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Tuberculosis (TB) is the world’s deadliest infectious disease, with over 1.5 

million deaths and 10 million new cases reported anually. The causative organism 

Mycobacterium tuberculosis (Mtb) can take nearly 40 d to culture, a required 

step to determine the pathogen’s antibiotic susceptibility. Both rapid 

identification and rapid antibiotic susceptibility testing of Mtb are essential for 

effective patient treatment and combating antimicrobial resistance. Here, we 

demonstrate a rapid, culture- free, and antibiotic incubation- free drug 

susceptibility test for TB using Raman spectroscopy and machine learning. We 

collect few- to- single- cell Raman spectra from over 25,000 cells of the Mtb 

complex strain Bacillus Calmette-Guérin (BCG) resistant to one of the four 

mainstay anti  -TB drugs, isoniazid,  rifampicin, moxifloxacin, and amikacin, 

as well as a pan-susceptible wildtype strain. By  training a neural network on this 

data, we classify the antibiotic resistance profile of each strain, both on dried 

samples and on patient sputum samples. On dried samples, we achieve >98% 

resistant versus susceptible classification accuracy across all five BCG strains. In 

patient sputum samples, we achieve ~79% average classification accuracy. We 

develop a feature recognition algorithm in order to verify that our machine 

learning model is using biologically relevant spectral features to assess the 

resistance profiles of our mycobacterial strains. Finally, we demonstrate how this 

approach can be deployed in resource-limited  settings by developing a low- cost, 

portable Raman microscope that costs <$5,000. We show how this instrument 

and our machine learning model enable combined microscopy and spectroscopy 

for accurate few-to - single- cell drug susceptibility testing of BCG. 

Raman spectroscopy | machine learning | tuberculosis | antibiotic susceptibility | infectious disease 

The discovery of antibiotics in the early 20th century marked a turning point in our 

defense against tuberculosis (TB)—one of the deadliest infectious diseases known to 

humans. At that time, TB had become curable and was considered to be on a path toward 

elimination. However, by the end of the 20th century, TB re- emerged as a leading cause 

of death globally, in part due to challenges in diagnosis and its evolved resistance to 

antibiotics. While growth in liquid culture is considered the gold standard for organism 

identification and determination of antibiotic susceptibility, the causative organism, 

Mycobacterium tuberculosis (Mtb), can take up to 40 d to culture. As antibiotic susceptibility 

testing requires pathogen growth, definitive determination of Mtb antibiotic resistance 

using traditional antibiotic susceptibility testing (AST) can take additional weeks. In the 

delay between diagnosis and AST results, many patients are treated with only partially 

active antibiotic regimens, giving rise to resistant strains. In 2021 alone, more than half 

a million cases of multidrug- resistant TB infections were reported (1). 
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To mitigate the rise of antimicrobial 

resistance, a key strategy of the World 

Health Organization (WHO) is to 

improve surveillance of antibiotic- 

resistant infections and to promote the 

appropriate use of quality medicines (2). 

To address WHO guidelines, several 

culture-free AST approaches are being 

developed. For example, nucleic acid 

amplification  tests and PCR do not 

require culturing and are highly sensitive 

and specific. However, these tests are 

limited to identifying resistance in cases 

in which a defined number of known 

genomic mutations confer resistance 

[e.g., the rpoB gene for resistance to 

rifampicin (3)]. In general, the 

appearance of genetic mutations in 

previously identified genes of interest has 

not been consistently linked to resistance 

to these antibiotics. Moreover, known 

genetic elements or mutations typically 

constitute only a fraction of the genetic 

basis for clinically relevant resistance (4). 

These assays also require multiple 

reagents, can suffer from errors with 

each thermal cycle, and cannot 

distinguish between live and dead 

bacteria, so they cannot be used to 

monitor treatment efficacy. 

Furthermore, these assays cost well 

above the Significance 

Tuberculosis is preventable and 

curable, yet it is the world’s deadliest 

infectious disease. This is in part due 

to the emergence of drug- resistant 

tuberculosis. Timely, accurate drug 

susceptibility testing of 

Mycobacterium tuberculosis is critical 

for effective patient treatment and the 
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prevention  of community spread, as inappropriate usage of anti-TB  drugs may delay 

treatment progress and generate acquired resistance. Here, we develop a fast antibiotic 

susceptibility test for tuberculosis by combining Raman spectroscopy and machine 

learning. Using this methodology, we can assess the resistance of antibiotic- resistant 

mycobacteria strains at clinically relevant speeds and accuracies. Our findings provide a 

foundation for rapid, low- cost, point- of- care mycobacterial drug susceptibility testing for 

diagnostic and surveillance applications, a major step in the fight against antimicrobial 

resistance. 
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This article is a PNAS Direct Submission. 
Copyright © 2024 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution- NonCommercial- 
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targeted $5,000 in capital cost specified by the WHO for next- generation TB drug- 

susceptibility testing tools (5). Complementing PCR, loop- mediated isothermal 

amplification (LAMP) assays eliminate the need for thermal cycling. However, these 

LAMP assays cannot detect mutations in resistance-associated genes because  of their 

inability to resolve single- nucleotide differences (6). Rapid lateral flow point- of- care 

test antigen/antibody detection methods provide simpler and faster alternatives to 

LAMP and PCR but have poor sensitivity and specificity. There is also a significant delay 

in the appearance of target antigens in sputum or antibodies in the bloodstream, and 

these antigens do not necessarily indicate Mtb drug susceptibility. Therefore, current 

AST methods do not collectively provide the speed, sensitivity, and specificity needed in 

one system to meet WHO’s goals for drug- resistant TB eradication. 
Raman spectroscopy has the potential to identify the antibiotic resistance profiles of 

bacteria at the few-to - single- cell level using acquisition times on the order of seconds. 

Raman spectroscopy utilizes inelastic light scattering to probe the vibrational modes of 

a sample as a fingerprint. Different bacterial phenotypes are characterized by unique 

biomolecular compositions, leading to subtle differences in their corresponding Raman 

spectra. The Raman spectra of biological macromolecules typically reside between 500 

and 1,900 cm−1, with lipids, proteins, and nucleic acids exhibiting fingerprints between 

1,000 and 1,700 cm−1, 1,200 and 1,660 cm−1, and 600 and 1,100 cm−1, respectively (7). 

As such, these unique Raman spectral signatures can be used for accurate cellular 

detection, identification, and antibiotic susceptibility testing. Using Raman spectroscopy 

and machine learning (ML) based spectral analysis, we have previously shown that 

genetically engineered antibiotic-resistant and susceptible  Staphylococcus aureus strains can 

be classified with ~89% accuracy (7). Similarly, we and others have used machine 

learning- assisted Raman to identify over 31 bacterial species and strains (8–11), including 

pathogens in liquid solvents (12) and in urine and blood (13–15); to identify substrains 

of Escherichia coli (16, 17), to identify various respiratory viruses (18), to identify various 

cellular metabolites and secretomes (19), to assess the effects of antibiotics on resistant 

and susceptible bacteria (20, 21), and to determine S. aureus antibiotic susceptibility 

without antibiotic incubation (22). Despite these pioneering studies, the robust 

determination of antibiotic susceptibility of TB, and methods translation to TB-endemic 

regions,  remains an open challenge. Previous studies have demonstrated the use of 

Raman and machine learning for mycobacterial detection and antibiotic resistance 

profiling with high classification accuracies (23, 24). However, the machine learning 

models trained in these studies behave like black boxes, lacking transparency in their 

decision- making and interpretability and raising questions concerning the spectral 

features being used to achieve such high classification accuracies. These questions are 

especially salient when spectra are collected in complex physiological media such as 

sputum, which has significant spectral overlap with the vibrational information 

contained in Mtb. 
Here, we demonstrate a rapid, culture-free, and antibiotic  incubation- free antibiotic 

susceptibility test for TB, based on the integration of few-to -single -cell Raman 

spectroscopy and machine  learning. In particular, we systematically classify the antibiotic 

resistance profiles of five isogenic Bacillus Calmette–Guérin (BCG) strains using a 

convolutional neural network. We collect 

Raman spectra from over 25,000 

individual cells which are controllably 

engineered to possess resistance to one 

of the four mainstay anti- TB drugs 

(first- line drugs isoniazid and rifampicin 

and second-line  drugs moxifloxacin and 

amikacin) and a pansusceptible wild-type  

strain. Using only 15across the entire 

spectral range (740 to 1,802 cm-s 

integration times and Raman features 

from  −1), we achieve  
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>98% resistant versus susceptible classification accuracy across all five BCG strains. In 

addition, we show that various genetic mutants can be accurately classified according to 

their antibiotic resistance. Using our feature recognition algorithm, we also identify the 

subsets of wavenumbers which most strongly influence antibiotic resistance 

classification and correlate them with the Raman signatures of well- known biomolecules 

and functional groups, verifying that our machine learning model is using biologically 

relevant peaks for classification. Our algorithm shows that antibiotic resistance behavior 

is primarily reflected in certain vibrational modes—particularly those of mycolic acid—

that underly the molecular-level antibiotic  response of the bacteria. This algorithm also 

shows that targeting the entire spectral range of scientific- grade Raman instruments is 

not necessary for TB AST. To show how our approach can be robustly deployed in 

resource-limited settings, we develop a  low- cost portable Raman setup for point-of -

care applications. Our  instrument costs <$5,000, and with inclusion of low- cost 

plasmonic nanoantennas for surface- enhanced Raman spectroscopy (SERS), achieves 

an average accuracy of 89% across all five BCG strains. In dried patient sputum samples, 

our instrument achieves ~79% classification accuracy—providing a foundation for rapid, 

low- cost, and portable AST testing in resource-limited regions.  

Results 

Few-to -single -cell Raman Spectroscopy of BCG for Antibiotic  Incubation-free Determination of Drug 

Resistance.   As summarized in Fig. 1, we deposit mycobacterial cells onto gold- 

coated glass substrates and collect few-to -single - cell Raman spectra (Fig. 1A). For our 

studies, we controllably engineer antibiotic-resistant Mtb  models using BCG, a live-

attenuated form of  Mycobacterium Bovis as a model organism. While lacking central 

virulence determ inants, BCG is nearly identical to Mtb in its core bacterial funct ions, 

including DNA replication, RNA polymerase, and cell wall functions. We use these 

models to controllably engineer single- antibiotic resistance for robust profiling and to 

enable safe handling of resistant samples in our BSL- 2 facilities for the proof- of- 

concept studies performed here. Individual Raman spectra are used as an input into our 

convolutional neural network; we employed a 10-fold cross - validation scheme to 

determine the unbiased model performance. The output of this algorithm is a series of 

probability scores for antibiotic resistance (Fig. 1B). The class with the highest 

probability score is chosen as the predicted class. 

We performed our antibiotic 

susceptibility test on five isogenic BCG 

strains: those resistant to the first- line 

TB antibiotics isoniazid and rifampicin; 

those resistant to the second- line TB 

antibiotics moxifloxacin and amikacin; 

and also on a fully antibiotic-susceptible  

control strain (hereby described as 

wildtype). Fig. 1C shows the minimum 

inhibitory concentrations (MICs) of the 

four anti-TB  antibiotics used on our five 

BCG strains, confirming each resistant 

strain’s resistance to a single antibiotic as 

well as the full antibiotic susceptibility of 

the wild- type strain. As seen in Fig. 1 D–

H, scanning electron micrographs show 

no distinct morphological difference 

among the resistant strains. 

 

Fig. 1.   Experimental setup and example bacterial Raman spectra with antibiotic resistance profiles. (A) Diffraction-  limited spot of a 633 nm incident laser collecting a spectrum from 

roughly a single bacterial cell. (B) Bacterial spectra are used as input for the neural network to perform a classification task that outputs probability scores  for each bacterial strain’s 

antibiotic resistance. (C) Minimum inhibitory concentrations (MICs) for the five distinct strains tested across the four main antibiotics using standard serial two-fold dilution. See  SI 

Appendix, Table S1 for details. (D–H) Scanning electron microscopy (SEM) image of a monolayer of wildtype, amikacin- resistant, rifampicin- resistant, isoniazid- resistant, and 

moxifloxacin- resistant BCG. (Scale bar, 4 μm.) 
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As shown in Fig. 2A, the average Raman spectra of the five distinct BCG strains 

(~1,700 spectra per strain) look similar, with major spectral peaks preserved across the 

strains. However, there are some noticeable differences in the ~1,000, ~1,300, ~1,500, 

and ~1,700 cm−1   

Fig. 2.   BCG antibiotic resistance determination. 

(A) Average spectrum with standard deviation of all 

spectrograms (1,700 spectra collected at 15 s 

acquisition) from the five BCG strains. The spectra 

show significant differences in both peak 

position and peak intensity at bands centered at 

~1,000 cm−1, 1,060 cm−1, and between ~1,300 to 

1,700 cm−1. (B) Two- dimensional t-SNE 

projection across all Raman spectra of the dataset for 

five BCG strains susceptible and resistant to  the four 

different antibiotics tested grouped according to 

antibiotic class showing clustering. (C) Normalized 

confusion matrix generated using CNN on 

the few-to -single - cell spectra collected from five 

BCG strains, grouped by antibiotic class. Samples 

were evaluated by performing a stratified K-

fold cross - validation of our classifier’s 

performance across 10 splits, showing ~98% 

classification accuracy across all samples. (D) 

Feature selection highlighting the 

identification of true, physical vibrational modes. 

Feature selection performed to determine 

relative weight of spectral wavenumbers in our CNN 

classification. (E) Average classification accuracy as a 

function of the number of top spectral features 

selected showing 96% accuracy with only 500 

features. 



PNAS  2024  Vol. 121  No. 25 e2315670121  https://doi.org/10.1073/pnas.2315670121 5 of 10 

bands between wild type and four resistant strains; the majority of these vibrational 

modes correspond to cell wall components such as mycolic acid and proteins. Therefore, 

the differences between the spectra are most likely due to differences in cell-wall 

composition  and structure, discussed later in the text. We performed t-distributed  

stochastic neighbor embedding (t-SNE) which shows significant  clustering for each of 

the five strains (Fig. 2B). Such clustering suggests that accurate classification by resistance 

should be possible. To classify the antibiotic resistance profiles of the five BCG strains, 

we developed a deep learning model, a ResNet (25) variant (8). We perform a stratified 

K- fold cross- validation of our convolutional neural network’s performance across 10 

splits. As seen in Fig. 2C, we achieve an average accuracy of 98% across all BCG strains. 

Note that main diagonal elements represent correct classifications and off-diagonal 

elements represent misclassifications. High classification  accuracies were also obtained 

with different gold- coated glass substrates (SI Appendix, Fig. S3) as well as with 

combined datasets from different experimental replicates (SI Appendix, Figs. S11 and 

S12). These results demonstrate that our approach is agnostic to the particular substrate 

selected or batch effects and are solely from intrinsic differences in the strains 

themselves. Therefore, Raman spectroscopy in conjunction with machine learning can 

be used to predict antibiotic resistance in mycobacteria without the need for antibiotic 

incubation and hence without culturing. 

Select Spectral Bands Are Most Crucial for Predicting Antibiotic Resistance. We quantitatively 

identify the regions of the spectra that are key for the high classification accuracy. To 

identify these meaningful bands, we used a probing algorithm that perturbs the input 

data before rerunning the classification through the trained models from Fig. 2C (26). 

Using each test fold from our 10-fold  cross- validation, we iterate through the 

wavenumbers and, at each iteration, perturb the spectrum by modulating the amplitude 

of the spectral intensity with a Voigt distribution centered at the probing wavenumber. 

After each perturbation, we recalculate the classification accuracy, compare the updated 

results with our baseline classification accuracy, and determine the importance for each 

wavenumber—the greater the decrease in accuracy due to a given perturbation, the more 

important the wavenumber. As shown in Fig. 2D, these regions are spectral bands 

located around 1,295, 1,437, and 1,660 cm−1 (27, 28). These wavenumber bands 

correspond to mycolic acid −CH2 twist and −CH2 deformation modes, and Amide I 

C=O stretching modes, which change when the bacteria develop resistance. Therefore, 

our analysis suggests that Raman spectral features can be used to differentiate resistant 

bacteria that exhibit distinct biochemical profiles. 
Next, we reduced the wavenumber feature input to our neural network, reflecting 

those bands most important for high- accuracy classification. Using only the top 50 

wavenumbers, we achieve ~86% accuracy. Classification accuracy increases to 96% when 

using 250 features, and further to 98% when using all 1,930 features (Fig. 2E). This result 

indicates potential for more rapid spectral collection and analysis as full spectroscopic 

analysis is not necessary to achieve high classification accuracies. 

Antibiotic-resistant Mutants Can Be Accurately Classified.   To test the robustness of our 

approach to potential patient–patient variation, we interrogated four distinct isoniazid-

resistant mutants  and three distinct amikacin- resistant mutants (SI Appendix, Table S2). 

As seen in Fig. 3A, the isoniazid-resistant mutants differ  from each other by single- 

point mutations in the katG gene, which encodes for catalase peroxidase, an enzyme that 

converts isoniazid to its biologically active form (29). Isoniazid-resistant mutant  1 has a 

single- point mutation at position 609 from cytosine  

 

Fig. 3.   Resistant mutant prediction. (A) Sequencing 

results showing single mutation differences in resistance 

genes of interest resulting in mutants of resistant strains 

against isoniazid and amikacin. (B) Average Raman 

spectra of 529 spectra per strain of four isoniazid- 

resistant mutants and three amikacin- resistant mutants 

showing nearly identical fingerprints among their 

respective class of resistance. (C) t- SNE plot showing 

overlapping clusters of mutants within a class of 

antibiotic resistance. 
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to thymine; isoniazid-resistant mutant 2 has two single  - point mutations at positions 

290 and 609 from adenine to guanine and cytosine to thymine, respectively; isoniazid- 

resistant mutant  

3 has a single-point mutation at position 1,292 from guanine  to adenine; and isoniazid- 

resistant mutant 4 has no single- point mutations identified in katG and likely harbors a 

non-katG  mutation conferring the observed isoniazid resistance. As seen in Fig. 3B, 

Raman spectra from these distinct isoniazid- resistant mutants are seemingly identical, 

with tightly overlapping projections on t-SNE clustering (Fig. 3  C). 
The three amikacin- resistant mutants reveal similar clustering on the t- SNE 

projection. Importantly, however, the clustering is distinct from the isoniazid cluster. 

The classification accuracy to predict the antibiotic susceptibility of each strain within its 

antibiotic class is ~99% (SI Appendix, Fig. S2). Clinically, this result is significant, as it is 

likely that antibiotic- resistant mutants from different patients may differ genetically, and 

we are able to identify resistance to a particular antibiotic regardless of this difference. 

Enabling Low-cost and Portable Raman for Mtb 

Drug Testing.   To demonstrate that 

our findings can translate to point-of - 

care TB drug testing in resource- limited 

regions, we developed a low- cost, 

portable, and fully automated Raman 

microscope (Fig. 4A). This Raman 

microscope is based on the 

Octopi/Squid modular microscope 

framework developed by our team for 

fluorescence (30, 31) but advances this 

setup for spectroscopy. The instrument 

utilizes a noncooled CMOS camera 

(Sony IMX290), a transmission 

diffraction grating with >95% efficiency, 

 

Fig. 4.   Demonstration on our low-cost Raman system. (  A) Photo of our system showcasing its small footprint and portable platform for use at the point- of- care. A standard 

microscope slide is included for scale. (B) Extinction spectra of gold nanorods showing plasmon resonance centered at ~780 nm to overlap with the setup’s 785 nm excitation laser. 

Panel (B) Inset shows transmission electron micrograph of gold nanorods used. (C) Scanning electron micrograph of BCG mixed with gold nanorods, which increase the Raman 

scattering from single cells. Panel (C) Inset shows a false- colored scanning electron micrograph of gold nanorods colored red. (D) Raman spectra of the five BCG strains mixed with 

gold nanorods imaged on our setup. (E) t- SNE projection across all Raman spectra of the five BCG strains. (F) Average accuracy of ~89% is achieved using spectra from bacteria 

suspended in water and drop cast dried (replication of Fig. 2C on our setup). (G) Raman spectra of the five BCG strains spiked in sputum imaged on our setup. (H) t- SNE projection 

across all spiked sputum samples. (I) Average accuracy of ~79% is achieved using spectra collected from two separate spiked sputum samples. 
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and a design without a pinhole or slit for low-cost spectroscopy. A fiber -coupled 785 

nm  VHG- stabilized laser is used as the excitation source. To boost the signal from 

bacteria, we synthesize gold nanoparticles (AuNPs) for surface- enhanced Raman 

scattering. The Dionne Group has done substantial research using gold nanorods to 

enhance Raman signatures from bacterial and mammalian cells for both dried and liquid 

samples, showing that a large range of plasmon resonances from 670 to 860 nm can be 

used to obtain high- quality SERS spectra for 785 nm excitation (12, 13). 
As seen in Fig. 4B, the nanorods used in this study have a scat­ 

tering resonance near the pump- laser wavelength. Compared to whole-cell Raman, these 

nanorods yield a   ~2 order of magnitude increase in Raman scattering (10, 12, 13, 32–

36) from single cells and pathogens and considerably shorten the integration times 

required for few-to -single - cell analysis on our microscope. The AuNPs are also 

relatively inexpensive to synthesize or purchase, easy to tune optically (37–39) and easy 

to integrate with our bacterial strains. All components combined for this microscope and 

spectrometer are <$5,000. Additional details on the sample preparation and 

imaging/spectroscopy are provided in Materials and Methods. 
As a baseline measurement, we first collected ~3,000 spectra from the five BCG 

strains mixed with gold nanorods using 0.3 s integration times and three accumulations 

per sample (Fig. 4B). Here, the shortened integration time was chosen to maintain a 

similar signal- to- noise ratio of the signal as with the Raman of the scientific-grade 

instrument. Similar to the spectra collected on  the scientific grade Raman microscope 

in Fig. 2A, the average Raman spectra of the five distinct BCG strains look similar, with 

major spectral peaks preserved across the strains. However, there are some noticeable 

differences in the ~1,000 cm−1, ~1,300 cm−1, and ~1,400 cm−1 bands between wildtype 

and four resistant strains (Fig. 4D). We performed t-SNE which shows significant  

clustering for each of the five strains (Fig. 4E). As seen in Fig. 4F, we achieve an average 

accuracy of 89% across all five BCG strains, comparable with the ~95 to 98% average 

classification accuracy achieved on our scientific-grade tool.  
As an initial evaluation of the performance for clinical samples, we spiked BCG 

pathogens into sputum (Materials and Methods), mixed the sample with gold nanorods, 

and collected a total of ~5,300 spectra from the BCG strains. Using only 0.3 s integration 

times and three accumulations per sample, we obtain an average classification accuracy 

of ~79% for the five strains across two separate sputum samples (Fig. 4I and SI Appendix, 

Fig. S7). This accuracy is reasonable with that observed for bacteria alone on scientific-

grade Raman instruments (Fig. 2  C) while providing rapid results at a lower cost and 

smaller footprint. 
We note that the spectra differ from those without using AuNPs, which is as expected 

as now the Raman signatures primarily originate from the surface-bound molecules on 

the bacteria, due to the electric  field localization of the AuNPs. This intraclass spectral 

variation is evident in the milder, less intense clustering of the five strains in the t- SNE 

in Fig. 4 E and H compared to the whole-cell Raman collected  in Fig. 2B. However, our 

convolution neural network can still classify strains, as demonstrated by the high 

accuracies we are able to obtain. Future work spanning more patient data and optimized 

spectral data processing could enable clinical BCG strain classification. 

Discussion 

In summary, we demonstrate a rapid and accurate TB AST methodology that is antibiotic 

incubation-free and culture - free. Unlike current culture-based and nucleic acid 

amplification  - based testing platforms, our Raman approach does not require 

lengthy culturing, expensive reagents, or thermal cycling equipment, and is robust to 

single nucleotide point mutations in resistance genes of interest. Our approach can 

accurately classify resistance across a variety of antibiotics and across a variety of genetic 

mutations. In addition, our machine learning models not only provide accurate AST 

classification, but also interpretability to the Raman spectra. Indeed, as highlighted by 

our feature- recognition algorithm, resistance behavior is primarily reflected in certain 

vibrational modes, particularly those of mycolic acid, that underly the molecular- level 

antibiotic response of the bacteria. We developed a low-cost portable Raman micro­ 

scope, capable of high BCG 

classification accuracy on dried samples 

and in dried sputum. To extend these 

results beyond that of the BCG 

laboratory strain, on-going work is aimed 

at testing our  approach in the field on 

Mtb-positive patients. Specifically, we 

are  planning to fold Octopi-Raman 

deployment into the growing  Octopi 

infrastructure, which currently includes 

deployment all across the globe, 

including India, Nigeria, Senegal, Liberia, 

Kenya, and the United Kingdom. Such 

clinical work will elucidate the intrinsic 

differences between strain types, well 

beyond sputum-to - sputum variations. 

If successful, this clinical work will 

provide a needed approach to enable the 

TB surveillance and diagnostic 

milestones set by the WHO. Finally, our 

study does have limitations: Our work is 

a proof of concept that probes the 

phenotypic differences of singly 

antibiotic- resistant laboratory BCG 

strains using Raman spectroscopy. 

However, further work should be done 

using this methodology to probe 

multidrug- resistant BCG and Mtb. With 

more work in this direction, our 

methodology could be applied to 

curbing the growing global crisis of 

multidrug- resistant TB. 

Materials and Methods 

Bacterial Strains. To raise antibiotic- resistant 

mutants, BCG was plated on 7H10 media 

with increasing concentrations of each 

antibiotic of interest. Plates were incubated 

at 37 °C for 21 d. Individual colonies were 

selected and grown in 7H9 media 

containing OADC, 0.2% glycerol, and 0.05% 

Tween- 80; antibiotic resistance was 

confirmed by MIC testing. 

MIC Determination. Each strain was grown to 

mid- log phase in 7H9 media containing 

OADC, 0.2% glycerol, and 0.05% Tween- 80. 

Cultures were then diluted back to an 

OD600 of 0.01 in media containing twofold 

dilutions of each antibiotic of interest. 

Cultures were grown at 37 °C in 96-well 

plates; bacterial cells  were mixed at 7 and 

14 d of incubation, and growth was 

determined by OD600 measurements on a 

Tecan Spark plate reader. 

Bacterial Preparation for Spectroscopy. To obtain the 

antibiotic- resistant BCG strains, wild-type 

BCG [ATCC 35737 TMC 1019 (BCG 

http://www.pnas.org/lookup/doi/10.1073/pnas.2315670121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2315670121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2315670121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2315670121#supplementary-materials
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Japanese)] was grown to mid - log phase in 7H9 liquid media supplemented with OADC, 

glycerol, and tween- 80, then pelleted and plated on 7H10 solid media containing serial 

dilutions of each antibiotic of interest from 10- fold above the MIC to 10- fold below the MIC. 

Plates were incubated at 37 °C for 4 wk; individual colonies were selected for culture from the 

serial dilutions that yielded between 1 and 25 colonies. One wild- type colony was selected 

from the wildtype plate, one rifampicin-resistant colony was  selected from the rifampicin 

plate, four amikacin-resistant colonies were selected  from the amikacin plate, five isoniazid-

resistant colonies were selected from the  isoniazid plate, and five moxifloxacin-resistant 

colonies were selected from the  moxifloxacin plate. Each colony had its antibiotic resistance 

profile confirmed using MIC and each colony was confirmed to be unique using whole- 

genome sequencing and MIC and hence was used as substrains (SI Appendix, Table S2). 
To determine MIC, wild-type BCG and each resistant strain were grown to mid  - 

log phase, then diluted back to an OD600 of 0.01 and incubated in twofold serial dilutions of 

each antibiotic in a 96-well plate. On days 7 and 14 postinoculation,  each well was gently 

mixed and OD600 was read on a TECAN Spark device. Only confirmed resistant mutants as well 

as the fully susceptible (wildtype) strains were used for Raman testing. One mL of frozen stock 

of the wild type and the confirmed resistant mutants were seeded in 10 mL 7H9 liquid media 

supplemented with OADC, glycerol, and tween- 80 and incubated under 37 °C shaking at 115 

rpm until mid-log phase ( ~5 to 6 d) using the Thermo Scientific MaxQ 4450 incubator. Cultures 

were then chemically inactivated overnight in a 1:1 solution using 10% formalin. Then, 1.5 mL 

culture [~4 × 10 (8) cells/mL] was washed with water three times at 6,000 rpm for 4 min using 

a mySPINTM 6 Mini Centrifuge. The BCG strains were prepared for Raman interrogation by 

resuspending the final washed pellet in 100 μL of sterile water and drying 3 μL of the 

suspension on a gold- coated glass substrate. Droplets were dried for 20 min, and Raman was 

collected immediately after drying. 

For the sputum- spiked BCG Raman interrogation, 25 μL of 3× washed bacteria was spun 

down and resuspended in 50 μL of sputum. After sitting for 1 min, the spiked sputum was then 

spun down, washed once with DI water, and then resuspended in 25 μL of DI water. Then, 5 μL 

of cell solution was mixed with nanorods in a 1:1 ratio, and 3 μL of the suspension was dried 

on a gold-coated glass substrate.  

Raman Spectral Data Collection and Processing. The BCG strains were illuminated with a 633 nm laser 

powered at 13.17 mW. The Raman spectra were collected from 742 cm−1 to 1,802 cm−1 using 

a 100×, 0.9 NA objective with a spot size of ~3.5 μm using the scale provided in the Horiba 

software, a 600 l/mm grating, and 15-s  acquisition time per spectra, ensuring that spectra are 

collected from single to at most a few bacterial cells at a time. Python (Jupyter Notebook) was 

used to process spectral data. Individual spectra were smoothed using wavelet denoising, 

specifically using the denoise wavelet function from the scikitimage Python library. 

Background was then subtracted using a polynomial fit with degree 5, and spectra were 

individually normalized to have zero mean and unit variance across all wavenumbers. 

Fabrication of Gold- Coated Glass Substrates.
 The gold

- coated glass substrates used in this work were 

prepared by evaporating a 5 nm adhesion layer of titanium, followed by 200 nm of gold at a 

rate of 1 A/s using the Kurt J. Lesker E- Beam Evaporator in the Stanford Nano Shared Facilities. 

Gold was deposited using a low deposition rate of 1 Å/s to ensure high uniformity and quality 

and minimal roughness throughout the thin film substrate. The gold film helps minimize the 

background fluorescence signal from the underlying glass substrate. 

Gold Nanorod Preparation for SERS Measurement. Hexadecyl(trimethyl) ammonium bromide (CTAB) and 

sodium oleate (NAOL)- coated gold nanorods were synthesized following previously described 

protocol (37, 40). The nanorods were cleaned by centrifuging 1 mL aliquots once at (9,000 

rpm, 20 min) and were concentrated down to 50 µL volumes. Nanorods were mixed with 

bacteria in 1:1 volumetric ratio to enable uniform coating as described in our earlier work (12). 

Absorption spectra were recorded using a Cary 5000 UV- vis- NIR spectrometer. Scanning 

electron microscopy images were taken using FEI Magellan 400 XHR scanning electron 

microscope and the Zeiss Sigma SEM. Transmission electron microscopy images were taken 

using FEI Tecnai G2 F20 X-TWIN transmission  electron microscope (TEM). Gold nanorods with 

a plasmon resonance centered at 780 nm with a height of ~99 nm and a width of ~28 nm were 

used. 

CNN Architecture and Classification. Our CNN 

model is adapted from a ResNet (25) 

architecture, consisting of an initial 

convolutional layer with 64 filters, seven 

residual layers, and one fully connected 

layer. Each residual layer consists of two 

residual blocks and each convolutional 

layer has 32 hidden nodes. We used a 

minibatch size of 32. To assess the 

classification performance, we used 10-fold 

cross -validation, which splits the dataset 

into 10 equal stratified  sets (Scikit- learn 

StratifiedKFold). For each fold i, we leave 

set i as the test set and train model i using 

all remaining data. Model i is then used to 

classify data in set i (test set). We repeat 

this process for all 10- fold, which produces 

unbiased classifications for all the data, and 

these are compared against the ground-

truth  to generate confusion matrices and 

the overall accuracy. All t-SNE projections  

were plotted using Scikit- learn manifold t- 

SNE with a perplexity =15. 
To determine the most important 

wavenumbers or spectral bands affecting 

classification performance, we used a 

probing algorithm that perturbs the input 

data before rerunning the classification 

through the trained models. Using the test 

fold from our 10- fold cross- validation, we 

iterate through the wavenumbers and, at 

each iteration, perturb the spectrum by 

modulating the amplitude of the spectral 

intensity with a Voigt distribution centered 

at the probing wavenumber. After each 

perturbation, we recalculate the 

classification accuracy, compare the 

updated results with our baseline 

classification accuracy, and determine the 

importance for each wavenumber—the 

greater the decrease in accuracy due to a 

given perturbation, the more important the 

wavenumber. Each wavenumber of each 

spectrum in the test fold is perturbed five 

times by randomly sampling spectral 

intensity values at that wavenumber in 

order to create random, but spectrally 

sensible instances. Finally, all results are 

averaged to determine our final feature 

importance. 

Data Collection on Octopi- Raman. Raman spectra 

were collected from 350 cm−1 to 1,606 cm−1 

using a 20×, 0.75 NA objective with spot size 

of 5.5 μm (Gaussian diameter; FWHM of 3.2 

μm), laser power of 2.53 mW, and 0.3 

second acquisition time per spectrum. The 

laser spot size was determined using a stage 

micrometer as a standard. 

http://www.pnas.org/lookup/doi/10.1073/pnas.2315670121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2315670121#supplementary-materials
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Sputum Samples. To obtain processed sputum for Raman interrogation, sputum samples were 

decontaminated and concentrated per standard laboratory procedure (41) as follows: the 

sputum samples were treated with N-acetyl -l - cysteine–sodium hydroxide (NALC- NaOH) to 

break up the mucus and treated with NaOH to kill the oral flora. The pH was then neutralized 

with phosphate buffer and samples were concentrated with centrifugation. Only sputa with a 

negative acid- fast bacilli microscopy result (mycobacteria-negative) and from patients at low 

risk for TB were used  for BCG spiking. Patient samples were deidentified prior to use in our 

study. 

Data, Materials, and Software Availability. Raman spectra of BCG strains from the datasets used in this 

paper are deposited in Github (42). 
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