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Tuberculosis (TB) is the world’s deadliest infectious disease, with over 1.5
million deaths and 10 million new cases reported anually. The causative organism
Mycobacterium tuberculosis (Mtb) can take nearly 40 d to culture, a required
step to determine the pathogen’s antibiotic susceptibility. Both rapid
identification and rapid antibiotic susceptibility testing of Mtb are essential for
effective patient treatment and combating antimicrobial resistance. Here, we
demonstrate a rapid, culture- free, and antibiotic incubation- free drug
susceptibility test for TB using Raman spectroscopy and machine learning. We
collect few- to- single- cell Raman spectra from over 25,000 cells of the Mtb
complex strain Bacillus Calmette-Guérin (BCG) resistant to one of the four
mainstay anti  -TB drugs, isoniazid, rifampicin, moxifloxacin, and amikacin,
as well as a pan-susceptible wildtype strain. By training a neural network on this
data, we classify the antibiotic resistance profile of each strain, both on dried
samples and on patient sputum samples. On dried samples, we achieve >98%
resistant versus susceptible classification accuracy across all five BCG strains. In
patient sputum samples, we achieve ~79% average classification accuracy. We
develop a feature recognition algorithm in order to verify that our machine
learning model is using biologically relevant spectral features to assess the
resistance profiles of our mycobacterial strains. Finally, we demonstrate how this
approach can be deployed in resource-limited settings by developing a low- cost,
portable Raman microscope that costs <$5,000. We show how this instrument
and our machine learning model enable combined microscopy and spectroscopy
for accurate few-to - single- cell drug susceptibility testing of BCG.

Raman spectroscopy | machine learning | tuberculosis | antibiotic susceptibility | infectious disease

The discovery of antibiotics in the early 20th century marked a turning point in our
defense against tuberculosis (IB)—one of the deadliest infectious diseases known to
humans. At that time, TB had become curable and was considered to be on a path toward
elimination. However, by the end of the 20th century, TB re- emerged as a leading cause
of death globally, in part due to challenges in diagnosis and its evolved resistance to
antibiotics. While growth in liquid culture is considered the gold standard for organism
identification and determination of antibiotic susceptibility, the causative organism,
Mycobacterinm tuberculosis (Mtb), can take up to 40 d to culture. As antibiotic susceptibility
testing requires pathogen growth, definitive determination of Mtb antibiotic resistance
using traditional antibiotic susceptibility testing (AST) can take additional weeks. In the
delay between diagnosis and AST results, many patients are treated with only partially
active antibiotic regimens, giving rise to resistant strains. In 2021 alone, more than half
a million cases of multidrug- resistant TB infections were reported (1).
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To mitigate the rise of antimicrobial
resistance, a key strategy of the World
Health Organization (WHO) is to
improve antibiotic-
resistant infections and to promote the
appropriate use of quality medicines (2).
To address WHO guidelines, several
culture-free AST approaches are being

surveillance  of

developed. For example, nucleic acid
amplification  tests and PCR do not
require culturing and are highly sensitive
and specific. However, these tests are
limited to identifying resistance in cases
in which a defined number of known
genomic mutations confer resistance
[e.g., the rpoB gene for resistance to
rifampicin -~ (3)].  In  general, the
appearance of genetic mutations in
previously identified genes of interest has
not been consistently linked to resistance
to these antibiotics. Moreover, known
genetic elements or mutations typically
constitute only a fraction of the genetic
basis for clinically relevant resistance (4).
These require multiple
reagents, can suffer from errors with
each thermal cycle, and cannot
distinguish between live and dead
bacteria, so they cannot be used to
monitor treatment efficacy.
Furthermore, these assays cost well
above the Significance

assays also

Tuberculosis is preventable and
curable, yet it is the world’s deadliest
infectious disease. This is in part due
to the emergence of drug- resistant
tuberculosis. Timely, accurate drug
susceptibility testing of
Mycobacterium tuberculosis is critical
for effective patient treatment and the
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prevention of community spread, as inappropriate usage of anti-TB drugs may delay
treatment progress and generate acquired resistance. Here, we develop a fast antibiotic
susceptibility test for tuberculosis by combining Raman spectroscopy and machine
learning. Using this methodology, we can assess the resistance of antibiotic- resistant
mycobacteria strains at clinically relevant speeds and accuracies. Our findings provide a
foundation for rapid, low- cost, point- of- care mycobacterial drug susceptibility testing for
diagnostic and surveillance applications, a major step in the fight against antimicrobial
resistance.
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Copyright © 2024 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution- NonCommercial-
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targeted $5,000 in capital cost specified by the WHO for next- generation TB drug-
susceptibility testing tools (5). Complementing PCR, loop- mediated isothermal
amplification (LAMP) assays eliminate the need for thermal cycling. However, these
LAMP assays cannot detect mutations in resistance-associated genes because of their
inability to resolve single- nucleotide differences (6). Rapid lateral flow point- of- care
test antigen/antibody detection methods provide simpler and faster alternatives to
LAMP and PCR but have poor sensitivity and specificity. There is also a significant delay
in the appearance of target antigens in sputum or antibodies in the bloodstream, and
these antigens do not necessarily indicate Mtb drug susceptibility. Therefore, current
AST methods do not collectively provide the speed, sensitivity, and specificity needed in
one system to meet WHO’s goals for drug- resistant TB eradication.

Raman spectroscopy has the potential to identify the antibiotic resistance profiles of
bacteria at the few-to - single- cell level using acquisition times on the order of seconds.
Raman spectroscopy utilizes inelastic light scattering to probe the vibrational modes of
a sample as a fingerprint. Different bacterial phenotypes are characterized by unique
biomolecular compositions, leading to subtle differences in their corresponding Raman
spectra. The Raman spectra of biological macromolecules typically reside between 500
and 1,900 cm™!, with lipids, proteins, and nucleic acids exhibiting fingerprints between
1,000 and 1,700 cm™1, 1,200 and 1,660 cm™!, and 600 and 1,100 cm™!, respectively (7).
As such, these unique Raman spectral signatures can be used for accurate cellular
detection, identification, and antibiotic susceptibility testing. Using Raman spectroscopy
and machine learning (ML) based spectral analysis, we have previously shown that
genetically engineered antibiotic-resistant and susceptible Szaphylococcus anrens strains can
be classified with ~89% accuracy (7). Similarly, we and others have used machine
learning- assisted Raman to identify over 31 bacterial species and strains (8—11), including
pathogens in liquid solvents (12) and in urine and blood (13—15); to identify substrains
of Escherichia coli (16, 17), to identify various respiratory viruses (18), to identify various
cellular metabolites and sectetomes (19), to assess the effects of antibiotics on resistant
and susceptible bacteria (20, 21), and to determine S. aureus antibiotic susceptibility
without antibiotic incubation (22). Despite these pioneering studies, the robust
determination of antibiotic susceptibility of TB, and methods translation to TB-endemic
regions, remains an open challenge. Previous studies have demonstrated the use of
Raman and machine learning for mycobacterial detection and antibiotic resistance
profiling with high classification accuracies (23, 24). However, the machine learning
models trained in these studies behave like black boxes, lacking transparency in their
decision- making and interpretability and raising questions concerning the spectral
features being used to achieve such high classification accuracies. These questions are
especially salient when spectra are collected in complex physiological media such as
sputum, which has significant spectral overlap with the vibrational information
contained in Mtb.

Here, we demonstrate a rapid, culture-free, and antibiotic incubation- free antibiotic
susceptibility test for TB, based on the integration of few-to -single -cell Raman
spectroscopy and machine learning. In particular, we systematically classify the antibiotic
resistance profiles of five isogenic Bacillus Calmette—Guérin (BCG) strains using a

https://doi.org/10.1073/pnas.2315670121

convolutional neural network. We collect
Raman spectra from over 25,000
individual cells which are controllably
engineered to possess resistance to one
of the four mainstay anti- TB drugs
(first- line drugs isoniazid and rifampicin
and second-line drugs moxifloxacin and
amikacin) and a pansusceptible wild-type
strain. Using only 15across the entire
spectral range (740 to 1,802 cm-s
integration times and Raman features
from -1), we achieve
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>98% resistant versus susceptible classification accuracy across all five BCG strains. In
addition, we show that various genetic mutants can be accurately classified according to
their antibiotic resistance. Using our feature recognition algorithm, we also identify the
subsets of wavenumbers which most strongly influence antibiotic resistance
classification and correlate them with the Raman signatures of well- known biomolecules
and functional groups, verifying that our machine learning model is using biologically
relevant peaks for classification. Our algorithm shows that antibiotic resistance behavior
is primarily reflected in certain vibrational modes—particularly those of mycolic acid—
that underly the molecular-level antibiotic response of the bacteria. This algorithm also
shows that targeting the entire spectral range of scientific- grade Raman instruments is
not necessary for TB AST. To show how our approach can be robustly deployed in
resource-limited settings, we develop a low- cost portable Raman setup for point-of -
care applications. Our instrument costs <$5,000, and with inclusion of low- cost
plasmonic nanoantennas for surface- enhanced Raman spectroscopy (SERS), achieves
an average accuracy of 89% across all five BCG strains. In dried patient sputum samples,
our instrument achieves ~79% classification accuracy—providing a foundation for rapid,
low- cost, and portable AST testing in resource-limited regions.

Results

Few-to -single -cell Raman Spectroscopy of BCG for Antibiotic Incubation-free Determination of Drug
Resistance. As summarized in Fig. 1, we deposit mycobacterial cells onto gold-
coated glass substrates and collect few-to -single - cell Raman spectra (Fig. 1.4). For our
studies, we controllably engineer antibiotic-resistant Mtb models using BCG, a live-
attenuated form of Mycobacterium Bovis as a model organism. While lacking central
virulence determ inants, BCG is neatly identical to Mtb in its core bacterial funct ions,
including DNA replication, RNA polymerase, and cell wall functions. We use these
models to controllably engineer single- antibiotic resistance for robust profiling and to
enable safe handling of resistant samples in our BSL- 2 facilities for the proof- of-
concept studies performed here. Individual Raman spectra are used as an input into our
convolutional neural network; we employed a 10-fold cross - validation scheme to
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and also on a fully antibiotic-susceptible
control strain (hereby described as
wildtype). Fig. 1C shows the minimum
inhibitory concentrations (MICs) of the
four anti-TB antibiotics used on our five
BCG strains, confirming each resistant
strain’s resistance to a single antibiotic as
well as the full antibiotic susceptibility of
the wild- type strain. As seen in Fig. 1 D—
H, scanning electron micrographs show
no distinct morphological difference
among the resistant strains.

B

Amikacin = Isoniazid
= Moxifloxacin == Hifampicin

b

mi INH
BCG Strain

= w

; g &F

MICgp(pg/mL)

Fig. 1. Experimental setup and example bacterial Raman spectra with antibiotic resistance profiles. (A) Diffraction- limited spot of a 633 nm incident laser collecting a spectrum from
roughly a single bacterial cell. (B) Bacterial spectra are used as input for the neural network to perform a classification task that outputs probability scores for each bacterial strain’s
antibiotic resistance. (C) Minimum inhibitory concentrations (MICs) for the five distinct strains tested across the four main antibiotics using standard serial two-fold dilution. See S/
Appendix, Table S1 for details. (D—H) Scanning electron microscopy (SEM) image of a monolayer of wildtype, amikacin- resistant, rifampicin- resistant, isoniazid- resistant, and
moxifloxacin- resistant BCG. (Scale bar, 4 um.)

determine the unbiased model performance. The output of this algorithm is a series of

probability scores for antibiotic resistance (Fig. 1B). The class with the highest

probability score is chosen as the predicted class.
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As shown in Fig. 24, the average Raman spectra of the five distinct BCG strains
(~1,700 spectra per strain) look similar, with major spectral peaks preserved across the
strains. However, there are some noticeable differences in the ~1,000, ~1,300, ~1,500,
and ~1,700 cm™!

Fig. 2. BCG antibiotic A B resistance determination.
(A) Average spectrum with standard deviation of all
spectrograms (1,700 ) . e s spectra collected at 15 s
acquisition) from the five Wildtype 2% § i : BCG strains. The spectra
show significant te differences in both peak
position and peak intensity i at bands centered at
~1,000 cm™, 1,060 cm™, . o < and between ~1,300 to
1,700 cm™. (B) Two- .. dimensional t-SNE
projection across all Raman Amikacin \ 5 spectra of the dataset for
five BCG strains susceptible -wirdiype ) and resistant to the four
different antibiotics tested Amikacin . grouped  according  to
antibiotic class showing Zf;{',iﬂgig‘" E clustering. (C) Normalized
confusion matrix Rifampicin + Moxtliaxacin generated using CNN on

the few-to -single - cell spectra collected from five

Raman Intensity (a.u)

BCG strains, grouped by ué § antibiotic class. Samples
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bands between wild type and four resistant strains; the majority of these vibrational
modes correspond to cell wall components such as mycolic acid and proteins. Therefore,
the differences between the spectra are most likely due to differences in cell-wall
composition and structure, discussed later in the text. We performed t-distributed
stochastic neighbor embedding (t-SNE) which shows significant clustering for each of
the five strains (Fig. 2B). Such clustering suggests that accurate classification by resistance
should be possible. To classify the antibiotic resistance profiles of the five BCG strains,
we developed a deep learning model, a ResNet (25) variant (8). We perform a stratified
K- fold cross- validation of our convolutional neural network’s performance across 10
splits. As seen in Fig. 2C, we achieve an average accuracy of 98% across all BCG strains.
Note that main diagonal elements represent correct classifications and off-diagonal
elements represent misclassifications. High classification accuracies were also obtained
with different gold- coated glass substrates (ST Appendix, Fig. S3) as well as with
combined datasets from different experimental replicates (ST Appendix, Figs. S11 and
S12). These results demonstrate that our approach is agnostic to the particular substrate
selected or batch effects and are solely from intrinsic differences in the strains
themselves. Therefore, Raman spectroscopy in conjunction with machine learning can
be used to predict antibiotic resistance in mycobacteria without the need for antibiotic
incubation and hence without culturing.

Select Spectral Bands Are Most Crucial for Predicting Antibiotic Resistance. We quantitatively
identify the regions of the spectra that are key for the high classification accuracy. To
identify these meaningful bands, we used a probing algorithm that perturbs the input
data before rerunning the classification through the trained models from Fig. 2C (26).
Using cach test fold from our 10-fold cross- validation, we iterate through the
wavenumbers and, at each iteration, perturb the spectrum by modulating the amplitude
of the spectral intensity with a Voigt distribution centered at the probing wavenumber.
After each perturbation, we recalculate the classification accuracy, compare the updated
results with our baseline classification accuracy, and determine the importance for each
wavenumber—the greater the decrease in accuracy due to a given perturbation, the more
important the wavenumber. As shown in Fig. 2D, these regions are spectral bands
located around 1,295, 1,437, and 1,660 cm™! (27, 28). These wavenumber bands
correspond to mycolic acid —CH3 twist and —CH> deformation modes, and Amide I
C=0 stretching modes, which change when the bacteria develop resistance. Therefore,
our analysis suggests that Raman spectral features can be used to differentiate resistant
bacteria that exhibit distinct biochemical profiles.

Next, we reduced the wavenumber feature input to our neural network, reflecting

those bands most important for high- accuracy classification. Using only the top 50
wavenumbers, we achieve ~86% accuracy. Classification accuracy increases to 96% when
using 250 features, and further to 98% when using all 1,930 features (Fig. 2E). This result
indicates potential for more rapid spectral collection and analysis as full spectroscopic
analysis is not necessary to achieve high classification accuracies.
Antibiotic-resistant Mutants Can Be Accurately Classified. To test the robustness of our
approach to potential patient—patient variation, we interrogated four distinct isoniazid-
resistant mutants and three distinct amikacin- resistant mutants (51 _Appendix, Table S2).
As seen in Fig. 3.4, the isoniazid-resistant mutants differ from each other by single-
point mutations in the katG gene, which encodes for catalase peroxidase, an enzyme that
converts isoniazid to its biologically active form (29). Isoniazid-resistant mutant 1 has a
single- point mutation at position 609 from cytosine

PNAS 2024 Vol.121 No.25 2315670121

Sub variant Gene of Mutation Positi
strain interest
Isoniazid 1 katG C—T 609
Isoniazid 2 kalG A-GC—-T| 290,86
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Fig. 3. Resistant mutant prediction. (A) Sequencing
results showing single mutation differences in resistance
genes of interest resulting in mutants of resistant strains
against isoniazid and amikacin. (B) Average Raman
spectra of 529 spectra per strain of four isoniazid-
resistant mutants and three amikacin- resistant mutants
showing nearly identical fingerprints among their
respective class of resistance. (C) t- SNE plot showing
overlapping clusters of mutants within a class of
antibiotic resistance.
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to thymine; isoniazid-resistant mutant 2 has two single - point mutations at positions
290 and 609 from adenine to guanine and cytosine to thymine, respectively; isoniazid-
resistant mutant
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Fig. 4. Demonstration on our low-cost Raman system. ( A) Photo of our system showcasing its small footprint and portable platform for use at the point- of- care. A standard

microscope slide is included for scale. (B) Extinction spectra of gold nanorods showing plasmon resonance centered at ~780 nm to overlap with the setup’s 785 nm excitation laser.
Panel (B) Inset shows transmission electron micrograph of gold nanorods used. (C) Scanning electron micrograph of BCG mixed with gold nanorods, which increase the Raman

scattering from single cells. Panel (C) Inset shows a false- colored scanning electron micrograph of gold nanorods colored red. (D) Raman spectra of the five BCG strains mixed with
gold nanorods imaged on our setup. (E) t- SNE projection across all Raman spectra of the five BCG strains. (F) Average accuracy of ~89% is achieved using spectra from bacteria

suspended in water and drop cast dried (replication of Fig. 2C on our setup). (G) Raman spectra of the five BCG strains spiked in sputum imaged on our setup. (H) t- SNE projection
across all spiked sputum samples. (/) Average accuracy of ~79% is achieved using spectra collected from two separate spiked sputum samples.

3 has a single-point mutation at position 1,292 from guanine to adenine; and isoniazid-
resistant mutant 4 has no single- point mutations identified in katG and likely harbors a
non-katG mutation conferring the observed isoniazid resistance. As seen in Fig. 3B,
Raman spectra from these distinct isoniazid- resistant mutants are seemingly identical,
with tightly overlapping projections on t-SNE clustering (Fig. 3 C).

The three amikacin- resistant mutants reveal similar clustering on the t- SNE
projection. Importantly, however, the clustering is distinct from the isoniazid cluster.
The classification accuracy to predict the antibiotic susceptibility of each strain within its
antibiotic class is ~99% (ST _Appendix, Fig. S2). Clinically, this result is significant, as it is
likely that antibiotic- resistant mutants from different patients may differ genetically, and
we are able to identify resistance to a particular antibiotic regardless of this difference.

60f10 https://doi.org/10.1073/pnas.2315670121

care TB drug testing in resource- limited
regions, we developed a low- cost,
portable, and fully automated Raman
microscope (Fig. 4.4). This Raman
microscope is  based on  the
Octopi/Squid  modular  microscope
framework developed by our team for
fluorescence (30, 31) but advances this
setup for spectroscopy. The instrument
utilizes a noncooled CMOS camera
(Sony  IMX290), a  transmission
diffraction grating with >95% efficiency,
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and a design without a pinhole or slit for low-cost spectroscopy. A fiber -coupled 785
nm VHG- stabilized laser is used as the excitation source. To boost the signal from
bacteria, we synthesize gold nanoparticles (AuNPs) for surface- enhanced Raman
scattering. The Dionne Group has done substantial research using gold nanorods to
enhance Raman signatures from bacterial and mammalian cells for both dried and liquid
samples, showing that a large range of plasmon resonances from 670 to 860 nm can be
used to obtain high- quality SERS spectra for 785 nm excitation (12, 13).

As seen in Fig. 4B, the nanorods used in this study have a scat-
tering resonance near the pump- laser wavelength. Compared to whole-cell Raman, these
nanorods yield a ~2 order of magnitude increase in Raman scattering (10, 12, 13, 32—
36) from single cells and pathogens and considerably shorten the integration times
required for few-to -single - cell analysis on our microscope. The AuNPs are also
relatively inexpensive to synthesize or purchase, easy to tune optically (37—39) and easy
to integrate with our bacterial strains. All components combined for this microscope and
spectrometer are <$5,000. Additional details on the sample preparation and
imaging/spectroscopy are provided in Materials and Methods.

As a baseline measurement, we first collected ~3,000 spectra from the five BCG
strains mixed with gold nanorods using 0.3 s integration times and three accumulations
per sample (Fig. 4B). Here, the shortened integration time was chosen to maintain a
similar signal- to- noise ratio of the signal as with the Raman of the scientific-grade
instrument. Similar to the spectra collected on the scientific grade Raman microscope
in Fig. 24, the average Raman spectra of the five distinct BCG strains look similar, with
major spectral peaks preserved across the strains. However, there are some noticeable
differences in the ~1,000 cm™!, ~1,300 cm™, and ~1,400 cm-1 bands between wildtype
and four resistant strains (Fig. 4D). We performed t-SNE which shows significant
clustering for each of the five strains (Fig. 4F). As seen in Fig. 4F, we achieve an average
accuracy of 89% across all five BCG strains, comparable with the ~95 to 98% average
classification accuracy achieved on our scientific-grade tool.

As an initial evaluation of the performance for clinical samples, we spiked BCG
pathogens into sputum (Materials and Methods), mixed the sample with gold nanorods,
and collected a total of ~5,300 spectra from the BCG strains. Using only 0.3 s integration
times and three accumulations per sample, we obtain an average classification accuracy
of ~79% for the five strains across two separate sputum samples (Fig. 4] and ST Appendix,
Fig. S7). This accuracy is reasonable with that observed for bacteria alone on scientific-
grade Raman instruments (Fig. 2 C) while providing rapid results at a lower cost and
smaller footprint.

We note that the spectra differ from those without using AuNPs, which is as expected
as now the Raman signatures primarily originate from the surface-bound molecules on
the bacteria, due to the electric field localization of the AuNPs. This intraclass spectral
variation is evident in the milder, less intense clustering of the five strains in the t- SNE
in Fig. 4 £ and H compared to the whole-cell Raman collected in Fig. 2B. However, our
convolution neural network can still classify strains, as demonstrated by the high
accuracies we ate able to obtain. Future work spanning more patient data and optimized
spectral data processing could enable clinical BCG strain classification.

Discussion

In summary, we demonstrate a rapid and accurate TB AST methodology that is antibiotic
incubation-free and culture - free. Unlike current culture-based and nucleic acid
amplification - based testing platforms, our Raman approach does not require
lengthy culturing, expensive reagents, or thermal cycling equipment, and is robust to
single nucleotide point mutations in resistance genes of interest. Our approach can
accurately classify resistance across a variety of antibiotics and across a variety of genetic
mutations. In addition, our machine learning models not only provide accurate AST
classification, but also interpretability to the Raman spectra. Indeed, as highlighted by
our feature- recognition algorithm, resistance behavior is primarily reflected in certain
vibrational modes, particularly those of mycolic acid, that underly the molecular- level

antibiotic response of the bacteria. We developed a low-cost portable Raman micro-
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scope, capable of high BCG
classification accuracy on dried samples
and in dried sputum. To extend these
results beyond that of the BCG
laboratory strain, on-going work is aimed
at testing our approach in the field on
Mtb-positive patients. Specifically, we
are  planning to fold Octopi-Raman
deployment into the growing Octopi
infrastructure, which currently includes
deployment all across the globe,
including India, Nigeria, Senegal, Liberia,
Kenya, and the United Kingdom. Such
clinical work will elucidate the intrinsic
differences between strain types, well
beyond sputum-to - sputum variations.
If successful, this clinical work will
provide a needed approach to enable the
TB  surveillance and  diagnostic
milestones set by the WHO. Finally, our
study does have limitations: Our work is
a proof of concept that probes the
phenotypic  differences  of  singly
antibiotic- resistant laboratory BCG
strains using Raman spectroscopy.
However, further work should be done
using this methodology to probe
multidrug- resistant BCG and Mtb. With
more
methodology

direction, our
could be applied to
curbing the growing global crisis of

work in this

multidrug- resistant TB.

Materials and Methods

Bacterial Strains. TO raise antibiotic- resistant
mutants, BCG was plated on 7H10 media
with increasing concentrations of each
antibiotic of interest. Plates were incubated
at 37 °C for 21 d. Individual colonies were
selected and grown in 7H9 media
containing OADC, 0.2% glycerol, and 0.05%
Tween- 80; antibiotic resistance was
confirmed by MIC testing.

MIC Determination. Each strain was grown to
mid- log phase in 7H9 media containing
OADC, 0.2% glycerol, and 0.05% Tween- 80.
Cultures were then diluted back to an
0D600 of 0.01 in media containing twofold
dilutions of each antibiotic of interest.
Cultures were grown at 37 °C in 96-well
plates; bacterial cells were mixed at 7 and
14 d of incubation, and growth was
determined by OD600 measurements on a
Tecan Spark plate reader.

Bacterial Preparation for Spectroscopy. 10 obtain the
antibiotic- resistant BCG strains, wild-type
BCG [ATCC 35737 TMC 1019 (BCG
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Japanese)] was grown to mid - log phase in 7H9 liquid media supplemented with OADC,
glycerol, and tween- 80, then pelleted and plated on 7H10 solid media containing serial
dilutions of each antibiotic of interest from 10- fold above the MIC to 10- fold below the MIC.
Plates were incubated at 37 °C for 4 wk; individual colonies were selected for culture from the
serial dilutions that yielded between 1 and 25 colonies. One wild- type colony was selected
from the wildtype plate, one rifampicin-resistant colony was selected from the rifampicin
plate, four amikacin-resistant colonies were selected from the amikacin plate, five isoniazid-
resistant colonies were selected from the isoniazid plate, and five moxifloxacin-resistant
colonies were selected from the moxifloxacin plate. Each colony had its antibiotic resistance
profile confirmed using MIC and each colony was confirmed to be unique using whole-
genome sequencing and MIC and hence was used as substrains (S/ Appendix, Table S2).

To determine MIC, wild-type BCG and each resistant strain were grown to mid -
log phase, then diluted back to an OD600 of 0.01 and incubated in twofold serial dilutions of
each antibiotic in a 96-well plate. On days 7 and 14 postinoculation, each well was gently
mixed and OD600 was read on a TECAN Spark device. Only confirmed resistant mutants as well
as the fully susceptible (wildtype) strains were used for Raman testing. One mL of frozen stock
of the wild type and the confirmed resistant mutants were seeded in 10 mL 7H9 liquid media
supplemented with OADC, glycerol, and tween- 80 and incubated under 37 °C shaking at 115
rpm until mid-log phase ( ~5 to 6 d) using the Thermo Scientific MaxQ 4450 incubator. Cultures
were then chemically inactivated overnight in a 1:1 solution using 10% formalin. Then, 1.5 mL
culture [~4 x 10 (8) cells/mL] was washed with water three times at 6,000 rpm for 4 min using
a mySPINTM 6 Mini Centrifuge. The BCG strains were prepared for Raman interrogation by
resuspending the final washed pellet in 100 pL of sterile water and drying 3 pL of the
suspension on a gold- coated glass substrate. Droplets were dried for 20 min, and Raman was
collected immediately after drying.

For the sputum- spiked BCG Raman interrogation, 25 plL of 3x washed bacteria was spun
down and resuspended in 50 pL of sputum. After sitting for 1 min, the spiked sputum was then
spun down, washed once with DI water, and then resuspended in 25 pL of DI water. Then, 5 pL
of cell solution was mixed with nanorods in a 1:1 ratio, and 3 pL of the suspension was dried
on a gold-coated glass substrate.

Raman Spectral Data Collection and Processing. The BCG strains were illuminated with a 633 nm laser
powered at 13.17 mW. The Raman spectra were collected from 742 cm~! to 1,802 cm~! using
a 100x%, 0.9 NA objective with a spot size of ~3.5 pm using the scale provided in the Horiba
software, a 600 I/mm grating, and 15-s acquisition time per spectra, ensuring that spectra are
collected from single to at most a few bacterial cells at a time. Python (Jupyter Notebook) was
used to process spectral data. Individual spectra were smoothed using wavelet denoising,
specifically using the denoise wavelet function from the scikitimage Python library.
Background was then subtracted using a polynomial fit with degree 5, and spectra were
individually normalized to have zero mean and unit variance across all wavenumbers.

The gold

Fabrication of Gold- Coated Glass Substrates. - coated glass substrates used in this work were

prepared by evaporating a 5 nm adhesion layer of titanium, followed by 200 nm of gold at a
rate of 1 A/s using the Kurt J. Lesker E- Beam Evaporator in the Stanford Nano Shared Facilities.
Gold was deposited using a low deposition rate of 1 A/s to ensure high uniformity and quality
and minimal roughness throughout the thin film substrate. The gold film helps minimize the
background fluorescence signal from the underlying glass substrate.

Gold Nanorod Preparation for SERS Measurement. Hexadecyl(trimethyl) ammonium bromide (CTAB) and
sodium oleate (NAOL)- coated gold nanorods were synthesized following previously described
protocol (37, 40). The nanorods were cleaned by centrifuging 1 mL aliquots once at (9,000
rpm, 20 min) and were concentrated down to 50 pL volumes. Nanorods were mixed with
bacteria in 1:1 volumetric ratio to enable uniform coating as described in our earlier work (12).
Absorption spectra were recorded using a Cary 5000 UV- vis- NIR spectrometer. Scanning
electron microscopy images were taken using FEI Magellan 400 XHR scanning electron
microscope and the Zeiss Sigma SEM. Transmission electron microscopy images were taken
using FEl Tecnai G2 F20 X-TWIN transmission electron microscope (TEM). Gold nanorods with
a plasmon resonance centered at 780 nm with a height of ~99 nm and a width of ~28 nm were
used.

https://doi.org/10.1073/pnas.2315670121

CNN Architecture and Classification. Our CNN
model is adapted from a ResNet (25)
architecture, consisting of an initial
convolutional layer with 64 filters, seven
residual layers, and one fully connected
layer. Each residual layer consists of two
residual blocks and each convolutional
layer has 32 hidden nodes. We used a
minibatch size of 32. To assess the
classification performance, we used 10-fold
cross -validation, which splits the dataset
into 10 equal stratified sets (Scikit- learn
StratifiedKFold). For each fold i, we leave
set i as the test set and train model i using
all remaining data. Model i is then used to
classify data in set i (test set). We repeat
this process for all 10- fold, which produces
unbiased classifications for all the data, and
these are compared against the ground-
truth to generate confusion matrices and
the overall accuracy. All t-SNE projections
were plotted using Scikit- learn manifold t-
SNE with a perplexity =15.

To determine the most important
wavenumbers or spectral bands affecting
classification performance, we used a
probing algorithm that perturbs the input
data before rerunning the classification
through the trained models. Using the test
fold from our 10- fold cross- validation, we
iterate through the wavenumbers and, at
each iteration, perturb the spectrum by
modulating the amplitude of the spectral
intensity with a Voigt distribution centered
at the probing wavenumber. After each
perturbation, we recalculate the
classification accuracy, compare the
updated results with our baseline
classification accuracy, and determine the
importance for each wavenumber—the
greater the decrease in accuracy due to a
given perturbation, the more important the
wavenumber. Each wavenumber of each
spectrum in the test fold is perturbed five
times by randomly sampling spectral
intensity values at that wavenumber in
order to create random, but spectrally
sensible instances. Finally, all results are
averaged to determine our final feature
importance.

Data Collection on Octopi- Raman. Raman spectra
were collected from 350 cm=1to 1,606 cm~1
using a 20x%, 0.75 NA objective with spot size
of 5.5 um (Gaussian diameter; FWHM of 3.2
pm), laser power of 2.53 mW, and 0.3
second acquisition time per spectrum. The
laser spot size was determined using a stage
micrometer as a standard.

pnas.org
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Sputum Samples. TOo obtain processed sputum for Raman interrogation, sputum samples were
decontaminated and concentrated per standard laboratory procedure (41) as follows: the
sputum samples were treated with N-acetyl -I - cysteine—sodium hydroxide (NALC- NaOH) to
break up the mucus and treated with NaOH to kill the oral flora. The pH was then neutralized
with phosphate buffer and samples were concentrated with centrifugation. Only sputa with a
negative acid- fast bacilli microscopy result (mycobacteria-negative) and from patients at low
risk for TB were used for BCG spiking. Patient samples were deidentified prior to use in our
study.

Data, Materials, and Software Availability. Raman spectra of BCG strains from the datasets used in this
paper are deposited in Github (42).
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