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Comparison of Decentralized and Centralized Update Paradigms
for Distributed Remote Estimation

Sunjung Kang, Atilla Eryilmaz and Changhee Joo

Abstract—In this work, we perform a comparative study
of centralized and decentralized update strategies for the basic
remote tracking problem of many distributed users/devices with
randomly evolving states. Our goal is to reveal the impact
of the fundamentally different tradeoffs that exist between
information accuracy and communication cost under these two
update paradigms. In one extreme, decentralized updates are
triggered by distributed users/transmitters based on exact local
state-information, but also at a higher cost due to the need for
uncoordinated multi-user communication. In the other extreme,
centralized updates are triggered by the common tracker/receiver
based on estimated global state-information, but also at a lower cost
due to the capability of coordinated multi-user communication.
We use a generic superlinear function to model the communi-
cation cost with respect to the number of simultaneous updates
for multiple sources. We characterize the conditions under which
transmitter-driven decentralized update policies outperform their
receiver-driven centralized counterparts for symmetric sources,
and vice versa. Further, we extend the results to a scenario
where system parameters are unknown and develop learning-
based update policies that asymptotically achieve the minimum
cost levels attained by the optimal policies.

I. INTRODUCTION

In recent years, there has been a growing number of appli-
cations requiring real-time updates of system status, especially
in cyber-physical systems such as smart homes and buildings
or health-care monitoring systems [2]. These systems rely on
sensors that gather time-varying information and transmit it to
a central controller or monitor, which then makes decisions
based on the aggregated data from multiple sources. Although
it is ideal to maintain the controller up-to-date all the way, this
is often impractical due to limited resources of communication
networks.

To ensure timely updates, there have been various studies
conducted in the fields of Age of Information (AoI) [3]–[7]
and Remote Estimation (RE) [8]–[25], where the value of
information is measured with freshness and accuracy, respec-
tively. The age is a quantitative measure used as a performance
metric to assess the freshness of information. It is defined as
the time elapsed since the most recent packet available at the
destination was generated.
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In the context of the single-source single-destination sce-
nario, prior work [4] has explored the determination of the
optimal update rate for minimizing Age of Information (AoI)
when random transmission times are considered. Another
perspective from [7] delves into the examination of scheduling
policies that factor in transmission costs. This introduces a
compelling trade-off between managing the age of informa-
tion and mitigating communication expenses. In the multiple-
source single-destination scenario, a scheduling problem under
communication constraints has been studied in [5], [6]. In [5],
at most one source can transmit a packet via a channel, where
a packet is dropped with some probability. In [6], a channel
is modeled as a FIFO queue with random service time.

Similarly, in the context of RE, the estimation error is
employed to measure the accuracy of information held by a
remote monitor, in comparison to the actual information. It
has been observed that a sampling strategy that minimizes the
AoI does not necessarily minimize the estimation error [8], [9].
This observation is particularly evident in scenarios involving
Wiener processes and Ornstein-Uhlenbeck processes, where
the channel is modeled as a First-In-First-Out (FIFO) queue,
as studied in [8], [9]. In [10], remote estimation problems
with a packet-drop channel for both finite state Markov source
and first-order autoregressive source are investigated, where a
channel state changes over time horizon following finite-state
Markov chain, and the packet-drop probability depends on a
channel state and the transmission power level.

In [11], the Automatic Repeat reQuest (ARQ)-based re-
mote estimation framework are studied for the linear time-
invariant (LTI) system, where a sensor’s observation is noisy
and a channel’s gain changes over time following finite-state
Markov chain. In this domain, several works have tackled the
scheduling problem under communication constraints [12]–
[16]. In [12], [13], the minimization problem of Mean Squared
Error (MSE) of an estimator (or monitor) is considered
when the number of transmissions over finite-time horizon
is constrained. The scheduling problem with per-transmission
communication cost has been studied in [14], [15], [26].
In these contexts, each transmission carries an associated
communication cost, and the overarching goal revolves around
devising schedules that simultaneously minimize the MSE of
an estimator and the communication expenses of a transmitter.
This optimization objective extends across finite-time hori-
zons [13], [14], [26] as well as infinite-time horizons [15]. The
findings have shown that threshold-based update policies prove
to be optimal across distinct types of information sources [15],
[26]. Further insights emerge in [16], where the authors delve
into investigating (mean-square) stability conditions within
scenarios where a transmitter and a receiver communicate over
multi-state Markov fading channels.
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Exploring scenarios involving multiple sources communi-
cating with a single destination has also been a significant
area of research. These investigations have been undertaken
in works such as [17]–[25], [27]. In [17]–[21], the individual
sources are modeled as linear time-invariant (LTI) systems.
Within each time slot, at most m out of n transmitters are
allowed to update the remote monitor. Scheduling decisions
are made either by a centralized controller or the receiver. In
particular, periodic scheduling schemes are proposed in [18],
[19]. The works in [27], [28] explore scenarios involving a
centralized scheduler making scheduling decisions. These de-
cisions are made considering either random changes in channel
conditions [27] or the presence of packet loss probability in
the channel [28].

In [21], distributed sensors or transmitters, each sensing
an LTI system, contribute to scheduling decisions. Notably,
only one transmitter can update the monitor in this setup.
It is important to distinguish this from [17]–[20], where the
primary goal revolves around minimizing the estimation error
covariance. In contrast, in [21], [27], the main focus is on
minimizing transmission power consumption while ensuring
system stability. The works presented in [23]–[25] delve into
scenarios that encompass multiple sources and a receiver,
engaged in communication over various channels. Specifi-
cally, these works investigate stability conditions for remote
estimation systems under both Markov fading channels [23]
and semi-Markov fading channels [24]. Furthermore, in [25],
researchers focus on establishing a sufficient stability condition
for multi-source remote estimation and control problems.

Distinguishing our approach from the previously mentioned
studies, we investigate the problem of remote estimation with
multiple sources, where communication cost is associated with
the number of simultaneous updates. Our primary goal is
to study the fundamental dynamics underlying the trade-off
between policies driven by transmitters and those driven by
the receiver. By focusing on this aspect, we aim to understand
essential insights that clarify the trade-off between estimation
error and the cost associated with coordination between the
transmitters. This research provides a fresh perspective on
optimizing remote estimation in the presence of multiple
sources, contributing to a better understanding of the interplay
between transmitter-initiated and receiver-driven approaches.

We consider simple random-walk sources that transmit
information through shared wireless channels, and assume
that the channels are perfect, i.e, noiseless and no packet
drop, as in [15], [22]. It is worth noting that the aim of
our paper is not to provide specific efficient policies for any
given system that captures certain complexities such as het-
erogeneous source dynamics or packet drop channels, etc., but
rather to understand the fundamental insights into the trade-off
between transmitter-driven and receiver-driven policies. Due to
the channel sharing, communication cost changes according
to the number of simultaneous transmissions of the sources,
which will be explained in detail later.

Our contributions can be summarized as follows.
• We formulate the remote estimation problem in shared

communication channels, where the estimator remotely
tracks the time-varying state of multiple sources. We

Fig. 1: System model.

demonstrate, with an example, that the (communication)
cost associated with coordination between distributed
transmitters increases super-linearly with respect to the
number of transmitters.

• We study information update policies that make deci-
sions of when and which source information should be
transmitted to the estimator when dynamics of sources
are symmetric. The update decisions can be triggered
either by the distributed transmitters based on exact local
state-information or by the receiver based on estimated
global state-information assuming that system parameters
are known a priori.

• We then study information update policies when dynam-
ics of sources are asymmetric.

• We extend the results to a scenario where system pa-
rameters are unknown, and develop learning-based up-
date policies employing the Upper Confidence Bound
(UCB) technique from the (stochastic) Multi-Armed Ban-
dit (MAB) literature [29]. Through numerical simula-
tions, we show that our learning-based update policies
asymptotically achieve the minimum cost levels.

The rest of paper is organized as follows. In Section II,
we describe the system model and formulate the problem.
In Sections III and IV, we study information update policies
triggered by the distributed transmitters and by the receiver,
respectively, when system parameters are known. In Section V,
we compare the performance of the proposed update policies
and extend them to the scenarios where the system parameters
are unknown. In Section VII, we verify our analysis results
through numerical simulations. In Section VIII, we conclude
our work.

II. SYSTEM MODEL

We present our system model with n information sources
(e.g., sensors) and one remote estimator (e.g., sink or collec-
tor), where the estimator remotely tracks the time-varying state
of the sources through shared wireless channels, as shown in
Fig. 1. We describe the cost models of information mismatch
and update communication, and then formulate our problem.
We use the terms of sensor and transmitter, interchangeably,
and similarly for the terms of estimator and receiver. The
notations used in this paper are listed in Table I for ease of
reference.
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A. Value of Information

We consider a time-slotted system. At each time t, the state
of each source changes following a random walk process.
Specifically, let wi,t be an independent and identically dis-
tributed (i.i.d) random process with distribution as

wi,t =


1, with probability pi,

0, with probability 1− 2pi,

−1, with probability pi,

(1)

for some pi ∈ [0, 0.5]. The parameter pi is known to the
receiver1. This simple non-biased, scalar-valued model not
only captures the essential aspect of the problem, but also
can be converted to a biased case by adding a constant drift.
Let xi,t denote the state of source i at the beginning of time t,
which is a random walk process associated with wi,t as

xi,t+1 = xi,t + wi,t, for t ≥ 0, (2)

with initial state xi,0 ∈ R.2

Let ui,t ∈ {0, 1} denote an update decision of transmitter i
in time slot t, where ui,t = 1 implies that transmitter i updates
the receiver at time slot t. At the end of time slot t − 1, the
update decision ui,t can be made either in a decentralized
manner by each transmitter or in a centralized manner by the
receiver, based on their own observations up to time t−1. The
detailed explanation will be made in Section II-D. Then the
estimated state of source i at the receiver at time t, denoted
by x̂i(t), evolves as

x̂i,t =

{
xi,t, when ui,t = 1,

x̂i,t−1, when ui,t = 0.
(3)

Let εi,t denote the estimation error between xi,t and x̂i,t, i.e.,
εi,t = xi,t − x̂i,t. Let fp(ε) be a penalty function, which
increases with respect to the error ε. In this paper, we consider
the squared error:

fp(εi,t) = (xi,t − x̂i,t)
2. (4)

B. Cost of Communication

When transmitter i makes a transmission at time slot t,
i.e., ui,t = 1, a packet containing the state value xi,t is
successfully transmitted, incurring a communication cost. The
communication cost may represent energy consumption or
protocol overhead, which typically relies on diverse factors
such as transmission power and interference intensity. In this
paper, we pay attention to the cost associated with coor-
dination between the transmitters, since multiple distributed
transmitters should communicate over shared channels. For
the sake of tractability, we assume that the communication

1Later in section V-B, we will address the case when the parameter is
unknown and has to be learned.

2With scalar states and no sensing (or measurement) noise, the state
evolution in (2) is a special case of a discrete-time linear time-invariant
(LTI) system considered in [12]–[16]. If sources’ states are multi-dimensional
and each dimension is independent of other dimensions, the similar results
obtained in this paper can be applied to the multi-dimensional case. The
comparison of centralized and decentralized update paradigms under more
general LTI systems is an interesting open problem.

TABLE I: Notations.

Symbol Description
n Number of sources / transmitters

wi,t Noise of source i in time slot t
pi State dynamic parameter of source i
xi,t State of source i in time slot t
ui,t Update decision of transmitter (Tx) i in time slot t
x̂i,t Estimated state of source i at the receiver in time slot t
εi,t Estimate error of source i in time slot t
fp(ε) Penalty function for estimate error ε
Nt Number of transmissions in time slot t

fπ
c,i(Nt) Comm. cost of Tx i in time slot t under policy π

Cπ
i,t Per-source cost of Tx i in time slot t under policy π

gπ(·) Expected average cost under policy π
cs Comm. cost constant under decent. update paradigms
ϵs Comm. cost coef. under decent. update paradigms

g̃TD(γ) Expected avg. cost of TD policy with threshold γ
γ∗
L Threshold used under the TD-L policy
cr Comm. cost constant under cent. update paradigms
ϵr Comm. cost coef. under cent. update paradigms

g̃RD(τ) Expected avg. cost of RD policy with period τ
γ̄ Upper bound of possible thresholds
τ̄ Upper bound of possible periods
r̂j Average cost during update interval j

r̂(γ) / r̂(τ) Empirical avg. cost for threshold γ (or period τ )
η(γ) / η(τ) Number of selection for threshold γ (or period τ )

α Drift of source dynamics
γmax Max. threshold for source with asymmetric dynamics
γmin Min. threshold for source with asymmetric dynamics

cost depends on the number of simultaneous transmissions
and is not affected by the specific transmitters engaged in
transmission.

Let Nt denote the number of transmitters that take the
update action simultaneously during time slot t, i.e., Nt =∑n

i=1 ui(t). Then, we define the communication cost of trans-
mitter i during time slot t under a given update policy π as
fπ
c,i(Nt). The specific formulation of fπ

c,i(Nt) will be provided
as we introduce each individual update paradigm in Section III
and IV.

C. Problem formulation

Considering the aforementioned costs, the per-source cost
associated with source i at each time t, under policy π, can
be written as

Cπ
i,t = ui,tf

π
c,i(Nt) + (1− ui,t)fp(εi,t). (5)

Suppose that x0 = x̂0. Our objective is to find an update
policy π that minimizes the expected average cost over an
infinite time horizon:

minimize gπ(n), (6)

where

gπ(n) = E

[
lim
s→∞

1

sn

s∑
t=1

n∑
i=1

Cπ
i,t

]
. (7)

In this work, we focus on the case of homogeneous transmit-
ters with pi = p for all i.

D. Decentralized and Centralized Update Paradigms

We organize our investigation under two fundamentally
different paradigms: that of decentralized and centralized
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TABLE II: Information and control available to the policies.

Policy TD-L TD-G RD
local parms. p, cs p, cs p, cr
global parms. − n, ϵs n, ϵr
error εi,t εi,t −
controller transmitter i transmitter i receiver
control var. ui,t ui,t u1,t, . . . , un,t

update policies. These paradigms can also be referred to as
transmitter-driven (TD) and receiver-driven (RD) paradigms,
respectively, since the update decisions are triggered by each
transmitter under the former one, while the update decisions
are triggered by the receiver under the latter one.

Under a TD policy, each transmitter independently makes
individual decisions based on its own error εi,t, but without the
knowledge of the other’s actions, e.g., the number Nt of trans-
mitters in time slot t. On the other hand, under a RD policy,
the receiver can collectively decide on the update actions (thus
the set of transmitters at time slot t is under control), but it
lacks knowledge of the current errors εi,t. Intuitively, when the
communication cost Cπ

i,t is relatively small (meaning relatively
small Nt), the error cost fp(εi,t) dominates the communication
cost fπ

c,i(Nt). Consequently, a TD policy may outperform a
RD policy. However, when the communication cost becomes
sufficiently large, the communication cost starts dominating
the error cost, and thus a RD policy will outperform a TD
policy. The information and control available for each policy
are summarized in Table II.

The objective of this work is to explore and compare TD
and RD policies across different scenarios in relation to the
number of transmitters and the communication cost structure.
Through this study, we aim to understand the fundamental
insights into the trade-off between TD and RD policies.

III. DECENTRALIZED UPDATE PARADIGM

In this section, we begin by establishing the communication
cost structure in the context of decentralized update paradigms.
Subsequently, we design two different types of TD policies
based on their level of coordination: one type is for transmit-
ters with only local information (called as TD-L policy), and
the other type is for transmitters with global information as
well as the local information (called as TD-G policy).

A. Cost of Communication

In order to motivate and understand the property of
the communication cost function under decentralized update
paradigms, let us consider a scenario where N transmitters
access a shared channel using a Slotted ALOHA scheme. In
this setup, each time slot t is divided into mini-slots, in which
N transmitters independently attempt to transmit a packet with
an identical probability q. During a mini-slot, if a transmission
is successful (meaning only one transmitter attempts withing
the mini-slot), the corresponding transmitter receives an ACK
by the end of the mini-slot and stops transmitting in the
subsequent mini-slots (by the end of the time slot).

As the number of transmitters increases, the level of con-
tention increases, leading to a higher probability of collisions.
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Fig. 2: Average energy consumed for successful update with
respect to the number N of simultaneous transmissions, when
each transmitter attempts with probability q.

When a collision occurs, no transmission is successfully
completed in that mini-slot. Consequently, with an increase
in the number of transmitters, the average number of attempts
a transmitter makes in a time slot for a successful transmission
also increases. Suppose that each transmission consumes a
unit of energy (or power), and that each time slot consists
of sufficiently many mini-slots to enable all transmitters to
succeed in transmitting within the time slot. In this scenario,
the average energy cost for a successful transmission, that can
be considered as the communication cost per an update of
a source, will increase with the number N of simultaneous
transmissions.

As an example, we run simulations involving 50 transmitters
utilizing the Slotted ALOHA protocol and measure the average
update cost of N sources, assuming each transmission con-
sumes a unit of energy. The results, obtained for different com-
binations of N and q, are shown in Fig. 2, where q = g(N)
denotes the utilization of an empirically determined optimal
q based on the given N . The results reveal that employing
a fixed value of q leads to an exponential increase of the
average cost as N increases. The minimum cost is achievable
by appropriately adjusting the value of q in accordance with
N .

Based on the observation, we model the communication cost
under decentralized update paradigms as a function of Nt, the
number of simultaneous transmissions at time slot t, in the
following form:

fπdec
c,i (Nt) = csN

ϵs
t , (8)

where πdec denotes an update policy within decentralized up-
date paradigms, and constant cs > 0 and exponent coefficient
ϵs ≥ 1 are involved.3 We remark that the Slotted ALOHA is
used as an example to motivate the super-linearity of a com-
munication cost with respect to the number of sources within
the context of decentralized update paradigms. In this paper,
we consider a network where simultaneous transmissions at a
given time are allowed with high communication cost. We also
remark that update policies for distributed remote estimation

3In this paper, we consider a single channel. Extension to a practical multi-
channel environment where each channel has a different coefficient ϵs remains
as an interesting open problem.
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Fig. 3: Evolution of error |εt| using the threshold-based policy
as defined in (9).

over a random access channel have been studied in [30]. We
denote the expected cost function as gπ(n, cs, ϵs) for a TD
policy π to highlight its dependence on n, cs and ϵs.

B. Decentralized Update Policy

In a single source system with constant per-transmission
communication cost, prior research [15] has shown that an
optimal update policy is of threshold type in the forms of

u∗
t =

{
0, if |εt + wt| < γ,

1, if |εt + wt| ≥ γ,
(9)

where γ > 0 denotes a threshold value. Subsequently, the error
evolution εt can be depicted as a Markov chain, as illustrated
in Fig. 3. For notational convenience, we omit subscript i
and denote this policy as th-γ. Further, given constant per-
transmission communication cost c̄, it was also shown in [15]
that the expected average cost h(c̄) over infinite time horizon
can be obtained as

h(c̄) := gth-γ(1, c̄, ϵs) =
2

γ2

(
c̄p+

γ−1∑
i=1

fp(i)(γ − i)

)
. (10)

Additionally, when considering the MSE fp(ε) = ε2, the
optimal threshold that minimizes (10) is γ∗ = ⌊ 4

√
12pc̄⌋ or

⌈ 4
√
12pc̄⌉.

Inspired by these results, we consider a TD policy where
each transmitter updates the receiver using a threshold γi.
Consequently, the number Nt of simultaneous transmissions
at time slot t becomes a random variable, resulting in the
per-transmission communication cost also becoming a random
variable as per (8). To characterize the performance of the
TD policy, we study the asymptotic behavior of Nt, which
will lead to our understanding of the expected average cost
gTD(n, c, ϵs).

Note that due to each transmitter independently updating
the receiver, the error εi,t for transmitter i can be viewed as
an independent renewal process, as it resets to 0 with every
update. An inter-renewal distribution is called arithmetic if the
intervals between renewals are integer multiples of some real
number. The span of an arithmetic distribution is defined as the
largest number ρ for which this property holds. Subsequently,
the following theorem provides an asymptotic behavior of
renewal probabilities.

Theorem 3.1: [Theorem 4.6.2 in [31]] If an inter-renewal
distribution is arithmetic with span ρ, then

lim
t→∞

P(Renewal at tρ) =
ρ

E[T ]
, (11)

where T denotes the inter-renewal interval.

The renewal process εi,t exhibits an arithmetic nature with
a span of ρ = 1, as the inter-renewal intervals can be
γ, γ + 1, γ + 2, . . . . Moreover, the expectation of the inter-
renewal interval under the threshold-type update policy with
a threshold γ is known as E[T ] = γ2

2p [15]. Hence, we can
obtain that limt→∞ P(Renewal at t) = limt→∞ P(ui,t = 1) =
1

E[T ] =
2p
γ2 .

Combined with the independence of the renewal processes,
Theorem 3.1 can be used to characterize the asymptotic
behavior of Nt.

Lemma 3.1: When n independent (symmetric) transmitters
update the receiver with the same threshold γ, the number
Nt of simultaneous transmissions at time slot t converges in
distribution to a Binomial distribution with parameters n and
2p
γ2 , i.e.,

limt→∞ Nt ∼ Binom
(
n, 2p

γ2

)
, (12)

where Binom(·, ·) denotes the Binomial distribution.
Lemma 3.1 can be shown using the independence of the
transmitters’ decision ui,t and Theorem 3.1. We refer to
Appendix A for the proof.

Let g̃TD(γ, i) denote the expected average cost of a TD
policy for source i using threshold γ, and let N follow the
distribution of limt→∞ Nt. Replacing c̄ in (10) with the per-
transmission communication cost cskϵs , and from Lemma 3.1,
we can obtain:

g̃TD(γ, i) =
∑n

k=1 P (N = k | ui,t = 1)h(csk
ϵs)

=
∑n−1

k=0 P
(
k;n− 1, 2p

γ2

)
h(cs(k + 1)ϵs),

= E[h(cs(K + 1)ϵs)],

(13)

where P(k;n, q) is the probability that N = k when
N ∼ Binom(n, q), and K is a random variable that follows
Binom

(
n− 1, 2p

γ2

)
. Due to the symmetry, this holds for all

i, and we can write g̃TD(γ, i) = g̃TD(γ) for all i.
For the TD policies with local information (i.e., p and cs)

(TD-L), each transmitter i optimizes its threshold γ agnostic
about other transmitters, which results in γ∗

L = ⌊ 4
√
12pcs⌋ or

⌈ 4
√
12pcs⌉ that leads to the expected average cost

gTD-L(n, cs, ϵs) = g̃TD(γ
∗
L). (14)

On the other hand, for the TD policies with global information
(i.e., p, cs, n and ϵs) (TD-G), the transmitters can minimize
(13) by further optimizing their threshold γ with respect to n
and ϵs, which results in the expected average cost

gTD-G(n, cs, ϵs) = minγ≥0 g̃TD(γ). (15)

We note that obtaining a closed-form expression for g̃TD(γ)
in (13) is challenging due to the necessity of evaluating the
expectation of a non-linear function involving the random
variable K, i.e., E[(K + 1)ϵs ]. This complexity makes the
analytical determination of an optimal γ in (15) intractable.
Consequently, considering the closed-form threshold γ∗

L ob-
tained from local information might be a viable approach to
reduce computational complexity. Alternatively, one could ex-
plore the use of a learning policy, as elaborated in Section V-B.
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IV. CENTRALIZED UPDATE PARADIGM

Differing from decentralized update paradigms, in the con-
text of centralized update paradigms, the receiver undertakes
the task of managing transmissions among transmitters. Conse-
quently, the communication cost related to transmission coor-
dination is relatively lower compared to that within decentral-
ized update paradigms. Further, unlike the TD policy, wherein
each transmitter can monitor errors, the RD policy lacks direct
access to error information. As a result, the receiver’s decision-
making process relies on estimating the current error for each
source. This reliance on error estimation, influenced by the
error’s renewal property, gives rise to periodic updates over
time.

A. Cost of Communication

In order to motivate and understand the property of the com-
munication cost structure under centralized update paradigms,
we can consider a scenario where the centralized receiver
is equipped with advanced multi-user detection techniques,
such as successive interference cancellation or interference
alignment [32]. These techniques can effectively mitigate the
interference caused by simultaneous transmissions, allowing
the receiver to reliably decode and recover the information
from multiple transmitters in the presence of interference. In
this well-designed communication framework, the additional
cost incurred by each transmitter during simultaneous updates
may not scale linearly with the number of transmitters. Instead,
due to the receiver’s ability to efficiently separate and decode
received signals, the cost escalation could occur at a slower
rate. This suggests the potential for achieving sub-linear over-
head concerning the number of simultaneous transmissions
under certain conditions.

Based on this motivation, we model the communication cost
under centralized update paradigms as a function of Nt in the
following form:

fπcent
c,i (Nt) = crN

ϵr
t , (16)

where πcent denotes an update policy within centralized update
paradigms, and cr > 0 and ϵr > 0 are involved. Note that
fπcent
c,i (Nt) can be sub-linear, linear or super-linear. This is

in contrast to the communication cost within decentralized
update paradigms, which we discussed as being super-linear
in Section III-A.

B. Expected Error

Before delving into an RD policy, we begin our exploration
by studying how the expected error between a source and the
estimator evolves over time. For notational convenience, we
omit the subscript i in our notations.

Let s denote the time elapsed since a transmitter’s update
to the receiver. In this context, there exist 2s + 1 potential
error states for the source (i.e., x− x̂ ∈ [−s, s]). Denote es =
[es(−s), ..., es(0), ..., es(s)] as the expected error vector when
the receiver is not updated by the transmitter for s consecutive
time slots, where es(k) corresponds to the probability that the
error between the receiver and the source is k (i.e., x−x̂ = k).

Employing (1), the evolution of expected error follows Bayes’
rule, given by:

es(k) = es−1(k)(1−2p)+(es−1(k−1)+es−1(k+1))p, (17)

where k ∈ −s, ..., s, while es−1(−s − 1) = es−1(−s) =
es−1(s) = es−1(s+ 1) = 0.

Let ξ(s) denote the expected error cost when the receiver
has not been updated from the source for s consecutive time
slots, i.e.,

ξ(s) =
∑s

k=−s es(k)fp(|k|). (18)

In the special case of the mean squared error penalty function
fp(ε) = ε2, the expected error cost ξ(s) can be obtained as
the following lemma.

Lemma 4.1: If fp(ε) = ε2, the expected error cost after s
consecutive time slots since the last update is

ξ(s) = 2ps, for s ≥ 1. (19)

We refer to Appendix B for the proof.

C. Single-transmitter Scenario

We begin our investigation by deriving an optimal solution
for a single-transmitter problem with the MSE penalty func-
tion. In this straightforward scenario, we determine an optimal
RD policy. By subsequently comparing it to a TD policy, we
can gain insight into the advantages of employing a TD policy
over an RD policy when the simultaneous transmission results
in relatively small communication costs.

We initiate our analysis by formulating a discrete-time
Markov Decision Process (MDP). In this setup, the state at
time slot t is denoted by s. Within each state, the receiver has
two possible actions: either to update (u = 1) or to refrain
from updating (u = 0). If u = 0, the state progresses to
s + 1. On the other hand, if u = 1, the state transitions to
1. Assuming a per-transmission communication cost of c̄, the
expected cost associated with state s and action u can be
expressed as uc̄ + (1 − u)ξ(s). Consequently, we have the
following Bellman equation:

ϕ(s) = min{ξ(s) + ϕ(s+ 1)− λ, c̄+ ϕ(1)− λ}, (20)

where ξ(s) = 2ps, ϕ(·) denotes the cost-to-go function, and λ
denotes the minimum expected average cost over infinite time
horizon [33].

We show in Lemma 4.2 that an optimal policy that solves
the Bellman equation (20) is also of threshold type.

Lemma 4.2: There exists a threshold policy that optimally
solves the Bellman equation (20). Specifically, given constant
update cost c̄, the policy has a real-valued time threshold τ∗(c̄)
such that

u∗
s =

{
0, if s < τ∗(c̄),

1, if s ≥ τ∗(c̄).
(21)

Lemma 4.2 can be shown as in [15] using the fact that ξ(s)
is increasing in s when fp(ε) = ε2. We refer to Appendix C
for the proof. Note that unlike the optimal TD policy (9), the
optimal RD policy has a time threshold with periodic updates.
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Given time threshold τ , the expected average cost gRD(τ)
under the RD update policy is given by

gRD(τ) =
1
τ

(
c̄+

∑τ−1
s=1 ξ(s)

)
. (22)

For fp(ε) = ε2, we have ξ(s) = 2ps and thus gRD(τ) = c̄/τ+
p(τ−1), which is convex in τ > 0. Thus, by solving dgRD

dτ = 0,
we can obtain a closed-form expression of an optimal time
threshold that solves (20): τ∗(c̄) = ⌊

√
c̄/p⌋ or ⌈

√
c̄/p⌉.

Note that, under the TD policy with a single transmitter,
we have the expected update interval E[T ] =

√
3c̄/p. That

is, the RD policy updates the receiver more frequently than
the TD policy on average. This is because the controller does
not use the error εt and thus it compensates for the lack of
information by updating more frequently.

D. Multi-transmitter Scenario

Now, consider a scenario where n (homogeneous) trans-
mitters update the receiver. Unlike the TD policy where each
transmitter independently updates the receiver, resulting in a
random number of simultaneous transmissions at any given
time, an RD policy enables control over the number of simul-
taneous transmissions to ensure that the communication cost
remains within reasonable bounds. Given that we are dealing
with homogeneous transmitters, with pi = p for all i, the
update periods (referred to as time thresholds) are consistent
across all transmitters.

Note that for a fixed time period τ , the expected estima-
tion error remains constant pτ(τ − 1). Thus, to minimize
the expected average cost, it is necessary to minimize the
communication cost. Consider a scenario where m transmitters
are allocated among τ time slots, and the objective is to
allocate transmitter i to one of these time slots. Let k denote
the number of transmitters already assigned to a particular
time slot, resulting in a cumulative communication cost of
kϵr+1 for that slot. If transmitter i be allocated within this
slot, the total communication cost increases to (k + 1)ϵr+1.
Given that ϵr > 0, the total communication cost for each
time slot increases super-linearly with respect to the number
of simultaneous transmissions. Thus, the optimal strategy4 for
placing transmitter i is to select the time slot with the smallest
number of existing transmitters. Consequently, the optimal
strategy for deploying all transmitters across the τ time slots
is to uniformly distribute them among the time slots.

Let τn,ϵr denote the update period. The receiver can opti-
mize τn,ϵr by taking into account n and ϵr, and control the
transmissions by assigning a time slot to each transmitter.

• When n ≤ τn,ϵr , an optimal policy involves each
transmitter i updating during time slot t such that (t
mod τn,ϵr ) = i. This ensures there is at most one
transmission during each time slot. In this case, there
are τ0 = τn,ϵr − n idle (no-update) time slots within the
update period τn,ϵr .

• When n > τn,ϵr , an optimal policy lets each transmitter i
update at time slot t such that (t mod τn,ϵr ) = (i

4This policy is optimal in the sense that there is no other policy that can
make communication cost smaller.

mod τn,ϵr ). Then, at each time slot, there are ⌈ n
τn,ϵr
⌉

transmissions or ⌈ n
τn,ϵr
⌉ − 1 transmissions. Let kn,ϵr =

⌈ n
τn,ϵr
⌉, and let τ0 denote the number of time slots where

⌈ n
τn,ϵr
⌉ − 1 transmitters update the receiver within an

update period τn,ϵr . The structure of an optimal RD
policy given n and τn,ϵr is shown by Fig.4. Each slot on
the x-axis represents one time slot, and each bin on the y-
axis represents one transmission opportunity. The number
in each bin is the index of transmitters of {1, 2, . . . , n}.
Note that each of the first (τn,ϵr − τ0) time slots on a
period has kn,ϵr simultaneous transmissions, and yields
the total cost of cr(kn,ϵr )

ϵr . Each of the rest τ0 time slots
has kn,ϵr −1 simultaneous transmissions, and the cost of
cr(kn,ϵr − 1)ϵr .

Let g̃RD(τn,ϵr ) denote the expected average cost given τn,ϵr ,
which is given by

g̃RD(τ) =
k(τ − τ0)

nτ
(ckϵr + p(τ − 1)τ)

+
(k − 1)τ0

nτ+
(c(k − 1)ϵr + p(τ − 1)τ)

=
c

nτ
((τ − τ0)k

1+ϵr + τ0(k − 1)1+ϵr ) + p(τ − 1),

(23)

where we omit subscripts n and ϵr for notational convenience
(i.e., k = kn,ϵr . Note that τ = τn,ϵr ) and k = ⌈n/τ⌉ and
τ0 = kτ −n. The expected average cost, gRD(n, cr, ϵr), under
the RD policy is given by

gRD(n, cr, ϵr) = minτ≥1 g̃RD(τ). (24)

Similar to the TD-G policy discussed in Section III-B, it
is worth noting the complexity in optimizing g̃RD(τ) con-
cerning τ in (24), primarily due to its non-convex nature.
Consequently, rather than directly tackling these intricate opti-
mization challenges, we provide a comprehensive comparison
of the asymptotic behaviors exhibited by our proposed policies
in Section V-A.

V. PERFORMANCE COMPARISON OF DECENTRALIZED AND
CENTRALIZED UPDATE PARADIGMS

In this section, we conduct a comparative analysis of the
two TD policies and the RD policy. We highlight that it is
intractable to solve the optimization problems 15 and 24 due
to the complexity of the objective functions. These functions
are not only intricate but can also lack convexity, primarily
due to their dependence on exponent coefficients ϵs and
ϵr. Instead of solving these intricate optimization problems
directly, we offer a comparison of the asymptotic behaviors
exhibited by our proposed policies. This approach allows us to
understand the fundamental insights into the trade-off between
transmitter-driven and receiver-driven policies. Furthermore,
we will extend our design to a scenario where the system
parameters are unknown, enhancing the practical relevance of
our study. .

A. TD-L Policy vs. TD-G Policy vs. RD Policy

We first consider the single-transmitter case of n = 1, in
which TD-L is equivalent to TD-G. Suppose that cs = cr = c.
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Fig. 4: Time slot and channel allocation of the RD policy.

If c < 2p, then the optimal policy is to update at every time
slot and we have gTD(1, c, ϵs) = gRD(1, c, ϵr) = c. Suppose
that c ≥ 2p. Then, from (22) with τ =

√
c/p and (10) with

γ = 4
√
12pc, we have

gRD(1, c, ϵr) = 2
√
pc−p ≥ 2√

3

√
pc− 1

6 = gTD(1, c, ϵs), (25)

where gTD = gTD-L = gTD-G and the inequality comes from
that c ≥ 2p.

Not only this confirms the expected superiority of TD
updates to RD updates for the single-transmitter case, but
also reveals that the performance improvement is a function
of system parameters p and c. Note that when ϵs = ϵr = 0,
each transmitter pays the same per-transmitter cost c regardless
of the number of simultaneous transmissions. Hence, we have
gRD(n, c, 0) = gRD(1, c, ϵr) ≥ gTD(1, c, ϵs) = gTD(n, c, 0), i.e.,
TD policies always outperforms RD policy.

We will begin by examining the scenario with a single
transmitter, denoted as n = 1, in which TD-L is equivalent to
TD-G. Let’s assume that cs = cr = c. If the communication
cost c is less than 2p, then the optimal policy is to update in
every time slot, resulting in gTD(1, c, ϵs) = gRD(1, c, ϵr) = c.
On the other hand, if c ≥ 2p, we can utilize (22) with
τ =

√
c/p and (10) with γ = 4

√
12pc to deduce that:

gRD(1, c, ϵr) = 2
√
pc−p ≥ 2√

3

√
pc− 1

6 = gTD(1, c, ϵs), (26)

where we have taken into account the inequality c ≥ 2p.
This comparison not only confirms the expected advantage

of TD updates over RD updates for the single-transmitter case
but also reveals that the degree of performance enhancement
depends on the system parameters p and c. Importantly, when
both ϵs and ϵr are set to 0, indicating that each transmitter
incurs the same per-transmitter cost c regardless of the number
of simultaneous transmissions, we find that gRD(n, c, 0) =
gRD(1, c, ϵr) ≥ gTD(1, c, ϵs) = gTD(n, c, 0). This implies that
TD policies consistently outperform RD policies.

Now, we consider when ϵs ≥ 1, ϵr > 0 and n ≫ 1.
Theorem 5.1 shows the asymptotic behavior of gTD-L, gTD-G
and gRD, under the assumption that c ≥ 2p.

Theorem 5.1: Under the TD-L and TD-G policies, we have
the asymptotic lower bounds such that

gTD-L(n, cs, ϵs) = Ω(nϵs), (27)

and
gTD-G(n, cs, ϵs) = Ω

(
n

ϵs
ϵs+2

)
, (28)

respectively, for ϵs > 1. Under the RD policy, we have an
asymptotic upper bound such that

gRD(n, cr, ϵr) = O
(
n

ϵr
ϵr+2

)
(29)

for ϵr > 0.
We refer to Appendix E for the detailed proof.

Given that gRD(1, c, ϵr) ≥ gTD-L(1, c, ϵs) = gTD-G(1, c, ϵs)
holds for c = cs = cr and any ϵs and ϵr, the implications
of Theorem 5.1 become apparent. The theorem indicates the
existence of a crossing point where the RD policy begins to
surpass the TD-L policy for ϵs ≥ ϵr, and the RD policy outper-
forms the TD-G policy for ϵs > ϵr. This trend becomes more
evident when considering our discussions in Sections III-A
and IV-A, where we established that communication costs
under decentralized update paradigms tend to be super-linear
(ϵs ≥ 1), while those under centralized update paradigms can
exhibit sub-linear behavior (ϵr ∈ (0, 1)).

In essence, changing the strategy depending on parameters
n, ϵs and ϵr for some given p and c improves the system
performance. More specifically, when the value of information
holds greater significance compared to communication costs
(i.e., for relatively small values of n and ϵs− ϵr), TD policies
are the preferred choice. Conversely, when communication
costs outweigh the value of information, an RD policy tends
to be more effective.

Remark 5.1: our paper primarily focuses on understanding
the trade-off between estimation error and communication cost
through an analysis of the joint optimization problem. On the
other hand, depending on practical scenarios, the error cost
minimization under the communication error constraints, or
the communication cost minimization under the error cost
constraints can be more relevant. From our results, it can
be infer that when the limitation on communication cost is
relatively tight, leading to a small number of simultaneous
transmissions, the RD policy is expected to perform better
than the TD policy. Conversely, if the communication cost
constraint becomes less strict, the TD policy might be more
favorable in terms of performance compared to the RD policy.
Further, when considering communication cost minimization
under the error cost constraints, we can similarly expect
potential outcomes and behaviors.

B. Learning-based update policy

In this subsection, we consider scenarios where source’s
dynamic parameter p is unknown. We assume that the upper
bounds of thresholds γ and τ are given for TD and RD
policies, respectively. In the following, we develop learning-
based TD and RD policies employing the Multi-Armed Bandit
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Fig. 5: Example of varying thresholds: Transmitter 1 marked with the circle has the same update intervals with the given
thresholds.

(MAB) technique by considering each possible threshold as an
arm5.

Learning-based TD policy6: Let si,j denote the time when
transmitter i performs its jth update, with si,0 = 0 for all
transmitters. Let ∆i,j := si,j+1 − si,j denote the duration
between the (j+1)th and jth updates for transmitter i. In the
learning-based algorithm, an update interval corresponds to
a round for learning, where we apply the Upper Confidence
Bound (UCB) technique [29]. At the beginning of the jth

interval, transmitter i chooses threshold γi,j . When the error
exceeds this threshold, as determined by (9), transmitter i
sends its update packet to the receiver, incurring a commu-
nication cost of cs

(∑n
i=1 ui,sj+1

)ϵs . Consequently, at the end
of the jth interval, the average cost r̂i,j of transmitter i during
interval j can be written as

r̂i,j =
1

∆i,j

(∑si,j+1

t=si,j+1 ε
2
i,t + cs

(∑n
i=1 ui,sj+1

)ϵs)
. (30)

Transmitter i uses this average cost as feedback for the choice
of threshold γi,j . For each threshold γ ∈ [0, γ], transmitter i
stores the empirical average cost and the number of selections
up to now as r̂i(γ) and ηi(γ), respectively.

We run the following procedure independently for each
transmitter i. For the first γ+1 update intervals, the transmitter
selects γ ∈ [0, γ] exactly once. For each interval j > γ̂ +1, it
decides an action according to the following procedure.

• At the beginning of the jth update interval:

1) For each γ, Ii(γ)← r̂i(γ)
maxγ′ r̂i(γ′) −

√
2 log(j)
ηi(γ)

.
2) γi,j ← argminγ Ii(γ).

• When an update occurs and the interval ends:
1) ηi(γi,j)← ηi(γi,j) + 1.
2) r̂i(γi,j)← r̂i(γi,j)

(
1− 1

ηi(γi,j)

)
+

r̂i,j
ηi(γi,j)

.

Note that, for each possible threshold γ, the empirical
average cost r̂i(γ) can be greater than 1. Thus, when the UCB
index I(γ) is calculated, we normalize the empirical costs with
the maximum value among them so that the values lie between
0 and 1.

Learning-based RD policy:
Now, we develop the learning-based RD policy by employ-

ing the UCB technique. The receiver learns an optimal period
τ∗ among the possible periods τ ∈ [1, τ ]. Let τj denote the
period of the jth interval. At the beginning of the jth interval,

5Since time and state space are discrete, we can employ the finite-armed
Multi-Armed Bandits.

6Each transmitter follows the proposed procedure independently, thus we
omit subscripts indicating the indices of transmitters.

the receiver collectively decides the update schedule for trans-
mitter i within that interval as shown in Fig. 4. However, a
challenge arises. Due to the changing threshold values between
consecutive intervals, from the perspective of an individual
source i, the update interval may appear somewhat arbitrary.
For example, in Fig. 5, the update interval of source 4 is
(t0+12)−(t0+4) = 8 and (t0+16)−(t0+12) = 5 when τj
changes from 10 to 2 and 4. Thus, for the purpose of learning
an optimal threshold, the receiver traces the empirical average
cost of transmitter 1 only, since transmitter 1 has consistent
update interval with τj .

As in the learning-based TD policy, the average cost during
interval j is written as (30) replacing ϵs with ϵr. In the RD
policy, the update interval ∆j equals τj . Let r̂(τ) and η(τ)
denote the empirical average cost (of transmitter 1) for τ and
the number of selections for τ , respectively. The learning-
based RD policy is operated as in the learning-based TD policy
by replacing γ with τ .

We verify the performance of learning-based TD and RD
policies through simulations in Section VII.

VI. EXTENSIONS TO ASYMMETRIC SOURCE DYNAMICS

In this section, we consider an information source of which
state has an asymmetric noise. More specifically, the state xt

of the source evolves as

xt+1 = xt + wt, (31)

where

wt =


1, with probability p,

0, with probability 1− p− q,

−1, with probability q,

(32)

where p, q ∈ [0, 1] such that p+ q ≤ 1 and α = p− q. Then,
we have that E[xt+1−xt | xt] = α, i.e., the state xt is drifted
by α. We assume that α = m

κ , where κ ∈ N, m ∈ Z and
the greatest common denominator of m and κ is 1, and that
α is known to the receiver so that the receiver can update the
estimate x̂(t) as

x̂t = x̂t−1 + α, (33)

when ut = 0, i.e., no update occurs at time t. Then, the error
εt = xt − x̂t evolves as

εt+1 = εt + zt, (34)

where

zt =


κ−m
κ , with probability p,

−m
κ , with probability 1− p− q,

−κ−m
κ , with probability q,

(35)
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when u0 = 0.

A. Decentralized Update Paradigm

we first consider a transmitter-driven update policy. Without
loss of generality, we assume that α = m

κ > 0. Let γmin =
− lmin

κ and γmax = lmax
κ , where lmin, lmax ∈ N, be thresholds so

that, if εt + zt ≥ γmax (or εt + zt ≤ γmin), then the source
sends an update to the receiver with value γmax (or γmin) and
the error evolves toward 0 by the amount of γmax (or γmin).
Note that this update policy requires one-bit of information
for each update, and that the state space of the error εt is
{l/κ : l ∈ {−lmin,−lmin + 1, ..., 0, ..., lmax − 1, lmax}} given
α = m

κ .
In a scenario of symmetric source dynamics, we remark

that the error returns to 0 after every transmission and hitting
positive and negative thresholds are equally probable. On the
other hand, under the proposed TD policy for asymmetric
source dynamics, the error may not return to 0 after a
transmission and hitting positive and negative thresholds can
be different depending on the returning value. In Section VI-C,
we show that hitting positive and negative thresholds under
the TD policy becomes equally probable as a threshold γ
increases. Next, we describe the transition probability under
the proposed TD policy.

Let R = [rjk]j,k=γmin+
1
κ ,...,γmax− 1

κ
,where rjk = P(εt+1 =

k | εt = j) be the transition probability from states j to k.
Then, by the one-bit transmitter-driven update policy, we have
that

rjk =



p, if (j, k) =
(
l
κ ,

l
κ + κ−m

κ

)
,

l = −lmin + 1, ..., lmax − κ+m− 1,

or (j, k) =
(
γmax − κ−m

κ + l
κ ,

l
κ

)
,

l = 0, ..., κ−m− 1,

1− p− q, if (j, k) =
(
l
κ ,

l
κ −

m
k

)
,

l = lmin +m+ 1, ..., lmax − 1,

or (j, k) =
(
γmin +

m
κ −

l
κ ,−

l
κ

)
,

l = 0, ...,m− 1,

q, if (j, k) =
(
l
κ ,

l
κ −

κ+m
κ

)
,

l = lmin + κ+m+ 1, ..., lmax − 1,

or (j, k) =
(
γmin +

κ+m
κ − l

κ ,−
l
κ

)
,

l = 0, ..., κ+m− 1.
(36)

Since the error evolution εt is a finite state Markov chain,
there exists a unique steady state distribution π, which can be
obtained by solving

π = πR. (37)

Further, from the steady state distribution π of the error
evolution εt, we can obtain the long-term mean squared error
Eγmin,γmax when thresholds are γmin and γmax as

Eγmin,γmax := lim
s→∞

1

s

s∑
t=1

E[ε2t ] =
lmax−1∑

l=−lmin+1

πl/κ

(
l

κ

)2

. (38)

Let Pu(l) = P(ut = 1 | εt = l) be the probability that an
update occurs at time t given that the error at time t is l when
thresholds are γmin and γmax, which can be written as

Pu
γmin,γmax

(l)

= P(εt + zt ≥ γmax or εt + zt ≤ γmin|εt = l)

= P(zt ≥ γmax − l or zt ≤ γmin − l), (39)

which can be obtained by (35). Then, we have

Pu
γmin,γmax

:= lim
t→∞

P(ut = 1) =

lmax−1∑
l=−lmin+1

πl/κPu(l/κ). (40)

Hence, from Lemma 3.1, (38) and (40), the expected
average cost g̃TD(γmin, γmax) of the transmitter-driven policy
for a homogeneous n-source scenario is given by

g̃TD(γmin, γmax) = E[h̃(c(K + 1)ϵs)], (41)

where the expectation is taken over a random variable K ∼
Binom (n− 1, Pu), and

h̃(c̄) = c̄Pu
γmin,γmax

+ Eγmin,γmax . (42)

B. Centralized Update Paradigm

We now consider a receiver-driven update policy. Since
the receiver adjusts its estimate with the expected drift α =
E[xt+1 − xt | xt] = p − q, the expected error ξ(τ) after τ
consecutive time slots since the last update is give by

ξ(τ) = (p+ q − (p− q)2)τ, (43)

which can be shown as Lemma 4.1. For completeness, we
refer Appendix D. Then, we can use the results of Lemma 4.2
so that an optimal RD policy for a single source scenario has a
time-based threshold. Further, as in (23), we have the expected
average cost g̃RD(τ) of the receiver-driven update policy for a
homogeneous n-source scenario with threshold τ as

g̃RD(τ) =
c

nτ
((τ − τ0)k

1+ϵr + τ0(k − 1)1+ϵr )

+
p+ q − (p− q)2

2
(τ − 1),

(44)

where k = ⌈n/τ⌉ and τ0 = kτ − n.

C. Learning-based update policy

Now, we consider learning-based TD and RD update poli-
cies when system parameters p, q, c and ϵs (or ϵr) are
unknown, and we assume that α = p − q = m

κ , κ ∈ N,
m ∈ Z, is known to both sources and the receiver.

For a learning-based RD policy, we can employ the UCB
technique to find an optimal (time-based) threshold τ as in
Section V-B. On the other hand, a TD policy for asym-
metric dynamics can have asymmetric thresholds γmin < 0
and γmax > 0, and finding two optimal thresholds requires
more time than finding one symmetric optimal threshold
for symmetric dynamics. Hence, instead learning asymmetric
thresholds γmin and γmax, we let sources learn one symmetric
optimal threshold γ = −γmin = γmax so that we can use the
UCB technique as in Section V-B.
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Since zt is an asymmetric random variable with mean 0, we
may not have P(εt > 0 | |εt| ≥ γ) = P(εt < 0 | |εt| ≥ γ).
However, we show that, for a large threshold γ, the error εt
is equally likely to be positive or negative when it exceeds
threshold γ in the following theorem.

Theorem 6.1: For the error evolution εt defined in (34), we
have

lim
γ→∞

P(εt > 0 | |εt| ≥ γ)

= lim
γ→∞

P(εt < 0 | |εt| ≥ γ).
(45)

Note that an optimal threshold for TD-G policy increases as
the number n of sources increases as shown in the proof of
Theorem 5.1 (Appendix E). That is, the error εt is equally
likely to be positive or negative when it exceeds threshold γ for
a sufficiently large n. The theorem can be shown using analysis
of Martingales [34]. The detailed proof is in Appendix F.

VII. SIMULATION RESULTS

In this section, we compare the performance of TD-L,
TD-G and RD policies through simulations. Throughout the
simulations, we use p = 0.3 and c = 50 for sources with
symmetric dynamics.

It is obvious that TD-G policy outperforms TD-L policy for
all ϵs ≥ 0 since TD-G policy uses more information than TD-L
policy, and thus we do not compare between TD-L and TD-G
policies. For numerical simulations, we use thresholds γ∗

L =
⌊ 4
√
12pc⌋ or ⌈ 4

√
12pc⌉ for TD-L policy, γ∗

G that minimizes (13)
for TD-G policy, and τ∗ that minimizes (24) for RD policy7.
Based on the given threshold, each transmitter either updates
the receiver (ui,t = 1) or not (ui,t = 0) at every time slot t.
Then, the average cost C(t) at time slot t is

C(t) :=
1

tn

t∑
s=1

n∑
i=1

(
ε2i,t + ui,t · c

(
n∑

i=1

ui,t

)ϵ)
, (46)

where ϵ = ϵs for TD-L and TD-G policies and ϵ = ϵr for RD
policy.

We first compare TD-L and RD policies. We run simulations
for T = 104 time slots, and the results are averaged over
50 repetitions. Fig. 6(a) shows the average cost C(T ) at
time T when ϵs = ϵr = 2. We observe that for a relatively
small n, TD-L policy outperforms RD policy. However, as
n increases, the gap becomes close to zero and eventually
RD policy outperforms TD-L policy. We call the point (the
number of transmitters) where RD policy starts to outperform
TD-L policy as a crossing point. In Fig. 6(a), the crossing
point is at 14. Fig. 6(b) shows the crossing point with respect
to ϵs and ϵr. As expected, for relatively large n and ϵs, the
communication cost of distributed updates dominates the value
of (state) information, and the value of information dominates
the update cost for small n and ϵs.

We now compare TD-G and RD policies. Note that, ac-
cording to Theorem 5.1, the existence of a crossing point
between TD-G and RD policies can be guaranteed only for
ϵs > ϵr > 0 Fig. 7 shows the ratio of the average cost
of RD policy to that of TD-G policy when ϵs = ϵr = ϵ.

7Thresholds γ∗
G and τ∗ can be found using numerical search methods.
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Fig. 6: Performance comparison between TD-L and RD poli-
cies.
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Fig. 7: Performance comparison between TD-G and RD poli-
cies when ϵ = ϵs = ϵr.

The ratio greater than 1 implies TD-G policy outperforms
RD policy. As a specific example, when ϵ = 1, from (55)
and (62), we can analytically show that limn→∞

gRD
gTD-G

≥
limn→∞

(4/482/3+481/3/6)(p2cn)1/3−1/6
(p(2c/p)1/3+c(p/2c)2/3)n1/3 ≈ 2.08, which agrees

with the simulation result. This implies that when transmitters
have global information, i.e., n and ϵs, they can adjust their
threshold reflecting the distribution of Nt and this leads to
significant improvement of the performance of TD-L policy.

We evaluate the learning-based TD and RD policies, where
system parameters p, c, ϵs and ϵr are unknown to both
transmitters and the receiver, and n is known to the receiver
but not to the transmitters. Only the range of possible values
of each parameter is known, and thus each transmitter and
the receiver have the set of possible thresholds γ ∈ [0, γ] and
τ ∈ [1, τ ], respectively. We set p = 0.3, c = 50, ϵs = 2,
ϵr = 1 and n = 50, and assume that γ = 10 and τ = 30,
respectively. We run simulations for T = 3× 107 time slots.

Fig. 8(a) shows the performance of the learning-based
TD policy, which is compared to TD-L and TD-G policies
that operate with known system parameters. As shown in
Fig. 8(a), the average cost of the learning-based TD policy
rapidly approaches that of TD-G policy, which implies that the
learning-based TD policies find the global optimal threshold
γ∗
G. Fig. 8(b) shows the performance of the learning-based

RD policy, which is also compared to RD policy with known
parameters. It verifies that the learning-based RD policy finds
the optimal threshold τ∗ of RD policy. These findings confirm
that the findings of our work can be effectively translated into
the learning environment where system parameters as well as
value and cost functions are unknown.
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Fig. 8: Performance of the learning-based policies when p =
q = 0.4.
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Fig. 9: Performance comparison between TD-G and RD poli-
cies when ϵs = 3.5 and ϵr = 2.

We now consider sources with asymmetric dynamics with
p = 0.4 and q = 0.2 and use c = 50. ϵs = 3.5 and
ϵr = 2 throughout the simulations. Fig. 9 shows the average
cost C(T ) of TD-G (when ϵs = 2 and 3.5) and RD (when
ϵr = 2) policies with respect to the number n of sources at
time T = 107. As can be seen in Fig. 9, there is a crossing
point when ϵs = 3.5 and ϵr = 2. On the other hand, when
ϵs = ϵr = 2, the existence of a crossing point cannot be
guaranteed as discussed in Theorem 5.1. We now evaluate the
learning based TD and RD policies described in Section VI-C.
Fig. 10 shows the average cost of the learning-based update
policies when n = 20, ϵs = 3.5 (Fig. 10(a)) and ϵr = 2
(Fig. 10(b)). The optimal (offline) average costs denoted as
TD-G policy in Fig. 10(a) and RD policy in Fig. 10(b) are
found by numerical search to minimize the expected average
cost in (41) and (44), respectively. It shows that the learning-
based update policies find the optimal thresholds γ∗ (TD-G
policy) and τ∗ (RD policy).

VIII. CONCLUSION

We investigated decentralized (transmitter-driven) and cen-
tralized (receiver-driven) update paradigms, where a receiver
is updated from multiple sources of which states evolve
according to a simple random walk process. In particular, we
considered a scenario where each update is accompanied by
communication cost, and we modeled communication cost as
a superlinear function of the number of simultaneous trans-
missions at a given time since the transmitters communicate
over shared channels. When the cost associated with the
information mismatch (error) is the mean squared error, we
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Fig. 10: Performance of the learning-based policies with
asymmetric sources of p = 0.4 and q = 0.2.

obtained the expected average cost for the transmitter-driven
and receiver-driven policies, and compared them for different
number of transmitters. From the comparison, we provided
insights into the tradeoff between the value of fresh informa-
tion and the cost of distributed communication in the remote
tracking of large-scale distributed systems. When simultaneous
transmission incurs relatively small communication costs, e.g.,
small coefficient ϵ or small number n of sources, a decen-
tralized scheme performs better than the centralized scheme,
and vice versa. We also developed learning-based policies that
asymptotically achieve the minimum costs attained by the
optimal policies when the system parameters are unknown.
Finally, through numerical simulations, we verified the per-
formance of the proposed policies. Theoretical analysis of the
performance of learning-based update policies is an interesting
future work in consideration that each transmitter has different
update periods. Other interesting future works include studies
of heterogeneous sources, vector state estimation and multi-
channel systems.

APPENDIX A
PROOF OF LEMMA 3.1

By the independence of the transmitters’ decision ui,t and
Theorem 3.1, we have

lim
t→∞

P(Nt = k) = lim
t→∞

P

(
n∑

i=1

ui,t = k

)

= lim
t→∞

(
n

k

)
P(ui,t = 1)kP(ui,t = 0)n−k

=

(
n

k

)(
1

E[T ]

)k (
1− 1

E[T ]

)n−k

,

(47)

where E[T ] is the expectation of the inter-renewal interval
under the threshold-type update policy with a threshold γ,
which is 2p

γ2 [15].

APPENDIX B
PROOF OF LEMMA 4.1

With ε0 = 0, we can write ετ = ετ−1 +wτ−1 for τ ≥ 1 as

ετ =
τ−1∑
t=0

wt, (48)
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where E[wt] = 0 and E[w2
t ] = 2p. Thus, since wt’s are i.i.d.,

we have

ξ(τ) = E[ε2τ ] = E
[(∑τ−1

t=0 wt

)2]
= E

[∑τ−1
t=0 w2

t +
∑

t ̸=s wtws

]
=
∑τ−1

t=0 E[w2
t ] = τE[w2

1]

= 2pτ.

(49)

APPENDIX C
PROOF OF LEMMA 4.2

From (20), let A(s) = ξ(s) + A(s + 1) − λ and B(s) =
c+ ϕ(1)− λ. Then, an optimal action is to update if B(s) <
A(s) and not to update if B(s) ≥ A(s). Note that B(0) =
c + ϕ(1) − λ > ξ(0) + ϕ(1) − λ = A(0) since ξ(0) = 0
and c > 0. Thus, u = 0 is an optimal action for s = 0.
Note that B(s) = c+ ϕ(1)− λ is a constant, and A(s) is an
increasing-then-decreasing function or a decreasing function
since A(s+ 1)−A(s) = λ− 2ps.

We show that there exists τ such that A(s) ≤ B(s) for
s ≤ τ and A(τ + 1) > B(τ + 1) by contradiction. Suppose
that such τ does not exist, which implies that A(s) ≤ B(s)
for all s and thus u = 0 for all s. Then, the expected cost goes
infinity since ξ(s) = 2ps. If we take an update policy such
that u = 1 for all s, then the expected cost c, which leads to
a contradiction. Hence, there exist s such that A(s) > B(s)
and, for τ = min{s : A(s) > B(s)}, we have the claim since
A(s) is increasing-then-decreasing.

APPENDIX D
PROOF OF EQUATION (43)

With ε(0) = 0, we can write ε(τ) = ε(τ−1)+w(τ−1)−α
for τ ≥ 1 as

ε(τ) =
τ−1∑
t=0

wt − ατ, (50)

where E[wt] = p− q and E[w2
t ] = p+ q. Then, since wt’s are

i.i.d., we have ξ(τ) =

E[ε2(τ)] = E
[(∑τ−1

t=0 wt − ατ
)2]

= E
[(∑τ−1

t=0 wt

)2
− 2ατ

∑τ−1
t=0 wt + α2τ2

]
=

τ−1∑
t=0

E[w2
t ] +

∑
t ̸=s

E[wt]E[ws]− 2ατ
τ−1∑
t=0

E[wt] + α2τ2

= (p+ q)τ + (p− q)2(τ2 − τ)− 2(p− q)2τ2 + (p− q)2τ2

= (p+ q − (p− q)2)τ.
(51)

APPENDIX E
PROOF OF THEOREM 5.1

We first show the asymptotic lower bound for TD policies.
The expected average cost g̃TD(γ) of TD policy given thresh-
old γ is, from (13), given by

g̃TD(γ) =
2
γ2

(
pcE [(K + 1)ϵs ] + γ2(γ2−1)

12

)
. (52)

TD-L policy: Let f(x) = (x + 1)ϵs and µ = E[K] =
2p(n−1)

γ2 . By expanding the Taylor series of f(K) around µ
by the second-order term, we have

f(K) = f(µ) + f ′(µ)(K − µ) + f ′′(α)(K−µ)2

2 (53)

for some α ∈ [0, n − 1]. By taking the expectation on both
sides, we have

E[(K + 1)ϵs ] = (µ+ 1)ϵs + E[f ′′(α)(K−µ)2]
2 . (54)

If ϵs ≥ 1, then f(x) is convex and thus f ′′(x) ≥ 0 for all
x ∈ [0, n− 1]. Then, we have

E[(K + 1)ϵs ] ≥
(

2p(n−1)
γ2 + 1

)ϵs
, (55)

and thus E[(K + 1)ϵs ] = Ω(nϵs) with γ∗
L = ⌊ 4

√
12pc⌋ or

⌈ 4
√
12pc⌉.

Now, suppose that 0 < ϵs < 1. By expanding the Taylor
series of f(K) around µ by the third-order term, we have

f(K) = f(µ) + f ′(µ)(K − µ)

+ f ′′(µ)(K−µ)2

2 + f(3)(α)(K−µ)3

6

(56)

for some α ∈ [0, n − 1]. By taking the expectation on both
sides, we have E[(K + 1)ϵs ] =

(µ+ 1)ϵs + f ′′(µ)Var(K)
2 + E[f(3)(α)(K−µ)3]

6 . (57)

Note that f (3)(x) ≥ 0 for all x ∈ [0, n − 1] since f ′(x) =
ϵs(x+1)ϵs−1 is convex for ϵs ∈ (0, 1), and E[(K − µ)3] ≥ 0
since, for X ∼ B(m, q), E[(X−E[X])3] = mq(2q−1)(q−1)
and in our case q = 2p

γ2 < 0.5 since c ≥ 2p8 . Thus, we have

E[(K + 1)ϵs ] ≥
(

2p(n−1)
γ2 + 1

)ϵs
+ f ′′(µ)Var(K)

2 , (58)

where f ′′(x) = ϵs(ϵs − 1)(x + 1)ϵs−2, µ = 2p(n−1)
γ2 and

Var(K) = (n − 1)
(

2p
γ2

)(
1− 2p

γ2

)
, and thus E[(K + 1)ϵs ] =

Ω(nϵs).
TD-G policy: If ϵs ≥ 1, by (52) and (55), we have

g̃TD(γ) ≥ 2
γ2

(
pc
(

2p(n−1)
γ2 + 1

)ϵs
+ γ2(γ2−1)

12

)
≥ 2pc(2p(n−1))ϵs

γ2ϵs+2 + γ2−1
6 = gTD(γ).

(59)

Since gTD(γ) is convex in γ, by solving dgTD-G
dγ = 0, we

have γ∗ = 2ϵs+4
√
6pc(2ϵs + 2)(2p(n− 1))ϵs , with which

we have gTD-G(n, c, ϵs) = Ω(n
ϵs

ϵs+2 ) since gTD(n, c, ϵs) =
minγ>0 g̃TD(γ) ≥ minγ>0 gTD(γ).

If 0 < ϵs < 1, by (52) and (58), we have

g̃TD(γ) ≥ γ2−1
6 + 2pc(2p(n−1))ϵs

γ2ϵs+2

(
1− (n−1)

32(µ+1)2

)
≥ γ2−1

6 + 2pc(2p(n−1))ϵs

γ2ϵs+2 (1− o(n)) ,
(60)

where o(n) = γ4

128p2(n−1) . Suppose that, for some δ ∈ (0, 1),
there exists an Nδ such that o(n) ≤ δ for all n ≥ Nδ . Then,
for n ≥ Nδ , we have

g̃TD(γ) ≥ γ2−1
6 + 2pc(2p(n−1))ϵs

γ2ϵs+2 (1− δ) = gTD(γ). (61)

8Note that, for X ∼ N (µ, σ2), the equality holds in (58) since E[(X −
E[X])3] = 0. Since a Binomial distribution, B(m, q), can be approximated
by a Gaussian distribution, N (mq,mq(1 − q)), for a sufficiently large m,
the gap in inequality (58) vanishes as the number n of transmitters increases.
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Then, by minimizing gTD(γ), we have an optimal threshold
γ∗ = 2ϵs+4

√
(1− δ)6pc(2ϵs + 2)(2p(n− 1))ϵs , with which

we have o(n) = O(n
ϵs−2
ϵs+2 ). Since ϵs ∈ (0, 1), the re-

sult accords with the assumption on o(n). Hence, we have
gTD-G(n, c, ϵs) = Ω(n

ϵs
ϵs+2 ).

RD policy: Under the RD policy, the expected average cost
g̃RD(τ) given by τ can be bounded, from (23), as

g̃RD(τ) ≤ ck1+ϵr

n + p(τ − 1) = gRD(τ), (62)

where k = ⌈n/τ⌉. Since gRD(n, c, ϵr) = minτ≥1 g̃RD(τ) ≤
minτ≥1 gRD(τ) ≤ gRD(τ

′) for any τ ′ ≥ 1, by letting τ ′ =
ϵr+2
√
(1 + ϵr)cnϵr/p, we have gRD(n, c, ϵr) = O(n

ϵr
ϵr

+2).

APPENDIX F
PROOF OF THEOREM 6.1

We show that the error ε(t) is equally likely to be positive or
negative when exceeds threshold γ = l

κ , l, κ ∈ N, as the num-
ber n of sources increases using analysis of Martingales [34].

First, note that E[zt] = E[wt] − α = 0 in (34) and thus
E[εt+1 | εt] = εt, i.e., εt is a martingale.

Let τ := min{t ≥ 1 : |εt| ≥ γ} with ε0 = k, and let

hγ(k) := P(ετ ≥ γ | ε0 = k)

h−γ(k) := P(ετ ≤ γ | ε0 = k).
(63)

When the error εt exceeds threshold γ, it returns towards 0 by
γ, and thus we have a starting point k ∈ ((1−κ−m)/κ, (−1+
κ − m)/κ). By the martingale stopping theorem (Theorem
6.2.2 in [34]), we have, with ε0 = k, that

k = E[ετ ]
= E[ετ | ετ ≥ γ]P(ετ ≥ γ)

+ E[ετ | ετ ≤ −γ]P(ετ ≤ −γ).
(64)

Using P(ετ ≥ γ) + P(ετ ≤ −γ) = 1, we can reorganize (64)
as

h−γ(k) = P(ετ ≤ −γ)
= E[ετ | ετ≥γ]−k

E[ετ | ετ≥γ]−E[ετ | ετ≤−γ] .
(65)

Further, from (35), we have that

γ ≤ E[ετ | ετ ≥ γ] ≤ γ + κ−m
κ

−γ − κ+m
κ ≤ E[ετ | ετ ≤ −γ] ≤ −γ.

(66)

Hence, we can obtain

1
2 −

1+k
2γ+2 ≤ h−γ(k) ≤ 1

2 + κ−m
2κγ , (67)

and we have

lim
γ→∞

h−γ(k) = lim
γ→∞

hγ(k) =
1

2
(68)

for k ∈ ((1− κ−m)/κ, (−1 + κ−m)/κ).
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