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Abstract—Resistive random access memory (RRAM) based
memristive crossbar arrays enable low power and low latency
inference for convolutional neural networks (CNNs), making
them suitable for deployment in IoT and edge devices. However,
RRAM cells within a crossbar suffer from conductance varia-
tions, making RRAM-based CNNs vulnerable to degradation of
their classification accuracy. To address this, the classification
accuracy of RRAM based CNN chips can be estimated using
predictive tests, where a trained regressor predicts the accuracy
of a CNN chip from the CNN’s response to a compact test dataset.
In this research, we present a framework for co-optimizing the
pixels of the compact test dataset and the regressor. The novelty of
the proposed approach lies in the ability to co-optimize individual
image pixels, overcoming barriers posed by the computational
complexity of optimizing the large numbers of pixels in an image
using state-of-the-art techniques. The co-optimization problem
is solved using a three step process: a greedy image down-
selection followed by backpropagation driven image optimization
and regressor fine-tuning. Experiments show that the proposed
test approach reduces the CNN classification accuracy prediction
error by 31% compared to the state of the art. It is seen that a
compact test dataset with only 2-4 images is needed for testing,
making the scheme suitable for built-in test applications.

Index Terms—Resistive Random-Access Memory (RRAM),
Convolutional neural network (CNN) testing, Predictive testing

I. INTRODUCTION

Convolutional neural networks (CNN) are widely used
in computer vision because of the shift invariance prop-
erty of convolution [1]. As a consequence, CNNs are being
increasingly deployed in resource-constrained edge devices.
For accelerating CNNs, traditional Von-Neumann architectures
suffer from the memory wall problem where the physical
separation of processing elements and main memory limits
energy efficiency and latency. To alleviate this, compute-in-
memory has been proposed as a new computing paradigm
[2]. Resistive random access memory (RRAM) is a promising
technology for implementing compute-in-memory because of
its non-volatile storage, moderately high switching speed and
high endurance [3]. Despite low inference energy and latency
of RRAM based CNNs [4], device-to-device and cycle-to-
cycle conductance variations of RRAM cells within a crossbar
impact performance (measured as classification accuracy) of
RRAM based CNNs [5]. As a result, RRAM based CNNs need
to be performance-screened before being deployed in safety
critical applications.

Functional tests for RRAM based CNNs have been pro-
posed [6], [7], with a key focus on minimizing the number of

images used into a compact test image subset (e.g. as opposed
to all 10,000 images in the CIFAR-10 dataset). The work of [6]
clusters the images from the original test dataset and chooses
one image from each cluster to test DNNs. In [8], sensitivity
analysis is performed on all original test dataset images and the
images with highest sensitivity scores are picked for functional
test. The work of [9] uses generative adversarial networks
(GANs) to generate test images that improve detection cover-
age of hard faults in DNN accelerators. Broadly, in the above,
the compact test image set used is picked to be a subset of
a predefined set of images. Inspired from alternate testing
of analog circuits [10], predicting classification accuracy of
RRAM-based CNNs from its response to a compact test using
a regressor is proposed in [6].

Over and above the test image selection methods of prior
research, we argue that pixel-level optimization of test images
with an appropriate loss metric is necessary to maximize the
precision with which the classification accuracy of a CNN
can be predicted from its test response signature. This has
the additional benefit that the number of test images in the
compact test dataset can be reduced to 2-4 from the 10-
30 images of [6]. This further impacts the efficiency of
manufacturing test while enabling built-in testing of RRAM-
based CNNs with significantly reduced test latency. In this
work, we leverage backpropagation-driven pixel level image
optimization to build a compact test dataset that permits
precise prediction of CNN classification accuracy from its
observed test response. We first formulate an optimization
objective that requires co-optimization of the compact test
dataset and the regressor used for performance prediction.
Next, we minimize the optimization objective using a three
step process: (a) greedy image down-selection (b) image op-
timization, which is initialized with the down-selected images
and (c) regressor finetuning. In summary, the key contributions
of this work are:
(a) The first pixel-level backpropagation guided image opti-
mization algorithm to generate the compact test dataset for
such predictive tests. The proposed algorithm outperforms
state of the art compact test generation algorithms in terms
of prediction error and device misclassification rate.
(b) A mathematical framework for co-optimizing the compact
test dataset and regressor for designing performance predictive
tests for RRAM based CNNs.
(c) Experimental validation showing that the classification
accuracy of RRAM based CNNs can be predicted using a
compact test dataset of only 2-4 images. This makes the
proposed test framework suitable for built-in test applications.979-8-3503-7055-3/24/$31.00 ©2024 IEEE
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Figure 1: Overall testing approach

II. APPROACH OVERVIEW

A. Predictive Test Framework

In this work, we adopt the predictive testing framework for
CNNs, proposed in [6]. In this approach, a compact test dataset
is applied to a device under test (DUT) for performance pre-
diction. The performance of RRAM-based CNN (also called
DUT) refers to its classification accuracy. We assume that (a)
the d-th DUT maps an input image z ∈ RImc×Imx×Imy to
output θd(z) ∈ RK . Here Imc, Imx and Imy refer to the
number of channels, rows and columns of an input image, K
refers to the number of classes in the training dataset of the
CNN and θd(z) refers to the output of the last dense layer
of the CNN. (b) Compact test dataset C consists Nc images,
i.e., C ∈ RNc×(Imc×Imx×Imy). We define test response of
a DUT under this compact test dataset as TR = θd(C),
where TR ∈ RNc×K . We flatten the test response matrix
into a vector to generate the DUT signature. Mathematically,
we denote the flatten operation as fl(z) where z ∈ RM×N

and fl(z) ∈ RMN . The DUT signature can be defined as
sigd = fl(θd(C)). The DUT signature is passed to a trained
regressor for performance prediction. Assuming that the re-
gressor maps an input z ∈ RNc·K to θreg(z) ∈ R, the regressor
predicts the accuracy of the DUT as Âd = θreg(fl(θd(C))).
The predictive test can be used for post-manufacture test as
well as online built-in test (explained in Section V-C).

B. Optimization Objective

A performance predictive test should predict the accuracy of
a DUT Âd equal to its actual classification accuracy, i.e., Âd =
Ad. We assume that under the impact of process variation, the
outputs of RRAM based CNNs θd(z) are distributed according
a probability density function P(θd(z)). The key intuition is
that Âd = Ad should hold true for any given DUT. As a result,
we define a cost function,

J = Eθd(z)∼P(θd(z))

(
θreg(fl(θd(C)))−Ad

)2

(1)

Enhancing the predictive test performance requires minimizing
the cost function with respect to θreg and C. Hence, the overall
objective is to find:

θ∗reg, C∗ = arg min
θreg,C

J (2)

Here C∗ refers to the optimized compact test dataset and θ∗reg
refers to the optimized regressor parameters. This research
solves the optimization problem of Equation (2) in the fol-
lowing three steps:
1⃝ Greedy image down-selection: We first impose a constraint

that the compact test dataset (C) is a subset of the original test

Figure 2: Split a crossbar for spatially correlated variability
modeling (d18 is the distance between grid 1 and 8)

dataset (T ), i.e., C ⊂ T , and find an approximate solution of
Equation (2) using a greedy algorithm (explained in Section
IV).
2⃝ Image optimization: We optimize each pixel value of the

down-selected images using gradients of the cost function
J with respect to the pixels of the images in the compact
test dataset. The optimized images at the end of this step
constitute the optimized compact test dataset for predictive
test (explained in Section V-A).
3⃝ Regressor fine-tuning: Finally, we fix the optimized com-

pact test dataset as C∗ and train a regressor with parameters
θ∗reg for DUT performance prediction (explained in Section
V-B).

III. PRELIMINARIES

A. RRAM Crossbar

To accelerate vector matrix multiplication (VMM), a major
computational kernel of CNNs, RRAM crossbars are used,
where each weight wij of a CNN model is stored using an
RRAM cell of equivalent conductance gij . Each RRAM device
within a crossbar operates according to Ohm’s law, where the
output current is proportional to the voltage applied across its
terminals. Digital to analog converters provide input voltages
to the crossbar along the rows. VMM output is available in
the form of currents across crossbar columns and the output
current is converted to real numbers using analog to digital
converters. We refer the reader to [11] for further details on
how an RRAM crossbar accelerates CNN inference.

B. Variability Injection Framework

Conductance measurements from fabricated RRAM cross-
bars show that conductance of RRAM cells within a crossbar
deviates from target conductance due to device-to-device and
cycle-to-cycle variations [12]. The goal is to quantify the
impact of RRAM conductance variation on the VMM outputs
on a layer by layer basis by replacing the ideal weight
matrix (W l) of every CNN layer with a non-ideal weight
matrix (W l

ni). While RRAM crossbars are vulnerable to stuck-
at-faults as well, the impact of stuck-at-faults on inference
accuracy of RRAM-based CNNs can be completely recovered
using fault aware remapping [13]. As a result, in this work
we focus on conductance variation only. Since RRAM cells
within a crossbar are laid out in a rectangular manner, the vari-
ability injection framework assumes input weights to be two-
dimensional matrices. We convert convolution layer weights
of shape Cout ×Cin ×X × Y into two dimensional matrices
of shape Cout × CinXY before passing it to the variability
injection framework. Here Cout refers to the number of filters
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in a convolution layer and Cin, X and Y refer to the number
of channels, rows and columns of the convolution filters.

Algorithm 1 Variability Injection Framework

1: Input: Weights of a pretrained CNN model: WCNN =
{W 1,W 2, · · · ,WL}

2: Goal: Calculate non-ideal CNN weights accounting effects of
process variation WCNN

ni = {W 1
ni,W

2
ni, · · · ,WL

ni}
3: Sample ϵsys ∼ N (0, σ2

sys)
4: for l = 1 upto L do
5: Assume W l ∈ RM×N and initialize Esys, Ernd and Ecor ∈

RM×N with all 0s
6: for m ∈ {1, 2, · · · ,M} do
7: for n ∈ {1, 2, · · · , N} do
8: Esys[m,n] = ϵsys

9: Ernd[m,n] ∼ N (0, σ2
rnd)

10: end for
11: end for
12: Assume that number of rows and columns within a grid are

X1 and X2 respectively
13: Number of grids along rows G = M

X1

14: Number of grids along columns H = N
X2

15: for i ∈ {1, 2, · · · , GH} do
16: for j ∈ {1, 2, · · · , GH} do
17: Calculate distance between i-th and j-th grids dij
18: Set Ω[i, j] = exp(−λdij)
19: end for
20: end for
21: Set Σ = σ2

cor · Ω
22: Factorize Σ = AAT , where A is a lower triangular matrix
23: Sample −→η ∈ RGH , such that −→η ∼ N (0, I)
24: Set

−→
Ψ = A−→η

25: for m ∈ {1, 2, · · · ,M} do
26: for n ∈ {1, 2, · · · , N} do
27: Set Ecor[m,n] =

−→
Ψ[(⌈ m

X1
⌉ − 1)H + ⌈ n

X2
⌉]

28: end for
29: end for
30: Set W l

ni = W l +W l ⊙ (Esys + Ernd + Ecor)
31: end for

Prior work on process variation modeling has shown that,
device-to-device variation is a combination of intra-chip and
inter-chip variations [14]. Moreover, RRAM cells, which are
physically close, show similar intra-chip variation character-
istics [15]. As a result, we decompose intra-chip variation as
a combination of spatially correlated variation and random
variation. Finally, cycle-to-cycle variation can be modeled as
independent random variation. In summary, we model process
variation as sum of: (a) inter-chip or systematic variation (b)
independent random variation (c) spatially correlated variation.

Algorithm 1 outlines the entire variability injection frame-
work. It starts with the weights of the pre-trained CNN model
WCNN , where W l is the weight matrix corresponding to the
l-th layer of the CNN. The end goal is to calculate three
matrices of systematic, random and spatially correlated non-
ideality factors and calculate a non-ideal weight matrix W l

ni

to capture the impact of conductance variations on VMM out-
puts. By definition, inter-chip variation affects all weights of a
DUT equally. Following [16], we sample only one systematic
non-ideality factor from a zero mean normal distribution with
variance σ2

sys (line 3). We sample each element of Ernd from
another zero mean normal distribution with variance σ2

rnd (line
9). Finally, to sample spatially correlated non-ideality factors,

we split an RRAM crossbar into grids (line 12-14). Fig. 2
shows a 9 × 9 crossbar (M = N = 9), which is split into
total 9 grids (G = H = 3). Each grid has 3 rows and
3 columns of RRAM cells (X1 = X2 = 3). To calculate
spatially correlated non-ideality factors, first spatial correlation
between i-th and j-th grids are calculated, where the grid
distance between the two grids are dij (line 18). For example,
in Fig. 2, grid 1 and grid 8 are 6 rows and 3 columns apart.
As a result d18 =

√
(62 + 32) = 3

√
5. The corresponding

covariance matrix is calculated in line 21, where σ2
cor refers to

the variance corresponding to the spatially correlated variation.
Our goal is to sample spatially correlated non-ideality factors
from this covariance matrix. We factorize Σ using Cholesky
decomposition and a vector of GH standard normal variables
are sampled (line 22-23). Finally, one spatially correlated non-
ideality factor is calculated corresponding to each grid of the
crossbar (line 24). The spatially correlated non-ideality factor
of each RRAM cell is set to the spatially correlated non-
ideality factor of the grid it belongs to (line 27). Finally, the
desired non-ideal weight matrix W l

ni is derived from the ideal
matrix W and the matrices of non-ideality factors (line 30).

IV. GREEDY IMAGE DOWN-SELECTION

Algorithm 2 Greedy Image Down-Selection
1: Fix Nc (number of images in compact test dataset) and N1

(number of random trials) and sample D DUTs (d-th DUT maps
input z to output θd(z)) with known accuracy Ad for 1 ≤ d ≤ D

2: C = {}
3: for ni = 1 upto Nc do
4: set errbest = ∞
5: for i = 1 upto N1 do
6: Pick a random image imi ∈ T − C
7: Set Ccur = C ∪ imi

8: Evaluate signature sigd = fl(θd(Ccur)) for 1 ≤ d ≤ D
9: Fit a regressor (θreg) which maps sigd to Ad, i.e.,

θreg(sigd) ≈ Ad

10: Evaluate error metric erri =
1
D

∑D
d=1[θreg(sigd)−Ad]

2

11: if erri < errbest then
12: errbest = erri
13: Cbest = Ccur

14: θbestreg = θreg
15: end if
16: end for
17: Set C = Cbest

18: Set θreg = θbestreg

19: end for
20: return θreg , C

The purpose of the greedy image down-selection is to pro-
vide a good initial guess to the image optimization algorithm.
We choose Nc images from the original test dataset T , which
provide best prediction results. Mathematically, we can write
the objective as:

θ1reg, C1 = arg min
θreg,C⊂T

Eθd(z)∼P(θd(z))

(
θreg(fl(θd(C)))−Ad

)2

(3)
It should be noted that Equation (2) represents an uncon-
strained optimization for C, whereas Equation (3) represents
a constrained optimization with C ⊂ T . Moreover, P(θd(z))
does not have a closed form expression. We can only sample
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Figure 3: Image optimization using backpropagation: solid line
shows forward pass, dashed line shows backward pass

DUTs from the variability injection framework and observe
θd(z) from the outputs of sampled DUTs. As a result, we
sample D DUTs from the variability injection framework and
modify the optimization objective as:

θ1reg, C1 = arg min
θreg,C⊂T

1

D

D∑
d=1

(
θreg(fl(θd(C)))−Ad

)2

(4)

The problem of creating C1 with total Nc images is a
combinatorial optimization problem with search space size =(|T |
Nc

)
≈ |T |Nc . Here |T | refers to the number of images in

the original test dataset T . We propose a greedy algorithm
to approximately solve this search problem in linear time as
explained in Algorithm 2. The algorithm starts with an empty
set C (line 2) and after every iteration of the optimization, adds
one image to the existing compact test dataset. Within every
iteration of the optimization, the greedy algorithm augments
a randomly picked image from T − C to generate the current
test stimulus Ccur (line 6-7). Next, Ccur is applied to all D
DUTs to generate D signatures (line 8). A regressor is trained
to predict the accuracy of a DUT from its signature (line 9).
Among N1 randomly picked images, we choose the image
with minimum regressor error.

V. IMAGE OPTIMIZATION AND REGRESSOR FINE-TUNING

A. Image Optimization

In image down-selection algorithm, we imposed a restric-
tion C ⊂ T to find a good initial solution. In the image
optimization step, we use the obtained images to initialize
image optimization. The image optimization procedure uses
the gradient of the cost function J with respect to C, which
is calculated using using backpropagation. In this step we use
a multi layer perceptron (MLP) to predict DUT accuracy from
signature because all layers of an MLP are differentiable,
enabling backpropagation. Algorithm 3 explains the overall
image optimization algorithm.

At the beginning, the compact test dataset C is carefully
initialized, whereas the MLP parameters are randomly initial-
ized. As a result, for first E1 epochs we only update the MLP
parameters. We call this step the MLP initialization step. At
every iteration, we randomly pick B DUTs from the initially
sampled D DUTs (line 6). We keep C fixed and compute the
DUT signature sigb and the DUT accuracy Âb (line 7-8). We
calculate mean squared loss between the predicted accuracy
and the actual accuracy of the DUTs (line 11). We calculate
gradient of the loss with respect to MLP parameters and update
the MLP parameters using Adam optimizer (line 12-13).

After the MLP initialization step, we perform image opti-
mization. At every iteration, mean squared loss is evaluated
between actual and predicted accuracy of the DUTs (line 20 -

Algorithm 3 Image Optimization

1: Initialize compact test dataset C = C1 and randomly initialize
MLP parameters θmlp. Sample D DUTs with accuracy Ad

2: Set number of epochs for MLP initialization = E1 and image
optimization = E2 and number of iterations per epoch = I

3: // Step 1: MLP Initialization
4: for epoch = 1 upto E1 do
5: for iteration = 1 upto I do
6: Sample B out of total D DUTs
7: for b = 1 upto B do
8: Generate signature of b-th DUT sigb = fl(θb(C))
9: Predict accuracy using MLP Âb = θmlp(sigb)

10: end for
11: Calculate loss function L̂ = 1

B

∑B
b=1[Âb −Ab]

2

12: Calculate ∂L̂
∂θmlp

13: update θmlp = fadam(θmlp,
∂L̂

∂θmlp
)

14: end for
15: end for
16: //Step 2: Image optimization
17: for epoch = 1 upto E2 do
18: for iteration = 1 upto I do
19: Sample B out of total D DUTs
20: for b = 1 upto B do
21: Generate signature of b-th DUT sigb = fl(θb(C))
22: Predict accuracy using MLP Âb = θmlp(sigb)
23: end for
24: Calculate loss function L̂ = 1

B

∑B
b=1[Âb −Ab]

2

25: if iteration is odd then
26: Calculate ∂L̂

∂C
27: update C = fadam(C, ∂L̂

∂C )
28: end if
29: if iteration is even then
30: Calculate ∂L̂

∂θmlp

31: update θmlp = fadam(θmlp,
∂L̂

∂θmlp
)

32: end if
33: end for
34: end for
35: Return C

24). In odd iterations of the optimization, we calculate gradient
of the loss with respect to the compact test dataset and update
C using Adam optimizer (line 26-27). On the other hand,
in even iterations of the optimization, MLP parameters are
updated (line 30-31). Fig. 3 shows the forward pass (shown
using solid line) and backward pass (shown using dotted
line) of backpropagation. Forward pass involves calculating
the loss function whereas backward pass involves propagating
gradients of loss using chain rule of differentiation. At the
end, the optimized compact test dataset is returned.

B. Regressor Fine-tuning

The image optimization step computes the optimized com-
pact test dataset C∗. To develop a predictive test, a regressor
needs to be trained as explained in Section II-A. The objective
of the regressor fine-tuning step is to find the optimized re-
gressor parameters θ∗reg and use it for performance prediction.
Formally, it can be stated as:

θ∗reg = argmin
θreg

1

D

D∑
d=1

(
θreg(fl(θd(C∗)))−Ad

)2

(5)
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Figure 4: Built-in Test

To find θ∗reg , we apply C∗ to the D DUTs and generate a set of
signatures {sigd}Dd=1. If the accuracy of the d-th DUT is Ad,
we fit θ∗reg such that θ∗reg(sigd) ≈ Ad using gradient boosting
regressor [17] from the scikit learn library [18].

C. Application: Built-in Test

In Section VI, we will show that the classification accuracy
of a RRAM CNN can be predicted using a compact test
dataset, containing 2-4 images. We propose a built-in test
framework for DUT classification, as shown in Fig. 4. In
a system on chip (SoC), the compact test dataset is stored
in the memory associated with the central processing unit
(CPU). During normal operation BiT EN = 0 (BiT EN is
the enable bit for built-in test mode) and the RRAM CNN
performs inference on input images. When the built in test is
enabled (BiT EN = 1), the images of the compact test dataset
are applied to the RRAM CNN and CNN sends the signature
(defined in Section II) back to the CPU. The computations
related to the regressor prediction are performed on the CPU to
estimate the DUT accuracy Â. If the application demands that
the CNN operate above an accuracy threshold Acutoff , based
on the estimated accuracy the RRAM CNN can be classified
as ”good” (Â > Acutoff ) or ”bad” (Â ≤ Acutoff ). Since the
built-in test requires applying only 2-4 images to the RRAM
CNN, the non-operating cycles of the CNN can be used for
applying the test.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluate the proposed framework for a VGG-16 CNN
[19] trained for CIFAR-10 [20] dataset using PyTorch [21].
Assuming that variances of systematic, spatially correlated and
random non-ideality factors are σ2

sys, σ2
cor and σ2

rand, the total
variance is calculated as σ2

tot = σ2
sys + σ2

cor + σ2
rand. We

define the proportionality of systematic variation as
σ2
sys

σ2
tot

and
proportionality of spatially correlated and random variation are
calculated similarly. Following [16], we fix random variation
as 50% of total variation. We simulate for different proportions
of systematic and correlated variations. We use λ = 0.001,
X1 = X2 = 50 (in Algorithm 1) and σtot = 0.3. We first
sample D = 1000 DUTs and use them for image down-
selection, image optimization and regressor fine-tuning. We
then independently sample another 500 DUTs which are used
for evaluating the proposed compact test dataset optimization
framework. We use N1 = 20 (Algorithm 2), E1 = 10,
E2 = 50 (Algorithm 3). We use Nc = 2 and 4. During
image optimization, Adam optimizer [22] is used with initial
learning rate of 0.0001. The regressors are trained using
gradient boosting regressor from Scikit learn library [18]. We
also evaluate the proposed framework for Lenet CNN [23]
trained for MNIST dataset [24].

Figure 5: Actual accuracy vs predicted accuracy of DUTs for
VGG-16 with (a) Nc = 2 (b) Nc = 4

Table I: Simulation conditions

Architecture Dataset Baseline
accuracy

Avg
Accuracy

Accuracy
range

VGG-16 CIFAR-10 93.24 77.83 10.0 - 91.6
Lenet MNIST 99.18 98.23 85.54 - 99.05

For systematic and correlated variability of 25% each, Table
I shows the average, minimum and maximum accuracy of
1000 DUTs sampled for compact test dataset generation. It is
seen that Lenet CNN trained for MNIST suffers less accuracy
degradation due process variation compared to VGG-16 CNN
trained for CIFAR-10. Hence, for VGG-16. we evaluate the
proposed framework for a cutoff accuracy range of 70% to
85% and for Lenet, we evaluate the proposed framework for
a cutoff accuracy range of 95% to 97%.

B. Regressor Performance

If the d-th DUT has accuracy Ad and the regres-
sor predicts its accuracy as Âd, we define regression er-
ror as ed = Âd − Ad. We define mean absolute error
MAE = 1

500

∑500
d=1 |ed|. We define error standard deviation

as STD =
√

1
500

∑500
d=1(ed −

1
500

∑500
i=1 ei)

2. Ideally, the
rergessor should have low MAE and low STD. For VGG-16
CNN and 25% systematic and 25% correlated variability, Fig.
5 shows that the DUT accuracies predicted by the regressor
closely tracks the actual accuracies of the DUTs. Table II
shows the mean absolute error and error standard deviation
of the regressor for different percentages of systematic and
spatially correlated variability and for Nc = 2 and 4. For all
simulation condition, we observe that mean absolute error is
within 2.6% and error standard deviation is within 4%. As Nc

increases, the length of the signature vector increases and the
signature contains more information about the characteristics
of the DUT. As a result, for Nc = 4, we observe that both
mean absolute error and error standard deviation decrease
compared to Nc = 2.

C. Pass-fail Characterization

The predictive test can be used for pass/fail characterization
of a DUT for a given performance (classification accuracy)
cutoff. For an accuracy cutoff Acutoff , a DUT with accuracy

Table II: Regressor prediction error statistics for VGG-16

Nc = 2 Nc = 4
systematic (%) correlated (%) MAE STD MAE STD

50 0 1.71 2.51 1.63 2.39
25 25 2.38 3.39 2.12 3.02
0 50 2.54 3.95 2.1 3.4
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Table III: Pass/fail characterization using the predictive framework for VGG-16 (random variation is 50%)

systematic=50%, correlated=0% systematic=25%, correlated=25% systematic=0%, correlated=50%
Acutoff 70 75 80 85 70 75 80 85 70 75 80 85

Nc = 2

TP 61.8 56.2 48 38.6 78.4 73.8 65.4 48.2 90.6 86.4 78 55
TN 35.6 39.8 48.6 57.6 17.4 22.2 29.4 41 7.2 10 14.8 29.2
FP 0.8 1.8 1.8 1.6 2.2 2 2.6 7.4 1.2 2.2 4.8 11
FN 1.8 2.2 1.6 2.2 2 2 2.6 3.4 1 1.4 2.4 4.8

Nc = 4

TP 62.8 56.6 46.8 38.6 78.4 74 65.4 49.4 91.2 86.8 79.2 56.6
TN 35.2 40 49 57.4 17.6 23.2 30.2 40.4 7.6 10.2 15.2 31.2
FP 1.2 1.6 1.4 1.8 2 1 1.8 8 0.8 2 4.4 9
FN 0.8 1.8 2.8 2.2 2 1.8 2.6 2.2 0.4 1 1.2 3.2

Table IV: Comparison with state of the art for VGG-16

systematic=50%, correlated=0% systematic = 25%, correlated = 25% systematic = 0%, correlated = 50%
MAE STD MR80 MR85 MAE STD MR80 MR85 MAE STD MR80 MR85

Ours 1.71 2.51 3.4 3.8 2.38 3.39 5.2 10.8 2.54 3.95 7.2 15.8
[8] 2.53 3.84 4.6 5 3.25 5.05 9.4 14.2 3.7 6.08 11.8 23
[6] 2.6 3.8 6.4 6.6 2.8 4.07 6.4 13.6 3.78 6.19 10.0 24.6

A should be characterized as ”good” if A > Acutoff , other-
wise the DUT should be characterized as ”bad”. On the other
hand, if the regressor predicts the DUT accuracy as Â, the
predictive test characterizes a DUT as ”good” if Â > Acutoff ,
otherwise the DUT is characterized as ”bad”. As a result,
a DUT can be in one of the four following categories: 1⃝
True Positive (A > Acutoff , Â > Acutoff ) 2⃝ True Negative
(A ≤ Acutoff , Â ≤ Acutoff ) 3⃝ False Positive (A ≤ Acutoff ,
Â > Acutoff ) 4⃝ False Negative (A > Acutoff , Â ≤ Acutoff )
Table III shows the performance of the predictive test for
a range of accuracy cutoffs for VGG-16 CNN. As Acutoff

increases, more devices have accuracies below cutoff, i.e., the
number of bad devices increases. As a result, in Table III, as
Acutoff increases, true positives decrease and true negatives
increase. For Acutoff = 70%, 75% and 80%, both false pos-
itives and false negatives are below 5%. For Acutoff = 85%
and correlated variation of 25% and 50%, false positives are
above 7% for both Nc = 2 and 4. It is seen that false positives
and negatives come only from DUTs with |Â−Acutoff | < ϵ,
for some constant ϵ. For applications in online built-in test,
this leaves scope for further improvement. On the other hand,
for applications in post manufacture tests, false positives can
be further reduced by applying standard test to DUTs with
accuracy close to cutoff accuracy, i.e., |Â − Acutoff | < ϵ
(standard test refers to applying original test dataset to a DUT).
However, we show in Section VI-D that our proposed compact
test dataset optimization algorithm significantly outperforms
prior work.

D. Comparison with Prior Work

Finally, we compare our approach to the compact test
dataset generation methods proposed in [6], [8]. For com-
parison, we use VGG-16 CNN, fix Nc = 2 and simulate
various conditions. For an accuracy cutoff of Acutoff , we
define DUT misclassification rate as MRAcutoff

= FP+FN ,
where both false positives and false negatives are represented
as percentages. Table IV shows that our proposed compact
test dataset optimization algorithm outperforms the state of the
art in terms of mean absolute error, error standard deviation
and misclassification rate for all simulation conditions. For
systematic and correlated variation of 25% each, the proposed

Table V: Results for Lenet

systematic correlated MAE STD MR95 MR96 MR97

50 0 0.31 0.85 0.6 1.4 2.8
25 25 0.32 0.59 1.4 2 5.8
0 50 0.25 0.41 0.6 1 3.6

framework reduces regression MAE by 15% (2.8% to 2.38%),
error STD by 16.7% (4.07% to 3.39%) and MR85 by 20.5%
(13.6% to 10.8% ) with respect to state the state of the art.
Similarly, for 50% correlated variation, the proposed frame-
work reduces regression error by 31.3% (3.7% to 2.54%), error
STD by 35% (6.08% to 3.95%) and MR85 by 31.3% (from
23% to 15.8%).

E. Results for MNIST

Table V shows the simulation results for Lenet CNN trained
on MNIST dataset. For all simulation condition, the regressor
achieves mean absolute error of less than 0.4% and error
standard deviation of less than 1%. For a range of accuracy
cutoffs (95-97%), the proposed test framework achieves mis-
classification rate of less than 6%.

F. Runtime

To evaluate the runtime of the proposed test framework, we
run it using T4 GPU with two images in the compact test
dataset. The entire test takes 7.8ms to complete.

VII. CONCLUSION

In this work, we propose a novel pixel level image op-
timization algorithm to create a compact test dataset for
predictive testing of RRAM based CNNs. The images for
backpropagation guided image optimization are initialized
with a greedy search, which further improves accuracy of
predictive tests. The combination of greedy down-selection
and backpropagation guided optimization enables predictive
testing of RRAM based CNNs with as few as 2-4 images.
Given the low complexity of the proposed framework, it can
be used for built-in-tests.
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M. Brucher, M. Perrot, and Édouard Duchesnay, “Scikit-learn: Machine
learning in python,” 2018.

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[20] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” 2019.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[24] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 16:58:05 UTC from IEEE Xplore.  Restrictions apply. 


