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Abstract—Time-to-first-spike (TTFS) encoded spiking neural
networks (SNNs), implemented using memristive crossbar arrays
(MCA), achieve higher inference speed and energy efficiency
compared to artificial neural networks (ANNs) and rate encoded
SNNs. However, memristive crossbar arrays are vulnerable to
conductance variations in the embedded memristor cells. These
degrade the performance of TTFS encoded SNNs, namely their
classification accuracy, with adverse impact on the yield of
manufactured chips. To combat this yield loss, we propose a post-
manufacture testing and tuning framework for these SNNs. In
the testing phase, a timing encoded signature of the SNN, which
is statistically correlated to the SNN performace, is extracted. In
the tuning phase, this signature is mapped to optimal values of the
tuning knobs (gain parameters), one parameter per layer, using
a trained regressor, allowing very fast tuning (about 150ms).
To further reduce the tuning overhead, we rank order hidden
layer neurons based on their criticality and show that adding
gain programmability only to 50% of the neurons is sufficient
for performance recovery. Experiments show that the proposed
framework can improve yield by up to 34% and average accuracy
of memristive SNNs by up to 9%.

Index Terms—Spiking Neural Networks, Yield Recovery, Pro-
cess Variations, Neuromorphic Computing

I. INTRODUCTION

Spiking neural networks (SNN) achieve orders of energy
efficiency improvement compared to artificial neural networks
(ANNs). [1]. Compute-in-memory (CiM) along with the use of
sparsity has been extensively explored to further reduce energy
consumption of neuromorphic computing. Time-to-first-spike
(TTFS) encoding can achieve higher sparsity compared to the
widely used rate encoding [2] and can be efficiently mapped to
custom accelerators [3]. Memristive crossbar arrays (MCAs),
implemented with emerging non-volatile memories such as
resistive random access memory (RRAM) and magnetore-
sistive random access memory (MRAM), are the primary
enabler of analog CiM architectures used for machine learning
accelerators. [4]. While recent research has used MCAs for
low-latency and energy-efficient SNN inference [5], MCA
based SNNs are vulnerable to severe process variation induced
performance (measured by classification accuracy of a chip)
degradation. After fabrication, SNN chips with unacceptable
performance degradation need to be discarded, resulting in
lower manufacturing yield.

Prior works have addressed testing of SNNs in presence of
weight errors and neuron threshold variations [6], [7]. How-
ever, performance recovery of memristive SNNs in presence
of process variation has not received much attention. In this
work, we propose a fast post-manufacture testing and tuning
framework for MCA based TTFS SNNs that relies on repro-
gramming one tuning knob (gain) corresponding to each SNN

Figure 1: Overview of the testing and tuning framework

layer. The proposed framework relies on a timing encoded
signature of the device under test (DUT) and isolates out-of-
spec DUTs using a signature assisted testing framework, called
timing encoded signature test (TEST). The optimal values
of the tuning knobs are predicted from the DUT signature
using a trained regressor, allowing fast tuning of SNNs during
manufacturing. Finally, to reduce the tuning overhead, we
propose a criticality aware gain tuning framework, where gain
tuning is applied only to critical neurons in hidden layers.
Neuron criticality is evaluated using a novel sensitivity score
metric. In summary, the main contributions of our work are:
(a) We propose a post-manufacture testing and tuning frame-
work for memristive implementations of TTFS SNNs to com-
pensate for accuracy degradation and manufacturing yield loss
caused by realistic process variations during manufacturing
memristive crossbar arrays.
(b) We propose criticality aware gain tuning, which involves
rank ordering the hidden layer neurons according to their
criticality and adding gain tunability only to a subset of these
neurons. We show that adding gain tunability to only 50% of
the hidden layer neurons is sufficient for yield recovery.

II. APPROACH OVERVIEW

Fig. 1 explains the overall tuning framework. The first step,
as shown in Fig. 1, involves applying a compact test stimulus
(consisting of ∼ 50 images) to each manufactured SNN chip
or device under test (DUT) to obtain a signature. The timing
encoded response of the DUT to the test stimulus is referred
as the timing encoded signature. The second step determines
whether the DUT requires tuning because of variability in-
duced accuracy degradation. The timing encoded signature
is passed to a regressor (called the testing regressor), which
predicts the accuracy of the DUT. If the predicted accuracy is
below a predefined cutoff Acutoff , the DUT undergoes tuning.
The testing process is referred to as timing encoded signature
test (TEST). For tuning, we introduce a gain parameter within
the spiking neuron circuit. All neurons in a layer share the
same gain. Before tuning (step 3 of Fig. 1), we rank-order
the neurons of each hidden layer by assigning a sensitivity
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score to each neuron. The gain parameter, used for tuning, can
be added to all neurons (gain tuning) or a subset of neurons
with highest sensitivity scores (criticality aware gain tuning).
During post manufacture tuning (step 4 of Fig. 1), the optimal
layer-wise gains of the DUT are predicted using a trained
regressor and the optimal gains are reprogrammed into the
hardware for performance recovery.

III. PRELIMINARIES

A. SNN Hardware Overview

We use time-to-first-spike (TTFS) encoded SNNs for image
classification tasks. Following [8], each pixel value pi is
converted to a spike at time ti = pmax−pi

pmax
× tmax, where

tmax is the maximum time allocated for SNN inference,
and pmax is the value of the brightest pixel in the image
classification dataset. In the output layer, the neuron emit-
ting the first spike determines the label of an image. If an
integrate and fire (IF) neuron j is connected to N input
neurons, whose outputs at timestep t are {xi(t)}Ni=1, then
the membrane potential of the j-th neuron can be written as
vj(t) =

∑N
i=1 wij

∑t
τ=1 xi(τ) = vj(t − 1) + ij(t), where

wij refers to the synaptic weight between neurons i and j and
ij(t) is the input current to the j-th neuron. The neuron output
is yj(t) = I[vj(t) > Th] × (1 −

∑t−1
τ=1 yj(τ)). Here, Th is

the spiking threshold and the term (1−
∑t−1

τ=1 yj(τ)) ensures
that a neuron can fire at most once. In memristive crossbar
array (MCA) based implementations of SNNs, each weight
of an SNN wij is mapped to an equivalent conductance gij
and the memristor cells are laid out in a rectangular grid. The
currents from the cells along each column add up according to
Kirchhoff’s Current Law (KCL) and generate input currents
to spiking neurons.

B. Variability Injection Framework

RRAM devices suffer device-to-device conductance varia-
tion, which can manifest in the form of inter-chip (systematic)
and intra-chip variation [9], [10]. Further, intra-chip variation
constitutes of spatially correlated variation and independent
random variation [11]. Because of conductance variation, the
weights represented by the crossbar can be different from
pretrained model weights. To quantify the impact of process
variation, we replace the weights of a pretrained model with
equivalent non-ideal weights, i.e., each weight wij is replaced
with a non-ideal weight:

w
′

ij = wij(1 + ϵ) = wij(1 + ϵsys + ϵcorij + ϵrandij )

We call ϵij the non-ideal coefficient. We refer to
ϵsys, ϵcorij , and ϵrandij as systematic, spatially correlated and
random non-ideal coefficients respectively and use them to
model systematic, spatially correlated and random components
of variability. By definition, systematic variability is the same
across all memristor cells of a DUT. Hence, ϵsys is sampled
only once for each DUT from a zero mean normal distribution
with variance σ2

sys. The random non-ideal coefficient ϵrandij

corresponding to each weight is sampled independently from a
zero mean normal distribution with variance σ2

rand. Following
[12], we compute the spatially correlated non-ideal coefficients
for the weights in a weight matrix W ∈ RM×N using the

following steps: 1⃝ We refer to the i-th row and j-th column
of the weight matrix as the l-th weight, where l = (i−1)N+j.
Our goal is to compute Ψ = [ψ1 ψ2 · · · ψMN ]T and set
ϵcorij = ψ(i−1)×N+j 2⃝ We generate a correlation matrix
Ω ∈ R(MN)×(MN), where the (l,m)-th element of Ω, Ωlm,
represents the correlation between l-th and m-th weights of
W . Memristor cells are placed in a rectangular grid in two
dimensional crossbars. If the l(m)-th weight refers to i1(i2)-
th row and j1(j2)-th column of W , the physical distance of the
memristor cells storing the l and m-th weights of W is vl,m ∝√

(i1 − i2)2 + (j1 − j2)2 = c2
√
(i1 − i2)2 + (j1 − j2)2.

Following [12], we assume Ωlm = exp(−c1 · vl,m) =
exp(−λ

√
(i1 − i2)2 + (j1 − j2)2. Here c1, c2 and λ are pro-

portionality constants and λ = c1c2 determines the magni-
tude of spatial correlation. 3⃝ We calculate a corresponding
covariance matrix Σ = Ω · σ2

cor, where σ2
cor refers to the

variance of spatially correlated variability. Using Cholesky
decomposition, we factorize, Σ = LLT , where L is a lower
triangular matrix. We sample MN standard normal variables
Φ = [ϕ1 ϕ2 · · · ϕMN ]T , where ϕl ∼ N (0, 1). Finally, we
calculate Ψ = LΦ.

IV. TIMING ENCODED SIGNATURE TEST (TEST)

Timing encoded signature test (TEST) aims at predicting
whether the accuracy of a DUT is above or below a pre-
defined cutoff Acutoff . While the proposed framework uses
the regressor-based performance prediction approach of [13],
we develop a novel timing encoded signature customized for
TTFS SNN chips. The proposed TEST framework has two
steps. 1⃝ Each image imi of a compact test stimulus consisting
of Nt images (Nt

C random images from each of the C classes
of test dataset) is applied sequentially to a DUT. We define
DUT response DR ∈ RNt×C such that DRij refers to the
spiking time of the j-th output neuron corresponding to the
i-th image of the compact test stimulus. In the absence of a
spike, we set DRij = tmax. We flatten DR to obtain the DUT
signature sig ∈ RNt·C 2⃝This signature is passed to a trained
regressor (called the testing regressor), which predicts the
accuracy of the DUT Â = fθ(sig). The function fθ(·) maps
the regressor input to its output. To avoid DUT mislabeling
caused by regression error, if |Â−Acutoff | < δmax (δmax is
the maximum probable regression error), the DUT accuracy
is estimated using exhaustive test. During exhaustive test, all
images in the entire test dataset are applied to the DUT and the
accuracy of the DUT is the percentage of correctly classified
images. Finally, if Â < Acutoff , the DUT undergoes post-
manufacture tuning.

The testing regressor is trained offline using the timing-
encoded signatures and accuracies of D training DUTs. The
signatures of these D DUTs are obtained using the steps
above. The accuracy of each DUT is estimated using an
exhaustive test.

V. POST MANUFACTURE TUNING

A. Overall Framework

At timestep t, the membrane potential of the j-th neuron in
the l-th layer can be written as v(l)j (t) = v

(l)
j (t− 1) + i

(l)
j (t),

where i
(l)
j (t) is the input current to the j-th neuron. We
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Figure 2: (a) Neuron circuit (b) Programmable capacitor to
implement gain tuning

Algorithm 1 Simulated Annealing

1: Initialize g(l) = 1 for 1 ≤ l ≤ L, T = T0, σ = 0.1
A = Abest = accuracy of the DUT before tuning

2: while Stopping criteria is not reached do
3: T = r1T // Set temperature scheduler
4: Set g̃(l) ∼ N (g(l), σ2) ∀ 1 ≤ l ≤ L // choose neighbor
5: clamp g̃(l) to [gmin, gmax]
6: Evaluate the DUT accuracy Ã using forward propagation
7: if Ã > A or uniform(0, 1) < exp( Ã−A

bT
) then

8: Set A = Ã, g(l) = g̃(l)

9: end if
10: if Ã > Abest then
11: Set Abest = Ã and g(l)∗ = ˜g(l)

12: end if
13: Set σ = r2σ
14: end while
15: return g(l)∗

add a programmable gain parameter g(l) to the membrane
potential update equation to compensate for the effects of
process variation:

v
(l)
j (t) = v

(l)
j (t− 1) + g(l)i

(l)
j (t)

The goal of the tuning framework is to find the optimal values
of the tuning knobs g(l)∗ (1 ≤ l ≤ L, where L is the number of
SNN layers) for the hidden and output layers of the network.
For all neurons in a layer, we use same value of gain. The
tuning framework has two steps: 1⃝ Before deploying the
tuning framework for real time tuning, for a set of D DUTs,
the signature of the d-th DUT is calculated as sigd and optimal
tuning knobs g(l)∗d are calculated using simulated annealing
(SA) as explained in Algorithm 1. 2⃝ During tuning, we use
the timing encoded signature sig generated during testing. We
predict the optimal tuning knobs using nearest neighbor re-
gression. We first calculate d∗ = argmin1≤d≤D ||sig−sigd||.
Next we set the tuning knobs of the current DUT equal to the
optimal tuning knobs of the d∗-th DUT: g(l)∗ = g

(l)∗
d∗

Algorithm 1 explains SA, which starts with initial gain
values and an initial temperature T0. Abest is set to the
accuracy of the DUT before tuning. In every iteration of SA,
the temperature is reduced by a constant cooling rate r1. New
values of the tuning knobs are calculated in line 4, and they
are clamped within the interval [gmin, gmax] to ensure that
hardware implementation of gains have low-overhead. The
accuracy of the DUT, Ã is re-evaluated with new tuning knobs
g̃(l). If the accuracy of the current iteration Ã is better than the
accuracy A corresponding to the previously accepted tuning
knobs g(l), then the new tuning knobs g̃(l) are always accepted.
Otherwise, the new tuning knob values are accepted with a
probability exp( Ã−A

bT ). At every iteration, the value of σ is

reduced by a constant rate r2 to shrink the search space when
temperature is low. The algorithm stops when the temperature
T reaches below a pre-defined temperature Tc and returns the
tuning knob values that achieve the best accuracy.

Next, we explain how programmable gain can be imple-
mented in hardware. In an analog spiking neuron, as shown
in Fig. 2a, the input current (Iin) is integrated to membrane
potential (Vmem) across the capacitor Cmem. The comparator
compares Vmem with spiking threshold Vth. When Vmem

exceeds Vth, Vout becomes ’1’. We refer the reader to [8]
for detailed functionality of the neuron circuit. To imple-
ment gain tuning, we replace the fixed capacitor (Cmem)
with a programmable capacitor bank as shown in Fig. 2b.
To implement a range of gains from 0.7 to 1.3 (gmin =
0.7, gmax = 1.3 in Algorithm 1), the variable capacitor should
be programmable from 0.77Cmem to 1.43Cmem, as gain is
inversely proportional to capacitance. We set C1 = 0.77Cmem

and C2 = 0.0105Cmem as shown in Fig. 2b.

B. Criticality Aware Gain Tuning

To reduce the overhead of the tuning circuitry, we propose
a lightweight criticality aware gain tuning framework, which
adds gain programmability only to a subset of hidden layer
neurons. The critical neurons are identified using a sensitivity
score metric. The spiking time of neuron j is calculated
for every image in the training dataset across a set of D
DUTs in simulation. If the spiking time of the j-th neuron
corresponding to the i-th image and d-th DUT is tdj,i, we first
calculate the variance of the firing times across D DUTs, i.e.,
vj,i = 1

D

∑D
d=1(t

d
j,i − 1

D

∑D
d′=1(t

d
′

j,i))
2. Next we define the

sensitivity score as scorej = 1
N

∑N
i=1 vj,i. Finally, we sort

the neurons according to their sensitivity scores and add gain
programmability only to neurons with top p-percerntile scores.

VI. RESULTS

A. Simulation Setup

We evaluate our framework on an SNN trained for the
MNIST dataset using temporal backpropagation [8]. We use
the SNN architecture implemented in [5] , which has one
hidden layer with 400 neurons and an output layer with
10 neurons. The network achieves an accuracy of 94.95%.
Following [10], we fix random variation to be 50% of the
total variation, i.e., σ2

rand =
σ2
tot

2 (where σ2
tot = σ2

sys +
σ2
cor + σ2

rand). We simulate for different proportions of sys-
tematic and spatially correlated variations. We use σtot = 0.3,
λ = 10−3, r1 = 0.90, r2 = 0.95. We use 1000 DUTs
to train the two regressors used for testing and tuning. The
testing regressor is implemented using the gradient boosting
regressor from the Scikit Learn library [14]. The performances
of the timing encoded signature test and the gain tuning
framework are evaluated on another 500 DUTs. For tuning,
we use yield improvement and mean accuracy improvement
as performance metrics. If the accuracies of 500 DUTs used
for performance evaluation are {Ai}500i=1, then for an accuracy
cutoff Acutoff , yield is defined as Y = 1

500

∑500
i=1 I[Ai >

Acutoff ]×100%. We also calculate the mean (µa) of {Ai}500i=1.
Assuming, yield and mean accuracy before (after) tuning are
Y pre (Y post) and µpre

a (µpost
a ), we define yield improvement
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Figure 3: (a) Yield before and after tuning (b) Yield Improvement from gain tuning (c) Mean accuracy improvement from
gain tuning (d) Yield improvement from criticality aware gain tuning

Table I: Performance of TEST and CAGT
TEST CAGT

sys(% ) cor (%) MAE (%) ∆Y ∆µa

50 0 1.41 32.6 8.54
25 25 1.50 30.8 5.80
0 50 1.57 27.2 5.45

∆Y = Y post − Y pre and mean accuracy improvement as
∆µa = µpost

a − µpre
a .

B. Test Performance
Ideally the testing regressor should have low mean ab-

solute error (MAE) and the compact test stimulus should
have fewer number of images (Nt). To determine Nt, we
set systematic and correlated variations to 25% each. For
Nt = 10, 20, 50 and 100, the testing regressor achieves a
MAE of 2.21%, 1.77%, 1.51% and 1.48% respectively. While
Nt = 100, achieves marginal improvements in MAE com-
pared to Nt = 50, it requires applying 2x images to each DUT.
Hence, for all subsequent experiments, we choose Nt = 50.
As shown in Table I, the testing regressor achieves MAE of
less than 1.6% for all simulation conditions.

C. Gain Tuning and Criticality Aware Gain Tuning
In Fig. 3a, we show SNN yields before and after gain

tuning assuming 25% contributions each from systematic and
correlated variability. Since the accuracy of pretrained SNN
is 94.95%, beyond that both pre and post tuning yields are
zero. For wide performance range of interest (70−90%), post-
tuning yield is higher than pre-tuning yield. Fig. 3b and Fig.
3c respectively show the impact of gain tuning on yield and
mean accuracy improvement. It is seen that yield improves by
as much as 35% and mean accuracy improves by 3-10%.

To evaluate criticality aware gain tuning, we first assume
25% variability from systematic and spatially correlated com-
ponents and evaluate yield improvements for different values
of p, where gain tuning is applied to p% hidden layer neurons.
For p = 50%, yield improvement is comparable to the case of
p = 100% (Fig. 3d), using only half the neurons. As a result,
for subsequent experiments we choose p = 50%. Finally we
evaluate the impact of CAGT assuming Acutoff = 90% and
p = 50%. Table I shows that CAGT can improve yield by up
to 32.60%, mean accuracy by up to 8.54%. Experiments for
Acutoff = 75%, 80% and 85% also show similar trends.

D. Tuning Time and Overhead
To calculate tuning time, we run the entire framework

(timing encoded signature test and gain tuning) on a CPU. To
tune one DUT, it requires 152ms. Assuming, Cmem = 199fF
[5], the proposed gain tuning requires adding 86fF capacitor
to each neuron circuit.

VII. CONCLUSION

To address process variation induced manufacturing yield
loss in memristive TTFS SNNs, a post-manufacture testing
and gain tuning framework is proposed. Further, a neuron
criticality aware gain tuning framework is developed to re-
duce tuning overhead. Experiments show that the proposed
framework can recover manufacturing yield by up to 34% in
presence of realistic process variation patterns.
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