) = 7/6 < 10/7 = 1/µ,
we see in Figure 3 that unicasting eventually performs better
than broadcasting. In constrast, when α = 0.5, pd = 0.6
and pb = 1.5/n, (1) = 25/36 > 2/3 = 1/µ, Figure 4
illustrates that broadcasting eventually performs better than
unicasting. (ii) From the theoretical results of extreme policies,
the AoI and AoS trade-off comparison for mixed randomized
policy, the action learned from feature-based learning policy
for different α values, and Figure 3, 4, we can see that
unicasting is more preferable than broadcasting if we are more
focused on minimizing the AoS (i.e., α is closer to 1) when
npb is in the range of 2pd to 3pd. This is somewhat counter-
intuitive as without careful thinking we may expect broadcast-
ing to help synchronization more than unicasting. (iii) For a
moderate number of users n in the system, the feature-based
learning policy performs non-negligibly better than the mixed
randomized policy. However, the advantage of feature-based
learning will be diminishing with n since when the number of
users is large, two features A[t] and S1[t] cannot accurately



distinguish which action is better anymore. So, for moderate
n and under the case that the computational power is enough,
we can apply a feature-based learning policy to achieve better
performance while for larger n, the mixed randomized policy
has good scalability as well as a gain compared with extreme
policies that grow linearly with n. (iv) We also notice that
when the success probabilities of broadcasting and unicasting
are both small, the gains for mixed randomized policy and
feature-learning policy are more obvious, which implies that
in a bad communication environment, we should act more
carefully to benefit more.

VIII. CONCLUSIONS

In this paper, we consider a time-sensitive scenario whereby
the state of a common source is being updated at n dis-
tributed devices over unreliable channels. We study the trade-
off between the Age of Information (AoI) and the Age of
Synchronization (AoS) whereby the transmitter can choose
between unicast transmissions and broadcast transmissions for
the updates.

We first pose and solve the optimal solution of the asso-
ciated constrained MDP problem via Linear Programming,
which is tractable only for small n values. Then, we analyze
the AoI and AoS performance under two extreme policies
(i.e., always-unicasting and always-broadcasting), where we
point out how the success probabilities for unicasting and
broadcasting along with n would affect the performance of
both extreme policies. Motivated by the observations from
the extreme policies, we propose a mixed randomized policy
and a feature-based learning policy, both with good scal-
ability characteristics and non-negligible performance gains
compared with the extreme policies. Subsequently, we perform
extensive numerical studies and observe that, for different
number of users, success probabilities, and weights, we pre-
fer different policies for optimizing the AoI-AoS tradeoff.
Counter-intuitively, we note that unicasting is preferable to
broadcasting when aiming to minimize the synchronization
under an unreliable communication environment.

Throughout the study, we notice that the synchronization
between users in an unreliable communication environment is
a very complicated but interesting metric. We propose several
different classes of policies with desired properties. Yet, the
optimal structure of state-dependent choice to minimize the
synchronization and stabilize the system with increasingly
large n is still unknown and requires further investigation.
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APPENDIX A
THE BALANCE EQUATION OF LP IN THM 1

For i = 1, · · · , D − 1,

2∑
k=0

yk0,i =
D∑

a1=0

y0a1,i−1pb (1− pb) + y1a1,i−1pd,

2∑
k=0

yki,0 =
D∑

a2=0

y0i−1,a2
pb (1− pb) + y2i−1,a2

pd,

2∑
k=0

yki,D = (y0i−1,D + y0i−1,D−1) (1− pb)
2

+(y1i−1,D + y1i−1,D−1 + y2i−1,D + y2i−1,D−1) (1− pd) ,
2∑

k=0

ykD,i = (y0D,i−1 + y0D−1,i−1) (1− pb)
2

+(y1D−1,i + y1D−1,i−1 + y2D−1,i + y2D−1,i−1) (1− pd) ,

for i, j = 1, · · · , D − 1,

2∑
k=0

yki,j = y0i−1,j−1 (1− pb)
2
+

2∑
k=1

yki−1,j−1 (1− pd) ,

2∑
k=0

ykD,D

=
(
y0D−1,D−1 + y0D−1,D + y0D,D−1 + y0D,D

)
(1− pb)

2

+
2∑

k=1

(
y1D−1,D−1 + y1D−1,D + y1D,D−1 + y1D,D

)
(1− pd) .

APPENDIX B
PROOF OF THM 5

Based on the symmetry,

lim
t→∞

E{S1[t]} = lim
t→∞

E

 1

n− 1

n∑
j=2

|U1[t]− Uj [t]|

 .

Define function f(i, pd) as the expectation of the number of
slots until the next ith successes happen among all users under
steady state when the success probability for unicasting is pd.
In the following analysis, we use f(i) instead of f(i, pd) for
simplification. Similarly as in Theorem 4, define Ti as the time
of the ith successes among all the users with T0 = 0, i ∈ N

and define ∆i = Ti − Ti−1 to be the time interval between
two successes. Then,

f(i) = E [Ti] = E

 i∑
j=1

∆j

 =
i∑

j=1

E [∆j ] = iE [∆1] =
i

pd
,

where the last step is by the Blackwell renewal theorem.
To calculate the age difference between user 1 and others,

similarly as in theorem 4, the sequence of entry times to state

0 for user 1 can be viewed as the arrival epochs of a renewal
process. Then,

lim
t→∞

E{S1[t]} = E
1

n− 1

n∑
j=2

|U1 − Uj |

=
1

n− 1

n−1∑
j=1

f(j)× f(n− j) + f(n− j)× f(j)

f(j) + f(n− j)

=
2

n− 1
·
n−1∑
j=1

f(j)× f(n− j)

f(n)

=
2

n− 1
×

∑n−1
j=1

j
pd

× n−j
pd

n
pd

=
2

n− 1
×

∑n−1
j=1 j(n− j)

npd

=
2

n− 1
× 1

npd
× 1

6
n · (n− 1)(n+ 1) =

n+ 1

3pd

APPENDIX C
NOTATIONS IN THEOREM 6

Let us use P0|0 for P (U1[t] = 0|U2[t] = 0) under the
steady-state values of Ui[t] under the above policy3. Similarly,
all the probability notations below are under the steady state
distribution of (U1[t], U2[t]). Let P+|0 denotes P (U1[t] ̸=
0|U2[t] = 0). Since P (U1[t] = 0, U2[t] = 0) = p · p2b ,
P (U1[t]U2[t] = 0, U1[t] + U [t]2 ̸= 0) = 2p · pb(1 − pb) +
(1− p)pd, by symmetry, P (U1[t] ̸= 0, U2[t] = 0) = p · pb(1−
pb) +

1
2 (1− p)pd. Then,

P0|0 =
p · p2b

p · p2b + p · pb(1− pb) +
1
2 (1− p)pd

;

P+|0 =
p · pb(1− pb) +

1
2 (1− p)pd

p · p2b + p · pb(1− pb) +
1
2 (1− p)pd

.

Additionally, denote P+,+ = P (U1[t] ̸= 0, U2[t] ̸= 0),
P0,:|Eq = P (U1[t] = 0|U1[t − 1] = U2[t − 1]), P0,:|Sm =
P (U1[t] = 0|U1[t − 1] < U2[t − 1], P0,:|La = P (U1[t] =
0|U1[t− 1] > U2[t− 1], then,

P+,+ = p(1− pb)
2 + (1− p)(1− pd);

P0,:|Eq = p · pb +
1

2
(1− p)pd;

P0,:|Sm = p · pb;
P0,:|La = p · pb + (1− p)pd.

Denote P0,+|Eq = P (U1[t] = 0, U2[t] ̸= 0|U1[t− 1] = U2[t−
1]), P0,+|La = P (U1[t] = 0, U2[t] ̸= 0|U1[t− 1] > U2[t− 1]),
P:,+|La = P (U2[t] ̸= 0|U2[t− 1] > U1[t− 1]), then,

P0,+|Eq = p · pb(1− pb) +
1

2
(1− p)pd;

P0,+|La = p · pb(1− pb) + (1− p)pd;

P:,+|La = p · pb(1− pb) + (1− p)(1− pd).

3It can be shown that the system is stable under the proposed policy, which
is omitted here.


