
Learning Assisted Post-Manufacture Testing and

Tuning of RRAM-Based DNNs for Yield Recovery

Kwondo Ma, Anurup Saha, Chandramouli Amarnath, Abhijit Chatterjee

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta GA, USA

kma64@gatech.edu, asaha74@gatech.edu, chandamarnath@gatech.edu, abhijit.chatterjee@ece.gatech.edu

AbstractÐVariability-induced accuracy degradation of RRAM-
based DNNs is of great concern due to their significant potential
for use in future energy-efficient machine learning architectures.
To address this, we propose a two-step process. First, an enhanced
testing procedure is used to predict DNN accuracy from a set
of compact test stimuli (images). This test response (signature) is
simply the concatenated vectors of output neurons of intermediate
and final DNN layers over the compact test images applied. DNNs
with a predicted accuracy below a threshold are then tuned based
on this signature vector. Using a clustering based approach, the
signature is mapped to the optimal tuning parameter values of
the DNN (determined using off-line training of the DNN via back-
propagation) in a single step, eliminating any post-manufacture
training of the DNN weights (expensive). The tuning parameters
themselves consist of the gains and offsets of the ReLU activation
of neurons of the DNN on a per-layer basis and can be tuned
digitally. Tuning is achieved in less than a second of tuning time,
with yield improvements of over 45% with a modest accuracy
reduction of 4% compared to digital DNNs.

I. INTRODUCTION

Among emerging technologies for implementing deep neu-

ral networks (DNNs), Resistive Random-Access Memory

(RRAM) has gained significant attention as a promising can-

didate [1] for accelerating DNN computations due to its fast

read/write speed, high density and lower power consump-

tion [2]±[5]. However, RRAM-based DNNs are vulnerable to

manufacturing process variations which impact their operating

reliability and manufacturing yield [6]. Such DNNs may ex-

perience significant accuracy degradation, up to 60%, for fully

connected and convolutional neural networks, due to RRAM

crossbar nonidealities induced by process variations [7]. To

characterize these effects, recent studies have proposed circuit-

level macro modeling techniques [8] for evaluating memristor-

based accelerator performance (classification accuracy). These

have been leveraged in prior research to train RRAM based

DNNs in ways that factor manufacturing process variations

and defects into the training process itself. A variation-aware

training (VAT) scheme for addressing hardware limitations and

device variations was presented in [9], but is less effective

under large process variations. VAT for RRAM crossbar arrays

under random variability effects was discussed in [10]. Further,

crossbar column rearrangement and weight constrained train-

ing was used to resolve crossbar nonidealities in sparse DNNs

[11]. However, neither of these methods addresses the effects

of systematic process variations which have a significant

impact on DNN performance [12] (Fig. 1 shows accuracy

degradation of MobileNet on CIFAR10 dataset as a function

Fig. 1: Accuracy degradation under systematic variations with

variability-aware training.

of systematic variations when it is trained in a variability-

aware manner for both random and systematic variations).

Also, VAT techniques are not effective in enhancing the worst-

case performance of DNNs [13]. To address systematic process

variability effects, a post-manufacture tuning procedure was

proposed in [12] and requires the use of a column of the

RRAM crossbar with calibrated weights. Tuning is performed

digitally by scaling the input to each neuron by a scaling factor

determined by use of the crossbar column above. However, the

method is unable to fully recover yield as discussed later in

Section V-C. In contrast, the tuning approach developed in this

research is performed in the digital domain, offers significantly

better yield recovery (see Section V), and can be applied to

DNNs with negligible hardware modifications.

The proposed post-manufacture tuning approach consists

of two steps: (a) a testing step in which a compact subset

of test images from the DNN test dataset is applied to the

model and the performance of the DNN is predicted from the

DNN test response signature (consisting of the concatenated

vectors of averaged outputs of intermediate layers and outputs

of the final dense layer over compact test images applied)

and (b) a tuning step in which the optimal values of a set of

digitally tunable parameters of the DNN are predicted directly

(no tuning iterations required) from the same DNN signature.

The optimal values above, are determined by a prior off-

line back-propagation driven optimization procedure. The key

contributions and benefits of the proposed approach are:

(1) A predictive testing approach is developed which allows

determination of the classification accuracy of RRAM-based

DNNs that need to be tuned with high precision and low

test cost. This minimizes testing and tuning costs in volume

manufacturing.

(2) A digital tuning approach for RRAM-based DNNs. Only

the ReLU activations of neurons are tuned on a per-layer basis

2024 Design, Automation & Test in Europe Conference (DATE 2024)	

 979-8-3503-4859-0/DATE24/© 2024 EDAA

	

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 16:17:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Architecture of RRAM-based DNN.

(gain and offset parameters). A DNN with L ReLU layers

requires tuning of only 2L parameters for yield recovery.

(3) The prediction of the optimal tuning knob values from the

DUT response signature is performed by a trained learning

algorithm (based on unsupervised response clustering) in a

single inference pass allowing testing and tuning for yield

recovery to be performed in less than a second (instead of 10s

of seconds or minutes as with other schemes) while achieving

accuracy drop within 2% to 4% of a digitally trained DNN.

II. PRELIMINARIES OF RRAM

A. Architecture of RRAM-based DNN

In RRAM-based DNN accelerators, vector-matrix multipli-

cation (VMM) is performed using a RRAM crossbar, while

pooling, batch normalization and activation operations are

carried out using digital computation units. Fig. 2a illustrates

the computation flow of a dense layer within the RRAM-based

DNN. The real-number inputs to the dense layer are converted

to analog voltages using Digital-to-Analog Converters (DACs)

and passed on to a VMM unit implemented using RRAM

crossbar. The VMM unit performs the multiplication of a

stored conductance matrix with the input voltages, resulting

in accumulated current outputs. Half of the crossbar columns

store positive weights while the remaining columns store

negative weights. We use HfOx based RRAM device [14] with

two states: High Resistance State (HRS) representing logic

’0’ and Low Resistance State (LRS) representing logic ’1’.

The output currents from the crossbar are converted back to

real numbers using Analog-to-Digital Converters (ADCs) and

shift/add units. The resulting outputs are then forwarded to the

batch normalization and activation functions of the DNN.

B. Variability Modeling Framework

The proposed variability modeling framework quantifies

how the weights represented by RRAM devices of a DUT

differ from pretrained DNN weights due to process variation.

As shown in Fig. 2b, we calculate a non-ideal weight wni

for each ideal weight w of the DNN. Corresponding to

each weight w, two weights w+, w− ≥ 0 are calculated

as w+ = I[w > 0]|w| and w− = I[w < 0]|w|, which

are programmed into the positive and negative sub-arrays of

the crossbar respectively (I[·] denote the Indicator function).

Assuming 16-bit fixed point weight representation, the binary

representation of w+ is calculated as {w+
15, · · · , w+

0 } and the

j-th bit in the binary representation w+
j is stored using an

RRAM device with conductance g+j . We inject variations in

the gap dynamics fitting parameter γ+
j of each RRAM device

from its ideal value γ0 = 16.5 [14], [15], and calculate γ+
j

as γ+
j = γ0 + γsys + γrand

j , where γsys, γrand
j represent the

systematic and random components of the variation. Following

the variability modeling of [12], the systematic component

of variability (γsys) is sampled once and all RRAM devices

in the crossbar share the same γsys. For all RRAM devices,

γrand
j is sampled independently. The systematic and random

components of variation are drawn from two zero mean normal

distributions with variance σ2
sys and σ2

rand respectively, and

the total variance of the gap dynamics fitting parameter is

σ2
tot = σ2

sys + σ2
rand. Actual conductance of each RRAM

device gn+
j is calculated as a function of the expected con-

ductance (g+j) and the gap dynamics fitting parameter (γ+
j)

using Hspice simulations. Similarly, non-ideal conductances

corresponding to all the bits in the binary representation of

w− are calculated as {gn−

15, · · · gn−

0 }. We compute an effective

conductance gneff =
∑15

j=0(gn
+
j −gn−

j)×2j and the effective

conductance is mapped back to a non-ideal weight wni.

III. PREDICTIVE TESTING OF RRAM-BASED DNNS

The proposed predictive testing technique (also called alter-

native testing in [15]) is described in Fig. 3. For each of N
(statistically significant) RRAM-based DNNs, DNN i (1 ≤
i ≤ N), selected across diverse process corners, we construct

a vector Vj = [v1j , v2j , ...vNj] corresponding to the j-th

image in the testing image dataset, such that vij = 1 if

the j-th image is classified correctly by the i-th DNN else

vij = 0. The vectors Vj corresponding to all the images in the

testing dataset are clustered using agglomerative hierarchical

clustering [16] into C clusters and the images corresponding

to the medoid of each cluster are selected to be included in the

compact test dataset (this is similar to the approach proposed

in [15]). The clustering algorithm is used to trade off the

number of clusters with cluster size and the euclidean distance

between the medoid elements of each cluster. Further, we

mix the down-selected images with randomly filtered images

and repeatedly perform down-selection to generate predictive

test image datasets while keeping the size of compact test

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 16:17:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Post-manufacture testing and tuning framework.

dataset fixed at the prior selected level. Specific filters used

include gaussian, median, and box filters along with brightness,

contrast, gamma correction and adjustments to hue and color

saturation. At each step, the accuracy of the regressor of

Fig. 3c is assessed and the compact image dataset which

achieves the best inference accuracy prediction is selected for

DNN testing. Using experiments on cluster size, we find that

only 10 images from the CIFAR-10 dataset of 10,000 testing

images (1000× saving) gives adequate test performance of our

proposed approach.

Once the compact test dataset is finalized, we observe

the averaged outputs of neurons of intermediate layers and

raw outputs of the final dense layer of the network under

application of the compact test dataset (this is different from

the approach of [15]). In Fig. 3, the DNN under test (DUT)

has L network layers and C is the number of classes for image

classification. The test response from single test image (stim-

ulus) is defined as, TR = [Y1, Y2, ..., YL−1, O1, O2, ..., OC] ∈
R

L−1+C where Yx represents the averaged output of all the

neurons in the x-th intermediate layer. Consequently, when we

apply a compact test image dataset of size K, the response sig-

nature vector is obtained by concatenating the test response as−→
sig = [TR1, TR2, ..., TRK] ∈ R

(L−1+C)×K . This signature

vector of the DUT is passed to an outlier detector (see Fig.

3b) to assess whether the DNN response signature vector is

consistent with the signature vectors of DNNs used to train

the regressor of Fig. 3c. In order to identify anomalous DUTs,

we employ an Elliptic Envelope (EE) technique [17] to fit

the high-dimensional test signature vectors. Outlier devices

undergo comprehensive testing using the entire testing dataset

within the outlier handler. Additionally, based on the derived

inference accuracy, we conduct offline ReLU layer tuning for

DUTs that fall below the accuracy threshold. The outcomes

of both testing and tuning procedures are subsequently em-

ployed to recalibrate the performance regressor and clustering

algorithm within the learning-assisted tuning scheme.

The regressor itself is trained to map test signature of DNN

under compact image dataset to corresponding DNN classifi-

cation accuracy values for RRAM-based DNNs, sampled from

diverse process corners. The trained multivariate regression

spline based regressor (MARS) [18] predicts the classification

Fig. 4: Trainable-ReLU activation function.

accuracy of a tested DNN as â, using the derived signature−→
sig above. We consider the accuracy prediction’s confidence

level, taking into account the inherent prediction error (err =
|â−a|), where a denotes the actual DNN accuracy. The error in

accuracy prediction is assumed to have a gaussian distribution

such that if the predicted accuracy of a specific DNN exceeds

the desired accuracy threshold by an acceptable confidence

margin, â ≥ ath + kσ, it is categorized as a good DNN.

All other DNNs are subjected to post-manufacture tuning. The

proposed predictive testing reduces the standard deviation of

prediction error of the RRAM-based DNN accuracy from 1.37

for the scheme of [15] to 0.92 for MobileNet on the CIFAR10

dataset. This reduction of prediction error results in lower

tuning costs during manufacturing.

IV. POST-MANUFACTURE TUNING

We introduce a novel post-manufacture tuning method for

RRAM-based DNNs, digitally adjusting the gain and offset

parameters of ReLU activation functions of the DNN to restore

accuracy. This is augmented by a learning assisted tuning

scheme using test signature clustering to discover optimal

tuning configurations for DUTs in a single step.

A. Digital ReLU Layer Tuning

We propose a digital ReLU layer tuning technique to address

process variability effects in RRAM-based DNNs. This method

involves transforming standard ReLU activation functions

within the DNN model into proposed trainable ReLU functions

with two global tuning parameters per layer. Fig. 4 illustrates

the standard ReLU function, where the x-intercept is 0 and

the slope is 1. Our tuning scheme introduces the ‘T-ReLU’

function, which incorporates a trainable offset (b) and gain

(a) as layer tuning parameters. Thus, the T-ReLU activation

function is defined as, T-ReLU(x) = max(0, (x− b)× a).
Algorithm 1 performs optimization of the cross-entropy

loss function using the Adam optimizer [19] for an assigned

learning rate (line 1). For each DUT that requires tuning, we

transform all L ReLU activation layers in the network into T-

ReLUs and freeze all weights in the DUT except for the tuning

parameters associated with these T-ReLUs (line 2-5). Here, p
represents the set of tuning parameters of our optimization,

containing the vectors of gain and offset for all T-ReLU

layers. For each training epoch, inference is performed using

the training dataset applied to the DUT, making predictions

based on the current T-ReLU configuration (line 7). The loss

is then calculated by comparing these predictions with the

training labels (line 8). For each layer in reverse order, we

calculate the loss gradient with respect to the layer’s T-ReLU

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 16:17:02 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Optimization of T-ReLU tuning parameters

1: Assign learning rate (η), Loss function (L), Optimizer (F)
2: for DUT that requires a tuning do
3: Transform L number of ReLU activation functions to T-ReLU
4: Freeze all the weights except the set of tuning parameters (p =

{−→a ,
−→
b }) of T-ReLU activation functions

5: end for
6: for epoch = 1, 2, ... do
7: Perform inference under the stimuli from training dataset
8: Calculate loss L between DUT outcomes and true labels
9: for l = L, L− 1, ... , 1 do

10: Calculate the gradient with respect to p: ∂L

∂p(l)

11: Update p(l) using Optimizer: p(l) = F(p(l), ∂L

∂p(l)
, η)

12: end for
13: end for
14: return Optimized tuning parameters p∗

tuning parameters and update them using the optimizer (line 9-

12). After training, the algorithm returns the optimized tuning

parameters of the T-ReLU functions for the DUT (line 14).

Since the computation of activation functions in RRAM-

based DNNs occurs in the digital domain, we can seamlessly

integrate the tuning parameters into the network with almost

zero hardware modification. Moreover, our method only re-

quires a pair of tuning parameters for each ReLU layer,

effectively capturing the perturbations caused by systematic

variability effects. Our proposed digital ReLU layer tuning

thus significantly reduces the tuning cost, time, and parameter

complexity compared to traditional weight retraining.

Tuning on smaller training subset: The efficiency of the

proposed digital ReLU layer tuning approach can be enhanced

by utilizing a smaller training subset instead of the entire

training dataset. This approach involves a tradeoff between

the training cost and the model performance. We refer to this

method as ‘subset tuning’, where the size of the training data

subset used is represented as a proportion of the complete

dataset. For the CIFAR-10 dataset, using 5,000 train images

for subset tuning would be referred to as ‘10% subset tuning’

(considering the entire set of 50,000 training images).

B. Learning Assisted Tuning

The learning assisted tuning technique is based on the obser-

vation that the signatures obtained from predictive testing con-

tain enough information about the statistics of RRAM-based

DNNs for successful prediction of model accuracy. Algorithm

2 outlines a learning assisted approach (as shown in Fig. 3d)

to tuning new DUTs without offline back-propagation. This

approach significantly reduces the computational complexity

and effort required for tuning new DUTs while leveraging the

knowledge gained from previous tuning experiments.

Algorithm 2 begins by collecting the optimized tuning

parameters from previously post-tuned sample DUTs that have

undergone our proposed ReLU tuning process (line 1). Then,

we apply agglomerative hierarchical clustering [16] to cluster

the signature vectors of these post-tuned DUTs. The signa-

ture vectors capture essential characteristics of each DUT’s

tuning configuration. For each new DUT that requires online

tuning, we iterate through every cluster in the signature vector

Algorithm 2 Learning Assisted Tuning

1: Collect optimized tuning parameters of post-tuned sample DUTs
2: Cluster the signature vectors of these DUTs
3: for New DUT that requires tuning do
4: for Every cluster in signature vector space do

5: Calculate the distance between its medoid and
−→
sig of DUT

6: end for
7: Select the cluster which has the minimum distance
8: Find the nearest DUT∗ within this cluster with new DUT
9: end for

10: return Tuning parameters of DUT∗

space and calculate the distance between the medoid of the

cluster and the signature vector of the new DUT (lines 4-6).

This distance represents how closely the new DUT’s tuning

requirements match those of the clusters. The cluster with the

minimum distance is thus considered as the best match for

the tuning needs of the new DUT. Within this selected cluster,

we find the nearest tuned DUT to the new DUT based on

their signature vector distances. The algorithm then returns

the tuning parameters of this nearest tuned DUT. These tuning

parameters are then applied to the new DUT without the need

for expensive back-propagation.

V. RESULTS

This section presents experimental validation of our post-

manufacture testing and tuning approach on various RRAM-

based DNNs and compares it to the state of the art.

A. Experimental Methodology

Table I provides the datasets and architectural details (num-

ber of convolutional layers (#Conv), fully connected layers

(#FC), ReLU activation layers (#ReLU), and the ideal accuracy

(Ideal Acc)) for the DNNs tested. The ideal (reference) accu-

racy represents the classification accuracy of the models with

ideal weights in the digital domain. The variability modeling

framework is derived from HSPICE using the PTM model

[23] at 65 nm CMOS technology. We assume 50% contribution

from systematic and 50% contribution from random variability

components [12], [15], i.e., σsys = σrand = σtot/
√
2. We set

σtot between 3.5% to 4.8% of γ0 to generate perturbed RRAM-

based DNNs. For all benchmark DNN applications, we use

PyTorch for simulation using 16-bit fixed-point precision.

The variability modeling framework was used to generate

2000 DNNs across diverse process corners via statistical

sampling of the process space. 1000 of these devices were

used for test stimulus generation, training the outlier detector,

training the regressor for predicting DNN accuracy, and storing

the post-tuning data of the sampled DNNs for learning assisted

tuning. The other 1000 DNNs were utilized as the baseline

for evaluating yield loss due to process variations. We sub-

jected these DUTs to the predictive testing methodology while

TABLE I: Benchmark DNN applications

Dataset Network #Conv #FC #ReLU Ideal Acc

CIFAR-10
MobileNet [20] 27 1 27 83.53 %

VGG16 [21] 13 1 13 93.24 %

CIFAR-100
ResNet18 [22] 17 1 17 75.95 %

VGG16 [21] 13 3 15 72.36 %

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 16:17:02 UTC from IEEE Xplore. Restrictions apply.

(a) Average accuracy (b) Yield (c) Tuning time

Fig. 5: Evaluation results of MobileNet on CIFAR-10 dataset.

employing three different tuning techniques for comparison:

(a) Digital ReLU layer tuning utilizing the complete training

dataset, referred to as ‘exhaustive ReLU tuning,’ (b) Digital

ReLU layer tuning using only a randomly selected 10% subset

of the training dataset, and (c) Learning assisted (LA) tuning

leveraging the optimization results gained from tuning on

sampled DUTs.

B. Evaluation of Post-Manufacture Testing and Tuning

Fig. 5 shows the average accuracy of DNN devices (RRAM-

based MobileNet on CIFAR-10) after post-manufacture tuning

(all devices after the entire testing-tuning process of Fig.

3) with different acceptance accuracy thresholds for tuning.

The average accuracy of the perturbed DNNs on the RRAM

crossbar without tuning stands at 70%, resulting in an accuracy

loss of 13.5% (indicated by the solid line in Fig. 5a). Since no

tuning is performed, this is flat across all accuracy thresholds.

Three other plots for average accuracy vs. acceptance accuracy

threshold are shown: (a) exhaustive ReLU tuning (triangle

markers) in which all 50,000 training images are used to train

only the ReLU parameters of the DNN, (b) learning assisted

tuning (circle markers) and (c) tuning with only a randomly

selected 10% of the CIFAR-10 training dataset consisting of

5000 images used to train only the ReLU parameters of the

DNN. As the acceptance accuracy threshold increases, the

average accuracy also rises because devices below the thresh-

old are tuned. The results of 10% subset-tuning showcase the

feasibility of our proposed ReLU tuning approach, even with

a smaller training dataset.

The yield of a DNN manufacturing process is the (number

of DNNs above a specified threshold of classification accu-

racy)/(total number of DNNs manufactured). The yield of

DNNs without any tuning, rapidly decreases with increasing

accuracy thresholds, as shown by the solid line of Fig. 5b

. We see that more than 70% of RRAM-based DNNs are

deemed good with up to 14% drop in accuracy allowed,

but stricter testing criteria (up to 4% accuracy drop) limits

the percentage of good DUTs to just 2%. All three tuning

schemes demonstrate nearly perfect yield improvement for

acceptance accuracy threshold < 72%). For comparison, in

the high accuracy scenario with a 78.5% threshold, exhaustive

ReLU tuning (triangle markers) is the most effective, reaching

99.1% yield. It is followed by learning assisted tuning (circle

markers) at 89.4% yield. 10% subset-tuning (X markers)

achieves 77.3% yield.

Fig. 5c, shows the tuning time (measured as the number

of GPU clock cycles required for optimizing T-ReLU tuning

parameters through post-manufacture back-propagation) vs.

acceptance accuracy threshold for the three tuning schemes

discussed above. For learning assisted tuning, the CPU com-

putation time for clustering based inference was assessed. As

the accuracy threshold increases, the DNNs require increased

tuning time. The 10% subset ReLU tuning (X markers)

exhibits an 8.7× speedup in comparison to exhaustive ReLU

tuning (triangle markers). Furthermore, our proposed learning

assisted tuning (circle markers) achieves an exceptional 4245×

speedup compared to exhaustive ReLU tuning, while incurring

a minimal compromise of less than 4% in DNN yield. Note

that the evaluation of testing and tuning on VGG16 model

shows comparable results; thus we omit them for brevity.

C. Comparison with the State of the Art

Fig. 6 illustrates the yield of ResNet18 on CIFAR-100 with

respect to the acceptance accuracy threshold for exhaustive

ReLU tuning (triangular markers), learning assisted tuning

(circle markers), the broad training and tuning approach of

[12] (cited as VAT + ST in Fig. 6 with X markers) and no

tuning. VAT incorporates both random and systematic variabil-

Fig. 6: Yield comparison of ResNet18 on CIFAR-100.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 16:17:02 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Comparison with the state of the art

Post-manufacture Variability Tuning Yield
Test

retraining modela time (8% Acc drop)

ERTb 2 params per layer Ran+Sys < 20s 73.6% Yes

LATb None Ran+Sys < 1s 70.0% Yes

[12] None Ran+Sys < 1s 23.4% No

[24] 0.5−5% of weights Ran Large Not reported No

a. Ran and Sys represent random and systematic process variations, respectively.
b. LAT and ERT stand for learning assisted and exhaustive ReLU tuning, respectively.

ity during DNN training. VAT + ST refers to application of

the self-tuning (ST) technique described in [12] to the DNN

obtained after variability aware tuning. VAT + ST can partially

recover the yield loss of DNNs for accuracy threshold < 62%.

However, the yield of VAT + ST becomes worse than RRAM-

based DNNs without any tuning for accuracy threshold >
66%. In contrast, our proposed learning assisted tuning scheme

achieves yield of more than 60% for accuracy threshold of

70%, where the VAT + ST technique becomes completely in-

effective. Furthermore, our tuning scheme achieves 45% yield

improvement when the accuracy threshold is 72% (allowable

accuracy drop from ideal model = 4%) which is important for

safety-critical applications.

Table II provides a qualitative comparison of our proposed

tuning methods, referred to as Exhaustive ReLU Tuning (ERT),

and Learning Assisted Tuning (LAT), with two state-of-the-art

techniques for addressing the challenges posed by manufactur-

ing process variations in RRAM-based DNNs. In CorrectNet

[24], the effects of random variations are studied, and post-

manufacture re-training of 0.5 − 5% of the network weights

is performed. As per our own experiments, the tuning time of

this approach (the time taken to retrain the specific weights

using back-propagation) is relatively large when compared to

the proposed exhaustive ReLU tuning, which takes less than

20 seconds of tuning time and focuses on retraining only two

ReLU parameters per layer of the network. Both [12] and our

proposed learning assisted tuning do not require a retraining

process to recover model performance, and their online tuning

time is less than a second. However, when evaluating man-

ufacturing yield with an 8% allowable accuracy drop, [12]

achieves a modest yield of 23.4%. In contrast, the proposed

Exhaustive ReLU Tuning method (ERT) achieves yield of

73.6%, while Learning Assisted Tuning (LAT) achieves 70.0%

yield. Furthermore, our proposed tuning schemes incorporate

a compact testing procedure prior to post-manufacture tuning,

which is necessary for reducing testing and tuning costs, and

is not considered in prior research.

VI. CONCLUSION

This paper presented and validated a two-step approach

to address the impact of process variability in RRAM-based

DNNs. It consists of regressor-based testing to predict DNN

accuracy from image subsets and post-manufacture tuning us-

ing layer-by-layer adjustment of ReLU activation parameters.

An energy-efficient learning-assisted tuning scheme is also

presented and validated as a substitute for post-manufacture

tuning. Our approach achieves more than 45% yield improve-

ment with an accuracy drop of 4% compared to ideal digital

DNNs, outperforming the state-of-the-art.

ACKNOWLEDGMENT

This research was supported by the U.S. National Science

Foundation under Grant: 2128149.

REFERENCES

[1] M. Prezioso et al., ªTraining and operation of an integrated neuromorphic
network based on metal-oxide memristors,º Nature, vol. 521, no. 7550, pp.
61±64, 2015.

[2] S. Yu et al., ªEmerging memory technologies: Recent trends and
prospects,º IEEE Solid-State Circuits Magazine, vol. 8, no. 2, pp. 43±56,
2016.

[3] M. Hu et al., ªMemristor-based analog computation and neural network
classification with a dot product engine,º Advanced Materials, vol. 30,
no. 9, p. 1705914, 2018.

[4] A. Shafiee et al., ªIsaac: A convolutional neural network accelerator with
in-situ analog arithmetic in crossbars,º in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), 2016, pp. 14±
26.

[5] G. W. Burr et al., ªExperimental demonstration and tolerancing of a large-
scale neural network (165 000 synapses) using phase-change memory as
the synaptic weight element,º IEEE Transactions on Electron Devices,
vol. 62, no. 11, pp. 3498±3507, 2015.

[6] S. Jain et al., ªRxnn: A framework for evaluating deep neural networks
on resistive crossbars,º IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 40, no. 2, pp. 326±338, 2020.

[7] I. Chakraborty et al., ªTechnology aware training in memristive neuro-
morphic systems for nonideal synaptic crossbars,º IEEE Transactions on
Emerging Topics in Computational Intelligence, vol. 2, no. 5, pp. 335±344,
2018.

[8] S. Roy et al., ªTxsim: Modeling training of deep neural networks on
resistive crossbar systems,º IEEE Transactions on Very Large Scale In-
tegration(VLSI) Systems, vol. 29, no. 4, pp. 730±738, 2021.

[9] B. Liu et al., ªVortex: Variation-aware training for memristor x-bar,º in
Proceedings of the 52nd Annual Design Automation Conference, 2015, pp.
1±6.

[10] Y. Long et al., ªDesign of reliable dnn accelerator with un-reliable reram,º
in 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2019, pp. 1769±1774.

[11] A. Bhattacharjee et al., ªExamining and mitigating the impact of crossbar
non-idealities for accurate implementation of sparse deep neural net-
works,º in 2022 Design, Automation Test in Europe Conference Exhibition
(DATE), 2022, pp. 1119±1122.

[12] Z. Deng et al., ªVariability-aware training and self-tuning of highly quan-
tized dnns for analog pim,º in 2022 Design, Automation Test in Europe
Conference Exhibition (DATE), 2022, pp. 712±717.

[13] Z. Yan et al., ªComputing-in-memory neural network accelerators for
safety-critical systems: Can small device variations be disastrous?º in Pro-
ceedings of the 41st IEEE/ACM International Conference on Computer-
Aided Design. IEEE/ACM, 2022, pp. 1±9.

[14] P.-Y. Chen et al., ªCompact modeling of rram devices and its applications
in 1t1r and 1s1r array design,º IEEE Transactions on Electron Devices,
vol. 62, no. 12, pp. 4022±4028, 2015.

[15] K. Ma et al., ªEfficient low cost alternative testing of analog crossbar arrays
for deep neural networks,º in 2022 IEEE International Test Conference
(ITC). IEEE, 2022, pp. 499±503.

[16] W. H. Day et al., ªEfficient algorithms for agglomerative hierarchical
clustering methods,º Journal of classification, vol. 1, no. 1, pp. 7±24, 1984.

[17] P. J. Rousseeuw, ªLeast median of squares regression,º Journal of the
American statistical association, vol. 79, no. 388, pp. 871±880, 1984.

[18] J. H. Friedman, ªMultivariate adaptive regression splines,º The annals of
statistics, vol. 19, no. 1, pp. 1±67, 1991.

[19] D. P. Kingma et al., ªAdam: A method for stochastic optimization,º arXiv
preprint arXiv:1412.6980, 2014.

[20] A. G. Howard et al., ªMobilenets: Efficient convolutional neural networks
for mobile vision applications,º arXiv preprint arXiv:1704.04861, 2017.

[21] K. Simonyan et al., ªVery deep convolutional networks for large-scale
image recognition,º arXiv preprint arXiv:1409.1556, 2014.

[22] K. He et al., ªDeep residual learning for image recognition,º in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770±778.

[23] Nanoscale Integration and Modeling (NIMO) Group, ASU, ªPredictive
Technology Model,º http://ptm.asu.edu, 2011, online; accessed 8 April
2022.

[24] A. Eldebiky et al., ªCorrectnet: Robustness enhancement of analog in-
memory computing for neural networks by error suppression and com-
pensation,º in 2023 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2023, pp. 1±6.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 16:17:02 UTC from IEEE Xplore. Restrictions apply.

