Remote Estimation for Dynamic IoT Sources under
Sublinear Communication Costs

Jihyeon Yun, Atilla Eryilmaz, Jun Moon, and Changhee Joo

Abstract—We investigate a remote estimation system with com-
munication cost for multiple Internet-of-Things sensors, in which
the state of each sensor changes according to a Wiener process.
Under sublinear communication cost structure, in which the per-
transmission cost decreases with the number of simultaneous
transmissions, we address an interesting unexplored trade-off
under source dynamics between frequent updates of a smaller
number of sensors at a higher cost and sporadic updates of
a larger number of sensors at a lower cost. We first suggest
two benchmark strategies, an all-at-once policy and a multi-
threshold policy, and generalize them to a unified framework,
called the MAX-£ policy. Furthermore, we address the problem of
parameter optimization of the MAX-k policy by developing online
learning algorithms with stochastic feedback and a continuous
search space. Through simulations, we demonstrate that the joint
solution of the MAX-k policy and particle swarm optimization-
based online learning achieves a high performance, outperform-
ing the well-known upper confidence bound-based competitor.

Index Terms—Remote sensing, communication system control,
Internet of Things

I. INTRODUCTION

Future Internet-of-Things (IoT) networks will consist of a
large number of devices with internal sensors. Sensor infor-
mation evolves over time and needs to be tracked at a remote
location. Accordingly, remote estimation for the freshness of
information for IoT applications is essential in many domains
of IoT networks [2], including the following.
© Mobile Healthcare Services: As the functionality and ca-
pabilities of sensory devices (e.g., Apple watch, Fitbit, etc.)
improve, they can monitor many different biological metrics,
such as heart-rate, blood pressure, and body temperature, that
must be transferred to a remote location over wireless channels
to track the health state of the user.
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o Intelligent Transportation Networks: Vehicles in a trans-
portation network have locally evolving states, such as po-
sition, direction, and proximity to other objects around it, that
are envisioned to be tracked closely by the infrastructure net-
work (such as a roadside unit) over a wireless communication
medium.

o Internet of Military Things (loMT): The military devices
have sensors to detect and measure information for surround-
ings, such as auditory, visual, and heat, and generate fresh
updates of new information to coordinate and interact with
physical environment to achieve military activities efficiently.

A common theme in all these scenarios is the necessity to
efficiently transfer multiple evolving states from a transmitter
to a receiver over a communication channel to closely track
their states at the receiver while maintaining low communica-
tion costs. In this paper, we discuss this generic problem in
the key case of /N independent Wiener processes describing
the source dynamics, which is reasonable because the Wiener
process is used to represent the integral of the Gaussian white
noise process (e.g., gyroscope drift [3]); therefore, it is useful
to explain noise and errors in many IoT systems. We also
assume that each evolving state follows an independent Wiener
process, where each sensor information is collected from
different sources, and a center transmitter aggregates them and
sends the information to a remote receiver. For example, the
healthcare monitoring system that has a wireless access point
that serves as a cluster head and multiple sensors that collect
the status of patients would be a good example. In our work,
we target such a remote estimation system and try to optimize
the average system cost.

In related works in this domain, remote estimation under
asynchronous massive access of IoT sensors in a mission-
critical manner was studied in [4], and state estimation for
IoT-based vehicles under cyber-attacks was considered in [5].
Furthermore, a remote estimation system that considers the
average mean square error (MSE) over a stochastic process
was analyzed with different constraints in [6]-[15]. A joint
problem of scheduling and remote estimation that minimizes
communication costs over a finite time horizon was formulated
in [6]. The problem was extended to an energy-harvesting sen-
sor in [7], and with constraints on the number of transmissions
in [8]. Furthermore, in [9], a noise channel was considered,
with and without communication costs. Similarly, the remote
estimation problem of a stochastic process with one perfect
(but costly) communication channel and one noisy (but cheap)
communication channel was considered in [10]. The authors
found that the optimal policy was a threshold-in-threshold
scheduling policy with some assumptions. For continuing (in-



finite time horizon) tasks, the studies of [11], [12] investigated
the cost minimization problem in a remote estimation system
with a packet drop channel and communication cost, respec-
tively. More recently, in [13], [14], the MSE was minimized for
a one-dimensional Wiener process under a sampling frequency
constraint over an infinite-time horizon. In [15], a cost min-
imization problem with multi-dimensional Wiener processes
under constraints on communication frequency was addressed.
Remote estimation problems for systems with a collision chan-
nel (i.e., only one sensor state can be successfully transmitted
through the channel.) had been investigated in [16]-[18]. In
these problems, multiple sensors tried to send their sensor
states to the estimator through the channel and sampled their
sensor values while minimizing the probability of estimation
error under collision [16], [17]. Further, the authors of [18]
designed threshold strategies for a remote estimation system
with collision channel and analytically found a unique optimal
threshold under some assumptions. A distributed learning was
also exploited in [18] to find the optimal thresholds when
partial distribution knowledge for sensor states was given. In
contrast to the above works, we consider a perfect channel
and focus on the trade-off between the estimation error and
the communication cost under sublinear communication costs.
In the field of information theory and control, the trade off
between communication rate (bit/s) and the expected system
cost was investigated in [19] considering linear quadratic
regulator (LQR), where the authors provided the lower bound
on the rate-cost function which they proposed. Also, the trade-
off between the system cost and the communication resources
was studied in [20] for a linear quadratic Gaussian (LQG)
problem with an additional communication channel between
encoder and decoder. The optimization problem to minimize
the directed communication under a constraint on the system
cost was investigated and it was shown that the problem has a
standard convex form. Further, the authors of [21] considered
a system model where an encoder samples continuous Markov
Processes and transmits codewords to a decoder. In [21],
the optimal encoding policy to minimize the estimation error
under a constraint of the communication rate was proven to
be a threshold-based policy.

In this paper, we consider a remote estimation system over
N independent Wiener processes, which can be considered
an N-dimensional Wiener process, with a communication
cost. If the communication cost is proportional to the number
of processes to be transmitted simultaneously, the multi-
dimensional nature of the problem can be simply decomposed
into multiple remote estimation problems of tracking a single
Wiener process. However, if the communication cost has a
sublinear form in the setting outlined above, i.e., if the cost
for transmitting k4 1 units of information is less than the cost
for transmitting & units plus the cost for 1 unit (see Section II),
the problem cannot be simply decomposed. In this paper,
we focus on remote estimation with sublinear communication
costs for two reasons. First, the wireless transmission of
multiple information units often provides gains in per-unit
power consumption, and wireless IoT devices commonly have
a limited power budget. Second, most IoT networks consist
of a large number of devices compared with limited network

resources. Thus, collisions due to simultaneous transmissions
are likely to occur more frequently, which deteriorates the
utilization of already-limited resource [22]. Transmitting mul-
tiple information units can improve the resource efficiency by
reducing the chance of collision.

We consider a remote estimation system in which multi-
dimensional Wiener process (or multiple independent Wiener
processes) is estimated under a sublinear communication cost
function. The sublinear form of the communication cost func-
tion provides a new trade-off between the estimation error
and communication cost. Frequently updating a small subset
of information can effectively reduce the estimation error;
however, it incurs a higher communication cost per unit.
However, sporadically updating a larger subset of information
requires a lower communication cost per unit, but it is likely to
have a higher estimation error. Therefore, we first consider two
extreme-case benchmark strategies: an all-at-once updating
policy and a multi-threshold policy that conducts one update at
a time. We generalize them and develop a novel strategy called
the MAX-k policy, which outperforms the two benchmarks if
configured accordingly. However, setting the optimal parame-
ters of the MAX-k policy requires prior information regarding
the estimation error and communication cost function, which
are commonly unavailable in practice.

This motivated us to develop an online stochastic learning
algorithm that can be combined with the MAX-k policy. We
exploit the well-known upper confidence bound (UCB) algo-
rithm and the particle swarm optimization (PSO) technique
and extend them to account for stochastic outcomes in a
continuous search space. We observe that PSO-based learn-
ing converges significantly faster than UCB-based learning.
Finally, we show the performance of the joint solution of the
MAX-k policy and online learning, and we numerically study
the impact of a large N and different degrees of sublinearity
of the communication cost function.

The preliminary version of this work has been presented in
the workshop [1]. We substantially extends it with the con-
vergence of the proposed scheme, detailed explanations and
performance analysis of comparable policies, and extended
simulations for the performance evaluation. The remainder
of this paper is organized as follows. The system model is
described in detail in Section II. In Section III, two benchmark
policies are introduced and the MAX-k policy is developed
with a performance comparison. In Section IV, online stochas-
tic learning algorithms for optimizing the parameters of MAX-
k policy are provided with provable convergence. In Section V,
the performance of the MAX-k policy with online algorithms
is evaluated through simulations. We conclude the paper in
Section VI.

II. SYSTEM MODEL

We consider a remote estimation system with a transmitter,
a remote receiver, and N sensors (Fig. 1). The sensors have
randomly evolving states and each state value follows an
i.i.d Wiener process. The transmitter can observe and collect
sensor state values and transmit the collected information to
the receiver in an aggregated frame through a communication



|/

Transmitter Communication Receiver

(0, Xn(@®

ul,u?, - ul Channel

*X;(t) : wiener process

Fig. 1. Remote estimation system.

channel. Communication costs are explained below. The re-
mote receiver receives the information and tracks the state of
the sensors to make a certain decision in a timely manner.
A more detailed description of our system is provided in the
remainder of this section.

The transmitter is responsible for each transmission. At each
time, the transmitter decides which sensor values to be sent
to the receiver or decides not to transmit at all. The receiver
tracks N sensor values by updating each sensor value with
the most recently received value from the transmitter.! The
process of transmitting and updating sensor values incurs two
different types of system cost. One is the communication cost,
and the other is the estimation cost owing to the staleness
of the estimated sensor values at the receiver. We assume
that the communication cost is a sublinear function of the
number of collected sensor values in a transmission. Some
examples are discussed later in this paper. For the estimation
cost, we consider the widely used MSE between the true state
values at the sensors and the estimated sensor values at the
receiver. We aim to minimize the total sum of communication
and estimation costs. Various performance metrics can be
used for the system cost depending on the models and the
applications. For example, Age of Information can be included
as a system cost if the system has high sensitivity to the
information freshness. We can also consider collision rate and
throughput for evaluating the system performance when the
communication channel is shared with other networks.

We now provide a formal description of this problem in the
following. We also summarize some terms that are frequently
used in this paper in Table I. Let X;(¢) be the true state value
of sensor ¢ at time t, which evolves as a standard Wiener
process in continuous time, independently across sensors, i.e.,

Xi(t+ o) — X;(t) ~ N(0, ),

for all ¢ > 0 and « > 0, where A/(p,0) is a normal distri-
bution with a mean g and variance o. We assume X,(0) =0
for all 4.

At each time ¢, the transmitter transmits a single frame with
n; number of sensor values. The inclusion of sensor ¢’s value is
denoted by the binary variable u}. Specifically, u! = 1 means
that the sensor value X;(t) is transmitted to the receiver, and
ui = 0 means that it is not. We have 7, = Y.~ ui. Let
X; (t) denote the estimated sensor value for sensor ¢ at the

I'This is of practical use when the state changes smoothly according to an
i.i.d normal distribution. For more complex state dynamics, the receiver may
use an MAP (Maximum A Posteriori). See [23] for an example of an MAP
receiver.

TABLE I
TERMINOLOGY.
Term | Used for
N number of sensors
X;(t) | true state value of sensor 4
X;(t) | estimated state value of sensor i at the receiver
E;(t) | estimation error for sensor %
E;(t) | predicted estimation error for sensor i
ui update decision for state value of sensor %
ne the number of transmitted state values
f communication cost function
degree of sublinearity in f
ol threshold under all-at-once policy
~™ul | threshold under multi-threshold policy

(k) threshold under MAX-£ policy

U the number of transmissions that makes up a round
A duration of a round
T average system cost obtained for a round
A set of arms in MAX-k-UCB
C set of cells in MAX-k-GPSO
h function that maps a position to a cell
g function that maps a cell to the expected average cost
g empirical mean of average cost over the cell
S set of particles in a swarm
s* global best particle
Vic) the number of visits of any particles to a cell ¢
Xs position of a particle s
Vs best position of particle s among its visits
y global best position of all particles based on all visit history
Vs velocity of particle s

receiver, i.e., the most recently received X;(7) for 7 < t. We
assume that the transmission error and transmission time are
negligible. X;(t) evolves as

) X, (t), if ul =1,
Xi(t) = 5 e g 1
®) { X;(t—1), ifu;=0. M
We assume that X;(0) = 0 for all i. The estimation cost

closely involves the information staleness or estimation error,
which is defined as

Eilt) = Xi(t) — Xi(t).

The estimation cost at time ¢ is computed as the squared
estimation error sum, i.e., Y_; £?(t). Frequent updating of the
sensor values can reduce the estimation cost, which, implies
frequent transmissions and results in higher communication
costs.

We consider the communication cost function of the sub-
linear structure in n;, the number of transmitted sensor
values. This is motivated by the fact that encoding more
information into a transmission frame increases the coding
rate, and by practical frame aggregation techniques: sending
multiple frames simultaneously results in less transmission
overhead [24] or a higher amount of saved energy [25].
It has been known that a transmission of a single packet
involves many overheads from multiple places, which include
additional header structure added at each protocol stack,
contention resolution for resource sharing, and the saturation
time of RF module for signal transmission. For example, in
Wi-Fi systems, we can save at least 10% energy or improve
throughput by three times by aggregating multiple packets into



one [26], [27]. Specifically, we model the communication cost
using the following concave function:

f(ne)

where ¢ > 0 is a constant and 0 < o < 1 is an exponent that
represents the level of sublinearity. Note that the communica-
tion cost becomes 0 when the transmitter does not transmit
any sensor values (i.e., ny = 0). Our aim is to minimize the
expected total average cost R defined as

R—IlgnooEl / <ZEQ —&—fnt)dt]. (3)

Several studies have addressed similar problems. For one-
dimensional stochastic process (N = 1), studies have shown
that a threshold policy is an optimal solution [6]-[14]. For the
multi-dimensional (or multiple independent processes) case,
when all sensor values should be transmitted together, a
threshold-based update policy is optimal [15]. Our problem
is different from these studies in that individual sensors
may transmit their values, and the communication cost is
a sublinear function of the number of sensor values being
transmitted. This unexplored shape of communication costs
is vital in practice, and motivates interesting new policy
designs. For the following sections, we investigate threshold-
based policies for our remote estimation problem under sub-
linear communication cost function. Inspired by the existing
studies [6]-[15] that showed a threshold policy is an optimal
solution, we conjecture that a threshold-based policy performs
well under sublinear communication cost and develop a novel
MAX-E policy to improve the performance.

=c-(n)?, 2

III. THRESHOLD-BASED POLICIES

We first introduce two benchmark policies, and then develop
a generalized policy that can incorporate them as an extreme
case. We show that the two benchmark policies are extreme
cases, and that none of them can be an optimal policy under
the sublinear communication cost function (2). To facilitate
this explanation, we introduce gi(t), which denotes a predicted
estimation error at the transmitter. At each time ¢, before
a decision {ul}; is made for transmission, the transmitter
predicts the estimation error as & (t) assuming that it does
not send the state value of sensor ¢ at time ¢, which can be
expressed as

&(t) = X;(t) — Xu(t),

where t’ be the time of the latest update for sensor 1.

A. All-at-once policy

First, we define the all-at-once policy that first appeared
in [15]. Under the all-at-once policy, the number of transmitted
sensor values n; should be either 0 (no transmission) or N
(transmission of all sensor values) at each time ¢. The decision
variables of the transmitter can then be represented by one

2 It has been shown

variable us as u; = uf = u? = --- = ul.

in [15] that an optimal policy under the constraint n; € {0, N}
is of the threshold type:

1, if (/3 Ei(t)2 > A0l
0, if /3 & ()2 <y,
with threshold v = {/2(N + 2)f(N). We can also obtain

the optimal average cost R as

Uy =

2N2f(N). 4)

all __
R = N+2

B. Multi-threshold policy

Another natural extreme policy is an independent decision
maker for each sensor. When the state value of sensor i
changes, a predicted estimation error &;(t) is calculated and
the transmission decision for sensor 7 is expressed as

i 17
Uy = 0

For identical sensors, we have the same threshold value for
all 7 (i.e., 'ym“l = y™u for all i) because the state value of
each sensor follows an independent standard Wiener process.
For this single-sensor system, the system behavior was well
studied and the threshold-type policy (5) was shown to be
the optimal solution in [6]. However, this multi-threshold
policy fails to achieve the optimal performance in our problem
because of the sublinear communication cost.

Let us estimate the average cost under a multi-threshold
policy. Although the communication cost of transmitting n
sensor values simultaneously is smaller than n times the cost
of transmitting 1 sensor value, we can replace f(n;) with
ZZNZI f(ul) in Eq.(3) because the continuous nature and the
independence of the Wiener processes admit no simultaneous
update. Thus, we can rephrase Eq.(3) as the following.

limp_, oo E [% LT:() (E2(t) + f(up)) dt] ;

for each i € {1,---, N'}. We drop the subscript 7 for brevity.
Let 7 be the ﬁrst time when |€(¢)] hits the threshold ~ from
E(t) = 0. The estimation error £(t) can be considered a
renewal process whose renewal intervals restart with each
update. The average cost can be obtained by calculating the
expectation during the first renewal interval, i.e.,

E[1 ([, E@®%dt+ f(1))] .

From the properties of renewal processes [28], this can be
expressed as

if |€(t)] >

~ 5
if £,(1)] < A7 )

E[JJ Em?dt]

1

We first calculate E[ [, £(t)?dt]. Using the Itd lemma [29],
for any ¢, we obtain

a (te(0?)
Integrating it up to 7 and rearranging the equation, we obtain

T E(s)2ds = TE(r)? — 172 — [T 25E(s)dE(s).

= E(t)%dt + 2tE(t)dE(t) + tdt.



We take the expectations of both sides. The last term on
the right side then disappears because E[ [ 2s€(s)dE(s)] =
0 [29]. Thus, we obtain

E[ré(r)? — 37 =E[J5 & sELEMY,
where the last equality was obtamed from [13]. Because
E(r) = v, we have E [[[L £(t)%dt] = $4* Subsequently,
using E[7] = 42 [30], we can express (6) as 7 + f(l)

st] =

is minimized with the optimal threshold fym“l = Y6f(1).
Hence, we can obtain the optimal average cost R™%! as

D SARRVATE )

From (4) and (7), we can observe that the all-at-once policy
achieves a lower cost than the multi-threshold policy when
o < logy MF2. This implies that when « is sufficiently
small, the garn from simultaneous updates overwhelms the
loss owing to an inaccurate estimation. In the next section,
we further investigate the trade-off between communication
cost and estimation cost by developing a novel policy that
generalizes the two benchmark policies.

Rmul

C. Generalized threshold-based policy: MAX-k policy

Each of the aforementioned two benchmark policies are
an extreme case — transmitting all N sensor values together,
or transmitting one sensor value at a time. We develop a
new transmission policy, MAX-k policy, that generalizes two
benchmark policies and allow k& € [1, N] sensor values at
a time. Under MAX-k policy, the transmitter can transmit k
sensor values with k& highest expected estimation errors at a
time. Each transmission is also determined on the basis of a
threshold. A formal description of MAX-k policy is as follows.

Let {m¢}¥, denote the permutation of the sensors at time
t in the order of &(t), satisfying 5 > & i+1 Where a tie
can be broken arbitrarily. Furthermore we deﬁne Ag(t) as the
set of the largest k elements of the permutation, i.e., Ay (t) =

{71},71},.. }

Definition 1. MAX-k policy is a threshold-based policy that
updates state values of k out of N sensors as

i = { Lo if \ 2 jeann Ei(t)? = v and i € Ag(t),
0, otherwise.

®)

When the MAX-k policy achieves the minimum cost (3), we

denote the associated threshold as the optimal threshold v*).

The notion of optimality in Definition 1 is within the class
of MAX-k type policies. Note that the MAX-k policy is
equivalent to the multi-threshold policy when k£ = 1 and to
the all-at-once policy when k = IN. Consequently, the optimal
threshold of the MAX-k policy should satisfy (1) = 4% and
~(N) = ~all The first question is whether this generalization
improves performance in terms of the expected average system
cost in comparison with the two extreme policies, and in what
conditions. Another interesting question is how to determine
the optimal values of parameters k and ~(*), if we have no
prior knowledge of the sensor dynamics and communication
cost function. In the remainder of this section, we answer the

first question by numerically evaluating the performance of the
MAX-k policy with different o values of the communication
cost function in (2). We observe that the MAX-k policy
with a proper k € {2,---,N — 1} and ~®*) significantly
outperforms the benchmark policies in a certain interval of
. Note that we consider constant threshold v(*) for MAX-k
policy, assuming static network environment. If the network
environment changes dynamically or the objective includes a
hard constraint, the optimal threshold will change accordingly.
In this work, we focus on static setting, and leave the problem
of optimizing the threshold in dynamic environment as a future
work.

We consider NV sensors, where the state value of each sensor
evolves independently and follows a discretized version of the
standard Wiener process. The time is slotted, and the state
values of the sensors have increments according to the normal
distribution with mean O and variance 1 at each time slot, i.e.,

Xi(t) = X;(t = 1)+ W;(¢t) for t € {1,2,3,--- },

where W;(t) is the increment at time ¢ and W;(¢) ~ N(0, 1).
We also assume X;(0) = 0 for all i. At each time slot ¢,
the transmitter makes an update decision u} for each source
1 according to a certain policy. We use the communication
cost function of (2) with n; = Zir u} and ¢ = 100. Based
on the transmission, the receiver estimates X;(¢) with X;(¢)
according to (1). Using the estimation error &;(t) = X;(t) —
X;(t), the total cost at time ¢ is ZZ LEZ(t) + f(ny) and the
average cost fromt =0tot =T is

i o (S &0 + fn0) ©)

where &;(0) = 0 for all 4 and f(ng) = 0. For all-at-once
and multi-threshold policies, we use their optimal threshold
levels v*! and 4™, respectively. For the MAX-k policy, we
assume that v is an integer and empirically determine the best-
performing v for each k € [N] where [N] := {1,2,--- ,N}.
Let %) denote the empirical integer threshold value that
achieves the lowest average cost under MAX-k policy. We
used 7%) only for the preliminary simulations and we will
later introduce a method to determine +(*) without an inte-
ger assumption. For each setting, we repeated 30 simulation
instances, each of which continued for 5000 time slots, and
obtained the empirical mean of the average cost (9).

Fig. 2 shows the best-performing integer threshold for the
MAX-k policy, %), for each k& € [N] with N = 10, and
different o values. The value of ¥(*) does not decrease as k in-
creases, which is reasonable because the optimal threshold will
not decrease while the communication cost is an increasing
function of the number of sensors. In addition, ’y(k) does not
decrease with respect to o, which is because an optimal policy
will make less frequent transmissions (i.e., higher threshold)
as the communication cost increases (i.e., « increases).

Fig. 3 shows the total average cost achieved by the MAX-
k policy with different parameters of o and & when N =
10. For each k, the best-performing threshold (%) is used.
For each o, we mark the best-performing k that provides the
lowest average cost by a cross. Since MAX-1 and MAX-10
policies correspond to multi-threshold and all-at-once policies,
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Fig. 3. Average cost of MAX-k policy with N = 10.

respectively, the left end points (when k£ = 1) show the average
cost of the multi-threshold policy and the right end points
(when k = 10) indicate the average cost of the all-at-once
policy. We can observe that neither multi-threshold nor all-
at-once policy is optimal. Furthermore, the best-performing
k of the MAX-k policy changes for different o values and
increases toward IV as « decreases closer to 0. This means that
for better performance, the number of sensors to be updated
increases when the benefit of simultaneous updates increases
(i.e., o decreases). If the same communication cost is charged
regardless of the amount of transmitted information (i.e., when
a = 0), the all-at-once policy achieves the best performance.

Next, we compare the three policies for different N and
« values. For the MAX-k policy, we use the best-performing
k with the corresponding 4*). For the all-at-once and multi-
threshold policies, we again use their optimal threshold levels
v and ™", respectively. Fig. 4 shows the average cost
of the three policies as the number of sensors increases (i.e.,
N increases). The average cost of the multi-threshold policy
increases linearly with IV, whereas the average cost of the all-
at-once policy increases sublinearly. As expected, the MAX-k
policy achieves the best performance in all cases. We note that
the performance gap between the three policies increased as
the number of sensors increases. In addition, as « increases,
the performance gap between the MAX-k policy and the
multi-threshold policy decreases, whereas the performance
gap between the MAX-k policy and the all-at-once policy
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Fig. 4. Average cost of three policies.

increases. We notice that MAX-k policy is a sampling policy
that is more efficient than multi-threshold and all-at-once
policies under sublinear communication cost functions (i.e.,
0 < a < 1). The performance gap between them becomes
larger as we increase the number of sensors in the system.

IV. OPTIMIZING MAX-k POLICY

For optimal performance, determining the best-performing
k and the corresponding optimal threshold level v(*) in (8)
is imperative for the MAX-k policy. Let k* denote the best-
performing % and (*") denote the corresponding optimal
thresholds for the MAX-k policy. However, obtaining an
analytical solution for k* and +(*") is difficult because of
the complex and highly coupled dynamics of the system.
Although the evolution of the sources is not coupled due to
the independence of Wiener processes, their error dynamics is
coupled with the decisions under MAX-k policy. The statistics
of k highest-valued Wiener processes is needed to analyze
the average system cost of MAX-k policy and calculate the
optimal solution, k* and 7(’“*), which is difficult despite
the independence of the Wiener processes because the k
highest-valued processes (among N processes) change over
time. Furthermore, in many practical scenarios, we may have
no information about the communication cost function or
statistics of the evolving sensor states. Therefore, we use an
online learning approach to determine (k*,~*")).

A straightforward method is to approximate the problem
into a stochastic multi armed bandit (MAB) problem. If we
fix the tuple (k,~y) and make U update decisions using the
MAX-k policy with parameters k and <, then the time for
U updates, denoted by a round, and the average cost during
the time define a stochastic process with a fixed distribution
parameterized by (k,~). Hence, we can consider the tuple as
an arm, and the resulting average cost during one round as its
associated reward. The solution to this problem is to determine



the optimal arm (k*,v(*")) that provides the minimum average
cost under the MAX-k policy. In the following subsections,
we develop two variants of MAX-k policies that optimize &
and threshold values while proceeding with updates of sensor
values: one is a policy that applies the UCB algorithm to the
MAX-k policy, and the other applies a newly developed grid-
PSO (GPSO) algorithm to MAX-k policy which will be shown
to determine the optimal solution if the underlying objective
function is convex.

A. Optimizing MAX-k policy with UCB index

A widely adopted approach to online learning of deter-
mining the optimal solution (k*,7(*")) is to use the UCB
index [31] for all possible arms (k, ). However, to apply the
UCB algorithm, we face the problem of infinite arms owing to
the real-valued threshold level «. Note that we have a bounded
real-valued range (¥ ¢ [ymul yall] as ~¥) increases as k
increases, and y1) = ™% and v(V) = 49l We address this
problem by partitioning the range into M intervals, denoted by
T = {I,}*_, with M < co. The M intervals are exactly the
same size, and each interval is centered at {v,,}*_,. In the
following, we assume 7 € {7,,}_, unless otherwise stated.
We extend the well-known UCB algorithm and apply it to our
online learning for (k*,v(*")) of the MAX-k policy, which is
denoted by MAX-k-UCB.

We group consecutive U transmissions as a round, and
consider the history of decisions and costs during a round
as an episode. We assume that, at the end of each round, the
transmitter sends all sensor values to the receiver to reset the
estimation error for all sensors to 0, i.e., the communication
cost at the end of a round is always f(N) (not 0 or f(k)).
This final update to reset the estimation error at each round
is somewhat arbitrary, but its impact becomes negligible as
U increases. For a sufficiently large U, we set U = N 2,
and update each sensor value approximately N times during a
round. Let A denote a random variable corresponding to the
time duration of a round, and define 7 as the time-averaged
system cost during a round, i.e.,

r= % fA (Zfil EX() + f(nt)) dt.

Let A denote the set of available arms with a total of |A|
arms. Each arm a represents (k,7) € Ry X Rz where Ry = [N]
and Ry = {1, - ,ym}- Le., |A| = N x M. Additionally, let
a denote the selected arm during a round. Each arm a has
three internal parameters: the index value UCB(a), number
of selection 7(a), and empirical average cost 7(a).

At the beginning of each round, MAX-k-UCB selects a as
follows: For the first | A| rounds, the policy selects each arm
exactly once and then computes UCB(a) for each a as

UCB(a) = ) — |/ 2elrond),

where round denotes the number of rounds played. Thereafter,
it selects @ = argmin, UCB(a). At the end of each round,
it updates 7(a) and n(a) accordingly. The process continues
until a stopping condition is true (e.g., until time 7" is reached),
and the arm with the smallest empirical average cost, which

(10)

Algorithm 1 MAX-k-UCB policy
Input: U, set of arms A
1: UCB(a) =0, 7(a) =0, n(a) =0 for all a € A,
and round = 0

2: while stopping condition is not true do

3: round < round + 1

4:  if round < |A| then

5: a < Pick an arm a with 7(a) = 0 at random

6: else

7: UCB(a) « n(a) — /2874 for all a € A

8: a + argmin, UCB(a)

9: end if

10:  Update the sensors using a by U times and obtain 7

1i:  7(a) + 7(a)+1
122 n(a) < na)(l -
13: end while
14: a* + argmin, n(a)
15: return a*

1 7
@) T @

is a* := argmin, n(a), is returned. The overall procedure of
the MAX-k-UCB is shown in Algorithm 1.

The UCB index provides the exploration-exploitation trade-
off to determine the best-performing arm, and is known to
achieve an asymptotically optimal performance [31], [32]
particularly when the performances between arms are not
related to each other. However, we note that there is scope
for improvement. For example, we empirically observe that
for a fixed k, if [y(*) — /| > [y¥) —+”|, then the average
cost of (k,7’) is higher than the average cost of (k,~").
This suggests that the learning algorithm can be improved
by exploiting the structure of the objective cost function.
However, in practice, the structure of the cost function is
commonly unknown a priori. Furthermore, the search space
for determining (k*,~v(*7)) is a mixed space because k is a
discrete variable and + is a continuous variable. This makes it
difficult for us to adopt existing structured MAB approaches.
In the following subsection, we develop a new optimization
approach for determining (k*,*7)) in a continuous (or
mixed) space and with stochastic outcomes.

B. Optimizing MAX-k policy with GPSO

To determine (k*,7 7)), we exploit the PSO tech-
nique [33], [34], which is a population-based optimization
method that assumes a smooth underlying function. PSO
maintains a population of particles called a swarm, where each
particle represents a potential solution. While moving around
the search space, each particle evaluates its position and moves
closer to the area in which the optimal solution might reside.
Specifically, the movement of each particle is guided by the
direction of the best position experienced by the particle itself,
and by the direction of the best position experienced by all
particles. The swarm of particles pursues an optimal solution
as a group while repeatedly moving in the guided direction.

PSO has some fascinating aspects: (i) simple implementa-
tion, (ii) no use of the gradient information of the objective
function, and (iii) capability to search in a mixed space. These



Algorithm 2 MAX-k£-GPSO policy

Input: pq, p2, w, U, swarm size |S]|, set of cells C
1: Create a swarm of size |.S|
2: For all particle s € S, initialize x; randomly, v, < 0,
and y, + X
while stopping condition is not true do
for each s € S do
Xg & Xg + Vg
Tg1 < |_05 + $31J
Make U transmissions under MAX-k policy with
x5 = (k, ) for updating state values of sensors and
obtain 7.
Vi(x,) ¢+ Vi(x,) +1
L 9M(x) < M (x)(L = paty) vy
10: if " (xs) < §"(ys) then
11: Vs < X
12: end if
13:  end for
14:  s* < argmin {§"(ys)}, and § + y-
15:  Calculate p using (13)
16:  for d € {1,2} do
17: Draw e3 uniformly at random in range (0,1)
18: Vged = —Ts+q + Ya + wos-q + p(1 — 2e3)
19:  end for
20:  for all s € S\ {s*} and d € {1,2} do
21: Draw eq, eo uniformly at random in range (0, 1)
22: Vsd — WVsq + P1€1[Ysd — Tsa) + P2€2[Yd — Tsd]
23:  end for
24: end while
25: return ¥

N A

advantages are particularly attractive for our problem of deter-
mining (k*,7(*")) because PSO can exploit the structure of
the cost function in a mixed space. However, the original PSO
method cannot be directly applied to our problem because it is
suitable for deterministic objective functions. Because the cost
under the MAX-k policy with a fixed (k,y) is randomly drawn
following an unknown fixed distribution, we have stochastic
outcomes and require multiple visits to a position to obtain an
accurate estimation of its function value, which is difficult to
achieve in a continuous search space. Therefore, we modify
the original PSO algorithm to address these challenges.

We begin by re-designing the search space to collect statisti-
cal information in a continuous search space. For the bounded
values of k£ and 7, we divide the search space into cells and
create a grid. Thereafter, we collect the per-cell statistical
information obtained from the particles’ visits to the cell.
The average value can be considered an approximation of
the objective cost function. Except for the cell-level “value”
integration, the movement of each particle is identical to
that of the original PSO. We combine this modified PSO
or GPSO with the MAX-k policy and denote it by MAX-k-
GPSO. The overall procedure of the MAX-k-GPSO is shown
in Algorithm 2.

For k € [N] and real-valued v € [y™% 44!, we partition
the range of ~ into M intervals of Z, and divide the two-

dimensional search space (k,~) into a grid with N x M cells.
Each cell ¢ includes an integer k. (for k) and range [y ,7,.) €
T (for 7). Let C be the set of all cells. We introduce the
following two functions:

e h:[N] xR — C maps (k,v) to cell ¢ with k = k. and

Y E [V Te)

e g:C — R maps cell c to the expected average cost over

cell Ec[R], where the expectation is over ¥ € [y ,7.).
We aim to determine the cell ¢* that minimizes g(c), under
the assumption that g(c*) is close to g(h(k*,7*"))). Be-
cause function g(c) is initially unknown, we utilize empirical
observations experienced by particles’ visits to cell ¢ while
determining c*. At time ¢, let g:(c) denote the empirical mean
of the average costs obtained by visits to cell ¢ up to time t.
We omit subscript ¢ if there is no confusion.

Assume we have a set S of particles in the swarm. The
position of particle s € S is denoted by x; = (zs1,%s2)
with x4 € [N] and 245 € [y™*, v%!]. Initially, we randomly
locate the particles in the search space. Subsequently, for each
particle s, we evaluate for position x5 during a round of U
times: (i) we fix (k,v) = (xs1, Zs2), (ii) make U transmissions
to update state values under the MAX-k policy (except that
all sensor values are updated at the end of the round), and (iii)
record the average cost for cell h(x;), where we compute the
average cost as (10). We then compute the empirical mean of
the average cost of each cell as follows: Consider the number
of visits of any particle to cell ¢ up to round j as

Vi(e) = 22721 Tinger) =)
where I 4) is the indicator function of event A; I 4y = 1if A
is true and 0 otherwise, and x” is the position of the particle
that is evaluated at round 7. Initially, we set V;(c) = 0 for all
c. The empirical mean §;(c) for cell c is given by

35(0) = v Ty =) - P
where 7, is the empirical average cost obtained at the end
of round 7. For all particles, we evaluate their position and
compute the average cost of the visited cells (lines 4-13 in
Algorithm 2).

We denote a group of |S| rounds as a phase in which the
position of each particle s € S has been evaluated for exactly
one round of updates. After phase [, we now make the particles
move. Let y, denote the local best position of particle s based
on its visit history and ¥ denote the global best position of all
particles based on all the visit histories. They can be formally
defined as

YS(” = (yslaySZ) = h

argmin  §"(x),
XE{XS (l)7§’s (l_l)}
argmin  §"(x),
xe{ys()}ses

y(l) = (1,92) =

where x,(() is the location of particle s in phase I, and §"(x)
denotes the composite function g(h(x)). These two variables
are used to compute the velocity v (I+1) = (vs1 (14+1), vs2 (I+
1)) of particle s at phase [ + 1, which is used to calculate the
new position of particle s as

xs1(l + 1) = the closest integer to (zs1 (1) + vs1(I 4+ 1)),
I’SQ(Z + ].) = LL‘SQ(l) —+ USQ(Z + ].)



The velocity is computed separately for each dimension. In
this case, for each d € {1, 2}, we have

Vsa(l + 1) = w - vea(l) + p1 - €1 - [Ysa(l) — z5a(l)]
+p2-es - [Ga(l) — xsq(l)],

where the inertia weight w and acceleration coefficients p1, ps
are constants, and e; and eo are independent random variables
drawn uniformly in the range (0,1). When the new position
xs(l4 1) is determined for all s particles, the new phase [ + 1
begins from the evaluation of the position of each particle (i.e.,
a phase consisting of |.S| rounds).

The above behaviors are based on the original PSO algo-
rithm, which can be possibly stuck in a suboptimal solution.
We remedy this problem by modifying the movement of
the best-performing particles, as suggested in [35]. At each
phase [, let s* denote the best-performing particle satisfying
vs<(1) = §(1), and we call s* the global best particle.
The velocity of particle s* is computed as vg:q(l + 1) =
—zgrq(l) + Ga(l) + wvg+q(l) + p(I)(1 — 2e3), which implies
that

(1)

Terg(l 4 1) = 9a(l) + wvsea(l) + p(1)(1 — 2e3),  (12)

where es is another independent random variable drawn uni-
formly in the range (0, 1), and p(I) is determined as follows:

2p(l)7 lf NS'LLCC > AS?
pl+1) =14 05p(1), if Ny >Aand p(l) >p, (13)
o(l), otherwise,

where p, \;, and Ay are pre-determined parameters. Letting
a “success” denote the case when §"(y(I + 1)) < " (3(1))
and a “failure” for the other case, Ng,.. is the number of
phase-consecutive successes and N 74 is the number of phase-
consecutive failures. The new velocity causes particle s* to
move to a point that is uniformly sampled from a square region
with side lengths 2p(1) centered around § (1) +wvs- (1), where
the region size depends on the event history of the successes
and failures. As we will observe later, this behavior contributes
to the convergence of the algorithm.

C. Convergence of Grid-PSO

We analytically demonstrate the convergence of the pro-
posed GPSO algorithm to an optimal solution under the
assumption that g(c) is convex. The difficulty of the analysis
originates from a lack of knowledge about the underlying
objective function and its stochastic nature.

It has been shown in [36]-[38] that all particles converge
to a point ¥ in the search space with appropriate parameters
of w, p1, and po, i.e.,

lim;_,00 X5(1) = §F for all s € S. (14)

In the following, we show that if the converging point ¥ is
not the optimal solution, then the particles can move toward
the optimal solution.

Next, we generalize our formulation to provide results in
a more general space. We consider the D-dimensional search
space, and let d € [D] denote the index of the dimensions. In

each dimension d, we divide the search space into My exclu-
sive intervals of identical length 204. Let 0,4, = maxg dg4.
Subsequently, the cell is hyper-rectangular with a side length
264 for each dimension d. We assume that the average cost 7
for each round is normalized to the range [0,1]. For given
€ > 0, let G be the set of cells whose average cost is e-close
to the minimum ¢* where ¢* := min,. g(c), i.e.,

Gi={c|glc)—g" <e}.

Theorem 1. If average cost function g(c) is convex, then for
any € > 0, the particles converge to an optimal region under
the GPSO algorithm, i.e., with probability 1,

llim h(xs(1)) € GZ, forall s € S.
—00

Proof. Suppose that h(y(l)) ¢ G at phase [. From (14), it
is sufficient to show that the probability that the global best
particle s* moves to a position with smaller average cost in
the next phase is greater than 0.

Let the largest side length of G} in dimension d be 20y,
and 0,4, = maxg o4. Clearly, dmar < Omaz. We set GPSO
with p = 04, Let H(l) denote the hypercube that particle
s* can move around, i.e., X,- (I + 1) € H(1). Let §(I) denote
the center of H(l), i.e., y(I) = §(I) + wvs-(l). Because H(I)
has side length of 2p(l), our setting p = Opqe causes any
side length of H (I) to be always greater than the largest side
length of G¥. Subsequently, from the convexity of g(-) and the
definition of G, there exists x € H(l) such that max |g(x) —
g(¥(1))| > e. We consider two cases: when the center ¥ (/)
belongs to a cell in G%, i.e., when h(y(l)) € GZ, and when
it does not, i.e., h(¥(l)) ¢ G. In the following, we use the
notation of the composite function g"(x) := g(h(x)), and
omit the subscript s* for brevity.

Case 1 (when h(y(l)) € G¥): There is always a positive
probability that the next position of particle s* is in a cell in
G since x(I + 1) is uniformly sampled in H (). Hence, for
certain €1, we have

Prob{h(x(l+1)) € GI} =¢1 > 0.

Assume that particle s* moves into a cell in G. The global
best position ¥ is set to x(I + 1) if the empirical average
i = g"(x(1+ 1)) is less than " := g"(y(1)). Additionally,
let the true average cost of the two cells be u’ := g"(x(I+1))
and p” = g"(3(l)), which satisfies ' < " since h(x(l +
1)) € G¥ and h(3y(1)) ¢ G:. We consider the following two
events Fq1 and Fs for a constant € > 0:

By = {i/ <)/ +&, and By := (i > " — €.

From the i.i.d observations of average cost and their bounded
support, we can use Hoeffding’s inequality [39], and obtain

PrOb{El} 2 1— 672€2V”(x(l+1))
Prob{E>} > 1 — e_2g2vh(y(z))7

)

where V" (x(I + 1)) and V"(§(I)) are the number of visits
of the particles to the cell that x( + 1) and y(I) belong,
respectively. Letting €5 denote the probability that both events
E; and FE5 occur, we have e > 0. This implies @' < g



thus, we have §(I + 1) < x(I{ 4 1). Hence, with probability
€169 > 0, the global best position § changes to x(I + 1) and
we obtain h(F(l + 1)) € G.

Case 2 (when h(y(1)) ¢ G¥): We note that, if we are stuck
at a fixed y(l), position x of particle s* stays around y(I)
from (12), which implies that v(I) — 0. Thus, §(I) — y(1).

We now compare the average cost of h(x(l+ 1)) with that
of h(¥(1)). From the convexity of g(-) and p = opas, We
should have a

minge gy 9" (%) + € < g"(¥(1)).

Considering that the new position of the particle is chosen at
random from H (1), the equation implies that there is a positive
probability 3 such that the particle moves to a better position.

Prob{g" (x(1 4+ 1)) < ¢"(F(1))} = e3 > 0.

Since the best position ¥ can be updated only when the
empirical average cost improves, as in Case 1, we can
use the Hoeffding’s inequality to show that the conditional
probability of ygl + 1) « %(I + 1) is no smaller than
ea=(1- 28V L(x(l+1)))(1 _ e—QEZVh(y(Z))).

Combining together, with the positive probability ese4 > 0,
§(1) is set to a better position x(I + 1) that satisfies " (x(I +
1)) < g"(3(1)), which completes the proof. |

From Theorem 1, MAX-k-GPSO policy can successfully
find the cell in G for any € > 0 under a convex average
cost function g(c). By using sufficiently small ¢ > 0, it
can achieve near-optimal solution. In the next section, we
evaluate MAX-k-GPSO policy and compare its performance
with multi-threshold, all-at-once, MAX-k-UCB policies.

V. SIMULATIONS

For the simulations, we consider a scenario where a system
aims to estimate locations of /N moving objects, each of which
randomly walks along one-dimensional path. It captures the
essentials of the system operations and its extension to multi-
dimensional space is straightforward. Accordingly, the state
value of each sensor corresponds to the location of a moving
object and the estimation error corresponds to the distance
between the true location and the estimated location.

We conducted simulations with N sensors, each of which
has a state value that follows a standard Wiener process
independently. We discretized time to simulate Wiener process
evolution in simulations, and state values had increments that
follow a normal distribution with mean 0 and variance 1 at
each time slot. At each time ¢, the transmitter made an update
decision {ui}Y | and transmitted the state value of sensor i
if u{ = 1. We assumed that a communication cost is imposed
according to the number of transmitted state values using (2).
Accordingly, the estimation errors &;(¢)’s were updated on the
receiver side. The system cost at time ¢ is Zf\]:l EX(t)+ f(ny),
and the average system cost during time period was calculated
as in (9). We divided the time into rounds, where a round
continued for U consecutive transmissions of the state values.
Letting ¢’ and t” be the starting and ending times of a round,
the average cost 7 during a round was computed as
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Fig. 5. Empirical observations on the objective function g.

For the online learning policies of MAX-k-GPSO and MAX-
k-UCB, n;» = N since we reset the estimation errors to zero
at the end of each round. Unless otherwise stated, we set
parameters U = N 2 and N = 7, and used the communication
cost function with & = 0.5, and ¢ = 100. For the MAX-k-
GPSO policy, we partitioned the search space for (k,v) into
the N M cells. We also considered N M arms for the MAX-
k-UCB policy, each of which represents (k,~y) where k € [N]
and v € {71, -+ ,ya}- When comparing the performance of
the MAX-kK-GPSO and MAX-k-UCB policies, we used the
same constant value M.

First, we empirically observed the structure of the objective
function g. We partitioned the range for ~ into M = 100
intervals, each of which was centered at {7, }M_,. We
considered NM = 700 (k,~) points, where k € [N] and
v € {1, - ,yum}; for each (k,~), we calculated the average
cost during 1000 rounds, i.e., ﬁ 2;0:010 7;. The average cost
for the corresponding k and ~ values is plotted in Fig. 5a. We
can empirically observe the convex structure of the objective
function g, and Figs. 5b and 5c show the functions for fixed
~ and k, respectively. From these results, we expected that
the MAX-k-GPSO policy successfully determined the optimal
solution to our problem.

For the MAX-k-GPSO policy, we created a swarm of |S]
particles. According to [40], we set |S| = 10+ [2v/D| where
D is the number of dimensions in the search space. In our
case of D = 2, |S| = 12. We also set the inertia weight
and acceleration coefficients in (11) as w = 0.7298 and p; =
p2 = 1.49618 as in [41]. We partitioned the search space by
dividing the range of v into M exclusive intervals of length
24, resulting in a total VM cells. For the velocity equation
of the global best particles s*, we set p = 44, p(0) = 1,
As = 5, and Ay = 5 in (13). For the MAX-k-UCB policy,
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Fig. 6. Positions of particles (|S| = 12), after I-th phase.

we considered each (k,v) as an arm with k € [N] and v €
{71, ,vm}, where 7, is the center of the m-th interval. For
both policies, we used the same stopping condition, running
for J rounds. Fig. 6 shows the positions of all particles under
the MAX-k-GPSO policy after I-th improvement phase when
J was set to a million and M = 1000. Initially, the particles
were randomly scattered over the search space. As the process
continued, they moved toward the direction of the optimal
solution and converged to the optimal solution of £* = 4 and
) = 6.8530.

We now compare the learning performances of the MAX-
k-GPSO and MAX-k-UCB policies. We measured their regret
performance, a widely used performance metric in the learning
area. This is defined as the accumulated cost sum with respect
to the optimal average cost #*. Specifically, regret reg;, and
average regret 7eg;, in round j’ can be formally expressed as

./
- SV poo_ p* 7eq., — L :
regy =iy (f; — ), and Teg; = 5reg,

respectively. We empirically obtained 7* by running the MAX-
k policy with parameters set to the convergence point of the
MAX-k-GPSO policy. Fig. 7 shows the regret and average
regret for J = 10° rounds, where the orange lines denote
the regret performance of the MAX-k-UCB policy and the
green lines denote that of the MAX-k-GPSO policy. We also
simulated different cell sizes of M = 100,500, 1000, and
the results are shown by dotted, dashed, and solid lines,
respectively. By comparing values of regrets in Fig. 7, we
observe that the MAX-kK-GPSO policy significantly outper-
forms MAX-k-UCB; even the MAX-k-GPSO policy with the
finest grid converges faster than the MAX-k-UCB with the
coarsest grid. Figs. 7c and 7d confirm that the MAX-k-GPSO
with a coarser grid converged faster. In addition, we observed
that, for MAX-k-GPSO with M = 1000, after the regret
converged at approximately 25,000 rounds, it continued to
increase gradually, which was due to the approximation error
by discretizing the search space into cells.

In Fig. 8, we compare the average cost of the all-at-once and
multi-threshold policies with that of the MAX-k-GPSO policy.
The solid lines represent the ratio of the average cost of the
all-at-once policy to that of the MAX-k-GPSO policy, and the
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Fig. 8. Ratio of average cost.

dashed lines represent the ratio for the multi-threshold policy.
The average cost was calculated for J = 10° rounds, and we
set M = 100 for the MAX-k-GPSO policy. Fig. 8a shows the
ratios with fixed N = 10 and different o € [0.1, 1] of the cost
function (2). The average cost under the all-at-once policy was
greater than that under the MAX-k-GPSO policy for all a, and
the ratio approached 1 when « approached 0. This was because
the all-at-once policy was optimal when @ = 0. Similarly, we
can expect that the ratio for the multi-threshold approaches 1
as « approaches 1. However, we observed that the ratio is less
than 1 when a > 0.8. This was due to the sub-optimality of
MAX-k-GPSO caused by cell partitioning. The performance
gap can be reduced by decreasing € and increasing M. Fig. 8b
shows the ratios with fixed @ = 0.5 and different N € [15].
The average cost ratio of the multi-threshold policy increased
almost linearly as IV increased, whereas the ratio of the all-
at-once policy increased sublinearly.

Through the simulations, we observed that the MAX-k-
GPSO policy could find the optimal solution in our remote
estimation problems, and it outperformed the all-at-once and
multi-threshold policies for certain sublinear transmission cost
functions.



VI. CONCLUSIONS

We investigated the remote tracking problem of monitoring
multiple IoT sensors governed by Wiener processes under a
sublinear communication cost. We first considered two com-
petitive benchmark strategies, all-at-once and multi-threshold
policies, and analyzed their performance. We then developed
a novel strategy, the MAX-k policy, which could improve the
average system cost as it better exploits the sublinear structure
of the communication cost function. In its implementation,
we blended a learning approach for the online optimization
of its parameters. Specifically, we developed a GPSO that
learns the parameters of MAX-k policy, considering the prop-
erties of continuous search space and stochastic feedback.
Through simulations, we demonstrated that MAX-k-GPSO
outperforms MAX-k-UCB, which combines a conventional
UCB learning algorithm with the MAX-k policy. In addition,
we demonstrated that the MAX-k-GPSO achieves close-to-
optimal performance over different network settings, success-
fully generalizing the all-at-once and multi-threshold policies
in extreme cases.

For the future works, we try to analyze the average cost
under MAX-k policy and obtain optimal threshold values the-
oretically by understanding the behavior of k£ highest-valued
Wiener processes. Further, we can investigate the optimal
threshold under a hard constraint or dynamic network setting.
Optimizing the threshold quickly to reduce the performance
loss will be an interesting open problem.
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