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ABSTRACT

Uncrewed Aerial Systems (UAS) equipped with digital
cameras and sensors is an effective remote sensing tool for
High Throughput Phenotyping (HTP) in precision
agriculture. While studies have established relations to
estimate crop height and biomass from UAS data, there has
been limited work that examines the relationship between
field measured biomass to UAS-Light Detection and Ranging
(lidar) estimated biomass for the energy cane crop. This study
explored the utility of UAS-lidar for phenotyping energy cane
crops. The study collected lidar and ground truth data from
an energy cane experimental plot in Weslaco, Texas-USA.
Random Forest (RF) regression analysis showed high
correlation between modelled crop height from lidar and field
measured crop height (r? = 0.94, rmse = 0.12m, me =
—0.002, mae = 0.009,n = 400). Also a RF model
between field measured biomass and modelled crop height,
point cloud density, intensity, and number of returns
generated from the lidar showed high performance (r? =
0.85,rmse = 92.00 g/m?, mae = 76.11, me =

0.50,n = 300). These results buttress the capability of UAS-
lidar for high throughput phenotyping as has been reported in
other studies.

Index Terms— UAS-lidar, Biomass, Crop Height
Model, Energy cane, RECON-A

1.0 INTRODUCTION

Remotely sensed data from Uncrewed Aerial Systems (UAS)
has been integral in High Throughput Phenotyping (HTP) of
crops [1]. Researchers and farmers usually develop a relation
between variables obtained from a UAS-based sensor and
compare it to field measured values [2]. The best fit model or
equation arising from such comparison is then typically
applied to the UAS data to estimate phenotypic
characteristics of crops over a whole area, especially where
ground data could not cover [3]. While studies have used
Light Detection and Ranging (lidar) sensors onboard UAS
(UAS-lidar) to derive empirical, semi-analytic, or machine
learning models to phenotype different crops [4], no study for
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which the authors are aware, has examined the empirical
relationship between UAS-lidar extracted structural features
with vegetation variables of the energy cane crop. Thus, the
aim of this study is to estimate height and biomass of energy
cane cultivars using UAS-lidar data. Specifically, (1) The
study wishes to use UAS-lidar derived variables to estimate
crop height of energy cane; 2) The study wishes to establish
an empirical relation between UAS-lidar generated variables
and field measured biomass of energy cane cultivars.

2.0 MATERIALS

2.1 Study area

The area considered for this study is the Texas A&M
AgriLife Research and Extension Center site in Weslaco,
Texas (Figure 1). The terrain of the area is relatively flat with
a gentle slope. The climate is humid subtropical with hot
temperatures during the summer. Precipitation amount is low
within the months of November to April, making the arca
ideal for assessing drought resistance of perennial crops.

Figure 1 A map of the Weslaco energy cane field showing a
UAS RGB orthomosaic and field sampled locations.

2.2 Field preparation
The selected site (experimental field) extends by 155 m in
length and 47 m in width. We created a total of total of 108,
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1 m by 10 m beds, on which 7 energy cane cultivars were
planted. The energy cane beds were interspersed with
sorghum and switchgrass beds. Nine (9) Ground Control
Points (GCPs) were placed on the outer plots and their
coordinates established using a multi-band RTK GNSS
receiver Emlid Reach RS2. The study performed an initial
UAS flight equipped with a Red-Green-Blue (RGB) digital
camera to produce orthomosaic of the study area via
Structure-from-Motion/Multi-View-Stereo (SIM/MVS)
photogrammetry. The orthomosaic was used for visualization
as shown in Figure 1.

2.3 UAS-lidar

The study collected UAS-lidar data using the Phoenix
RECON-A integrated system onboard a Freefly Astro UAS
rotary platform (Figure 2). The RECON-A is an all-in-one
payload for use on small UAS that integrates a GNSS/inertial
navigation system (INS) plus lidar sensor payload (Phoenix
Lidar Systems, 2021). The system is also integrated with a
high-resolution camera that helps in yielding maximum RGB
colorization of the point cloud (Phoenix Lidar Systems,
2021). The RECON-A navigation system supports the
following constellations: GPS, GLONASS, BEIDOU,
GALILEO. Characteristics of the Livox Avia Lidar sensor
integrated with the RECON-A are shown in Table 1.

TR i ol B ST

Figure 2 A typical setup before a flight showing the RECON-
A payload and the Astro UAS platform.

3.0 METHODOLOGY
Four instances of data collection with the UAS-lidar were
performed between 12/02/2023 and 05/16/4024. The
missions planning were performed in Auterion Mission
Control (AMC). In all the flights, the UAS was flown at a
height of 22 m above ground level at a speed of 4 m/s. For
each data collection, calibration of the lidar sensor was
performed using recommended guidelines. For this RECON-
A sensor, calibration goes through three steps namely,

Statistic Alignment, Kinematic Alignment and Navigation
System Stabilization (NSS). Static alignment was performed
both before and after a scan, for a period of 5 — 10 minutes.
During these times both the IMU (Inertial Movement Unit)
and vehicle remain completely static, and the lidar is not
activated. In performing the kinematic alignments, the
vehicle travels in a straight line for a period of at least 10
seconds, exceeding velocity of 5 m/s (18 km/h) at the
beginning and end of the data collection. In performing the
NSS, the vehicle is made to conduct at least two sets of figure-
eight patterns, either manually or using waypoint mode,
before and after the scan of the main area of interest.

Table 1 Characteristics of the lidar system used for energy
cane phenotyping. Information was extracted from product
documentation https://www.phoenixlidar.com/lidarmill/. *H
means horizontal, V means vertical

Attribute Value
Lidar scanner Livox Avia
Laser properties 905 nm

Distance random
error

lo @ 20 m <2 cm (80% Reflective)

Maximum range 190 m

Range accuracy +2 cm

Scan rate 240,000 points/s (first or strongest
return)
480,000 points/s (dual return)
720,000 points/s (triple return)
Field of view (H x | Non-repetitive scanning pattern:
V) 70.4° x 77.2°
Repetitive line scanning: 70.4° x 4.5°
Beam divergence | 0.03° x 0.28°

3.1 UAS-lidar data processing and extraction

Once a mission is completed, the data is transferred into
Phoenix LidarMill, a cloud-based platform designed to post-
process lidar data. This platform provides a step-by-step
processing workflow that results in generating lidar products
(for Lidar Mill workflow and more explanation readers are
encouraged to visit the Phoenix Lidar Mill website and
documentations  https://www.phoenixlidar.com/lidarmill/).
For this study, the cloud-based processing generated
colorized 3D point cloud with average point density > 16,000
pulses/metre* for each mission. The online processing
workflow also produced Digital Surface Model (DSM),
Digital Terrain Model (DTM), and Canopy Height Model
(CHM), which were all set to 0.05 m resolution. After this,
point cloud density, intensity, and number of returns of the
point cloud data were extracted and exported as raster files
using the Quantum Geospatial Information System (QGIS)
open-source software version 3.32.

3.2 Field (manual) data collection
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The study collected field data of crop height and biomass to
provide field samples for comparison with the UAS data.
Field sampling were conducted just after the UAS flights,
targeting crop plots that have been pre-marked as part of
stratified sampling approach. Height measurements were
performed by using metric scale rule to measure the heights
of five (5) plants within a | m x 1 m area on each targeted
plot. An average of the 5 heights was calculated to represent
the height of the plants within the sampled location. After
recording the height measurements, plants within the
enclosure were cut to the base for oven drying and dry
biomass measurement. A total of 400 samples were collected
for the four sampling campaigns. These samples comprised
all the different energy cane cultivars in the experiment.

3.3 Random Forest modelling

The study used the QGIS to create 1 m x 1 m boundary
polygons corresponding to the ground sampled locations.
Using these polygons, zonal statistics was performed on the
CHM, point cloud density, intensity, and number of returns.
A Random Forest (RF) regression analysis was first
performed between the field height and the CHM produced
from all the missions. This step was followed by regression
analysis between the field measured biomass and the mean
values of the CHM, point cloud density, intensity, and
number of returns using RF. For both crop height and
biomass modeling, the two RF hyperparameters, m#ry and
ntree were tuned using the grid search method. The data were
split into 70:30 for training and testing samples respectively.

4. RESULTS

4.1 Crop height estimation from UAS-lidar

The results indicated that, after 8 months of planting, heights
of all the energy cane cultivars ranged between 1.90 to 2.70
m, with differences in height resulting from differences in
genotypes. The regression analysis showed a strong positive
correlation (r? = 0.94, rmse = 0.12m, me = —0.002,
mae = 0.009,n = 400) between the field measured crop
height and the UAS-lidar CHM (Figure 3). This result shows
the capacity of UAS-lidar to phenotype the energy cane crop.

4.2 Energy cane biomass estimation from UAS-lidar

The regression (Figure 4) between field measured biomass
and UAS-lidar generated CHM, point cloud density,
intensity, and number of returns showed a strong positive
correlation (2 = 0.845,rmse = 91.981 g/m?, mae =
72.846, me = 0.505,n = 300). Among the four lidar
variables used, CHM was the most important variable in the
prediction. This was followed by lidar intensity, density, and
the number of returns. The results of this modelling show the
capacity of UAS-lidar for phenotyping energy cane crop. The
study used the developed model to predict the biomass of the
cultivars on the 12/02/2023 lidar data for the whole field
(Figure 4). Average biomass of the seven energy cane
cultivars was then computed from the produced map.

Regression between field measured height and lidar measured height
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Figure 3 Random Forest regression plot between measured
crop height and crop height modelled from UAS lidar.

Regression between field measured biomass and predicted biomass
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Figure 4 Relationship between lidar derived biomass and
field measured biomass.
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Figure 5 Estimated biomass map of plant cultivars on the
Weslaco energy cane experimental field after 72 days of
planting.
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Table 2 Average biomass of the energy cane cultivars
estimated from the UAS-lidar after 72 days of planting.

Estimated biomass (g/m?) as at

Energy cane cultivar  12/02/2023
TH16-13 671.69
TH16-24 544.82
TH16-16 737.10
TH16-18 552.76
TH16-22 917.79
Ho02-113 504.92
TCP10-4928 499.19
5.0 DISCUSSION

This study used a UAS-lidar system to capture data over an
experimental energy cane field in Weslaco-Texas. The study
then derived a CHM from the UAS-lidar data to measure crop
height and compare with ground truth data. RF regression
showed a performance r? = 0.94, rmse = 0.12m,
between the modelled values and field measured values,
providing a good indication of the utility of UAS-lidar
modelled CHM for estimating crop height of energy cane.
The result also confirms the high performance of UAS-lidar
for phenotyping crops as has been indicated in earlier studies
such as [4,5,6] and offers good promise of utilizing UAS-
lidar for HTP of energy cane.

The study also performed similar regression analysis between
UAS-lidar crop height, point cloud density, intensity, and
number of returns and field measured biomass of energy
cane. The RF model explained 84% of the variability between
the field and lidar datasets with a rmse of 108 g/m?. The high
performance of UAS-lidar shown in this study buttresses the
finding of earlier studies that used UAS-lidar to estimate crop
biomass [7,8]. The RF model was used to predict the biomass
of the cultivars after 72 days of planting (Table 2).

6.0 Conclusion

The study demonstrates the efficacy of UAS-lidar technology
in accurately estimating crop height and biomass of energy
cane in an experimental field. Utilizing CHM, point cloud
density, intensity, and number of returns derived from UAS-
lidar, strong positive correlations were observed between
field-measured crop height and biomass and modeled values,
indicating precise phenotyping capabilities. These findings
underscore the potential of UAS-lidar for high-throughput
phenotyping in agricultural research, offering valuable
insights for crop management and breeding programs.
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