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The sensitivity of Imaging Atmospheric Cherenkov Telescopes (IACTs) used to carry out Very-
High-Energy (VHE; E>100 GeV) gamma-ray astrophysics strongly depends on the ability to
reject cosmic-ray (hadron) background events in favor of gamma rays. Since cosmic-ray initiated
Extensive Air Showers (EAS) dominate those initiated by gamma rays by several orders of
magnitude, the ability to accurately distinguish between gamma-ray or hadron-initiated showers
is a long-standing problem within the IACT community. Motivated by the physical differences in
gamma-ray and hadron EAS, some existing work in this field has focused on implementing deep
learning techniques to solve this classification problem. The predominant deep learning approach
has been to train models in a supervised fashion on simulated EAS data, which has encountered
issues when transitioning from simulation training data to real EAS data.

We take a novel deep learning approach focused on unsupervised learning with real data from
the VERITAS IACT to learn spatial relations and temporal correlations of the EAS. We im-
plemented a Two-Dimensional Convolutional Long-Short Term Memory Autoencoder network
(2DConvLSTM-AE network) given its strong performance in both spatial- and time-relationed
data. The autoencoder architecture enables us to encode a latent space mapping of the generalized
features for a downstream classification. We find that while the 2DConvLSTM-AE is capable of
producing faithful reconstruction of EAS, the ability to differentiate EAS by their origin particle

has not yet been demonstrated but provides a promising avenue for future research.
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1. Introduction

Very-high-energy (VHE) gamma rays are photons with energies greater than 100 GeV, forming
the highest energy range of the electromagnetic spectrum. VHE gamma rays are created by non-
thermal processes, usually from violent events such as supernova and jets of material emanating from
supermassive black holes[1]. Increasing the availability of VHE gamma-ray data will enable VHE
astrophysics researchers to further understand these extreme events of our universe. The primary
instrumentation used to capture VHE gamma ray events are Imaging Atmospheric Cherenkov
Telescopes (IACTs). When a primary gamma ray or a hadron collides with atmospheric particles,
it initiates a cascade of particles and Cherenkov photons, known as Extensive Air Showers (EAS).
IACTs capture the images of these EAS, thereby indirectly observing the incoming particles. There
are key physical differences in the EAS created by gamma rays and hadrons; EAS caused by gamma
rays have a narrower particle spread through their development and primarily consist of positrons,
electrons, and lower energy gamma rays, whereas EAS caused by hadronic particles have a wider
particle spread and contain muons formed from the decay of charged pions and kaons [2]. The
duration from an EAS can range from ~ 10 — 100 nanoseconds, and its developments are imaged
on the IACT cameras as an ellipse. The result of these different particle compositions gives a
gamma-ray induced event a visibly ‘tighter’ shower as compared to the wider shower produced by
hadron induced events. These differences in EAS properties stemming from the different causal
particles makes it possible to determine which particle caused a shower via analysis of Cherenkov
radiation captured by IACTs. It is estimated that ~ 99.9% of the EAS captured by IACTs are
originated by hadrons as opposed to gamma rays [2]. The sensitivity of IACTs used to carry out
VHE gamma-ray astrophysics strongly depends on the ability to reject hadron background events
in favor of gamma rays.

The traditional approach to the gamma/hadron classification problem is the implementation
of the Hillas Parameters, established by [3]. This work analyzes images of EAS simulations and
defines a set of key properties to describe the events, such as: length and width of the image ellipse,
total charge integrated over the full shower development, nominal distance, azimuthal angle, and
orientation angle. Figure 1 shows a mapping of the length (left) and width (right) parameters for
gamma rays (signal) and hadrons (background) [4].
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Figure 1: Left: Distributions of mean scaled length between gamma ray (signal) and hadron (background)
EAS. Right: Distributions of mean scaled width between gamma ray (signal) and hadron (background) EAS
[4]

While the Hillas parameters have reasonable discriminating power, it is clear from Figure 1
that improvements in class separation could be made. One relevant limitation of these parameters
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is that the calculation method is being performed on a time-integrated form of the EAS temporal
evolution, losing information about the timing of EAS development and evolution which may be
useful in increasing the classification power.

Advancements in the technological and theoretical foundations of machine learning have
motivated the applications of deep learning techniques to the gamma/hadron classification problem.
Given that the Hillas parameters of the EAS leave room for improvement in class separation,
deep learning approaches have been implemented in hopes of discovering additional parameters
by which classification becomes more effective. Prior machine learning work has included tools
such as Boosted Decision Trees (BDTs) [2, 4], Convolutional Neural Networks (CNNs) [2, 5]
and Long-Short-Term Memory (LSTM) networks [6]. The predominant deep learning approach
has been to train models in a supervised fashion on simulated EAS data, which has encountered
issues when transitioning from simulation training data to real EAS data. We believe that pursuing
an unsupervised learning approach has the potential to solve this issue and provide the deep
learning models with more information from which to learn relevant parameters for categorization.
To accomplish this, we are implementing a Two-Dimensional Convolutional Long-Short Term
Memory Autoencoder network (2DConvLSTM-AE network) given LSTM networks’ proven strong
performance in both spatial- and time-relationed data, with the autoencoder structure enabling
unsupervised learning [6].

2. Methods

2.1 Dataset

The dataset includes 23,994 cubic-interpolated images of EAS captured by VERITAS, primar-
ily from the Crab Nebula source. The Crab Nebula is being used because it is the strongest VHE
gamma-ray emitter, frequently used as a standard calibration source. The original data captured
by each VERITAS telescope is in the form of a 499-pixel hexagonal image, with each pixel corre-
sponding to a photo-multiplier-tube. We then take the 499-pixel hexagonal images and apply cubic
interpolation to convert each frame to a 96x96 image, one for each of the four telescopes. The
data is otherwise un-normalized, where each pixel value corresponse to the acquired raw charge
value. When the VERITAS telescope array is triggered, it captures a set of 16 images in a time
series. Each time frame captures 2 nanoseconds of sensor data, so when collated, each image
cube covers 32 nanoseconds (16 frames x 2 nanoseconds). Preserving the temporal aspect of the
EAS introduces new information to the deep learning model that has the potential to improve its
performance. The resulting EAS data is formatted in an image ‘hypercube’ with dimensions of
4x16x96x96: 4 telescopes, 16 time frames, 96x96 pixel images.

2.2 2DConvLSTM-Autoencoder Framework

Our selection of the 2DConvLSTM-AE framework was inspired by prior work with a super-
vised 2DConvLSTM architecture by [6], which evaluated the effectiveness of a 2DConvLSTM on
parameters extracted from simulated hadron and gamma-ray events. Similar to other supervised
learning approaches dealing with gamma/hadron separation, the 2DConvLSTM performed very
well on simulated data but faltered when introduced to real data from VERITAS [6]. Given this
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Figure 2: Illustrative image hypercube (4 telescopes, 16 time frames, 96x96 pixel images)

observed issue common to many gamma/hadron approaches, we decided to take an unsupervised,
data-driven approach that emphasized using real events from VERITAS while making as few mod-
ifications to the data as possible. To accommodate an unsupervised approach, the autoencoder
architecture enables us to encode a latent space mapping of the generalized features for downstream
classification. The 2DConvLSTM-AE is trained on the time series images of shape 4x16x96x96
described above, applying convolutions to compress the sample down to a latent vector with 512
dimensions. The latent vector is extracted for downstream latent space analysis which is described
fully in later sections. The decoder then takes the latent vector and applies transposed convolutions
to reconstruct a set of time series images of shape 4x16x96x96. The 2DConvLSTM-AE is trained
to minimize the mean square error loss between the original and reconstructed cube; once the model
has been trained sufficiently to convergence, the individual MSE loss values were computed for
each data sample and it is considered as an anomaly score. Conceptually, owing to a relative low
incidence of gamma rays with respect to hadronic signals in the data, it is to be expected that the
events that have a high anomaly score will correspond to poorly generalized ones by the machine
model, i.e., the gamma ray events.
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Figure 3: Basic overview of 2DConvLSTM-AE architecture

The ability to encode a latent space is at the crux of our unsupervised deep learning approach,
given that the latent space can potentially provide more information about the individual image,
rather than just a binary separation into two classes. By compressing each sample down to a lower
dimensional representation, there are a number of incremental inference pathways that become
available by plotting this representation with a Principal Component Analysis (PCA), Uniform
Manifold Approximation and Projection (UMAP) [7], or a combination of PCA and UMAP. With
a visualized low dimensional representation of the feature space, sub-classifications of event types
both between and within groups such as hadrons, gamma rays, and muons may become evident.
Additionally, observing the spatial relationships between the classification groups and overlaying
the latent space with a number of relevant parameters such as anomaly score or Hillas parameters
may provide additional insight relevant to classification.
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3. Results

3.1 Reconstruction Performance

We assessed the reconstruction performance of the 2DConvLSTM-AE and achieved a satis-
factory level of visual fidelity between the original data and the reconstructions, demonstrated in
Figure 4, with the reconstructions closely resembling the original images when there is a strong
shower image present in the frame. One significant issue that persists in the reconstructions is a
‘phantom’ shower image pattern which appears to be remnants of the strongest shower image in the
frame spilling into the other telescopes, as demonstrated in Figure 5.

Actual Reconstruction

Figure 4: Example of a 2DConvLSTM-AE reconstruction
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Figure 5: Example of phantom shower image in reconstructions

3.2 Latent Space Investigation | Anomaly Scores

We tested two dimension reduction methods when analyzing the 512-dimension latent space:
a traditional UMAP with a latent space input, and a UMAP with a PCA-reduced latent space input
(Figures 6, 7, 11). Given the high dimensionality and variance in the latent vector, applying two
levels of dimension reduction with the PCA followed by a UMAP enabled a greater degree of
organization among anomalous and normal events. In Figure 6 and 7 the events in the UMAP are
colorized by the log of their anomaly score to better visualize where the anomalies exist in the latent
space, with darker points corresponding to higher anomaly scores.

The highly anomalous events cluster around the central region of the 3-dimensional latent space
mapping that form a loop of dark points in Figure 6. In order to analyze the regions composed
of high anomaly score events, a 2-dimensional side perspective was generated in Figure 7. The
following analysis examines the reconstructions from some the clusters of interest as highlighted
in Figure 7. The clusters analyzed below consist of 50-200 events per cluster. The events shown
below were randomly selected from the clusters. More extensive analysis of each clusters’ event
composition is required to draw concrete conclusions about their significance.

Cluster 1 & Cluster 2 (Figure 8): Groupings of very high energy hadron-initiated events that
triggered the low-gain mode on the VERITAS telescopes. Potential presence of muons.



2DConvLSTM-AE on Very-High-Energy Gamma-Ray Classification Grant Oie

PCA-=UMAP - Anomolies in Log (PCA Components: 10)

Figure 6: 3-Dimensional PCA to UMAP latent space representation (anomaly score coloration)
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Figure 7: 2-Dimensional PCA to UMAP latent space representation (anomaly score coloration) with clusters
of interest highlighted
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Figure 8: Images sampled from Cluster 1 and Cluster 2
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Cluster 3 (Figure 9): Potential grouping of hadron-initiated EAS, with some potential gamma-
initiated candidates.

Actual Reconstruction

R . Sn

Figure 9: Images sampled from Cluster 3

Cluster 4 (Figure 10): Potential clustering of very strong hadron-initiated EAS, with many of
the events having a brighter background.

Actual Reconstruction

SEENNNEAN

Figure 10: Images sampled from Cluster 4

As such, we highlight that the 2DConvLSTM-AE has learned meaningful representations in
the data and the different clusters correspond to physical parameters in the dataset.

3.3 Latent Space Investigation | BDT Scores

Prior work utilising the Boosted Decision Tree (BDT) machine learning algorithm on Hillas
parameter data to perform gamma/hadron classification has shown the ability to produce reliable
values that indicate the likelihood of an event being a gamma-ray or hadron [8]. BDT scores close
to 1 indicate a higher likelihood of a gamma-ray event, while values closer to -1 indicate hadron
events. We expected that the high BDT score events would cluster in one portion of the latent space,

but instead they are more homogeneously distributed. This is a key avenue we will explore in future
work.

PCA->UMAP - BDT Scores (PCA C 10)
o | ®BDTScores>0.9

1 2 3 ] H & 7 B

Figure 11: 2-Dimensional PCA to UMAP latent space representation (BDT score coloration)
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4. Discussion

The 2DConvLSTM-AE architecture demonstrated the ability to generate relatively strong
reconstructions of EAS images, with the exception of the ‘phantom’ shower image pattern examined
above. The reduced-dimension mapping of the latent space partially indicates the ability to organize
the events by high- and low-anomaly, as well as BDT scores. However, the high anomaly scores and
high BDT scores composed inverse regions of the UMAP which is contrary to our expectation that
the 2DConvLSTM-AE will assign higher anomaly score values to gamma ray events. By examining
specific anomalous clusters in the latent space, visual inspection suggests that the model is likely
producing higher anomaly scores for events with higher energies. The resulting sentiment is that
a 2DConvLSTM-AE deep learning architecture coupled with unsupervised learning on real data
from the VERITAS IACT offers a promising avenue for future research. Further experimentation
could include deeper exploration of the latent space spatial composition, overlaying the latent space
with a number of relevant metrics, including Hillas parameter values, applying energy range cuts
to the data, as well as implementing a Variational Autoencoder and further fine-tuning of the
2DConvLSTM-AE parameters.
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