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Abstract—The traditional goal in remote tracking of a dynamic
source is to keep the current estimate at the destination as
close as possible to the true state. However, in domains such
as surveillance applications, the destination is also interested in
reconstructing the past trajectory of states for further processing.
This requires striking a balance between providing current versus
past state information so that the destination can optimize the
trade-off between the metrics of freshness and reconstruction
queue length. In this work, we propose a randomized update
policy that decides between head-of-line versus tail-of-line packets
in the update queue. As such, our policy combines the strength
of Last-Come-First-Serve (LCFS) service discipline (which aims
at reducing the age) with the strength of First-Come-First-Serve
(FCFS) service discipline (which aims at reducing the reconstruc-
tion delay). We evaluate the performance of our proposed policy
in terms of its randomization parameter, which can be optimized
given the system parameters to achieve a better trade-off.

I. INTRODUCTION

With the emergence of Internet of Things (IoT), remote
tracking systems including for surveillance and healthcare
monitoring are expected to become increasingly popular [1].
These systems rely on sensors transmitting update packets with
time-varying data to a remote monitor, ensuring the continuous
tracking of objects. Timely and accurate updates are essential
for maintaining up-to-date information in these systems.

Resource constraints in IoT systems, such as limited com-
munication and energy, can prevent timely updates. Address-
ing this, there have been various studies conducted in the fields
of Age of Information (AoI) [2]–[7] and Remote Estimation
(RE) [8]–[14], where the value of information is measured
with freshness and accuracy, respectively. The age is a quan-
titative measure used as a performance metric to assess the
freshness of information. It is defined as the time elapsed since
the latest data available at the destination was generated at its
source. Similarly, in the context of RE, the estimation error
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is employed to measure the accuracy of information held by
a remote monitor, in comparison to the actual information.

In this work, we go beyond achieving freshness of updates
to investigate real-time remote tracking systems integrated
with trajectory reconstruction. This integration aims to enable
accurate and efficient monitoring and analysis of objects
with time-varying characteristics. Remote tracking systems
have versatile applications. In surveillance and security, they
monitor public spaces and critical facilities, providing real-
time updates for immediate threat detection and employing
trajectory reconstruction to analyze movement patterns for
unusual behavior. In healthcare, wearable devices leverage
these systems to track physical activities and health metrics.
Timely information updates facilitate real-time health monitor-
ing and instant feedback, while trajectory reconstruction aids
in analyzing exercise trends, progress tracking, and tailoring
personalized fitness plans.

To achieve real-time tracking of the most recent state,
the transmitter selectively maintains the freshest packet while
discarding older packets. Conversely, for trajectory reconstruc-
tion, it needs to send historical packets, facilitating the recon-
struction of object trajectories for further analysis. Therefore,
the transmitter is required to make scheduling decisions among
the packets available in its queue to balance between real-time
tracking and trajectory reconstruction.

A. Related Works

One key challenge in AoI research is to determine the
optimal strategies for sampling and scheduling [2]–[7] Specif-
ically, this involves identifying the ideal time for data sam-
pling and transmission with the objective of minimizing
the age metric, while considering any relevant constraints.
There have been studies focused on sampling strategies for
a single source-receiver pair under various conditions and
constraints [2], [3] Additionally, there have also been studies
focused on wireless networks with multiple sources that are
tracked by a common receiver over a shared wireless chan-
nel [4], [5] Further, the AoI framework has found applications
in various domains, including UAV-assisted networks [6] and
vehicular networks [7]

Similar to the challenges faced in AoI research, determining
optimal strategies for sampling and scheduling is also a
challenge in the context of remote estimation. Several works
have addressed this challenge, studying single source-receiver
pairs under various conditions and constraints [8], [9] Other
research focuses on network scenarios with multiple sources
updating a common receiver [10]–[12] In these studies, the
state of each source is modeled as a Linear Time Invariant



(LTI) system with independent zero-mean Gaussian noise [10]
, an Ornstein-Uhlenbeck (OU) process [11], or a zero-mean
independent and identically distributed random process [12].

B. Contributions

In this work, we consider a remote tracking system with
a pair of source/transmitter and a remote monitor/receiver,
where the monitor remotely tracks not only the current state
of the source but also the trajectory of its evolution over time.
Applying existing works [2]–[5] directly to our problem is not
feasible as the existing solutions primarily address the fresh-
ness of information, which fails to capture the requirements
of trajectory reconstruction.

Our contributions can be summarized as follows.
• We introduce the concept of a reconstruction queue and

focus on its queue length as a quantitative measure for
evaluating the cost of trajectory reconstruction. This cost
can measure the memory space, computational load or
processing time delay of the reconstruction operation,
depending on how the reconstruction is performed. This
metric, combined with the concept of the age, allows
us to establish an optimization problem balancing timely
updates and trajectory reconstruction in Section II.

• We show that neither a First-Come First-Serve (FCFS)
nor Last-Come First-Serve (LCFS) policy can effectively
balance the costs associated with the freshness of infor-
mation (age) and trajectory reconstruction (reconstruction
queue length) in Section III-A.

• To improve performance in both aspects, we propose a
randomized update policy that probabilistically chooses
between the LCFS and FCFS. We analyze the perfor-
mance of the proposed policy in Section III-B.

• We evaluate the proposed randomization policies through
numerical simulations in Section IV.

II. SYSTEM MODEL

We consider a remote monitoring system, represented in
Fig. 1, which consists of a source (or transmitter) and a remote
estimator (or receiver). In this system, the remote estimator
tracks the time-varying state of the source, wherein its focus
is twofold: (i) the most recent state and (ii) the historical evolu-
tion of the state. Consequently, the transmitter is responsible
for effective scheduling between the freshest update packet
and the staled packets, acknowledging the significance of both
aspects to the receiver.

The state of the source, denoted as x(t), evolves over time.
The transmitter randomly samples x(t), generating update
packets following a Poisson process with rate λ > 0. The
generated update packets are stored in a queue held by the
transmitter, where Qs(t) denotes its queue length at time t.
The transmitter’s queue consists of a buffer with an infinite
capacity and a server handling one packet at a time. The
server’s service times follow an exponential distribution with
rate µ > 0, where λ < µ.

The receiver also holds a queue, referred to as the re-
construction queue, designed to store packets delivered from

Fig. 1: System model.

the transmitter. Its length at time t is Qr(t) with average
length Q̄r = limt→∞

1
t

∫ t

0
Qr(s)ds. Upon receiving an update

packet, the receiver can update its estimate for the source’s
state if this packet is fresher than the previously held informa-
tion. This aids in addressing the first objective of maintaining
up-to-date information. For reconstruction purposes, an update
packet j is stored in this queue if there are preceding packets
generated earlier that have not yet been delivered due to out-
of-order transmissions from the source queue (as explained
above). This approach ensures chronological accuracy in data
reconstruction, as the packet j will wait in the queue until all
older packets are received, preserving the sequence of events.

In Fig. 1, the monitor reconstructs the trajectory of the
source’s state using the received update packets. This involves
estimating the state values at intervals between the sampling
points. An increased number of undelivered packets between
two sampling points can lead to greater uncertainty in these
estimations. However, as these missing packets are eventually
delivered and processed, the uncertainty associated with these
estimates is expected to decrease, leading to a more accurate
reconstruction of the state trajectory [15]. In this case, a high
Qr(t) may suggest greater uncertainty in the reconstruction.
Additionally, the monitor relies on the freshest update packet
to estimate the current state of the source.

Update packets are generated at times t1, t2, ... and received
by the receiver at times t′1, t

′
2, .... We assume that ti < tj for

i < j, while the order of delivery times t′i may not align
with the generation order depending on the chosen service
discipline. The age A(t) at time t is defined as the time elapsed
since the last received fresh packet has been generated, i.e.,

A(t) := min
i
{t− ti | t′i ≤ t} (1)

with the initial age A(0) = A0.
Let ik denote the index associated with the k-th fresh packet

delivered to the receiver. Then, upon the receipt of kth fresh
packet by the receiver, the peak age1 Apeak

k is defined as the
maximum age attained immediately prior to receiving the fresh
packet: Apeak

k := A(t′−ik ), where A(t−) = lims→t− A(s). The
average peak age Āpeak is defined as

1In this paper, we consider the peak age instead of the average age, the latter
being the metric most typically used in the literature, due to mathematical
tractability.



Fig. 2: Age evolution over time, where tik and t′ik is the gener-
ation time and delivery time of kth fresh packet, respectively.

Āpeak := lim supK→∞ E
[

1
K

∑K
k=1 A

peak
k

]
, (2)

where the expectation E[·] is taken over generation and deliv-
ery times of the update packets.

The time each fresh packet spends in the system, from its
generation to delivery, is represented as Xk = t′ik − tik for the
kth fresh packet. The inter-delivery time between successive
fresh packets is denoted as Yk = t′ik − t′ik−1

. Fig. 2 shows a
sample path of age evolution over time. Further, for the ergodic
Apeak

k , we can express Āpeak as:

Āpeak = E[Xk−1] + E[Yk]. (3)

We assume a preemptive server, whereby the transmitter can
replace a packet in service with another waiting in the queue.
In such cases, if the preempted packet is served again, the
transmission of the packet starts anew. Let π denote a update
policy and let Π denote the set of all possible update policies.
Our objective is to design a policy that minimizes the expected
weighted sum of age and reconstruction queue length:

minπ∈Π Jπ = βĀpeak
π + (1− β)Q̄r

π, (4)

where Āpeak
π and Q̄r

π is the average peak age and the average
reconstruction queue length, respectively, that are associated
with update policy π, and β ∈ [0, 1] is a weight parameter,
which determines the relative importance of the fresh infor-
mation and reconstruction cost.

III. UPDATE POLICIES

In this section, we discuss different update policies for
the transmission of packets in the system. We begin by
examining two commonly used policies: FCFS and LCFS.
Subsequently, we introduce a novel update policy called Head-
Tail Randomization for balancing freshness and reconstruction
queue length.

A. First-Come First-Serve and Last-Come First-Serve

As an extreme case, it can be observed that under FCFS
policy, the reconstruction queue is always empty due to
sequential transmission, while high traffic intensity (i.e., λ/µ
approaching 1) leads to increased age. On the opposite end,
LCFS policy with preemption benefits packet freshness, but
compromises reconstruction queue performance as the packets
are transmitted in a reverse-sequential manner.

Fig. 3 shows the average peak age Āpeak
π and average

reconstruction queue length Q̄r
π under FCFS and LCFS, where

the service rate µ is set to 1 and the traffic intensity ρ = λ/µ
varies from 0 and 1. The results are averaged over 105 packets.
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Fig. 3: The average peak age Āpeak
π and reconstruction queue

length Q̄r
π under FCFS and LCFS policies.

As expected, at higher ρ values, FCFS results in a greater
age increase compared to LCFS, while LCFS leads to poorer
queue performance than FCFS. Note that, for lower ρ values,
the performance gap between FCFS and LCFS is insignificant
due to the infrequency of packet generation. This indicates
neither policy alone effectively minimizes the weighted sum
of average age and reconstruction queue length in (4).

B. Head-Tail Randomization Policy
In this section, we introduce a randomized update policy that

chooses between LCFS and FCFS policies probabilistically
to achieve a good trade-off between the two objectives of
freshness and reconstruction.
Scheduling at the transmitter: Upon the generation of a new
packet at ti, the transmitter probabilistically chooses either
the freshest (tail) or oldest (head) packet, with probabilities α
and 1− α respectively. The parameter α can be intentionally
designed to optimize the objective stated in (4). Further,
when a packet departs at t′i, the head packet is chosen with
probability 1.
Status update and reconstruction at the receiver: Under
the proposed scheduling policy, the receiver can distinguish
whether a received packet is the head packet or the tail packet.
When a tail packet is received, indicating the most recent
information, it leads to a reduction in the age as the receiver
adjusts its state estimate. This tail packet is stored in the
reconstruction queue until all previously generated packets
have also been delivered, thereby enhancing the accuracy of
reconstructing prior trajectory events.

On the other hand, when a head packet is delivered, it
enables the receiver to reconstruct the source’s trajectory more
accurately. The head packet, combined with other enqueued
packets in their generation order, provides a comprehensive
view of the source’s history. Note that the head packet could
reduce the age. However, for tractability in theoretical analysis,
it is assumed that the receiver only relies on the tail packet to
monitor the recent status of the source, resulting in a reduction
in age upon the tail packet delivery. We refer to the proposed
policy as πR1. Nonetheless, we note that in practical scenarios,
allowing the receiver to utilize the head packets for monitoring
the recent status of the source can potentially enhance the age
performance further. We discuss it in Section III-D.

We now analyze the average peak age Āpeak
πR1

(α) and average
reconstruction queue length Q̄r

πR1
(α) under the proposed



randomized update policy πR1 with the tail probability α.
The average peak age Āpeak

π : We can calculate the average
peak age Āpeak

πR1
(α) by determining the expected system time

E[Xk−1] and the expected inter-update time E[Yk] using (3).
Further, since the age is decreased only when the tail packet
is delivered under the πR1 policy, the variables Xk and Yk

correspond to the system time and inter-delivery time of
the tail packets, respectively. In the following lemma, we
provide the the average peak age Āpeak

πR1
(α) of the head-tail

randomization policy πR1 given α, λ and µ where λ < µ.
Lemma 3.1: Given α, λ and µ where λ < µ, the average

peak age Āpeak
πR1

of the πR1 policy is given by

Āpeak
πR1

(α) = 1
λ+µ + 1

α

(
1
λ + 1

µ

)
. (5)

The proof is in Appendix A.
The average reconstruction queue length Q̄r

π: In the πR1

policy, when a tail packet departs the server, it is the freshest
in the queue. If packet i is a tail packet, the number of packets
in the queue at its departure is denoted by Li. Packet i waits
in the reconstruction queue until all Li preceding packets are
delivered. This waiting time equals the delivery time for these
Li packets. With the arrival rate λ, we apply Little’s law to
assess the reconstruction queue performance under this policy.

Lemma 3.2: Given α, λ and µ where λ < µ, the average
reconstruction queue length Q̄r

πR1
(α) of the πR1 policy is

given by
Q̄r

πR1
(α) = α

µ+(1−α)λ
λ2

µ−λ . (6)

The proof is in Appendix B. From Lemmas 3.1 and 3.2, we
can now obtain the average cost JπR1

(α) and further optimize
the tail probability α.

Proposition 3.1: Given α, λ and µ where λ < µ, the
expected weighted sum JπR1

(α) of age and reconstruction
queue length of the πR1 policy is given by JπR1

(α)

= β
(

1
λ+µ + 1

α

(
1
µ + 1

λ

))
+ (1− β) α

µ+(1−α)λ
λ2

µ−λ . (7)

Let α∗
1(β, λ) denote the optimal tail probability α that

minimizes the cost under the πR1 policy given the weight
β ∈ [0, 1] and λ ∈ (0, µ), which is convex in α. By solving
the convex problem, we have

α∗
1(β, λ) = min

{
1,

√
β(1+µ/λ))

√
β+

√
(1−β)/(1/λ−1/µ)

}
. (8)

Note that when β = 0, the cost Jπ matches the expected
reconstruction queue length Q̄r

π . In this case, according to
(8), we find that α∗

1(0, λ) = 0. Consequently, the transmitter
always uses head packets, resulting in JπR1

= 0, which aligns
with our expectations. In contrast, when β = 1, the cost Jπ is
equivalent to the expected peak age Āpeak

π . In this situation, we
find that α∗

1(1, λ) = 1. This implies that the freshest packet
always takes priority, and if there is no fresh packet in the
buffer, head packets are served until a new packet is generated.

C. Comparison with FCFS and LCFS

Section III-A highlights challenges in remote tracking sys-
tems using FCFS or LCFS policies for trajectory reconstruc-
tion. To tackle these, Section III-B introduces the πR1 policy,

which better balances age and reconstruction queue length
by alternating between fresh and old packet transmissions.
Although not an optimal solution for minimizing Jπ in (4),
πR1 effectively addresses the trade-off between these factors.
In the following corollary, we present key findings regarding
the performance characteristics of different policies under high
traffic intensity.

Corollary 3.1: For β ∈ (0, 1), as ρ → 1, the average costs of
the FCFS and LCFS policies increase in the order of 1/(1−ρ):

JFCFS = O
(

1
1−ρ

)
and JLCFS = O

(
1

1−ρ

)
, (9)

while the average cost of the πR1 policy with optimal tail
probability α∗ increases in the order of 1/

√
1− ρ:

JπR1
(α∗) = O

(
1√
1−ρ

)
. (10)

As can be seen in (20), the reconstruction queue length
increases in the order of 1/(1 − ρ) and also from [16], the
average peak age for the FCFS policy is given by 1/(1 −
ρ)µ+ 1/λ. Thus, we have (9) for a given β ∈ (0, 1). Further,
we can obtain (10) by substituting (8) into (7). Corollary 3.1
highlights the performance characteristics of different policies
as the traffic intensity ρ approaches 1. This indicates that the
head-tail randomization policy achieves a better performance
trade-off between freshness and reconstruction as the system
approaches high traffic intensity.

D. Improved Head-Tail Randomization

We recall that the πR1 policy, focusing solely on tail packets
for monitoring the recent status of the source for analytical
tractability, compromises age performance by not considering
fresh head packets. To address this limitation, we introduce
the πR2 policy, which incorporates head-tail randomization
updates, allowing the receiver to utilize both packet types
for more comprehensive freshness assessment. With πR2, the
average peak age, Āpeak

πR2
, tends to be lower or equal to that of

πR1, Āpeak
πR1

. Notably, the average reconstruction queue length,
Q̄r

πR1
(α), remains equal to Q̄r

πR2
(α) across all α values.

Additionally, in high-traffic conditions (ρ → 1), both policies
converge to similar average peak ages, as detailed in the
subsequent proposition.

Proposition 3.2: For given α ∈ (0, 1), we have

Q̄r
πR2

(α) = Q̄r
πR1

(α) and Āpeak
πR2

(α) ≤ Āpeak
πR1

(α), (11)

for any given ρ ∈ (0, 1), and further

limρ→1 |Āpeak
πR2

(α)− Āpeak
πR1

(α)| = 0. (12)

To establish the proposition, it is sufficient to show that the
average time fraction during which the head packet is fresher
than the packets held by the receiver decreases as ρ → 1. We
omit the proof due to lack of space.

IV. NUMERICAL RESULTS

In this section, we evaluate the proposed head-tail random-
ization policy πR1. We first compare πR1 against the FCFS,
LCFS, and πR2 policies. For πR2, optimal α is determined by
numerical search. Results are obtained from 5× 105 packets.
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Fig. 4: Average cost Jπ when µ = 1 and λ = 0.99.
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Fig. 5: Average cost Jπ when µ = 1 and β = 0.5.

Fig 4 illustrates the average cost of these four different polices
for β ∈ [0, 1] with µ = 1 and λ = 0.99, showing πR1’s
superiority over FCFS and LCFS, especially at β = 0.5.
Further, while the πR2 policy outperforms πR1 as predicted by
Proposition 3.2, the gap in their performance is not substantial
with a high traffic intensity of λ/µ = 0.99.

Fig. 5 illustrates average costs for varying traffic intensities
(ρ = λ/µ ∈ (0, 1)) with µ = 1 and β = 0.5. The figure
reveals, as predicted by Corollary 3.1, that as ρ → 1, the gap
between the head-tail randomization policies (πR1 and πR2)
and FCFS/LCFS widens. Further, all policies exhibit increased
costs as ρ → 0 due to less frequent packet generation and
thus higher age performance, leading to minimal performance
differences in low-generation-rate scenarios.

V. CONCLUSION

In this paper, we investigated remote tracking systems with
a single source and monitor, focusing on tracking the source’s
current state as well as past trajectory. We used reconstruction
queue length to evaluate trajectory reconstruction performance
and addressed the problem of minimizing the weighted sum of
age and this length. Our findings revealed that neither FCFS
nor LCFS policies alone effectively solves the minimization
problem. To overcome this, we proposed a randomized policy
that probabilistically selects between FCFS and LCFS policies
and analyzed its performance. Our results showed that the
proposed randomization update policy tackles the limitations
of FCFS and LCFS policies and outperforms them. Notably,
our proposed policy does not utilize state information such as
current age or queue length. It will be interesting to explore
open problems related to the design of state-dependent update
policies or learning-based update policies when certain system
parameters are unknown a priori.

Fig. 6: A CTMC with state (E1(s), E2(s)) and END, where
ᾱ = 1− α.

APPENDIX A
PROOF OF LEMMA 3.1

We can calculate the average peak age Āpeak
πR1

(α) by eval-
uating the expected system time E[Xk−1] and the expected
inter-update time E[Yk]. Note that, under the πR1 policy, the
age is decreased only when a tail packet is delivered, making
Xk and Yk correspond to the tail packets’ system time and
inter-delivery time, respectively.

For inter-delivery time E[Yk] of consecutive tail packets, let
E1(s) denote the number of new packets generated by time
s after the delivery of the (k − 1)th tail packet. Let E2(s)
denote the event that there exists a positive probability for
the tail packet to be delivered at time s ≥ t′ik−1

. If a new
packet at time s′ leads to tail packet service with probability
α, we have E2(s

′) = 1, and 0 if the head packet is chosen
with probabilty 1 − α. If a head packet is serviced, then
E2(s) = 0 until the next packet generation. The event END
marks the kth tail packet’s delivery. Using these definitions,
we form a continuous-time Markov chain (CTMC) with states
(E1(s), E2(s)) for s ≥ t′ik−1

and END as shown in Fig. 6.
Note that the holding time of each state (a, 0) for a ≥ 0 is

equal to 1/λ, while the holding time of each state (a, 1) for
a ≥ 1 is equal to 1/(λ+µ). Let us denote Ha,b as the expected
duration from state (a, b) to state END. Considering that the
initial state at time t′ik−1

is (0, 0), we can express the expected
inter-delivery time of tail packets as E[Yk] = H0,0. Using the
Markov property, we can write the following equations:
HEND = 0, Ha,0 = 1

λ +Ha+1,1, for a ≥ 0, (13)

Ha,1 = 1
λ+µ + λ

λ+µHa+1,1 +
(1−α)µ
λ+µ Ha+1,0 +

αµ
λ+µHEND,

for a ≥ 1. By solving these equations, we can obtain the
expected inter-delivery time as

E[Yk] = H0,0 = 1
λ + 1

α

(
1
µ + 1

λ

)
. (14)

We now consider the expected system time E[Xk−1]. Ac-
cording to the πR1 policy, the server initiates the service of
a tail packet with a probability of α upon its generation.
Further, for the tail packet to be successfully delivered to the
receiver, it is imperative that no new packet generation occurs
before its departure. Thus, we can express the expected system
time as E[Xk−1] = E[Service time | departure before arrival] ·
P(dep. before arr.) = E[Service time]P(dep. before arr.), so

E[Xk−1] =
1
µ · µ

λ+µ = 1
λ+µ . (15)

Therefore, from (14) and (15), we have

Āpeak
πR1

(α) = 1
λ+µ + 1

α

(
1
µ + 1

λ

)
. (16)



Fig. 7: A CTMC with state (E2(s), E3(s)), where ᾱ = 1−α.

APPENDIX B
PROOF OF LEMMA 3.2

In the πR1 policy, when a tail packet departs, it is the
freshest in the queue. We denote L > 0 as the number of
packets in the queue at the tail packet’s departure. This tail
packet waits in the reconstruction queue until all L older
packets are delivered, thus the waiting time for this packet
in the reconstruction queue equals the time taken for all L
preceding packets to be delivered. The expected waiting time
for all L packets is denoted as fα(L), and the event of a
leaving packet being the tail packet is Eα. The average waiting
time, D̄πR1

(α), given tail probability α, is:

D̄πR1
(α) =

∑∞
l=1 P(L = l)P(Eα)fα(L). (17)

To analyze fα(L), the expected duration for all L preceding
packets to be delivered after a tail packet’s transmission, we
focus on two key events post the tail packet’s departure at
t′ik . First, the event E2(s) indicates the presence of a non-
zero probability for the tail packet to be delivered to the
receiver at time s with E2(t

′
ik
) = 0. Secondly, E3(s) tracks

the number of older packets in the transmitter’s queue at time
s. By incorporating these elements, we can construct a CTMC
characterized by states (E2(s), E3(s)) for s ≥ t′ik as in Fig. 7.

In this CTMC, the holding time for each state (1, b), where
b ∈ {1, ..., L}, is equal to 1/µ. For states (0, b) within the
same range, the holding time is 1/(λ + µ). We denote H̄a,b

as the expected duration from state (a, b) to state (0, 0), the
latter representing the condition where all L older packets
have been delivered, enabling the kth tail packet to leave the
queue. This implies that fα(L) = H̄0,L. Further, note that the
transition time from each state (0, b) to the next state (0, b−1)
is consistent for all b ∈ {1, ..., L}. We denote this uniform
time as H̄0. Additionally, let H̄1 denote the expected duration
from state (0, b) to state (1, b). Consequently, we can write
fα(L) = H̄0,L = LH̄0. Using the Markov property, we can
write the following equations:

H̄END = 0, H̄0 = 1
λ+µ + λ

λ+µH̄1 +
µ

λ+µH̄END,

H̄1 = 1
µ + αH̄0 + (1− α)H̄END,

(18)

where END denotes the absorbing state, i.e., (0, b − 1). By
solving these equations, we can obtain H̄0 = 1+ρ

µ+(1−α)λ and

fα(L) =
(1+ρ)L

µ+(1−α)λ . (19)

Next, we analyze P(Eα), the probability of a departing
packet being the tail packet. In a scenario where a new
packet (packet A) is generated and chosen for service with
probability α, two outcomes can occur: if a new packet arrives
before packet A departs, packet A becomes a head packet;
if packet A departs first, it is a tail packet. Thus, P(Eα)

combines the chance of packet A being selected and the
chance of its departure preceding any new arrival, resulting
in P(Eα) =

αµ
λ+µ .

Combining with (17) and (19), we have

D̄πR1
(α) =

∞∑
l=1

lP(L = l)P(Eα)fα(1) = P(Eα)fα(1)E[L].

Hence, the left is to obtain the expected number E[L] of
packets in the transmitter’s queue when a tail packet leaves
the system, which is equal to the expected length of the
transmitter’s queue, i.e., E[L] = λ

µ−λ . Therefore, we have
D̄πR1

(α) = α
µ+(1−α)λ

λ
µ−λ , and by Little’s law, the average

length of reconstruction queue is given by

Q̄r
πR1

(α) = α
µ+(1−α)λ

λ2

µ−λ . (20)
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