
Comparative analysis of interacting stepped dark radiation

Nils Schöneberg ,1,* Guillermo Franco Abellán ,2 Théo Simon ,3 Alexa Bartlett ,4
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Models that address both the Hubble and S8 tensions with the same mechanism generically cause a
prerecombination suppression of the small scale matter power spectrum. Here we focus on two such
models. Both models introduce a self-interacting dark radiation fluid scattering with dark matter, which has
a step in its abundance around some transition redshift. In one model, the interaction is weak and with all of
the dark matter whereas in the other it is strong but with only a fraction of the dark matter. The weakly
interacting case is able to address both tensions simultaneously and provide a good fit to a the Planck
measurements of the cosmic microwave background (CMB), the Pantheon Type Ia supernovae, and a
combination of low and high redshift baryon acoustic oscillation data, whereas the strongly interacting
model cannot significantly ease both tensions simultaneously. The addition of high-resolution CMB
measurements (ACT DR4 and SPT-3G) slightly limits both model’s ability to address the Hubble tension.
The use of the effective field theory of large-scale structures analysis of BOSS DR12 LRG and eBOSS
DR16 QSO data additionally limits their ability to address the S8 tension. We explore how these models
respond to these datasets in detail in order to draw general conclusions about what is required for a
mechanism to address both tensions. We find that in order to fit the CMB data the time dependence of the
suppression of the matter power spectrum plays a central role.
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I. INTRODUCTION

The rising tension that exists between the Hubble
parameter H0 as measured locally through the distance
ladder and as inferred from observations of the cosmic
microwave background (CMB) anisotropies assuming the
standard cosmological model (consisting of standard bary-
ons, photons, neutrinos, a cosmological constant, and cold
dark matter—i.e., “ΛCDM”) presents a pressing puzzle for
cosmologists. Solutions to this tension that preserve the
excellent agreement with late-time observables typically
restrict modifications of the cosmological history to times
before recombination. These early time solutions often
suffer from a variety of more or less quantifiable issues,
such as strong fine-tuning of the underlying parameters,
a lack of a complete underlying particle physics model,
strong impacts on the light element abundances generated
at big bang nucleosynthesis, or a lack of falsifiability with

current experiments. Even more concretely, many of these
early time solutions exacerbate the well-known tension
between measurements of the amplitude of clustering in
weak lensing surveys and its value inferred by the CMB
(see, e.g., [1]) as expressed through the mismatch in the
parameter S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
, where Ωm is the current total

matter abundance, and σ8 is the root mean square of matter
fluctuations on a 8 h−1Mpc scale. In principle, it would be
possible to “rescue” many of these solutions by simply
adding a completely unrelated ingredient of late-time
interactions. Yet, such additions are typically even harder
to motivate in a consistent particle physics model.
A promising model avoiding many of these problems of

early Universe solutions to the Hubble tension was recently
proposed in [2] and is based on a well-motivated simple
Wess-Zumino supersymmetric Lagrangian. Moreover, [3]
has demonstrated that this early Universe model is able to
ease the Hubble and S8 tensions simultaneously without
unrelated ingredients, presenting a first hope of easing both
tensions simultaneously in a single well-motivated model.*nils.science@gmail.com
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Almost simultaneously, [4] has proposed another interac-
tion for the stepped dark radiation model in the context of
partially acoustic dark matter, the stepped partially acoustic
dark matter model.
The main difference between the two proposals in terms

of their interactions between the stepped sector and the dark
matter is that the Lagrangian proposed in [3] generates a
weak interaction that affects all of the dark matter, while
the proposal in [4] generates a strong interaction that only
affects a small fraction of the dark matter.1

The aim of this paper is to investigate whether the
interacting stepped dark radiation models can success-
fully ease both the Hubble and the S8 tensions, and to
explore the various physical mechanisms at play. For this
purpose, we subject these proposed models of interacting
stepped dark radiation to the newest CMB and large scale
structure data [in terms of baryonic acoustic oscillations
(BAO) as well as full modeling of the smaller scales].
In Sec. II, we give a more detailed description of the

two models under investigation. In Sec. III, we describe
the analysis method and the data sets that these models
will be subjected to, and the derived constraints are
presented in Secs. IV and V. Additional variations on
the presented models can be found in Sec. VI. We finally
conclude in Sec. VII.

II. UNDERLYING PARTICLE PHYSICS

In this section, we quickly summarize the most important
details of the interacting stepped dark radiation model.
In Sec. II A we will introduce the general description of a
stepped dark radiation model without interactions, and in
Secs. II B and II C we will shortly introduce the weakly and
strongly interacting models, respectively, and summarize
the main points in Sec. II D. Finally, in Sec. II E we briefly
show the cosmological impact of these models, leaving
a more detailed discussion of the underlying physics to
Appendix D. Readers well versed in the physics and
notation should feel free to skip to Sec. III. For a schematic
overview, see also Fig. 1.

A. Noninteracting stepped dark radiation

The stepped dark radiation model consists of two
strongly self-interacting species—a massless species and
a massive species, which becomes nonrelativistic around
some transition redshift 1þ zt ¼ m=TDR;0, where m cor-
responds to the mass of the massive species and TDR;0 to the
temperature of the dark radiation today. While before the

transition redshift the annihilation and decays of both
particles balance, after the transition redshift the generation
of the massive particles is naturally suppressed through
the mass gap of the interactions. This both leads to an
exponential decline of the massive particle abundance and
an increase in abundance and temperature of the massless
particle, leading to an overall increase in the effective
number of neutrinos NeffðzÞ after the transition redshift
(see Fig. 1 of [2]).
This steplike transition allows the model to boost the

effects of Neff on the smaller CMB multipoles (below
around l ≃ 1000, as these modes enter the Hubble horizon
after zt) without severely impacting the high-l diffusion
damping tail, which would otherwise critically constrain
such dark radiation models. Another reason why the
stepped dark radiation models typically are less con-
strained from CMB observations than free-streaming dark
radiation models is due to the strong self-interaction of
the dark radiation components, which prevents the dark
radiation from strongly suppressing the growth of poten-
tial wells on small scales that is commonly seen in free-
streaming dark radiation (resulting in “neutrino drag”).

FIG. 1. Overview over the two models. Top: weakly interacting
model. Here χ represents the dark matter, ϕ the massive boson
(complex scalar), and ξ the massless (Weyl) fermion. Bottom:
strongly interacting model. Here χ represents the dark matter,
ψ the massive fermion, and Aμ the massless (vector) boson.

1The terms “weak” and “strong” here do not refer to the strong
and weak nuclear forces, but instead to the timescale of the
interaction relative to the Hubble rate. A “strongly” interacting
model here would be one with an interaction timescale faster than
the Hubble rate, while a “weakly” interacting model would be
one with an interaction timescale longer than the Hubble rate
(see Fig. 2).
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For a summary of the phenomenology of the stepped dark
radiation model see [2].
We mention here explicitly that in this model the dark

radiation species are assumed to be created only after big
bang nucleosynthesis, as otherwise very tight constraints on
Nwzdr apply to this model coming from measurements of
the light element abundances (see for example [5]).
Quite naturally the Lagrangian can also be extended by

an interaction between the stepped dark radiation compo-
nents and (a fraction of) the cold dark matter, and we will
discuss the specific extensions below.

B. Weakly interacting stepped dark radiation

In the weakly interacting stepped dark radiation model
introduced in [2,3], the massive particle is a boson ϕ, while
the massless particle is a fermion. One immediate conse-
quence from entropy conservation is that the increment of
the effective neutrino number is given by NDRðz ¼ 0Þ=
NDRðz → ∞Þ ¼ ð15=7Þ1=3 ≈ 1.29 in this model. Another
consequence is that the natural interactions in this model
arise from a Yukawa coupling of the dark matter with the
massive boson (such as ϕχ̄χ). While the massive boson is
still present, the dark matter will (weakly) interact with the
self-coupled dark radiation fluid, but when the massive
boson decays/annihilates away, the interaction of the
massless fermion with the dark matter can only occur
through the exchange of virtual massive bosons. In this
regime, due to the high mass of the virtual particles
compared to the thermal energy of the massless fermions,
the interaction is suppressed by a factor of ðTDR=mÞ4,
which forces the interaction rate to decline faster than the
Hubble rate.
We also note that in this model one has Γ=H ≈ const at

early times before the transition redshift, where H is the
Hubble parameter. If one then sets the interaction strength
such that Γ=H < 1 at early times, then one finds very
similar dynamics to non-Abelian dark radiation interacting
with dark matter [6–8] (equivalent to the ETHOS n ¼ 0
case of [9–12]), which has been shown in the past to have a
potentially very strong impact on the clustering of struc-
tures. In particular, the suppression of the clustering is
an integrated effect, leading to a comparatively smooth/
shallow suppression of the power spectrum (as we expand
upon in Appendix D 1).

C. Strongly interacting stepped dark radiation

In the strongly interacting stepped dark radiation model
introduced in [4], the massive particle is a fermion instead,
while the massless particle is a vector boson Aμ. In this
case, the increment of the dark radiation effective neutrino
number is NDRðz ¼ 0Þ=NDRðz → ∞Þ ¼ ð11=4Þ1=3 ≈ 1.4,
giving a slightly larger step than in the weakly interacting
case. The dark matter interaction is generated through a
coupling from the covariant derivative Dμ ¼ ∂μ − igAμ,

either with fermionic dark matter χ̄ði=D −mχÞχ or with
bosonic dark matter as jDχj2. In either case, the massless
vector boson mediates the interaction. However, direct
scattering (e.g., Comtpon-like) of the massless species
with the dark matter is only possible through virtual
exchanges of dark matter particles, which are heavily
penalized if the dark matter mass is reasonably large.
Instead, the most efficient scattering occurs from the
t-channel process of the massive fermion exchanging
a virtual boson with the dark matter. Naturally, this
scattering is exponentially suppressed as the massive
fermion decays away, effectively receiving a penalty factor
of expð−m=TDRÞ. In this case, due to the choice of a vector
boson (as opposed to a scalar boson), there is an additional
concern of keeping the remaining massless fermions self-
interacting [4]. However, we will restrict ourselves to
parameter ranges where such strong self-interaction is
guaranteed except where explicitly stated otherwise.
Interestingly, this requirement puts us into a regime

where the interaction rate is much stronger than the Hubble
rate Γ ≫ H before the transition redshift. This, in turn,
requires us to postulate only a subdominant fraction of the
overall dark matter to be interacting (which we denote by
fidm), as otherwise, the suppression of clustering would be
too strong and observable both in the CMB and the large
scale structure (LSS), as also evident from the constraints in
Sec. IV. Since the interaction is significantly larger than the
Hubble rate before the transition redshift, the time until the
exponential term suppresses Γ=H ∼ 1 in this model is
typically delayed by around one decade in redshift (see
also Fig. 2).

FIG. 2. Top panel: the interaction rate in units of the Hubble
parameter in the weakly interacting case, with at ¼ 10−4.5 shown
in the dotted line. Bottom panel: the interaction rate in units
of the Hubble parameter in the strongly interacting case, with
at ¼ 10−4.5 shown in the dotted line. We also show the scale
factor when the idm decouples (Γ=H ¼ 1). Note that at and
aidm−dec are separated by about an order of magnitude.
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D. Summary of interacting dark radiation

To summarize, both the strongly and the weakly inter-
acting stepped dark radiation models are founded on the
mechanism of the dark radiation transition introduced
by a dark sector containing a massive and massless species.
The main difference arising directly from the chosen
Lagrangians is how strong the interaction is before the
step (Γ=H ≪ 1 in [2,3], and Γ=H ≫ 1 in [4])—thus also
justifying our naming convention—as well as how quickly
the interaction decays after the step, either polynomially
as ðTDR=mÞ4 or exponentially with e−m=TDR . The weakly
interacting case also causes a smoother suppression of the
power spectrum and negligible dark acoustic oscillations
(see Appendix D for more details).
We show the behavior of the dimensionless interaction

rate Γ=H in Fig. 2. In both models, the interaction rate starts
to drop around at. However, in the strongly interacting case
(bottom panel) we can see that the decoupling of the dark
matter, which occurs when Γðaidm;decÞ ¼ Hðaidm;decÞ, is
delayed by about one order of magnitude in scale factor.
The general equations for the noninteracting stepped

dark radiation model can be found for example in [2,5]. We
modify the Euler equation for the bulk velocity as

θ̇idm ¼ …þ aΓðθDR − θidmÞ; ð1Þ

θ̇DR ¼ …þ aΓSðθidm − θDRÞ; ð2Þ

where the dot denotes a derivative with respect to con-
formal time, S ¼ ρidm=ðρDR þ PDRÞ, and

Γweak ¼ Γ0ðð1þ ztÞ=xÞ2
ð1 − 0.05

ffiffiffi
x

p þ 0.131xÞ4 ; ð3Þ

for the weakly interacting model with x ¼ m=TDR, whereas

Γstrong ¼ 4α2d
3π

lnðϑÞT
2
DR

mχ
expð−xÞ½2þ xð2þ xÞ�; ð4Þ

for the strongly interacting model. Here we used the cold
dark matter mass2 mχ (fixed to 1000 GeV for this work)
and defined ϑ¼K2ðxÞðxK0ðxÞþK1ðxÞÞ−2 ·ðπα−3d Þ=ð2gψÞ
(with gψ being the degrees of freedom for the massive
fermion). The KiðxÞ are the Bessel-K functions and Γ0 and
αd are the interaction strength parameters of each model.
The derivation of these expressions for Γ can be found
in [3] [Eq. (3)] for the weakly interacting model, and in [4]
[Eq. (3.13)] for the strongly interacting model. We will
further fix αd ¼ 10−4 in order to ensure a tightly coupled
dark radiation species, and instead vary the fraction of dark
matter that interacts with the dark radiation, denoted as

fidm, as has been done in [4]. Finally, we neglect the impact
of interactions on the interacting dark matter sound speed,
since the latter impacts primarily small scales beyond the
reach of current experiments.
We also implement the initial conditions in a consistent

way (detailed in Appendix A), and take care to stay in the
parameter space in which our modeling holds (see
Appendices B and C).

E. Impact on observables

In this section we briefly discuss the impact on cosmo-
logical observables of the weakly and the strongly inter-
acting model. However, we leave a more detailed
description of the underlying physical mechanisms of
the power spectrum suppression and the impact on the
CMB to Appendix D.
The impact of each model on the matter power spectrum

and the unlensed TT angular power spectrum is shown in
Fig. 3. The parameters of the model have been chosen such
that the impact on the Hubble constant is large (zt ¼ 104.5,
NDR ¼ 0.5) while also simultaneously leading to a small S8
value (σ8 ¼ 0.75).
We observe that the suppression in the weak model is

smoother but continues to increase in amplitude for large
wave numbers k, whereas the suppression of the strong
model has a steplike feature around the modes correspond-
ing to the decoupling redshift, with the suppression only
growing slowly for very large k or l (not visible in
the shown range). In the weakly interacting model the

FIG. 3. Power spectra (unlensed) for the weakly and strongly
interacting models, divided by their noninteracting limits. The
parameters of the two model are given by the ΛCDM best-fit
parameters from [13] with NDR ¼ 0.5, zt ¼ 104.5 and the fidm=Γ0

adjusted to give σ8 ¼ 0.75.

2To be differentiated from the mass of the massive stepped
dark radiation particle, m.
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suppression of power is accumulative (as Γ=H ≪ 1) and is
proportional to the ratio of the scale factor between Hubble
entry and decoupling. Instead, in the strongly interacting
model (with fidm ≪ 1) all modes that enter the Hubble
horizon between matter/radiation equality and the interact-
ing dark matter decoupling, are suppressed due to the
strong interaction between the dark matter and dark
radiation, leading to a drop in power as the fluctuations
in the interacting component are essentially erased. This
also leads to the strong dark acoustic oscillations in the
matter power spectrum shown in the top panel of Fig. 3.

III. ANALYSIS METHOD AND DATASETS

For the numerical evaluation of the cosmological con-
straints on the models considered within this work and their
statistical comparison we perform a series of Markov-chain
Monte Carlo runs using the public code MontePython-v3

3

[14,15], interfaced with our modified versions of CLASS
4

[16,17]. We make use of a Metropolis-Hasting algorithm
assuming flat priors on fωb;ωcdm;H0;lnð1010AsÞ;ns;τreiog.5
When considering the two interacting stepped radiation
models we also vary the amount of tightly coupled dark
radiation, NDR, the logarithm of the redshift at which the
step occurs, log10ðztÞ, and either the dark-matter-dark-
radiation interaction rate (Γ0) for the weakly interacting
model or the fraction of the dark matter which is tightly
coupled to the dark radiation (fidm) for the strongly
interacting model. We use flat priors on these parameters,
constraining NDR > 0 as well as6 log10ðztÞ∈ ½3; 5� in order
to remain within the cosmologically relevant region.
We adopt the Planck collaboration convention in mod-

eling free-streaming neutrinos as two massless species and
one massive with mν ¼ 0.06 eV [18]. We use HALOFIT to
estimate the nonlinear matter clustering [19] solely for the
purpose of the CMB lensing, and discuss this choice further
in Appendix E. We consider chains to be converged using
the Gelman-Rubin [20] criterion jR − 1j≲ 0.05.7 To ana-
lyze the chains and produce our figures we use GetDist [21],
and we obtain the minimal χ2 values using the same method
as employed in [1].

We make use of a variety of likelihoods, detailed in the
points below:
(1) Planck: the low-l CMB temperature and polarization

autocorrelations [TT (temperature autocorrelation),
EE (polarization autocorrelation)], and the high-
l TT, TE (temperature-polarization crosscorrelation),
EE data [22], as well as the gravitational lensing
potential reconstruction from Planck 2018 [23].

(2) SPT: the SPT-3G likelihood [24], which has been
adapted from the official CLIK format.8

(3) ACT: the ACT DR4 [25] likelihoods.9 In analyses
that include the full Planck TT power spectrum,
we removed any overlap with ACT DR4 TT up until
l ¼ 1800 to avoid introducing correlations between
the two datasets [26].

(4) BAO: we consider low-z BAO data gathered from
6dFGS at z ¼ 0.106 [27], SDSS DR7 at z ¼ 0.15
[28], and Baryonic Oscillation Spectroscopic Survey
(BOSS) DR12 at z ¼ 0.38, 0.51, 0.61 [29].

(5) EFTof BOSS: full-modeling information from BOSS
DR12 LRG using the effective field theory of large
scale structure (EFTofLSS), cross-correlated with the
reconstructed BAO parameters [30]. The SDSS-III
BOSS DR12 galaxy sample data and covariances are
described in [31,32]. The measurements, obtained
in [33], are from BOSS catalogs DR12 (v5) combined
CMASS-LOWZ10 [34], and are divided in redshift
bins LOWZ, 0.2 < z < 0.43 ðzeff ¼ 0.32Þ, and
CMASS, 0.43 < z < 0.7 ðzeff ¼ 0.57Þ, with north
and south galactic skies for each, respectively denoted
NGC and SGC. From these data we use the monopole
and quadrupole moments of the galaxy power
spectrum. The theory prediction and likelihood for
the full-modeling information are made available
through PyBird [35].

(6) EFTofeBOSS: the EFTofLSS analysis [36] of
eBOSS DR16 QSOs [37]. The QSO catalogs are
described in [38] and the covariances are built from
the EZ mocks described in [39]. There are about
343 708 quasars selected in the redshift range
0.8 < z < 2.2, with zeff ¼ 1.52, divided into two
skies, NGC and SGC [40,41]. From these data we
use the monopole and quadrupole moments of the
galaxy power spectrum. The theory prediction and
likelihood for the full-modeling information are
made available through PyBird.

(7) PANTHEON: the PANTHEON catalog of uncalibrated
luminosity distance of Type Ia supernovae in the
range 0.01 < z < 2.3 [42]. We have checked that
using the newer PANTHEON+ data from [43] does not
significantly impact our results.

3https://github.com/brinckmann/montepython_public.
4https://lesgourg.github.io/class_public/class.html.
5Here ωb and ωcdm are the physical baryon and cold dark

matter energy densities, respectively, As is the amplitude of the
scalar perturbations, ns is the scalar spectral index, and τreio is the
reionization optical depth.

6The prior of log10ðztÞ is purposefully chosen larger than the
[4,4.6] range adopted in [2,3], since the strongly interacting
model has interesting features outside of this range and we aim to
put both models on the same footing. Additionally, strongly
constraining the model can artificially aid its power in decreasing
the Hubble tension at the cost of a certain level of fine-tuning.

7This condition is chosen because of the non-Gaussian (and
sometimes multimodal) shape of the posteriors of the parameters.
For all ΛCDM runs we have jR − 1j < 0.01.

8https://pole.uchicago.edu/public/data/dutcher21 (v3.0).
9https://github.com/ACTCollaboration/pyactlike.
10https://data.sdss.org/sas/dr12/boss/lss/.
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(8) S: In some of our analyses we also include priors
on S8 ≡ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
measured by the 3 × 2pt

weak lensing and galaxy clustering analyses of
KiDS-1000 × dFLensSþ BOSS, S8 ¼ 0.766þ0.020

−0.014
[44], and DES-Y3, S8 ¼ 0.7750.026−0.024 [45]. To show
these S8 constraints in our triangle plots and to
compute the Gaussian tension to the combined
measurement, we use the simple weighted mean
and uncertainty of SGT8 ¼ 0.769þ0.016

−0.012 .
(9) H: At times we also use a Gaussian prior from the

late-time measurement of the absolute calibration
of the Type Ia supernovae from SH0ES Mb ¼
−19.253� 0.027 [46], corresponding to H0 ¼
ð73.04� 1.04Þ km=s=Mpc. We call this prior the
“H0 prior” (despite being on Mb) since for such
early Universe models as considered in this work the
two viewpoints are essentially equivalent.11

Our baseline combination of data, which we denote as “D,”
corresponds to the Planckþ BAOþ Pantheon combination.
It is thus equivalent to the baseline data combination
employed in [13]. The SH0ES prior is denoted by “H”
and the combination of both S8 priors by “S.” In addition, the

high-resolution ACT DR4 and SPT-3G CMB measurements
are denoted by “ACTþ SPT,” while the EFT full-modeling
analysis of BOSS and eBOSS data QSO are denoted “EFT.”
We note that the combined analysis of [47] gives an S8

posterior significantly more consistent with the CMB data
even in the ΛCDM model (S8 ¼ 0.790þ0.018

−0.014 , 1.7σ tension).
It remains to be seen if future experiments continue to show
an S8 tension. In this work, we will continue using the
aforementioned S priors in order to investigate the respective
models’ abilities to ease a possible current/future tension.

IV. BASELINE DATA

In Fig. 4, we show the constraints using our baseline
data set D, as well as the additional H0 and S8 priors. As
expected, since both models are extensions of the stepped
dark radiation paradigm, they are both equally able to ease
the Hubble tension when a prior on H0 is added. While the
range of H0 values without the H0 prior is only moderately
broader (see Table I), with the addition of the prior the
increased compatibility with high values of H0 is revealed:
we obtain H0 ¼ ð71.52� 0.80Þ km=s=Mpc for the strong
model, (71.73� 0.84)km/s/Mpc for the weak model.
Indeed, with the H0 prior, nonzero values of NDR are
preferred in agreement with [2]. Similarly, both interactions
are able to strongly decrease the value of S8 once a prior
is added (S8 ¼ 0.786� 0.020 for the strong model,
0.778� 0.014 for the weak model).

FIG. 4. Triangle plots of the two-dimensional constraints (68% and 95% C.L.) for the strongly (left) and weakly (right) interacting
models for the baseline dataset and a variety of added priors (see legend). Particularly notable is the similarity in the h − NDR panel
(caused by the same underlying stepped dark radiation mechanism), the anticorrelation in the NDR − fidm=NDR − Γ0 planes between all
combinations, and the important difference between the two models in the h − S8 plane. The gray bands show the H0 and S8 priors.

11The Mb prior is still preferable, since it not only more
correctly accounts for possible mild correlations with Ωm, but it
also better preserves the log-Gaussian shape in H0 that has been
demonstrated in [46].

NILS SCHÖNEBERG et al. PHYS. REV. D 108, 123513 (2023)

123513-6



However, the main difference between the two models is
revealed when both priors are imposed simultaneously.
While in the weak model, both a low S8 and highH0 can be
reached (see Table I), this is not possible in the strongly
interacting model. In this model, the region of highH0 does
not allow for low S8 (it is only allowed for low H0, see
Fig. 4), and thus the more constraining H0 prior forces the
model to remain at relatively large values of S8 even against
the opposing S8 prior. It is interesting to note that due to
the weaker constraint on the weak interaction than the
strong interaction, even without the S8 prior, the weakly
interacting model has a smaller value of S8 ¼ 0.802�
0.019 more compatible with DES/KiDS data (compared to
S8 ¼ 0.818� 0.013 for the strong model).
This difference in behavior between these otherwise

so similar models solicits a more detailed investigation,
which can be found in Appendix D. The main conclusion
is that this different behavior is a direct consequence
of the different underlying particle physics models. The
weakly interacting model predicts a relatively smooth
suppression in k that is in place well before matter/
radiation equality, aeq. On the other hand the strongly
interacting model causes suppression mainly after aeq
leading to additional driving of the photon perturbations
which is imprinted on the CMB. Thus, when both NDR is
large (to ease theH0 tension) a large fraction of interacting
dark matter (to ease the S8 tension) is disallowed due to
the strong impact on the CMB. Correspondingly, in Fig. 4,
we observe that while the interaction parameter fidm of the
strongly interacting model is always constrained from
above, the corresponding parameter Γ0 of the weakly
interacting model shows a preference for nonzero values
when the S8 prior is added.
This can also be observed in Fig. 5. In order to efficiently

ease the Hubble tension, each model should have log10ðztÞ
around 4–4.5 in order to allow for different enhancements
of low and high CMB multipoles [3]. The blue curves
representing the sole addition of the H0 prior show this
behavior for both models. If the S8 prior is added on top
(orange curves), then the weakly interacting model still has
a significant part of the posterior in this regime, while the
strongly interacting model prefers small values of log10ðztÞ,
below around 4 (i.e., after aeq). In this range, the strongly
interacting model is effectively equivalent to that of self-
interacting dark radiation from the perspective of the CMB.
We note that Fig. 5 differs from Fig. 5 of Ref. [2] due to the
broadening of the prior range.
We show in Table II a comparison of the ΔAIC (Aikaike

information criterion) and Gaussian tension criteria
between the models, similarly to the analyses in [1,3].
This shows that in all cases the weakly interacting model is
indeed able to ease the S8 tension, and mostly performs just
slightly better in terms of the H0 tension. We further
observe that the ΔAIC of the weakly interacting model is
also improved for all combinations, whereas the stronglyTA
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interacting model mostly benefits from its ability to ease the
Hubble tension (the ΔAIC in the case with only S8 prior is
positive). It should be stressed, however, that both models
perform remarkably well compared to ΛCDM when faced
with the challenge of reconciling each tension separately.

V. ADDITIONAL DATA

Given the success of the two interacting models in terms
of the Hubble and S8 tension demonstrated in Sec. IV, it is
crucial to subject the models to additional data to inves-
tigate whether these change the conclusions by favoring
one model’s suppression mechanism over another. In this
section we confront the interacting stepped dark radiation
models with various data sets beyond our baseline combi-
nation. In particular, in Sec. VA we add CMB data from
ACT and SPT, while in Sec. V B we add full-modeling
large scale structure data.

A. Small scale CMB measurements

Given the critical role played by the small scale CMB
measurements in restricting dark radiation models, it is
imperative to subject these models to other measurements
of the small scale polarization, such as data from the ACT
and SPT collaborations.
We show the results in Fig. 6 for the weakly interacting

model for the data set DHS þ ACTþ SPT. As expected,
we observe a small increase in constraining power and a
corresponding shift towards smaller values ofNDR ¼ 0.46�
0.14 and correspondinglyH0 ¼ ð70.87� 0.81Þ km=s=Mpc.
Overall, this leads to a slightly increased Hubble tension at
the level of 1.6σ (compare Table II), while the impact on S8
is negligible. Beyond the data from [24], we also checked
that the newer SPT data from [48] (also including temper-
ature autocorrelation) does not significantly impact the
constraints. Indeed, the most notable impact of the newer
SPT data appears to be erasing the small upturn of the
posterior of log10ðztÞ close to the upper limit visible in
Fig. 6 (and in Fig. 5).
For the strongly interacting models, the results are

shown in Fig. 7. This figure clearly demonstrates that with
these additional data large values of NDR are more con-
strained (NDR ¼ 0.47� 0.14), with the impact of the
ACTþ SPT data larger on this model than on the weakly
interacting model. Indeed, in this parameter regime of
lower NDR larger values of log10ðztÞ ∼ 4.5 are allowed
again, while fidm is slightly more constrained from the
ACTþ SPT data (fidm < 0.0078). The impact on H0 ¼
ð70.95� 0.71Þ km=s=Mpc and S8 ¼ 0.8030� 0.0094 are
mild, leading to, respectively, 1.7σ and 1.8σ tension
(compare to Table II).
However, while the constraints on the model become

tighter and restrict their ability to ease the Hubble tension,
the ΔAIC compared to ΛCDM improves, with the weakly
interacting model achieving ΔAIC ¼ −27.7 (compared to
−20.5 without ACTþ SPT) and the strongly interacting
model achieving ΔAIC ¼ −18.4 (compared to −13.8
without ACTþ SPT). This is caused by each model
reducing the tension between ACTþ SPT and Planck

TABLE II. Gaussian tensions, QDMAP tensions, and differences in the minimized effective χ2 (and corresponding
ΔAIC) for the various data combinations for the weakly and strongly interacting models. The Gaussian tension is
evaluated with respect to the result from [46] (our H prior) and the combination of [44,45] (our S prior).

Strongly interacting model Weakly interacting model

Tension metric D DH DS DHS D DH DS DHS

Gaussian tension H0 3.3σ 1.2σ 3.9σ 0.9σ 3.1σ 1.0σ 3.1σ 1.0σ
Gaussian tension S8 2.5σ 2.4σ 0.7σ 1.7σ 0.5σ 1.3σ 0.4σ 0.6σ

QDMAP tension H0 3.1σ � � � 3.5σ � � � 2.9σ � � � 3.1σ � � �
QDMAP tension S8 1.9σ 2.6σ � � � � � � 0.9σ 1.5σ � � � � � �
Δχ2 −0.7 −23.6 −5.3 −19.8 −1.9 −25.9 −9.35 −26.5
ΔAIC 5.3 −17.6 0.7 −13.8 4.1 −19.9 −3.35 −20.5

FIG. 5. One-dimensional posterior constraints on the parameter
log10ðztÞ in the weakly interacting model (top) and the strongly
interacting model (bottom) for a variety of datasets (see legend).
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data, allowing for a better fit to both of them
(Δχ2ACTþSPTþPlanck ¼ −10.8 for the weakly interacting
model, as well as Δχ2ACTþSPTþPlanck ¼ −10.4 for the
strongly interacting model). The main reason for the worse
performance of the strongly interacting model in this metric
is its worse performance in terms of BAO data and the S8

prior (see Table V). This strong reduction in minimal χ2

when ACTþ SPT datasets are present is particularly inter-
esting since Ref. [5] found that these data were rather
restrictive to the stepped dark radiation model without
interactions, though a formal analysis of the ΔAIC (or other
χ2 metrics) was not performed there. While the significance
of this effect is not as large as in Ref. [49] for early dark
energy (EDE), we do note the striking similarity. However, a
more detailed analysis comparing the ACT, SPT, and Planck
residuals in these respective models is left for future work.12

B. Full-modeling galaxy power spectra

In this section, we examine the constraints imposed on
these two models by the EFT full-modeling analysis of the
BOSSþ eBOSS galaxy and QSO clustering data (see for
example Refs. [50–54] for this type of analysis applied
to some alternative models). Compared to standard
BAOþ fσ8 template-based analyses (adding redshift space
distortion information) of BOSS and eBOSS data, the full-
modeling constraints from EFT are expected to be much
more sensitive to the suppression of the small-scale power
spectrum introduced in these models. In addition, in
Ref. [51], it has been shown that even in a model of
noninteracting dark radiation the EFT full-modeling analy-
sis alone can put interesting constraints on its abundance.
Indeed, we confirmed within the context of our models
that the BAOþ fσ8 data on its own does not impose
strong constraints, while for the EFT data alone we find
NDR ¼ 3.7þ1.2−3.0 and fidm < 0.10 for the strongly interacting
model, and NDR < 7.5 and Γ0 < 3.5 × 10−6=Mpc for the
weakly interacting model.
In order to investigate the complimentarity of the EFT

and CMB data, we add the EFTofBOSS and EFTofeBOSS
likelihoods (see descriptions in Sec. III) to the dataset D,
where we have only removed the BOSS DR12 postrecon-
structed measurements which are already included in the
corresponding PyBird likelihood. This new dataset is now
called “Dþ EFT.” The χ2 values for these analyses are
provided in Table V of Appendix F.
Both models provide a good fit to BOSS and eBOSS

data at the same time, which means that the EFT parameters
are able to compensate for the suppression of the matter
power spectrum generated by these two models, which
occurs from k ∼ 0.1 h=Mpc (see Fig. 3). We note that
the EFT data are similarly well fit in these models as in
ΛCDM (see the BOSS and eBOSS χ2 in Table V) and it
involves only small (< 1σ) shifts in the nuisance param-
eters relative to their from their ΛCDM values. There is a
slight worsening in the total ΔAIC with the DHS þ EFT
data, as the strongly interacting model only achieves

FIG. 7. Same as Fig. 6, but for the strongly interacting stepped
dark radiation model instead.

FIG. 6. Triangle plot of two-dimensional constraints (68% and
95% C.L.) on the parameters of the weakly interacting stepped
dark radiation model when confronted with the DHS dataset and
the additional ACTþ SPT data.

12We also note that this mechanism is likely not related to the
interactions but instead to the underlying stepped dark radiation
mechanism. We leave a more detailed analysis for future work.
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ΔAIC ¼ −8.7, while the weakly interacting model still
achieves ΔAIC ¼ −19.3 (compare Table II).
In terms of parameter constraints for the weak model

(shown in Fig. 8), the main impact of adding EFT analysis
to BOSS and eBOSS data is a significantly stronger
constraint of the interaction rate by a factor of 3.3 between
the DHS and DHS þ EFT analyses (the latter gives
Γ0 ¼ 0.27þ0.12

−0.08 × 10−6 Mpc−1). This new constraint prop-
agates to the S8 parameter (S8 ¼ 0.7932þ0.0041

−0.0066 ), leading to
a þ0.7σ upwards shift and an improvement in constraining
power by a factor of 2.6. The associated Gaussian tension
of S8 is now 1.4σ (compared to 0.6σ without EFT data).
The conclusions for the DS dataset are very similar, with
stronger constraints on Γ0 leading to higher S8 values,
while both D and DH combinations are barely affected by
the additional EFT data.
For the strongly interacting model, the addition of the

EFT analysis does not significantly change the cosmologi-
cal constraints for the dataset D (NDR < 0.52 and
fidm < 0.027), as well as for the dataset DHS, which is
still reduced to the noninteracting stepped dark radiation
model (with NDR ¼ 0.78� 0.18 and fidm < 0.0096).
Indeed, adding the EFT for these two datasets produces
only a small shift of 0.2σ on H0 and −0.5σ on S8,
respectively. However, if we add the EFT analysis to
datasets DH or DS, we obtain

NDR ¼ 0.78� 0.20 and fidm < 0.0098 for DHþEFT;

NDR < 0.20 and fidm < 0.082 for DSþEFT;

which corresponds to a significant improvement on the fidm
constraints by a factor of 1.5 and 37 with respect toDH and
DS, as can be seen in Fig. 9. This improvement of the
constraints on fidm considerably changes the constraints
on S8, as summarized in Table III.
In summary, both models are pulled to S8 ≃ 0.8 which is

favored by the EFT data. This is most notable for the DHS
and DS cases in the weakly interacting model, and for the
DH and DS cases in the strongly interacting model.

VI. MODEL VARIATIONS

In this section, we investigate variations of the original
weakly and strongly interacting models introduced above.
As a first check, we investigate if the performance of the

strongly interacting model can be improved when releasing
the prior on log10ðztÞ that was motivated by the requirement

FIG. 8. Triangle plot of two-dimensional constraints (68% and
95% C.L.) on the parameters of the weakly interacting stepped
dark radiation model when confronted with the DHS þ EFT
dataset.

FIG. 9. Triangle plot of two-dimensional constraints (68% and
95% C.L.) on the parameters of the strongly interacting stepped
dark radiation model when confronted with the DHþ EFT and
DS þ EFT datasets.

TABLE III. Summary of the shifts in S8 for the strongly
interacting model induced through the EFTofBOSS and EFTo-
feBOSS data. The row “Shift” denotes the shift (in units of the
original error bar) of the constraint in S8 compared to the case
without EFT. The row “Error bar reduction” instead denotes the
corresponding reduction in the uncertainty.

Quantity DHþ EFT DS þ EFT

S8 0.8061� 0.0094 0.794� 0.014
Shift −1.1σ þ0.5σ
Error bar reduction 40% 40%
Remaining Gaussian tension 2.0σ 1.2σ
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to keep the dark radiation self-coupled until at least matter-
radiation equality (see Appendix C). We release this
requirement under the assumption that some other mecha-
nism keeps the dark radiation self-coupled.
The constraints on this extended model are shown in

Fig. 10, which clearly demonstrates that for log10ðztÞ ≃ 6
the strongly interacting dark matter model can ease both
the Hubble and the S8 tension in this regime (reaching a
better fit by Δχ2 ¼ −2.81). In order to reach a lower value
of S8 ¼ 0.782� 0.015 (as driven by the S prior), the model
requires a lower limit on fidm > 0.092 (95% C.L.). It is
interesting to note that in neither this nor the original
prior range there is a preference of values of log10ðztÞ ∼ 4.5
that are required for the original stepped dark radiation
mechanism to ease the Hubble tension. Nevertheless,
in both cases the same high value of H0 ¼ ð71.9�
0.8Þ km=s=Mpc can be reached.
The larger suppression allowed for such high log10ðztÞ is

driven by it starting only at wave numbers larger than
k≳ 0.2=Mpc, which is simply beyond the range of scales
to which the CMB is sensitive, while still allowing for
suppression of the power spectrum in the regime relevant
for the S8 integral. We expect such a solution to be more
strongly constrained from Lyman-α data, which are sensi-
tive to such suppressions of the power spectrum at high
wavenumbers (see Refs. [11,55]). We can also appreciate
from Fig. 11 that this kind of model leads to large dark
acoustic oscillations, which other small-scale probes would
likely be sensitive to.

This sensitivity of Lyman-α data to a large suppres-
sion of the matter power spectrum could also impact the
weakly interacting model, whose asymptotic suppression
goes to 100%, since all of the dark matter is assumed to
be interacting. One way to avoid such strong constraints
would be by releasing the fraction of dark matter that
interacts in this weakly interacting model. We show the
corresponding constraints on the fractional model in
Fig. 12, with the corresponding power spectrum sup-
pression shown in Fig. 11 (the asymptote is not reached
by k ∼ 2 h=Mpc). It is worth noting that the constraints
on S8 are virtually unchanged, even in the regime of
somewhat smaller fidm ∼ 0.5. It is immediately clear
from Fig. 11 that we expect a strong degeneracy
between fidm − Γ0, which we indeed observe in
Fig. 12. Note that in the fidm − S8 panel we can clearly
see that for fidm → 0 the power spectrum cannot be
suppressed anymore, leading to larger values of S8 in
this limit (as expected). Whether this particular degen-
eracy of fidm and Γ0 allows the fractional weakly
interacting model to evade Lyman-α constraints remains
to be investigated in future work.
Finally, we investigate what happens when the step is

released for the strongly interacting model. The results,
shown in Fig. 13, point to similar abilities of this model in
terms of both H0 and S8 compared to the usual model.
However, the value of rg in the original strongly interacting
dark radiation model of Ref. [4] (rg ¼ 7=4 ¼ 1.75) is
strongly excluded in this extended parameter range
(rg < 1.1 at 95% C.L.). Indeed, in this case, the minimal

FIG. 10. The strongly interacting model is able to resolve both
tensions if we allow zt to exceed its theoretically allowed range.
We also show the original run with theoretically motivated prior
log10ðztÞ∈ ½3; 5� in blue for comparison.

FIG. 11. A comparison between the matter power spectrum
suppression for two of the extended models we considered
divided by their noninteracting limits. Each of the matter power
spectra give σ8 ¼ 0.785. The top panel compares the standard
weak model where all of the dark matter is interacting (fidm ¼ 1)
(black) to the suppression when fidm < 1 (red). The bottom
panel shows a comparison between the strong model with a
model where zidm;dec < zeq (black) and one where zidm;dec > zeq
(red). The gray bands roughly indicate the wave numbers that
contribute to σ8.
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χ2 is 3816.0 (compared to 3821.6 in the original model).
On the other hand, for such a small step, comparatively
larger fractions of fidm < 0.049 are allowed for this model.
Otherwise the conclusions remain similar, with H0 ¼
ð72.15� 0.83Þ km=s=Mpc and S8 ¼ 0.8042þ0.0088

−0.0092 .

VII. CONCLUSIONS

We have shown that the two recently proposed models
of interacting stepped dark radiation from [3,4] are both
exciting proposals that could simultaneously ease the
Hubble and S8 tensions. While the model of [3] is weakly
interacting and shows a shallow suppression of the power
spectrum, the model of [4] interacts strongly and has a
sharp suppression of the power spectrum and dark acoustic
oscillations. These oscillations happen to also cause a
stronger driving of the CMB source terms, resulting in
an overall larger impact on the anisotropies. Since the
decoupling of the dark radiation from the dark matter is also
delayed in this strongly interacting model, we find that
the parameter space in which the Hubble tension is eased
better [around log10ðztÞ ∼ 4.5 in both models] is slightly
different to the parameter space where the S8 tension can be
addressed without impacting CMB observables [requiring
either log10ðztÞ≲ 3.5 or log10ðztÞ≳ 4.8]. This reduces the
strongly interacting model’s ability to ease both tensions
simultaneously. We find that nevertheless both models are
quite effective.
Without enacting any priors beyond our baseline

Planckþ BAOþ Pantheon dataset D, we find that the
Hubble tension remains at the 3σ level, while the S8 tension
is eased at the 2σ level in the strongly interacting model and
at the 1σ level in the weakly interacting model. However,
when faced with the task of easing only the S8 tension, both
models fair similarly well (S8 ¼ 0.786� 0.020 for the
strongly interacting model, and S8 ¼ 0.778� 0.014 for the
weakly interacting model, when an S8 prior is added).
Similarly, when imposing only an H0 prior, the Hubble
tension is reduced to the 1σ level in both models [reaching
approximately (71.6� 0.8)km/s/Mpc in both models].
However, the difference between the models becomes
obvious when imposing both priors simultaneously. Here
the S8 tension is only reduced to 1.7σ in the strongly
interacting model but to 0.6σ in the weakly interacting
model—while the Hubble tension remains at the 1σ level
for both models. This manifests in a strong preference
compared toΛCDMwhen both of these priors are imposed,
with ΔAIC ¼ −20.5 for the weakly interacting model and
ΔAIC ¼ −13.8 for the strongly interacting model.

Given that in the weakly interacting model both tensions
are eased in a synergistic way, while for the strongly
interacting model the easing of one tension often comes at
the cost of easing the other, we might wonder if additional
data can further disambiguate these two mechanisms.
As such, we subject both models to ACTþ SPT high-l
polarization data, which has been shown in the past to be
quite sensitive to additional dark radiation. We find that
even in this case the weakly interacting model remains
more synergistic, with an S8 tension of 0.6σ compared to
the strongly interacting model with a tension of 1.8σ.
Interestingly, both models exhibit an much better fit to
Planckþ ACTþ SPT data than the ΛCDM model, with a

FIG. 12. A triangle plot showing the weak model but with only
a fraction fidm of the dark matter which interacts with the dark
radiation.

FIG. 13. A triangle plot showing the strong model where we
now allow the size of the step, rg, to vary.
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Δχ2ACTþSPTþPlanck ≲ −10. A similar effect has been noted in
the context of early dark energy in Ref. [49], but a more
detailed analysis is left for future work. This effect also
results in good overall preferences of ΔAIC ¼ −27.7 in the
weakly interacting model compared to ΛCDM, while the
strongly interacting model reaches ΔAIC ¼ −18.4.

Since both models feature a suppression of the power
spectrum, other large scale structure data is of vital
importance in constraining these models. In this work
we make use of the full-modeling EFTofLSS data from
eBOSS DR16 QSOs and BOSS DR12 LRG (together
denoted as EFT), and we show that there is a strong impact
on both models. We have also checked that fσ8 data (from
redshift space distortions) is insensitive to these suppres-
sions and does not give the same constraining power as full
modeling. In the weakly interacting model the effect is a
much tighter constraint on Γ0 by a factor of 3.3 and an
corresponding increase of the S8 tension to 1.4σ (with our
baseline data, the H0 and S8 priors, and the EFT data). In
the strongly interacting model the effect is only a mild
increase in constraining power when the EFT data is
considered in addition to the baseline data and the priors,
since already without the EFT data the model is tightly
constrained. In this case the power of the EFT data is most
appreciable when considering a combination of either only
the Hubble prior or only the S8 prior, the latter featuring a
factor of 37 in improvement of constraining power on the
fraction of interacting dark matter, fidm. In summary, we
find that the EFT data seems to constrain both models to
values of S8 closer to about 0.8, and correspondingly
restricts their ability to ease the S8 tension (while leaving
the mechanism of easing the Hubble tension largely
unchanged), with both models featuring a ∼1.5σ tension
in S8 when the baseline data, the two priors, and EFT data
are added.
We have also checked if certain assumptions that go into

the model building of the two models can be released in
order to find more compelling solutions. While we put an
upper prior on the transition redshift zt for the strongly
interacting model motivated from a requirement to keep the
dark radiation self-coupled, if we release this prior (assum-
ing some other mechanism to self-couple the dark radia-
tion), we find that another compelling solution to the
tensions emerges in a regime of zt ∼ 106. This solution
does reach S8 ¼ 0.782� 0.015 (0.6σ tension) even with
the Hubble prior (and S8 prior) imposed.

Another possible avenue to increase the ability of the
strongly interacting model’s ability to ease both tensions is
to release its theoretically motivated relative abundance of
dark radiation before and after the step, characterized by the
step parameter rg. Such a model does improve the overall fit
by Δχ2 ¼ −5.6 (enough to justify the additional parameter
with respect to the AIC criterion). However, we find that
this variation does not significantly impact the model’s
ability to ease the tension, with S8 decreasing only

marginally, at the cost of excluding the original rg ¼
1.75 by more than 2σ (we have rg < 1.1 at 95% C.L.).
All of these models and their respective variations

significantly suppress the power spectrum on nonlinear
scales around k≳ 0.5h/Mpc. We thus expect other data
probing these smaller scales to put significant constraints
on such a model. In particular, Lyman-α forest data can
measure these scales at high redshift when the nonlinear-
ities of structure formation are not quite as pronounced.
While a systematic study of the impact on Lyman-α data
is beyond this work,13 we can already estimate that the
zt-extended strongly interacting model and possibly the
weakly interacting model will be impacted by such
Lyman-α data due to their large (and growing) suppression
at scales ≳1h/Mpc. This motivates us also to search for a
weakly interacting model in which only a fraction of the
dark matter interacts, leading to a strong Γ0 − fidm degen-
eracy, which Lyman-α data is poised to further constrain
(such as in [11]).
Beyond Lyman-α data we expect other small-scale data

such as the upcoming DESI and Euclid galaxy and weak
lensing surveys to tightly increase the constraint on such
interacting dark radiation models. Similarly, upcoming
CMB observations of the large-l polarization will uniquely
distinguish stepped dark radiation models and allow for
precise statements on their viability. There is thus little
doubt that these interacting stepped dark radiation models
are not only exciting in terms of their current ability to ease
the Hubble and S8 tensions, but also that upcoming
constraints are going to decisively rule in favor or against
these models.

Note added. During the final stages in the preparation of
this manuscript, Refs. [58,59] appeared, which have tested
interacting dark sector models using cosmological data. On
the one hand, Ref. [58] considered both weak and strong
models presented here but have treated the step size rg, the
interacting dark matter fraction fidm, and the scattering rate
Γ0 as free parameters in both models. This reference finds
more pessimistic results in terms of the H0 and S8 tensions
for the two models, mainly due to the different number
of free parameters and the priors chosen (i.e., the use of
logarithmic priors on Γ0 and fidm, as opposed to linear).
On the other hand, Ref. [59] considered just the strong
model as well as a theoretically motivated generalization
of it with a smaller step size rg. This reference finds a
preference for this smaller step size as a solution to both
tensions, in good agreement with our discussion at the end
of Sec. VI. Let us also emphasize that none of these works

13A simple treatment with an amplitude and a slope at a
given scale and redshift such as in would certainly be possible,
but it has not yet been proven that such a treatment as in [56,57]
is valid even in cosmologies with large suppressions of the
power spectrum at small scales. As such, we leave this study to
future work.
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have considered small-scale CMB measurements from ACT
and SPT, nor eBOSS data analyzed under the EFTofLSS,
as we do. Furthermore, our work is the first to provide a
detailed comparison between the impact of the weakly and
strongly interacting models on the CMB spectra.

ACKNOWLEDGMENTS

N. S. acknowledges support from the Maria de Maetzu
fellowship Grant No. CEX2019-000918-M, financiado por
MCIN/AEI/10.13039/501100011033. G. F. A. is supported
by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
programme (Grant Agreement No. 864035—Undark). T. S.
acknowledges the use of computational resources from the
LUPM’s cloud computing infrastructure founded by Ocevu
labex, and France-Grilles. A. B., Y. P., and T. L. S. are
supported by Grant No. AST-2009377. This work used the
Strelka Computing Cluster, which is run by Swarthmore
College. T. L. S. thanks Westwinds Farm where part of this
work was completed. This project has received support
from the European Union’s Horizon 2020 research and
innovation program under the Marie Skodowska-Curie
Grant Agreement No. 860881-HIDDeN. This project has
also received funding from the European Research Council
(ERC) under the European Union’s HORIZON-ERC-2022
(Grant Agreement No. 101076865).

APPENDIX A: ADIABATIC INITIAL
CONDITIONS

It is important to realize that the initial conditions (ICs)
of the interacting stepped dark radiation models are not
entirely trivial. In this appendix, we will derive the
adiabatic initial conditions for both the dark radiation
and interacting dark matter. We find and implement slightly
different ICs compared to what is implemented in CLASS

V3.2 for interacting dark radiation, although the issue is
known and will be fixed in future versions of CLASS

(internal communication with the CLASS developers). We
note that in the two models we consider here, using the
correct ICs leads to a negligible change (∼10−3) in the
resulting power spectra.
We follow the derivation of adiabatic ICs first presented

in Ref. [60]. The starting point is the fact that we set
the initial conditions during radiation domination, so the
only sources for the gravitational potentials will be due to
the radiative components. In synchronous gauge, this
means that

η2  hþ ηḣþ 6½Rγδγ þ Rνδν þ RDRδDR� ¼ 0; ðA1Þ

where RX ≡ ρX=ρrad is the fractional contribution from
each radiative component with respect to the total
radiative energy density; with this definition, we have
Rγ ¼ ð1 − Rν − RDRÞ. In addition to this, the fluid

equations immediately tell us that to lowest order in kη
we can neglect the velocity perturbations, θ, compared to
the density contrasts δ. This gives

δb ¼ δc ¼ δidm ¼ 3

4
δγ ¼ δν ¼ δDR ¼ −

2

3
h; ðA2Þ

which allows us to find (keeping only the growing solution)

h ¼ CðkηÞ2;

δγ ¼ δν ¼ δDR ¼ −
2

3
CðkηÞ2: ðA3Þ

Furthermore, the time-time Einstein equation can then be
rewritten as

k2ηS −
ḣ
2η

¼ −
3

2

1

η2
ðRγδγ þ Rνδν þ RDRδDRÞ;

¼ −
3C
2

k2; ðA4Þ

which immediately gives, to leading order,

ηS ≈ 2C: ðA5Þ

In CLASS we set C ¼ 1=2 for the adiabatic initial conditions
(which corresponds to normalizing with respect to the
comoving curvature perturbation).
The ICs are set while the baryons and photons are tightly

coupled so that the photon anisotropic stress vanishes at
leading order and θb ¼ θγ . This gives

θ̇γ −
1

4
k2δγ ¼ 0; ðA6Þ

which can be easily solved to give

θγ ¼ −
1

18
Cðk4η3Þ: ðA7Þ

Finally, we need to account for the momentum exchange
between the interacting dark matter and dark radiation.
Writing out Eq. (1) we get

θ̇idm ¼ −Hθidm þ aΓðθDR − θidmÞ; ðA8Þ

which can be directly integrated to give

θidm ¼ Aη−ðκþ1Þ þ κ

�Z
xκθDRðxÞdx

�
η−ðκþ1Þ; ðA9Þ

with κ≡ Γ=H and A being an irrelevant integration con-
stant for a decaying solution. Here we assumed that
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κ ¼ const during the setting of the initial conditions,
which we enforce by setting the initial conditions always
before zt. In this regime, we can also simplify the dark
radiation Eq. (2) as

˙θDR ¼ −
k2

3
δDR þ aΓSðθidm − θDRÞ; ðA10Þ

where S≡ ρidm=ðρDR þ PDRÞ. It is straightforward to show
from Eq. (A10) that as long as ΓS=H ≪ 1, to leading order
in kη we have

θDR ¼ −
C
18

k4η3; ðA11Þ

and from Eq. (A8) [or even faster using Eq. (A9)] we
then get

θidm ¼ −
Cκ

18ð4þ κÞ k
4η3: ðA12Þ

We can see that in the limit of strong coupling (κ ≫ 1) we
have θidm ≈ θdr, and even for weak coupling the interacting
dark matter has a nonzero initial velocity perturbation. Note
that in the weakly interacting model we have ½Γ=H�init ≈
Γ0ðTDRa=TDR;0Þ2=ðH0

ffiffiffiffiffiffi
Ωr

p Þ ¼ Γ0ð7=15Þ2=3=ðH0

ffiffiffiffiffiffi
Ωr

p Þ,
see Ref. [3].
In Fig. 14 we show a comparison between the analytic

initial condition for θidm, Eq. (A12), in dashed red, and the
output from our modified version of CLASS, in solid black,
for k ¼ 0.5 Mpc−1. The three pairs of curves correspond to
different values for the interaction rate, Γ0 ¼ 1 Mpc−1

(upper curves), Γ0 ¼ 10−6 Mpc−1 (middle curves), and
Γ0¼5×10−8Mpc−1 (lower curves)–which give ½Γ=H�init¼
2.8×105, ½Γ=H�init ¼ 0.28, and ½Γ=H�init ¼ 0.014, respec-
tively. The vertical dotted line shows horizon crossing.
Here we have plotted the weakly interacting model, while
the strongly interacting results are nearly identical (differ-
ing mostly through NDRðz ¼ 0Þ=NDRðz → ∞Þ and the
different interaction rate penalty factor for T ≪ m, both
of which are only relevant at around zt and lower, not
affecting the initial conditions).
In the strongly interacting case, we have Γ=H ≫ 1 at

initial times, which means that SΓ=H ≪ 1 is in principle
not entirely trivial to enforce. However, by inserting the
limit of κ ≫ 1 in Eq. (A9) one can show that in this case
only SΓ=H · 1=κ ≪ 1 is required, which is equivalent to the
weaker condition S ≪ 1 by using κ ¼ Γ=H. In the weakly
interacting case, we have Γ=H ∼ 1 and S ≪ 1 is sufficient.
In practice, we simply enforce the initialization scale factor
to be early enough for S ≪ 1 to be fulfilled.
We cannot immediately solve the neutrino Euler equa-

tion for its velocity perturbation because of the unknown
neutrino anisotropic stress. The time-space component of
the Einstein equation allows us to relate ηS and θν:

η̇S ¼
8

9ðkηÞ2 ðRγθγ þ Rνθν þ RDRθDRÞ; ðA13Þ

¼ 8

9ðkηÞ2 ½θγð1 − RνÞ þ Rνθν�; ðA14Þ

where in the second line we used the fact that we know
θDR ¼ θγ . Finally, we have the neutrino Euler equation and
equation for the anisotropic stress

θ̇ν −
1

4
k2ðδν − 4σνÞ ¼ 0; ðA15Þ

σ̇ν −
2

15
ð2θν þ ḣþ 6η̇SÞ ¼ 0: ðA16Þ

We now have three equations for the three unknown initial
conditions (ηS, θν, and σν) and we can solve them to leading
order and find

ηS ¼ 2C −
5þ 4Rν

6ð15þ 4RνÞ
CðkηÞ2; ðA17Þ

θν ¼
23þ 4Rν

15þ 4Rν
θγ; ðA18Þ

σν ¼
4C

3ð15þ 4RνÞ
ðkηÞ2: ðA19Þ

In summary, we showed that as long as we enforce
SðziniÞ ≪ 1 and zini > zt during the setting of the initial
conditions, then our modified initial conditions of

FIG. 14. The super and subhorizon evolution of the interacting
dark matter in the weakly interacting model. The dashed red
curves show the initial conditions in Eq. (A12). The top curves
correspond to Γ0 ¼ 1 Mpc−1 (½Γ=H�init ¼ 2.8 × 105), the middle
curves correspond to Γ0 ¼ 10−6 Mpc−1 (½Γ=H�init ¼ 0.28),
and the bottom curves correspond to Γ0 ¼ 5 × 10−7 Mpc−1

(½Γ=H�init ¼ 0.014). The agreement between the dashed-red
and solid-black curves shows that our initial conditions apply
to both initial strong and weak interactions. To produce this figure
we set all ΛCDM parameters to their best fit values to Planck and
NDR ¼ 0.5, log10ðztÞ ¼ 4.5.
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Eqs. (A11) and (A12) are valid (and the otherΛCDM initial
conditions as well).

APPENDIX B: LIMITS OF THE MODELING

While we attempted to keep our modeling of the two
models very general, there are a few regions in parameter
space where it is not guaranteed that our modeling is
complete. One particular concern is the assumption of the
dark radiation remaining self-interacting in the strongly
interacting model and not being subject to strong spectral
distortions [or even deviating from the TDR ∝ ð1þ zÞ
scaling]. For the energy dissipation, it is relatively straight-
forward to estimate the size of the spectral distortions due
to the fact that the interactions with the dark matter are of
the order14

ΔρDR
ρDR

≈ −
3

2

Z
0

−∞
rχ;DR

ðρidm=mχÞTDR

ρDR
d ln a; ðB1Þ

where rχ;DR is a coupling coefficient with rχ;DR → 1 during
tight coupling (defined as in [61,62]), otherwise it is strictly
smaller, and mχ is the interacting dark matter mass. To
derive an estimate of the upper bound, we can simply
assume the species to be tightly coupled throughout the
evolution and use the simple scaling laws of ρDR ¼
gDRπ2=30T4

DR (with a possible factor of 7=8 for fermionic
dark radiation) and ρDRðz ¼ 0Þ ¼ ργ ·

7
8
ð 4
11
Þ4=3NDR to find

TDRðzÞ ¼
�

14

8gDR

�
1=4
�
4

11

�
1=3

½NDRðzÞ�1=4 · TγðzÞ; ðB2Þ

and correspondingly

NχTDRðzÞ
ρDRðzÞ

≈ 1.95 × 10−10fidm

�
Ωcdmh
0.12

��
100 GeV

mχ

�

×

�
NDR

0.1

�
−3=4

�
TDR;0

aTDRðzÞ
�

3

×

�
gDR
2

�
−1=4

�
Tγ

2.72 K

�
−3=4

:

This implies that over a given decade in redshift the relative
amount of energy extracted from the dark radiation due to
its dark matter scattering is tiny as long as the values of all
parameters are reasonably close to their fiducial values. The
only issues can occur when NDR becomes very small. Only
as NDR approaches the order of ∼10−12 can this effect—
over the complete evolution in the code (32 e-folds in scale
factor)—introduce an order unity change of energy density.
We thus conclude that for the parameter range considered in

this work, we do not need to worry about modifying the
temperature equations. As almost all points sampled in
the Markov-chain Monte Carlo runs will also have
approximately NDR ≳ 10−5, we will also not worry about
possible spectral distortions of the interacting stepped
dark radiation models.

APPENDIX C: SELF-INTERACTING
DECOUPLING OF THE DARK RADIATION

From dimensional analysis, one expects a self-
interaction rate of the dark photon in the stepped partially
acoustic dark radiation model of size (cf. [4][Eq. (3.5)])

Γself ¼ Cself
α4d
m8

T9
DR; ðC1Þ

where Cself is some unknown order-one constant. We can
then simply find the redshift of Γself ¼ H at which the dark
radiation self-interaction will become inefficient, which
gives us the condition

1þ z ¼
�

HðzÞ
ð1þ zÞ3=2

�
2=15
�
aTDRðzÞ
TDR;0

�
−6=5

ð1þ ztÞ16=15

× α−8=15d T−2=15
DR;0 C−1

self :

Here we have used m ¼ TDR;0 · ð1þ ztÞ to eliminate the
mass. We can further simplify many of these terms in order
to get a simple expression under a few assumptions. First,
we can use Eq. (B2) at z ¼ 0 to relate TDR;0 to known CMB
quantities such as TCMB as well as the model parameter
NDR and gDR, which we set simply to 2 for this case. We
further approximate HðzÞ ≈

ffiffiffiffiffiffiffiffiffiffiffi
Ωmh2

p
H0=hð1þ zÞ3=2 dur-

ing the time of interest (we assume matter domination), and
we approximate aTDR ≈ TDR;0 (which is justified since the
decoupling is typically far from the step, where the usual
T ∝ a−1 scaling applies). We further use αd ¼ 10−4, some
approximate value of Ωmh2 ≈ 0.14 and N−1=30

DR ≈ 1 (for any
reasonable values of NDR) to find the estimate

1þ zself−dec ≈ 0.017C−1
self · ð1þ ztÞ16=15: ðC2Þ

As long as Cself is close to unity, and 1þ zt is not too large,
the self-decoupling of the dark radiation happens around or
after recombination, thus justifying the fully self-coupled
treatment. With zt ¼ 105 (our upper bound), this computes
to a decoupling just around radiation-matter equality with
zself−dec ∼ 3000, which should not significantly affect most
observables. One could either increase αd or decrease the
upper prior bound to be even more secure of a fully self-
coupled dark radiation, and we could conduct a more
detailed investigation of this point for future work.

14See the related discussion in [61,62], which focuses on
interaction with electrons/baryons/photons, but can easily be
generalized to dark radiation interactions.
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APPENDIX D: COSMOLOGICAL IMPACT

The different dynamics in the two models can be
understood in a simple way. First, in the weakly interacting
model, all of the dark matter weakly interacts with the dark
radiation. This means that soon after horizon entry, a given
mode follows an approximate equation of motion (written
in conformal Newtonian gauge)

 δidm þH

 
1þ κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a=aeq
p

!
δ̇idm ¼ SðηÞ; ðD1Þ

where SðηÞ ¼ −3ϕ00 þ k2ϕ − 3
η ϕ

0 is the term sourcing the
growth, ϕ is the Newtonian potential (we have ignored
anisotropic stress), and we have assumed that in our regime
of interest δidm ≫ δDR. During radiation domination,
the Hubble friction is increased by 1þ κ. Once we have
z < minðzt; zeqÞ the interaction rate drops so that modes
that enter the horizon after minðzt; zeqÞ will evolve as in a
ΛCDM universe: δidm ∝ a1. This implies that the suppres-
sion of the matter power spectrum will be on comoving
wave numbers k > kc ≃H0

ffiffiffiffiffiffi
ΩR

p
· minðzt; zeqÞ, where ΩR

is the total radiation energy density in units of the critical
energy density.
It is straightforward to show that during radiation

domination and on scales where δρR ≳ δρM in ΛCDM
we have

δcdm;ΛCDM ∼ logðkηÞ; ðD2Þ

whereas in the weak model, this gets modified to

δidm;weak ¼
1

κ
þ 3κ=2ð3 − 2κÞðkηÞ−κ cosðκπ=2ÞΓðκ − 1Þ

3 − κ

∼ logðkηÞ − 1

2
κ log2ðkηÞ; ðD3Þ

where we have solved Eq. (D1) in the kη ≫ 1 limit using
the potential sourced by radiation perturbations,

ϕ ¼ 3
sinðkη= ffiffiffi

3
p Þ − kη=

ffiffiffi
3

p
cosðkη= ffiffiffi

3
p Þ

ðkη= ffiffiffi
3

p Þ3 : ðD4Þ

In the second line of Eq. (D3) we take the κ ≪ 1 limit. As
we approach minðzt; zeqÞ the strength of the interaction
drops, and the modes all start to grow as standard CDM.
On the other hand, the main impact of the strongly

interacting model is the response of the noninteracting
cold dark matter to the presence of the strongly coupled
fraction, fidm. While the interacting dark matter is strongly
interacting with the dark radiation, it does not cluster.
The noninteracting cold dark matter follows the standard
equation of motion

 δcdm;strong þHδ̇cdm;strong ¼ SðηÞ: ðD5Þ

While the perturbations are dominated by radiation, the
source term, S, is the same as it is in ΛCDM, leading to a
standard evolution. After matter domination and on scales
where the matter perturbations dominate we have

k2ϕ ≃ −
3

2
H2

0

ð1 − fidmÞΩM

a
δcdm;strong: ðD6Þ

In this case, in ΛCDM we have

δcdm;ΛCDM ∼ a1; ðD7Þ

whereas for the strongly interacting case

δcdm;strong ∼ aþ
1
4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25−24fidm

p
−1
�
; ðD8Þ

which then transitions to δcdm ∼ a1 for z < zidm;dec as at this
point the strong interaction rate drops to zero.

1. Impact on matter power spectrum

A comparison between Eqs. (D3) and (D8) shows us that
the weak model will produce a suppression that increases
logarithmically with k (see also Ref. [7]), whereas modes
that enter the horizon before or around matter/radiation
equality will be suppressed by the same amount in the
strong model, leading to a relatively constant suppression
for modes that enter at z ≫ zidm;dec.
The scale at which the matter power spectrum suppres-

sion begins for the weak model is directly related to
minðzt; zeqÞ: kc ≃ 1=maxðτt; τeqÞ. On the other hand, in
the strong case, there is a significant delay between zt and
the redshift at which the interacting dark matter decouples
from the dark radiation, zidm;dec. We can estimate the
difference between these two redshifts by noting that the
interaction rate in the strong model decreases mainly due to
the exponential term [see Eq. (4)], giving

zt
zidm;dec

≃ ln
Γstrong

H

				
a≪at

; ðD9Þ

where we have used the fact that T ∝ 1þ z. Given the
value of αd ¼ 10−4 and interacting dark matter mass,
mχ ¼ 103 GeV, we have ln½Γstrong=Hja≪at � ≃ 20 leading
to zidm;dec ≃ zt=20. The tight coupling between the inter-
acting dark matter and dark radiation leads to a slight
delay between when a mode enters the horizon and when
the suppression begins. Empirically we find that the
suppression occurs after approximately the first half
oscillation of the dark radiation, so at scales smaller than
kc ≃ π=τidm;dec.
We are now able to provide approximate scaling laws for

the level of suppression in the two models. The amplitude
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of the suppression of the matter power spectrum in the
weak model will scale as

Pweak
m

PΛCDMþDR
m

¼
�

δidm
δcdm;ΛCDM

�
2

∼


1 − κ lnðkηtÞ; kηt ≥ 1

1; kηt < 1
; ðD10Þ

where we have used Eqs. (D2) and (D3). The suppression
in the strong case is more complicated. First, while the
interacting dark matter is tightly coupled, all CDM modes
will grow at the suppressed rate given by Eq. (D8). Once
the interacting dark matter decouples, its density contrast
will grow and the dynamics are driven by the combined
cold and interacting dark matter system which are coupled
through the gravitational potential. Although we can get a
qualitative sense of the subsequent evolution (see for
example Appendix C of Ref. [63]), a quantitative approxi-
mation is complicated (e.g., Refs. [64,65]). Here we supply
a fitting formula for the asymptotic suppression in the
matter power spectrum that captures both the scaling with
fidm and zt:

Pstrong
m

PΛCDMþDR
m

				
k≫kc

¼
�
δcdm;strong

δcdm;ΛCDM

�
2

;

≈
�
1þ 0.43 · fidm ln

�
zt

3.5 × 106

��
2

;

ðD11Þ

In the strongly interacting model, the tightly coupled
fraction will also impart dark acoustic oscillations of
wavelength λDAO ∼ 2π=½ηidm;dec=

ffiffiffi
3

p � with an amplitude
that scales as δDR=δcdm;strong ∝ zidm;dec=zeq (see for example
Appendix C of Ref. [63]).
We show the suppression of the matter power spectrum

(solid curves) for several choices of log10ðztÞ along with the
approximate scalings in Fig. 15 (dotted curves). There we
can see that the logarithmic suppression in the weak model,
Eq. (D10), is a very good approximation (left panel).
As shown by the dotted vertical lines in the right panel,
the scale above which the strong model is suppressed is
well approximated by kc ≃ π=τidm;dec. The horizontal dotted
lines show that the level of the suppression in the strong
model is in good agreement with Eq. (D11), but the blue
curves [log10ðzidm;decÞ ¼ 3.6] show this degrades as zidm;dec

approaches zrec. Finally, we can see that for the strong
model, the amplitude of the DAO increases as zt increases.

2. Impact on the CMB

Both the weak and strong models imprint a significant
suppression to the gravitational potentials by photon
decoupling, as shown in Fig. 16. In that figure, we have
related the wave number, k, to its corresponding multipole,
l, at the surface of last scattering through l ≃ kðη0 − ηdecÞ,
where η0 and ηdec are the conformal time today and at
photon decoupling, respectively. Since the dynamics of the
interacting dark matter is imprinted on the CMB through
gravitational effects, it would appear as though both models

FIG. 15. The impact of both the weak (left) and strong (right) models on the matter power spectrum. The different solid curves
correspond to different values of log10ðztÞ: 4 (black), 4.5 (red), 5 (blue). The dotted curves in the left panel show the approximate
logarithmic suppression for the weak case, Eq. (D10) and the horizontal dotted lines in the right panel show the approximate asymptotic
suppression, Eq. (D11), in the strong case. The vertical dotted lines in the right panel show the approximate scale at which the
suppression starts in the strong case: kc ≃ π=τidm;dec. For both cases we chose ΔNDR ¼ 0.5; for the weak case we used Γ0 ¼
8 × 10−8 Mpc−1 (which corresponds to κ ¼ 0.02) and for the strong case fidm ¼ 0.03. Note that the power spectra are normalized by a
stepped radiation model (without interacting dark matter). For the strong model the values of zt correspond to log10ðzidm;recÞ ¼ 2.6, 3.1,
3.6, respectively.
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will produce CMB power spectra that deviate from ΛCDM
by roughly the same amount at l ∼ 2000. However, as
we now discuss, the time evolution of the gravitational
potentials plays a central role and allows us to distinguish
between the impact of the weak and strong models.
Under the tight coupling approximation, the photon fluid

equations can be written as a damped, driven, harmonic
oscillator with the Weyl potential Ψ≡ ðϕþ ψÞ=2, playing
the role of a driving force. From this, we can write the
Sachs-Wolfe contribution to the temperature anisotropies as

�
ΔTð  k; ηÞ
TCMB

�
SW

≃ ζð  kÞ

2
64e−k2=k2D
− cos

�
kηffiffiffi
3

p
�

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
free oscillations

−
2kffiffiffi
3

p
Z

η

0

dη0Ψðk; η0Þ sin
�
k½η − η0�ffiffiffi

3
p

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

driving

þ ϕðk; ηÞ|fflfflffl{zfflfflffl}
potential

�
þ ψðk; ηÞ|fflfflffl{zfflfflffl}

gravitational redshift

3
75; ðD12Þ

where ζð  kÞ is the primordial curvature perturbation, the
exponential factor takes into account the damping effects of
photon diffusion which occurs over a length scale ∼1=kD,
and we have approximated the sound horizon as rsðηÞ≃
η=

ffiffiffi
3

p
. From this, we can see that the Sachs-Wolfe con-

tribution to the temperature anisotropies consists of four
terms: a term giving us free oscillations (note that for
adiabatic initial conditions, we have used the fact that
1
4
δγðk; 0Þ þ ϕðk; 0Þ ¼ −1 [60]), an integrated term due to

the driving effects of the Weyl potential, a term due to the
potential ϕ, and finally the gravitational redshift due to ψ .
We will use an instantaneous decoupling approximation so
the above equation will be evaluated at η ¼ ηrec.
In order to fit the observed CMB power spectrum we

expect deviations from ΛCDM will be small, in which case
the difference in the predicted temperature power spectrum
is well approximated by

ΔCTT
l

≃ ð4πÞ2
Z

k2dkPprimðkÞSWΛCDMðk; ηdecÞ

×



−
2kffiffiffi
3

p e−k
2=k2D

Z
ηdec

0

dη0ΔΨðk; η0Þ sin
�
k½ηdec − η0�ffiffiffi

3
p

�

×Δϕðk; ηdecÞe−k2=k2D þΔψðk; ηdecÞ
�
j2lðk½η0 − ηdec�Þ;

ðD13Þ

where we have assumed instantaneous photon decoupling
at the conformal time ηdec, SWΛCDMðk; ηdecÞ is the standard
ΛCDM Sachs-Wolfe terms. We can therefore see that the
change in the temperature power spectrum will be a balance
between the driving term and the contribution from the
gravitational potentials.
Since for the same value of zt the strong model maintains

interactions for longer compared to the weak model (for
example with log10ðztÞ¼4.5we have log10ðzidm;decÞ ¼ 3.1)
we can already anticipate that these contributions will be
significantly different between the two models. We confirm
this in Fig. 17 where we can see that the strong model

FIG. 17. The difference between the driving and potential terms
for the weak and strong models for log10ðztÞ ¼ 4.5, NDR ¼ 0.5,
Γ0 ¼ 5.8 × 10−7 Mpc−1 for the weak model, and fidm ¼ 0.03 for
the strong model. On the top x axis we have indicated the
approximate multipole, l, through l ≃ kη0, where η0 is the
conformal time today.

FIG. 16. The fractional change, relative to the corresponding
model without dark matter-dark radiation interactions, in the
Weyl potential evaluated at photon decoupling. The parameters
are the same as in Fig. 3.
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produces larger changes to the Sachs-Wolfe terms than in
the weak model. It is also important to note that the two
contributions have opposite signs so that they will, to some
extent, cancel when combined to compute the full ΔCTT

l .
The amount of cancellation between the driving and

potential terms determines the overall difference between
the predicted temperature power spectra. Figure 18
shows how these two terms contribute to the overall
fractional difference in the temperature power spectrum.
For both models, we have set log10ðztÞ ¼ 4.5. The left
panel shows that for the weak model, these terms nearly
cancel, leading to a ≲1%-level difference. The right panel
shows that for the strong model, the driving term is offset
leading to a ≲2%-level difference. Note that Planck
measures multipoles around l ∼ 1000 to within the
cosmic variance limit which corresponds to ΔCl=Cl ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð2lþ1Þp

≃0.03ð1000=lÞ1=2, indicating that we should
expect Planck to be sensitive to such an offset. A
comparison between this Fig. 18 (approximate) and
Fig. 3 (full) shows that Eq. (D13) is a good approximation
to the full calculation.
Even though we have focused on the CMB temperature

anisotropies in this section, in the tight baryon-photon
coupled limit the (scalar) CMB polarized anisotropies are
computed from the photon dipole moment, which is
simply related to the temperature anisotropies through
the photon continuity equation. We also note that the
early integrated Sachs-Wolfe effect may also differentiate
the two models, but will only contribute to scales
(l≲ η0=ηdec ∼ 100) larger than those which constrain
these models large angular scales.
As discussed in the main text, for values of fidm which

may resolve the S8 tension, the delay between zt and
zidm;dec in the strong model leads to a poor fit to the
measured CMB power spectra. We can now see this is
mainly due to the fact that the strong interaction induces a

time evolution in the gravitational potential which, in
turn, imprints itself in the CMB through the gravitational
driving term. This implies that if we make zt large enough
in the strong model we may be able to limit this time
evolution around photon decoupling and provide a better
fit to CMB data. Indeed, as we show in Sec. VI, when we
allow zt to be as large as 106 the strong model is able to
resolve both tensions.

APPENDIX E: IMPACT OF NONLINEAR
CORRECTIONS

While most of our results depend entirely on predictions
that can be obtained starting from linear perturbation
theory, for the lensing of the primary CMB anisotropies
it is well known that the nonlinear enhancement of structure
formation has a small but nonzero impact, even in the
ΛCDM model. As such, we use HALOFIT [19] (taking into
account the [66] corrections) to estimate the nonlinear
matter clustering solely for the purpose of the CMB lensing
(we explicitly do not use it for EFTofBOSS/EFTofeBOSS).
While this code has been shown to provide excellent
estimates of the nonlinear clustering in ΛCDM cosmolo-
gies (and some extensions thereof), this estimate could
potentially be biased in the interacting stepped dark
radiation cosmologies used within this work. Given our
summary of minimal χ2 in Table V, we can conclude that
the difference for the strongly interacting model due to
HALOFIT is minute (Δχ2 < 3.5). For the weakly interacting
model, the conclusion is mostly the same (Δχ2 < 4.5),
except for the DS case, where the difference is 6.3. More
importantly, we note that none of the constraints shift by
more than ∼20% when not including HALOFIT, and this
remains true despite the shifts in χ2, even for the DS case
for the weakly interacting model with the largest χ2

difference.

FIG. 18. The approximate fractional difference [Eq. (D13)] between the temperature power spectrum [only Sachs-Wolfe (SW) effect]
for both the weak (left) and strong (right) models using the same model parameters as in Fig. 15. The full difference (black) is the sum of
the driving (blue) and potential (red) contributions. A comparison between the differences here and Fig. 3 shows that Eq. (D13) is a good
approximation to the full calculation.
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APPENDIX F: χ 2 AND BEST FIT VALUES

We provide for convenience and reproducibility a table
of the minimized χ2 in Table V at the best-fitting points

indicated in Table IV for the baseline analysis, minimized
using the same algorithm as in [1]. We note that these χ2 are
accurate to about 0.5 in magnitude.

TABLE V. Table of the best-fit χ2 for various combinations of model and datasets, separated by individual likelihood contributions.
ð�ÞWe note that the “BAO” for analyses including EFTofBOSS/EFTofeBOSS (denoted as BOSS/eBOSS in the header) only refer to the
low-z data from 6dFGS and SDSS DR7 but it does not include BOSS DR12.

Data Model χ2 tot P18TTTEE P18lens BAO Pantheon H S ACT þ SPT BOSS eBOSS

D ΛCDM 3806.02 2765.83 8.80 5.50 1025.87 � � � � � � � � � � � � � � �
D Weak 3804.27 2762.64 10.65 5.23 1025.75 � � � � � � � � � � � � � � �
D Strong 3805.53 2764.85 9.27 5.54 1025.88 � � � � � � � � � � � � � � �
D (wo HF) Weak 3807.51 2766.18 9.04 5.24 1027.05 � � � � � � � � � � � � � � �
D (wo HF) Strong 3806.79 2765.36 8.85 6.42 1026.15 � � � � � � � � � � � � � � �
DH ΛCDM 3838.48 2771.39 9.33 5.62 1025.63 26.51 � � � � � � � � � � � �
DH Weak 3812.54 2768.23 10.07 5.81 1025.64 2.79 � � � � � � � � � � � �
DH Strong 3814.92 2770.17 10.81 5.51 1025.63 2.81 � � � � � � � � � � � �
DH (wo HF) Weak 3814.56 2769.62 9.71 6.05 1026.87 2.31 � � � � � � � � � � � �
DH (wo HF) Strong 3815.39 2769.53 10.14 6.50 1025.66 3.57 � � � � � � � � � � � �
DS ΛCDM 3814.35 2767.92 9.81 5.19 1025.66 � � � 5.76 � � � � � � � � �
DS Weak 3805.00 2763.21 10.67 5.17 1025.71 � � � 0.23 � � � � � � � � �
DS Strong 3809.04 2767.57 9.34 5.39 1025.83 � � � 0.91 � � � � � � � � �
DS (wo HF) Weak 3811.29 2770.23 9.49 5.38 1025.82 � � � 0.37 � � � � � � � � �
DS (wo HF) Strong 3811.72 2769.14 9.29 6.70 1026.22 � � � 0.37 � � � � � � � � �
DHS ΛCDM 3841.38 2772.32 10.30 6.43 1025.66 23.73 2.94 � � � � � � � � �
DHS Weak 3814.90 2770.34 10.17 5.72 1025.63 2.41 0.63 � � � � � � � � �
DHS Strong 3821.55 2771.76 10.79 7.85 1025.83 2.98 2.38 � � � � � � � � �
DHS (wo HF) Weak 3819.46 2772.74 10.44 5.76 1026.86 2.07 1.59 � � � � � � � � �
DHS (wo HF) Strong 3824.93 2773.15 11.55 7.06 1025.70 3.35 4.22 � � � � � � � � �
DHS (high zt) Strong 3817.74 2773.73 9.84 5.60 1025.63 2.85 0.10 � � � � � � � � �
DHS (free fidm) Weak 3815.68 2770.42 9.90 5.9 1025.63 2.82 1.01 � � � � � � � � �
DHS (free rg) Strong 3815.95 2769.11 10.41 5.49 1025.63 0.67 4.64 � � � � � � � � �
DHS þ ACTþ SPT ΛCDM 5220.18 2778.96 10.30 6.00 1026.05 24.93 3.40 1370.54 � � � � � �
DHS þ ACTþ SPT Weak 5186.57 2772.57 9.79 5.44 1025.63 6.45 0.56 1366.13 � � � � � �
DHS þ ACTþ SPT Strong 5195.75 2769.75 10.57 8.12 1027.00 4.52 6.43 1369.36 � � � � � �

(Table continued)

TABLE IV. Best-fit values for the different parameters for the weak and the strong model, given the baseline dataset D and either the
H0 prior (H) or S8 prior (S).

Strongly interacting model Weakly interacting model

Parameter D DH DS DHS D DH DS DHS

H0 [km=s=Mpc] 68.49 71.50 67.94 71.90 68.09 71.70 68.24 71.80
S8 0.825 0.832 0.784 0.798 0.794 0.824 0.776 0.781

109As 3.053 3.049 3.046 3.031 3.038 3.051 3.038 3.053
ns 0.9721 0.9829 0.9716 0.9715 0.9708 0.9820 0.9733 0.9892
Ωm 0.3103 0.2993 0.3089 0.2911 0.3067 0.2979 0.3055 0.2984
τreio 0.0573 0.0548 0.0555 0.0554 0.0520 0.0570 0.0519 0.0565

NDR 0.13 0.64 0.01 0.74 0.01 0.64 0.02 0.64
Γ0 [10−6/Mpc] � � � � � � � � � � � � 1.03 0.07 1.17 0.63
fidm 0.01 4 × 10−5 0.08 4 × 10−4 � � � � � � � � � � � �
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