
DeepER-HD: An Error Resilient HyperDimensional
Computing Framework with DNN Front-End for

Feature Selection
Mohamed Mejri, Chandramouli Amarnath and Abhijit Chatterjee

School of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, Georgia 30332–0250

Abstract—Brain-inspired hyperdimensional (HD) computing
models mimic cognition through combinatorial bindings of bi-
ological neuronal data represented by high-dimensional vectors
and related operations. However, the efficacy of HD computing
depends strongly on input signal and data features used to realize
such bindings. In this paper, we propose a new HD-computing
framework based on a co-trainable DNN-based feature extractor
pre-processor and a hyperdimensional computing system. When
trained with restrictions on the ranges of hypervector elements
for resilience to memory access errors, the framework achieves
up to 135% accuracy improvement over baseline HD-computing
for error-free operation and up to three orders of magnitude
improvement in error resilience compared to the state-of-the-art.
Results for a range of applications from image classification, face
recognition, human activity recognition and medical diagnosis are
presented and demonstrate the viability of the proposed ideas.

Index Terms—Brain-inspired computing, Hyperdimensional
(HD) computing, Deep Learning, Error Resilience

I. INTRODUCTION

Hyperdimensional computing (HDC) is a novel computing
paradigm inspired by high-dimensional data representations
called hypervectors and arithmetic operations on hypervectors
designed to mimic the cognitive capabilities of the human
brain [1]. It is promising in that it generally offers a smaller
model size and reduced computation cost compared to mod-
ern deep neural networks. In signal processing applications
however, the performance of hyperdimensional computing is
highly dependent on the signal features used to build the high-
dimensional hypervector representations of data [2]. Such fea-
ture selection, if performed empirically, makes HDC comput-
ing highly dependent on the quality of selected features. HDC
is a low power computing paradigm making it suitable for
edge devices. However, aggressive technology scaling along
with voltage scaling, makes HDC systems vulnerable to soft
and timing errors especially in associative memory [3]. One
way to overcome such errors is to build in redundancy (e.g,
TMR) [3]) into memory systems. However, this incurs high
design costs [3]. In relation to the above, the key contributions
of this research are as follows:

• A system called DeepER-HD, an HDC structure with
a co-trained deep learning front-end is developed. The
express task of the deep learning front-end (CNN/DNN)
is to perform signal feature extraction. This front-end is

trained concurrently with the HDC system and permits
up to 69% accuracy improvement over baseline HD-
computing.

• DeepER-HD is designed to be resilient to errors in asso-
ciative memory of HDC systems. Resilience is achieved
by imposing range restrictions on the elements of hyper-
vectors during training of the HDC system. The range
restriction technique achieves up to 77.1% improvement
in accuracy under high memory access error rates.

In the following, we first discuss prior work related to this
research followed by an overview of HD computing. The
DeepER-HD architecture is then described. We next discuss
how the system is trained for operation with improved feature
selection and error resilience. This is followed by experimental
simulation results followed by validation through experiments
on FPGA hardware.

II. PRIOR WORK

Prior work in hyperdimensional computing [2], [4], [5] has
focused primarily on algorithms geared towards high-accuracy
and energy-efficient systems for diverse application domains
such as voice [6] and face [7] recognition as well as robotics
[8]. To reduce the complexity of HDC systems, quantized and
binary HDC designs have been proposed [9], [10]. Backpropa-
gation in hyperdimensional learning systems was investigated
in [11] and the use of a neural network as an encoder for
HDC was proposed in [12], [13]. However, HDC was used
to post-process the neural network output with both systems
being trained independently of each other. Architectures for
image classification [14] achieve high accuracy through use
of random Fourier features.

Prior work in error resilience of DNNs has focused on
the robustness of deep learning algorithms to soft errors and
permanent faults in AI hardware (accelerators, GPUs). To
the best of our knowledge, the work of [3] was the first to
investigate the robustness of HDC systems to soft and timing
errors. An error resilient HDC technique based on adaptive
scaling and clipping was introduced by [15]. Algorithms such
as [16], [17] and [18] were developed for error resilience in
deep neural networks, and we leverage this prior work in our
error resilience formulation.

In term of error resilience, we propose a trainable range
restriction based framework that provides increased error re-979-8-3503-6555-9/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 2
5t

h
La

tin
 A

m
er

ic
an

 T
es

t S
ym

po
si

um
 (L

A
TS

) |
 9

79
-8

-3
50

3-
65

55
-9

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

LA
TS

62
22

3.
20

24
.1

05
34

61
7

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 17:06:26 UTC from IEEE Xplore. Restrictions apply.

silience as compared to scaling and clipping. Our DeepER-
HD technique offers a balance between accuracy and latency
compared to the state-of-the-art.

III. HYPERDIMENSIONAL COMPUTING: PRELIMINARIES

A standard HDC system consists of a dataset-based encoder
which is often represented by a matrix multiplication that
transposes the features of the dataset into a hyperdimensional
space. In the HDC training step (on the training dataset), the
hypervectors that belong to the same class are summed to
generate the class hypervector C, which is stored in associative
memory. The model parameters are then updated as follows:
if the training datapoint xT is misclassified (i.e the predicted
label k̂ ̸= k), the class hypervector Ck̂ and Ck are updated
according to the following equations [19]:

Ck̂ ← Ck̂ − ηE (xT)

Ck ← Ck + ηE (xT)

where η is the learning rate, E is the hypervector encoded
training dataset.

The testing phase consists of encoding the test data point to
generate a query hypervector hQ. In Equation 2, the predicted
label k̂ is the most similar (measured by the cosine function)
class hypervector to hQ. The cosine similarity is measured
between hQ and each of the class hypervector Hk as in
Equation 1, where ⟨.⟩ denotes the inner product operation and
∥.∥ the L2 norm.

cos (hQ,Hk) =
⟨hQ,Hk⟩
∥hQ∥∥Hk∥

(1)

k̂ = argmaxk (cos (hQ,Hk)) (2)

IV. DEEPER-HD ARCHITECTURE AND TRAINING

The DeepER-HD architecture contains a feature extractor
followed by a hyperdimensional computing system. The fea-
ture extractor is discussed next.

Fig. 1: DeepER-HD Training and Testing Overview

Figure 1 gives an overview of the DeepER-HD system, con-
sisting of feature extractor (CNN Encoder) followed by HDC
system. The feature extractor consists of a set of convolutional
layers followed by maxpooling layers. Its output is forwarded
to a trainable HD encoder (i.e, a trainable linear layer with high

dimensional output) Note that in general, the feature extractor
can also be based on existing DNN backbones (e.g. ResNet) or
use less complex operations (e.g. a mix of 1D convolutional
filters and dense layers). During training, for each training
image the DeepER-HD framework takes as input ((I) in Fig.
1), it also takes in the average of all images in the training
dataset with the same label as (I) ((II) in Fig. 1). The network
is optimized to make the training image (I) as similar to the
average image. During inference, the query image is fed to
the feature extractor and HD encoder, whose output (H) is
compared to each class hypervector (Ck) as shown in the
figure1. The maximally similar class hypervector determines
the predicted class.

A. DeepER-HD Training:

A major drawback of standard HDC training is that the
encoding system is frozen while the HD system’s model
parameters are updated. This is addressed in DeepER-HD
by a novel system using iterative optimization techniques
(such as gradient descent) to back-propagate the cross entropy
loss between the true labels and the predicted probabilities
through the feature extractor weights. Algorithm 1 describes
the DeepER-HD training procedure. In this work the prepro-
cessor system’s feature extractor module is assumed to be a
CNNMcnn with weights denoted byWcnn and its dense layer
has weights denoted byWd (Wcnn andWd are initially set to a
standard normal distribution N (0, 1)). In line 2 of Algorithm
1, the system is trained for Nepochs epochs with a learning
rate of η. During each epoch, in line 3, each training datapoint
X goes through Mcnn to generate an encoded feature map.
This feature map is multiplied by Md to generate a training
hypervector H. In line 4, the same CNN (feature extractor)
moduleMcnn followed by the dense layer generates the class
hypervectors CH from the class vector C. The class vector is
composed of K elements. each element k represents a class
inside the training set and it is computed by summing all the
training points that belong to the class k. In line 5 the class
hypervector CH is normalized. In lines 6-8, an approximation
of the cosine similarity (Eq.3) is then computed between each
class hypervector CHk

and the training hypervector H that is
generated from the training datapoint.

cos(Ck,H) ∝ ⟨Ck,H⟩ (3)

The equation 3 assumes that the class hypervector Ck is
normalized. We removed the ∥H∥ since it is common to the
cosine similarity between the training hypervector and all the
class hypervector and hence not necessary for classification.
This approximation makes the gradient calculation easier. A
set of Nx probabilities with K dimensionality (K refers to
the number of classes) qi,k is computed from this using the
softmax function. A categorical cross-entropy loss L over the
Nx training datapoints is computed in line 8 using the set
of probabilities generated before and their corresponding true
labels yi,k (yi,k stands for the i’th element of the training set
and k is the k’th position of the one hot representation of yi).

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 17:06:26 UTC from IEEE Xplore. Restrictions apply.

The gradient of L is then back-propagated through the Wcnn

and Wd weights as described in lines 9-10.

Algorithm 1 DeepER-HD training System

1: η = 10−3, Nepochs = 300, Wcnn = N (0, 1),Wd =
N (0, 1)

2: for 1 to Nepochs do
3: HT =Wd ∗Mcnn (X,Wcnn)
4: CH = Wd ∗Mcnn (C,Wcnn)
5: CH = CH

∥CH∥
6: for i from 1 to Nx do
7: for k from 1 to K do
8: qi,k = eHi.CH

T
k∑K

j=0 e
Hi,CH

T
j

9: L = −
∑Nx

i=0

∑K
k=0 yi,klog (qi,k)

10: Wcnn ←Wcnn − η ∂L
∂Wcnn

11: Wd ←Wd − η ∂L
∂Wd

B. Error Model

Modern systems suffer from errors in hardware function
due to operation at low supply voltages and high clock speeds
where hardware performance is stretched to its limits. Existing
studies on DNN showed that the memory cells are more vul-
nerable to soft and timing error than the logic cells [20], [21].
Indeed, according to [20] SRAM are more exposed to large
delay variation (timing error) since they use smaller devices
than logic cells and there are vast number of cells in each chip
making the probability of an outlier higher. In our study, we
consider soft and timing errors in the SRAM of the associative
memory when storing and retrieving the class hypervector and
soft errors in the output of the CNN module of the DeepER-
HD preprocessor. Such error in the associative memory are
assumed to be caused by radiation, cosmic rays, and timing
errors such as induced by voltage scaling, signal coupling
or power and ground bounce [22]. Soft errors are modeled
using transient bit flips as in [21]. Protecting the associative
memory used to store class hypervectors against errors is thus
crucial to trustworthy HDC operation [3], [15]. For evaluating
the resilience of DeepER-HD, we used the Single-Bit-Flip
(SBF) [20], [21] model applied to the numerical (binary)
representations of the hypervector elements.

C. Error Resilience

Algorithm 2 describes the error-resilient HDC training
approach. It relies on restricting the ranges of hypervector
elements under soft errors through a range restriction clipping
operation. It takes as input, bounds on the ranges of elements
of the class hypervectors (i.e, Min and Max) derived from
analysis of the hypervectors of the baseline HDC system
(trained without the preprocessor of Fig. 1 and without range
restriction). A single Min and Max bound is used for all
the hypervectors in all iterations of Algorithm 2 as this was
found to be the most effective for resilience. The system
(preprocessor+HDC) is retrained with range restriction for
Nrange epochs and the initial maximum accuracy Maxacc is

initialized to zero. Line 4 introduces the function GWt which
takes as an input the training set XT , its corresponding classes
yT , the pre-trained CNN feature extractor weights Wt

cnn,
dense layer weights Wt

d and the class hypervectors CtH . GWt
then generates updated preprocessor CNN module weights
Wt+1

cnn , preprocessor dense layer weights Wt+1
d and class

hypervectors Ct+1
H iteratively as stated in Algorithm 1. In line

5, the class hypervectors Ct+1
H are clipped using the Min and

Max bounds and the class hypervectors Ct+1
Hclip

are generated.
In line 6, the older values of the CNN feature extractor
weights, the dense layer weights, and the class hypervector
weights are updated. Then, in line 7, the function Eval is
used with updated weights and the clipped class hypervectors
on the validation set XV and their corresponding labels yV to
calculate the validation accuracy Accval. Finally, the clipped
class hypervectors, the CNN feature extractor weights, and
the dense layer weights that correspond to the maximum
validation accuracy Accval are stored. During Inference, in
line-11 we look at all the class hypervector from 1 to K and
clip them using the Min and Max bounds (line-12). Then, in
line-13 we compute the cosine similarity between the class
hypervector Ck and the query hypervector Hq . The class with
the highest similarity is then the predicted class (line 14-16).

Algorithm 2 Range Restriction Filter HDC system

1: procedure RANGE RESTRICTION TRAINING(Min,Max)
2: Nrange = 100, Maxacc = 0
3: for t from 1 to Nrange do
4: Wt+1

cnn ,Wt+1
d , Ct+1

H ← GWt (XT , CtH ,Wt
cnn,Wt

d)
5: Ct+1

Hclip
= Clip

(
Ct+1
H ,Min,Max

)
6: Wt

cnn,Wt
d, CtH ←Wt+1

cnn ,Wt+1
d , Ct+1

Hclip

7: Accval = Eval (XV , yV , CtH ,Wt
cnn,Wt

d)
8: if Accval > Maxacc then
9: W∗

cnn,W∗
d , C∗H , = Wt

cnn,Wt
d, CtH

10: procedure RANGE RESTRICTION INFERENCE
11: for k from 1 to K do
12: Ck = Clip(Ck,Min,Max)
13: δk = cos(Ck, Hq)
14: if δk > δmax then
15: δmax = δk
16: ỹ = k

Choice of the range bounds (i.e, Min and Max) involves
tradeoffs, since a narrow range results in loss of performance
(i.e. low testing/inference accuracy) and wide range degrades
system error resilience. Broadly, best performance was ob-
tained by increasing the range bounds for lower accuracy HDC
systems and vice-versa.

V. EVALUATION

A. Experimental setup

In this section we validate the use of trained convolutional
feature extractors in DeepER-HD against regular HDC models
[23], followed by comparisons of the error resilience of both
DeepER-HD and regular HDC performance with and without

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 17:06:26 UTC from IEEE Xplore. Restrictions apply.

the range-filtering based resilience approach. The different
dataset test cases and their characteristics for DeepER-HD
and the baseline HDC system [2] used in our experiments
are summarized in Table I.

After fine-tuning and freezing DeepER-HD model param-
eters, the range filter-based resilience framework is evaluated
using soft-error injection experiments. The class hypervectors
are encoded in 32-bits and errors are injected into the binary
representation of each hypervector element with an error rate
that varies in a logarithmic scale between 10−10 and 10−2.

The framework of Section IV-C using a clipping filter was
applied to the class hypervectors to enhance the error resilience
of DeepER-HD (combination of Algorithms 1 and 2). The
clipping filter was also applied to the baseline HDC model
(not trained with range restriction) for comparison. The range
value is determined empirically from the baseline system
hypervectors as discussed earlier in Section IV-C. A range
restriction filter is also applied to the output of the preprocessor
system’s feature extractor to enhance error resilience. DeepER-
HD and this error resilience framework were implemented
in hardware using Xilinx Vivado High-Level Synthesis on a
Xilinx Zynq UltraScale+ MPSoC ZCU104 FPGA.

TABLE I: Datasets Description
Application Name Train Size Test Size Features # classes

Voice Recognition ISOLET 6238 1599 617 26
Human Activity Recognition UCIHAR 7767 3162 561 6

Medical Diagnosis CARDIO 1424 702 23 3
Face Recognition FACE 1408 694 2352 2

Image Classification

MNIST 60k 10k 28x28x1 10
Fashion MNIST 60k 10k 28x28x1 10

CIFAR10 50k 10k 32x32x3 10
CIFAR100 50k 10k 32x32x3 100

GTSRB 39k 12.6k 32x32x3 43

B. Performance of DeepER-HD

The figure 2(a) and 2(b) shows a comparison between
DeepER-HD with 2 convolutional layers and an HD encoder
(D=1k), a regular CNN with multiple convolutional and max-
pooling layers , the Baseline HD [23] with a dimensionality
(D = 10k) , a linear support vector machine (SVM) and
100 estimators Adaboost algorithm in term of accuracy and
inference latency. DeepER-HD has a comparable accuracy to a
tiny CNN for classifying image dataset (e.g, Fashion-MNIST,
CIFAR10, GTSRB) and even better accuracy than a CNN
(CIFAR100). It outperforms all the other machine learning
technique in terms of accuracy (i.e, SVM and AdaBoost). Due
to the use of a feature extractor, the DeepER-HD has better
accuracy than the Baseline-HD. In term of latency, DeepER-
HD has lower overhead than the CNN and other machine
learning techniques (i.e, SVM and Adaboost) and is also faster
than the Baseline-HD due to its lower dimensionality. As
a conclusion, DeepER-HD has as the best Accuracy-latency
balance compared to standard machine learning techniques.

C. Error resilience

Model resilience to soft errors in associative memory was
assessed on the baseline and DeepER-HD. The use of the
range filter method of Section IV-C was compared against
the base case of no error resilience method applied for

(a) Accuracy comparison

(b) Inference latency comparison

(c)

Fig. 2: DeepER-HD Inference latency and Accuracy comparison
with State-Of-The-Art

both the baseline and DeepER-HD. In these experiments,the
failure error rate is defined as the error rate that causes a
5% accuracy drop from the nominal accuracy. The relative
difference between the failure error rate of two technique is
defined as the error resilience of one method compared to the
other. Figure 3 shows, on a semi-logarithmic scale of error
rate, the accuracy of the HDC baseline with our resilience
method and the baseline technique [15] on different datasets
(i.e, UCIHAR, ISOLET, and CARDIO).

(a) ISOLET (b) UCIHAR

(c) CARDIO

(d)

Fig. 3: Error resilience assessment for HDC baseline

For example in figure 3(a) our technique is one order of
magnitude more error resilient than the baseline [15] and
three order of magnitude more error resilient than the faulty
model. In figure 3(b), our method is one order of magnitude
more error resilient than the baseline [15] and two order of

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 17:06:26 UTC from IEEE Xplore. Restrictions apply.

magnitude more robust to error than the faulty model. Finally,
in figure 3(c), our technique is respectively one and two order
of magnitude more error resilient than the baseline [15] and
the faulty model.

(a) CIFAR10 (b) MNIST

(c) FASHION MNIST

Fig. 4: Error resilience assessment for DeepER-HD
(errors in the class hypervector)

The range restriction filter (see algorithm 2) was also
applied to DeepER-HD with the CNN encoder. Figures 4 show
the performance of our range restriction filter used in DeepER-
HD for soft errors in the class hypervector (in associative
memory) on the MNIST, FashionMNIST, CIFAR10, and
GTSRB datasets compared to the unprotected DeepER-HD
model. The range restriction filter showed an error resilience
of two order of magnitude compared to the faulty model when
applied on MNIST and Fashion-MNIST datasets. The error
resilience drops to one order of magnitude for more complex
dataset like CIFAR10. The level of resilience drops when
dealing with more complex classification tasks (i.e, CIFAR10
or GTSRB) due to the tradeoff between tight range bounds
(for resilience) and accuracy (requiring looser bounds).

The resilience of DeepER-HD was also assessed against soft
errors injected into the CNN feature extractor.

A range restriction filter is placed after the feature extractor
module to prevent accuracy degradation due to soft errors
inside the feature extractor. Figure 6 shows the accuracy of
DeepER-HD with and without the range restriction filter after
injecting soft errors over a range of error rates. Our technique
is two order of magnitude more robust to error than the faulty
model.

D. Hardware Validation

Here we assess the performance in terms of accuracy and
the overhead (power consumption, inference time, resource
utilization) of DeepER-HD on the Zynq UltraScale+ MPSoC
ZCU104 FPGA against the baseline HDC system of [2]. Table
II summarizes the overhead and the accuracy of DeepER-HD
compared to the baseline in hardware validation on FPGA.

Table II shows that the DeepER-HD achieves better accu-
racy for the CIFAR10 (+135%), MNIST (+7%), and Fashion-
MNIST (+11.6%) classification tasks. However, the DeepER-
HD model incurs higher overhead compared to the due to CNN

(a) CIFAR10 (b) MNIST

(c) FASHION MNIST

Fig. 5: Error resilience assessment for DeepER-HD
(errors in the feature extractor)

feature extractor usage. In all cases except the CIFAR10 clas-
sification task, the baseline consumed less memory (BRAMs -
12.87%) and had a slightly lower inference time (-0.75%). The
high dimensionality of the CIFAR10 dataset (32x32x3) leads
to high matrix multiplication dimensionality (i.e the encoder of
the HDC baseline) compared to DeepER-HD, implying that as
dataset dimensionality rises in image classification, DeepER-
HD is more cost-effective.

The error resilience of DeepER-HD has also been assessed
on the Zynq UltraScale+ MPSoC ZCU104 Board. Single-bit
flips were injected inside the class hypervector. Table III shows
the overhead of the regular DeepER-HD model compared to
its error-resilient version. As shown in Table III, the range

(a) CIFAR10 (b) MNIST

Fig. 6: Hardware assessment Error resilience for DeepER-HD
restriction filter adds almost no energy overhead on MNIST
data and adds 8% energy overhead for CIFAR10 dataset. It
turns out that the encoding system is the most time-intensive
part of the DeepER-HD model with (97 % and 87 %), while
similarity checking represents (2.9 % and 13.25 %) of the
inference time over CIFAR10 and MNIST respectively. The
range restriction filter adds negligible time overhead for both
cases. Figure 6 shows the accuracy of regular DeepER-HD and
error-resilient DeepER-HD after injecting randomized single-
bit flips inside the class hypervectors. The range restriction
filter provides two order of magnitude of error resilience
compared to the faulty model.

VI. CONCLUSION

Hyperdimensional Computing is an emerging paradigm
in machine learning with low computational overhead and
inference time. We proposed DeepER-HD, an deep learning

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 17:06:26 UTC from IEEE Xplore. Restrictions apply.

TABLE II: DeepER-HD performance hardware assessment
Dataset Model Resource utilization Inference time (us) Power (W) Energy (mJ) Accuracy (%)BRAM FF LUT DSP

MNIST DeepER-HD 178 49252 36432 331 55.5 (-12%) 3.732 0.207 97.7 (+7%)
Baseline 83.5 14072 12893 11 49.5 2.868 0.141 (-31%) 91

Fashion
MNIST

DeepER-HD 178 49252 36432 331 55.5 (-12%) 3.732 0.207 89.38 (+11.6%)
Baseline 83.5 14072 12893 11 49.5 2.868 0.141 (-31%) 80.03

CIFAR10 DeepER-HD 182.5 46329 34824 311 54.3 (+0.75%) 3.698 0.2 71.7 (+135%)
Baseline 206.5 14098 13055 11 71.72 2.89 0.152 (-24%) 30.5

TABLE III: DeepER-HD error resilience hardware assessment
Dataset model Resource utilization Power (W) Inference time (ms) EnergyBRAM FF DSP LUT

MNIST
DeepER-HD 130.5 36580 336 29996 1.004 1.539 1.545

Error Resilient DeepER-HD 130.5 37127 336 30323 1.011 1.539 1.555
Difference +0.0% +1.5% +0.0% +1.1% +0.69% +0.0% +0.69%

CIFAR10
DeepER-HD 210.5 36299 322 30029 0.937 7.007 6.545

Error Resilient DeepER-HD 210.5 35417 322 30041 1.014 7.007 7.105
Difference +0.0% +0.32% +0.0% +0.04% +8.21% +0.0% +8.21%

inspired HDC model that outperforms state-of-the-art HDC
systems with low additional overhead. An error resilience
framework for DeepER-HD and traditional HDC was also
presented. Future work aims to make DeepER-HD more cost-
effective and explore further error resilience methodologies.

ACKNOWLEDGMENT

This research was supported by NSF Grant No. 2128149 and
by the School of ECE at Georgia Institute of Technology.

REFERENCES

[1] Pentti Kanerva. Hyperdimensional computing: An introduction to
computing in distributed representation with high-dimensional random
vectors. Cognitive computation, 1(2):139–159, 2009.

[2] Lulu Ge and Keshab K Parhi. Classification using hyperdimensional
computing: A review. IEEE Circuits and Systems Magazine, 20(2):30–
47, 2020.

[3] Sizhe Zhang, Ruixuan Wang, Jeff Jun Zhang, Abbas Rahimi, and Xun
Jiao. Assessing robustness of hyperdimensional computing against
errors in associative memory : (invited paper). In 2021 IEEE 32nd
International Conference on Application-specific Systems, Architectures
and Processors (ASAP), pages 211–217, 2021.

[4] Mohsen Imani, Justin Morris, John Messerly, Helen Shu, Yaobang Deng,
and Tajana Rosing. Bric: Locality-based encoding for energy-efficient
brain-inspired hyperdimensional computing. In 2019 56th ACM/IEEE
Design Automation Conference (DAC), pages 1–6, 2019.

[5] Tony F. Wu, Haitong Li, Ping-Chen Huang, Abbas Rahimi, Jan M.
Rabaey, H.-S. Philip Wong, Max M. Shulaker, and Subhasish Mitra.
Brain-inspired computing exploiting carbon nanotube fets and resistive
ram: Hyperdimensional computing case study. In 2018 IEEE Interna-
tional Solid - State Circuits Conference - (ISSCC), pages 492–494, 2018.

[6] Mohsen Imani, Deqian Kong, Abbas Rahimi, and Tajana Rosing.
Voicehd: Hyperdimensional computing for efficient speech recogni-
tion. In 2017 IEEE International Conference on Rebooting Computing
(ICRC), pages 1–8, 2017.

[7] Mohammad Yasser, Khaled F. Hussain, and Samia Abd El-Fattah Ali.
An efficient hyperdimensional computing paradigm for face recognition.
IEEE Access, 10:85170–85179, 2022.

[8] Peer Neubert, Stefan Schubert, and Peter Protzel. An introduction to
hyperdimensional computing for robotics. KI - Künstliche Intelligenz,
33, 09 2019.

[9] Mohsen Imani, Samuel Bosch, Sohum Datta, Sharadhi Ramakrishna,
Sahand Salamat, Jan M. Rabaey, and Tajana Rosing. Quanthd: A quan-
tization framework for hyperdimensional computing. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 39(10),
2020.

[10] Mohsen Imani, John Messerly, Fan Wu, Wang Pi, and Tajana Rosing.
A binary learning framework for hyperdimensional computing. In 2019
Design, Automation Test in Europe Conference Exhibition (DATE),
pages 126–131, 2019.

[11] Shijin Duan, Yejia Liu, Shaolei Ren, and Xiaolin Xu. Lehdc:
Learning-based hyperdimensional computing classifier. arXiv preprint
arXiv:2203.09680, 2022.

[12] Peter Sutor, Dehao Yuan, Douglas Summers-Stay, Cornelia Fermuller,
and Yiannis Aloimonos. Gluing neural networks symbolically through
hyperdimensional computing. arXiv preprint arXiv:2205.15534, 2022.

[13] Arpan Dutta, Saransh Gupta, Behnam Khaleghi, Rishikanth Chan-
drasekaran, Weihong Xu, and Tajana Rosing. Hdnn-pim: Efficient in
memory design of hyperdimensional computing with feature extraction.
In Proceedings of the Great Lakes Symposium on VLSI 2022, pages
281–286, 2022.

[14] Tao Yu, Yichi Zhang, Zhiru Zhang, and Christopher De Sa. Understand-
ing hyperdimensional computing for parallel single-pass learning. arXiv
preprint arXiv:2202.04805, 2022.

[15] Sizhe Zhang, Mohsen Imani, and Xun Jiao. Scalehd: robust brain-
inspired hyperdimensional computing via adapative scaling. In Proceed-
ings of the 41st IEEE/ACM International Conference on Computer-Aided
Design, pages 1–9, 2022.

[16] Chandramouli Amarnath, Mohamed Mejri, Kwondo Ma, and Abhijit
Chatterjee. Soft error resilient deep learning systems using neuron
gradient statistics. In 2022 IEEE 28th International Symposium on On-
Line Testing and Robust System Design (IOLTS), pages 1–7, 2022.

[17] Elbruz Ozen and Alex Orailoglu. Boosting bit-error resilience of DNN
accelerators through median feature selection. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst., 39(11):3250–3262, 2020.

[18] Zitao Chen, Guanpeng Li, and Karthik Pattabiraman. A low-cost
fault corrector for deep neural networks through range restriction. In
2021 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 1–13. IEEE, 2021.

[19] Abbas Rahimi, Pentti Kanerva, and Jan M. Rabaey. A robust and energy-
efficient classifier using brain-inspired hyperdimensional computing.
ISLPED ’16, page 64–69, New York, NY, USA, 2016. Association for
Computing Machinery.

[20] Brandon Reagen, Udit Gupta, Lillian Pentecost, Paul Whatmough,
Sae Kyu Lee, Niamh Mulholland, David Brooks, and Gu-Yeon Wei.
Ares: A framework for quantifying the resilience of deep neural
networks. In Proceedings of the 55th Annual Design Automation
Conference, pages 1–6, 2018.

[21] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai,
Karthik Pattabiraman, Joel Emer, and Stephen W. Keckler. Understand-
ing error propagation in deep learning neural network (dnn) accelerators
and applications. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’17, New York, NY, USA, 2017. Association for Computing Machinery.

[22] Weiwei Shan, Longxing Shi, and Jun Yang. In-situ timing monitor-based
adaptive voltage scaling system for wide-voltage-range applications.
IEEE Access, 5:15831–15838, 2017.

[23] Alejandro Hernández-Cano, Namiko Matsumoto, Eric Ping, and Mohsen
Imani. Onlinehd: Robust, efficient, and single-pass online learning using
hyperdimensional system. In 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 56–61. IEEE, 2021.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 17:06:26 UTC from IEEE Xplore. Restrictions apply.

