2024 1IEEE 42nd VLSI Test Symposium (VTS) | 979-8-3503-6378-4/24/$31.00 ©2024 IEEE | DOI: 10.1109/VTS60656.2024.10538955

Error Resilient Hyperdimensional Computing
Using Hypervector Encoding and Cross-Clustering

Mohamed Mejri, Chandramouli Amarnath and Abhijit Chatterjee
School of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, Georgia 30332-0250

Abstract—Emerging brain-inspired hyperdimensional com-
puting (HDC) algorithms are vulnerable to timing and soft
errors in associative memory used to store high-dimensional
data representations. Such errors can significantly degrade
HDC performance. A key challenge is error correction after
an error in computation is detected. This work presents
two novel error resilience frameworks for hyperdimensional
computing systems. The first, called the checksum hypervector
encoding (CHE) framework, relies on creation of a single
additional hypervector that is a checksum of all the class hy-
pervectors of the HDC system. For error resilience, element-
wise validation of the checksum property is performed and
those elements across all class vectors for which the property
fails are removed from consideration. For an HDC system
with K class hypervectors of dimension D, the second
cross-hypervector clustering (CHC) framework clusters D, K-
dimensional vectors consisting of the i-th element of each
of the K HDC class hypervectors, 1 < i < K. Statistical
properties of these vector clusters are checked prior to each
hypervector query and all the elements of all K-dimensional
vectors corresponding to statistical outlier vectors are re-
moved as before. The choice of which framework to use is
dictated by the complexity of the dataset to classify. Up to
three orders of magnitude better resilience to errors than
the state-of-the-art across multiple HDC high-dimensional
encoding (representation) systems is demonstrated. '

Index Terms—Error resilience, Hyperdimensional comput-
ing

I. INTRODUCTION

Hyperdimensional Computing (HDC) is an emerging learn-
ing paradigm that leverages the capabilities of high dimen-
sional vectors to represent complex information. It achieves
high efficiency (i.e, power-to-performance) in comparison
to Deep Neural Networks (DNNs) in various domains [1],
[2]. Modern edge hardware paradigms such as Field Pro-
grammable Gate Arrays (FPGAs) [3] are often used to make
HDC systems more efficient. However, these hardware sys-
tems can suffer from memory access errors (bit-flips in
accessed data) in the associative memory used to store the
HDC model. Relevant soft errors are made worse by high
energy particles [4]. Further, voltage scaling can lead to
incorrect logic values being clocked into circuit flip-flops
in associated logic. Due to their high dimensional symbolic
representation, HDC systems are inherently robust to limited
degrees of noise and error [5]. However, recent research

10ur codes and data are available at https://github.com/mmejri3/er-hdc

979-8-3503-6378-4/24/$31.00 ©2024 IEEE

indicates that HDC model accuracy declines substantially if
the error rate exceeds 0.001% [6]. Traditional failure tolerance
methods (e.g, triple modular redundancy (TMR) [7]) can be
used to protect the HDC system against these kind of errors.
However, these techniques are often expensive and require
high degrees of redundancy (e.g, x3 times for TMR).

In this paper, we propose two novel error resilience tech-
niques designed to mitigate the effects of soft errors (see
Figure 1) in the associative memory (static random access
memory, SRAM) of hyperdimensional computing systems.
The first method consists of a checksum hypervector encoding
(CHE) of the class hypervectors of the HDC system which
are fetched from memory during class inference operations.
Checksums, unlike parity checks, have been employed for er-
ror detection in fault-tolerant matrix computations and deep
neural networks [8], [9] but their use for error correction
in HDC systems has not been explored. [10] showed that
checksums are able to detect errors but fails correcting them.
In this paper, a novel error correction method is implemented
by removing the faulty elements of concerned hypervectors.
The second technique relies on cross-hypervector clustering
(CHC) for error detection. Here, vectors corresponding to
the i'th element of each class hypervector are clustered.
Deviations from nominal cluster statistics of hypervector
elements accessed from memory are used to detect errors.
A novel correction mechanism is implemented by elimi-
nating consideration the erroneous vector elements of all
hypervectors corresponding to erroneous clusters. The two
error resilience techniques can be generalized to broad HDC
classification frameworks. Both techniques provide up to
three orders of magnitude better error resilience compared to
the state-of-the-art [11] and are used selectively depending
on the HDC end application and use methodology.

In the following, prior work in error resilient hyperdi-
mensional computing is discussed. In Section III, hyperdi-
mensional computing preliminaries are introduced and an
overview of the two error resilience techniques is given.
In Section IV, the proposed error resilience mechanisms
are described. In Section V, experimental evaluation of the
two error resilience methods on state-of-the-art datasets is
presented and compared against the current state-of-the-art.
This is followed by conclusions in Section VI

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 17:10:10 UTC from IEEE Xplore. Restrictions apply.

II. PrRioR WORK

Recent work on hyperdimensional computing (HDC) [12],
[13] has focused on its algorithmic accuracy and energy
efficiency [5]. There has been prior work on error resilience
of deep neural networks [9], [14]. A broad theme has been
to apply techniques from algorithm based fault tolerance
[8], [15] to error tolerance in the linear matrix-vector com-
putations of neural networks that feed the inputs to the
activation functions of neurons in each layer of the network.
In hyperdimensional computing, the class hypervectors are
fetched from memory repeatedly for classification purposes
rendering them vulnerable to memory access errors. The
resilience of HDC algorithms to timing and soft errors
in relevant associative memory was explored in [6], [16].
Single bit-flips were used to model errors in the hypervector
elements of the HDC system [17]. Scaling and clamping
of the hypervector elements to correct the effects of bit-
flip errors on the hypervectors was introduced in [11]. This
improved classification accuracy of the underlying HDC
systems by four orders of magnitude over systems without
any embedded error resilience. In contrast to this prior work,
we propose two error resilience methods that provide up to
100X or 1000X times better error resilience than the state of
the art [11]. Further, we study error detection and correction
under a stronger error model that includes the effects of
multiple bit-flips in the hypervector elements.

III. HDC BACKGROUND

Hyperdimensional computing is composed of hypervector
encoding, specialized training, and inference. These are de-
scribed below.

A. Hypervector encoding

Hyperdimensional computing aims to map a signal sample

(i.e, datapoint) from an N-dimensional space (feature space)
to a D-dimensional space (symbolic space), where D > N.
It exploits the correlations among data points within a high-
dimensional symbolic vector representation.
Record based encoding: In record based encoding, each data-
point (e.g, image, voice, ect) is represented by N features (e.g,
pixels, frequencies, ect). the position of these features and
the value that could take are encoded in hypervectors. Every
feature position (e.g, the i'" pixel of images or i*"frequency
of an M-frequency coefficient of the image or the spectrum, is
assigned a unique channel ID, generated as a random binary
hypervector, ensuring orthogonality. The possible values that
the feature could have (e,g 255 for pixels) is divided into
M bins, with a binary hypervector called level hypervector
assigned to each bin. The hypervector datapoint is hence
S = hv! % ID' + hv? x ID? + ... + hv™ * ID"™ Kernel based
encoding: Kernel based encoding is discussed in [18]. It maps
the datapoints x to a high dimensional space. The encoded
hypervector ¢(z) = cos(x.B + b).sin(x.B) where B is a
matrix composed of normally distributed columns orthogonal
to each other (ie, 6(B;, Bj) = 0 for i # j), 6 denotes the
cosine similarity and b is a randomly generated hypervector
that follows the uniform distribution (b ~ U[0, 27]).

B. Training and inference: Hyperdimensional computing

During the learning phase, HDC recognizes recurring
patterns and avoids over-saturation of class hypervectors (one
per class) in single-pass training [5]. Rather than simply
combining all encoded information, this technique adjusts
the contribution of each encoded data point to the class
hypervectors based on the novelty it brings. If a data point
is already present in a class hypervector, HDC adds little
or no data to the model to avert hypervector saturation.
If the prediction aligns with the anticipated outcome, no
modifications are made to prevent overfitting. This adaptive
updating process prioritizes and assigns greater weight to un-
common patterns in the final model representation. Suppose
we have a new training data point, %. HDC calculates the
cosine similarity between H and all class hypervectors, Cs.
The similarity of this data point with class ¢ is computed as:
d; = 6(H,C;). Rather than naively incorporating the data
point into the model, HDC updates the model according
to the § similarity. If the input data has a label [that
accurately corresponds to the class, the model is updated as:
Cy + C; 4+ n1(1 — 6;) x H, where 1, refers to the learning
rate. If the similarity between the class hypervector and the
training hypervector is large (ie, ; ~ 1) the algorithm
retains a small part of the training hypervector. If the input [l
is misclassified or very similar to the wrong class hypervector
(ie, 0y ~ 1), we add the hypervector to the correct class
hypervector and subtract a portion (i.e, §;/) of it from the
wrong class hypervector as: Cy < Cp — n2(0;) X H.

Test _, Query Hypervector

similarity], 2- During Inference

00110110101101011

[010100%0110110111 |

Encoder

AAAAA I_.I
a- Checksum Hypervector Encoder

(CHE) Error Detection &
b- Cross Hypervector Clustering Correction
(CHC)

1- After Training

Fig. 1: Hyperdimensional computing framework and error resilience.

During inference, a query hypervector is generated from
the input dataset using the encoding principles as described
above and mapped to a class hypervector using the cosine
similarity metric which determines the class to which the
query belongs.

IV. ERROR RESILIENCE METHODOLOGY

In this section, we present the error model, followed by the
checksum (CHE) and clustering based (CHC) error resilience
techniques.

A. Error model

We model errors in memory accesses of class hypervectors
using single and multiple bit-flips [19] in the numerical (bi-
nary) representations of the hypervector elements. Such soft
errors are assumed to be caused by radiation (a single alpha

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 17:10:10 UTC from IEEE Xplore. Restrictions apply.

particle strike can cause multiple bit upsets also referred as
single event multiple-bit upsets [20]), cosmic rays, and timing
errors such as induced by voltage scaling, signal coupling or
power and ground bounce [21].

B. Checksum hypervector encoding (CHE)

Vi Vo V’g Vp 2- Error Correction
AV A 7
o -C’ 02 (o7 405 J— @
S
§ S :Cl :Cz o[- c?
- !
R (o7 { — Ch
T 'CIKC2KC3K&P' CE]
Z ci After Training
Reference

Ct:/e:cl:z:lm Sl S2 SS S4 SD = o =
Query ¥ T During Inference R1[15% — S¥|| > Th?
Checksum [SIQ|SQQ‘S;Q|S4Q‘ |Sg‘ 1- Error detection

Vector

Fig. 2: Checksum hypervector encoding (CHE) mechanism

In Checksum Hypervector Encoding (CHE) (see Fig. 2), a
reference checksum hypervector is constructed according to
the equation SF = Z = _ o C}, where C’J is the i*" element
of the ;" class hypervector (out of K class hypervectors)
and S% is the i*" element of the reference checksum hyper-
vector. During inference, a query checksum hypervector S©
is computed using all the class hypervectors fetched from
memory. This is compared against the reference checksum
hypervector for error detection. If the difference between the
reference and query checksum hypervectors is above a pre-
defined threshold T'h a detection flag is raised.

B { 1, if |SE—SP|h > Th (1)
0, otherwise (2)
Empirically, we choose the threshold T'h above (same for
all E;, 1 < ¢ < D, where D = hypervector dimension),
such that the HDC system suffers from no more than an
accuracy degradation of 1% before an error detection flag
is raised. We assume that S is subject to error since it
is stored in associative memory. The checksum hypervector
encoding can detect errors in the class hypervector or the
reference checksum hypervector. The reference hypervector
is fetched from memory 3 times (as in TMR or triple modular
redundancy [7]) and voting is performed to determine an
error-free reference hypervector. Without TMR above, it is
seen that the probability of checksum aliasing is very small
for systems designed to minimize memory access overhead.
CHE Error Correction mechanism: For correction, if F; # 0,
then the i'th element of all the class hypervectors is set to
0, 1 <4 < D, and inference is performed with the resulting
modified class hypervectors. In addition to applying TMR
to the reference checksum hypervector, we also restrict the
range of its element values, clipping all values in excess of
the maximum range to the maximum or minimum allowed
(determined from training data). The reference checksum S*
has the overhead of an additional hypervector with dimen-
sion D represented in N bitwise as the class hypervectors.

C. Cross hypervector clustering (CHC)

2-Error Correction

_{}Zvl/vz pL /VD
g ([odlci[oi[cl ch
2 ‘§ iepcz|czlcz - C’%
o35 5(530[02|Cs cil - |QD
b= o e
& DBSCANe pil o1
Clustering M% o2
#:1,’ 91
pE X

mean gz std o,

——
(Vi —p1 o -0, = +Th)
1-Error Detection

Fig. 3: Cross hypervector clustering (CHC) mechanism

Figure 3 describes the steps of the clustering based error
detection method. K-dimensional vectors (K = number of
class hypervectors) V;, 1 <4 < D called cross-class vectors,
consisting of the elements V; = [Cil, Ciz, ey ClK] (K class
hypervectors) are constructed. These vectors are clustered
using the DBSCAN [22] model. DBSCAN ([22] identifies
clusters based on the density of data points, efficiently
distinguishing between core points, border points, and noise,
thereby enabling the detection of clusters of varied shapes
and densities. The clustering algorithm’s minimum distance,
denoted by €, is contingent on the selected encoder, the
utilized dataset, and the intended number of clusters. For
every cluster, the mean (x) and the variance (02) of the
cross-class vectors is computed and stored. During inference,
if the vector V;, —py—a.c >Thorif V; — p+ a.c < =Th,
where T'h is a calibrated threshold for the cluster to which
V; belongs, then a detection flag is raised.

- {1, if |V — pl| > Th+ a.o (3)
i O,

otherwise (4)
In case an error is detected, corrective action is performed
as described below.
CHC Error Correction mechanism: Error correction is per-
formed as follows. If F; = 0, then correction is performed
by setting [Cil, C’f, CiK] = [0, 0, 0]. However, this
approach may produce false positives; multiple such elements
in a cluster might be erroneously deemed divergent from the
reference and, thus, mislabeled as defective. Such misclassi-
fication can cause a marginal decrease in accuracy (less than
1%) in error-free models. The chosen error detection thresh-
old, T'h, is intrinsically linked to the minimum distance, €,,;,
set during clustering of the cross-class vectors V;. A larger
€min results in fewer clusters, increasing the average distance
between centroids and their members. To maintain consistent
accuracy, a corresponding increase in T'h is required. Nev-
ertheless, a higher T'h reduces error resilience but increases
accuracy of HDC models. Associative memory is used to store
the mean and standard deviation values of each cluster. Let

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 17:10:10 UTC from IEEE Xplore. Restrictions apply.

n k . Description
size size
GTSRB 3072 43 39209 12630 Image Classification
UCIHAR 561 6 6213 1554 Activity Recognition (Mobile)
ISOLET 617 26 6238 1559 Voice Recognition
Fashion-MNIST | 784 10 60000 10000 Image Classification
CIFAR100 3072 100 50000 10000 Image Classification

TABLE I: DATASETS (n: Feature size, k: Number of classes)

Cl be the number of clusters and K the number of class
hypervectors. The memory overhead thus includes the mean
() and variance (o) stored as class hypervector bitwidth N
data. The reference data is protected via TMR (i.e, 3 copies are
stored for error resilience), increasing corresponding memory
overhead.

V. EXPERIMENTAL VALIDATION
A. Experimental Setup

The proposed error resilience methods were evaluated on
benchmark datasets (Fashion-MNIST, GTSRB, ISOLET and
UCIHAR), as presented in Table 1. Class hypervector clus-
tering and the checksum calculations are performed offline
on a CPU (11th Gen Intel® Core™ i7-11800H @ 2.30GHz)
and the error resilience assessment is performed on both
CPU and FPGA. For the FPGA validation platform, the error
resilience model was first synthesized using Xilinx Vitis
High-Level Synthesis. The power consumption of the error
resilience model was determined using the Xilinx Vivado
XPower tool. The FPGA employed for validation was the
Xilinx Zynq UltraScale+ MPSoC ZCU104. The three encoders
(n-gram, record and kernel, discussed in Section III) were
implemented on CPU. For FPGA testing we use only the
kernel encoder [18] as it yields the best HDC performance.
In the following experiments, the HDC has a hypervector
dimension of D = 10* in CPU simulations and D = 1000 in
FPGA hardware validation. When assessed on CPU, the error
rates are between 1078 and 1072 and from 10~% and 10~}
when assessed on the FPGA. Each experiment is repeated
five times, and the mean of the experimental results for each
experiment is presented.

B. Error resilience and overhead comparison

In this section, we compare the performance and over-
head of the checksum hypervector encoding (CHE) and the
cross hypervector clustering (CHC) methods on benchmark
datasets (ISOLET, CIFAR100, Fashion-MNIST and GTSRB).

Figure 6(a) shows the failure error rate of CHC and CHE on
several datasets. The failure error rate is defined as the error
rate that causes a 5% accuracy drop from nominal accuracy.
The nominal accuracy of each dataset is: 91.4% for UCIHAR,
91.4% for UCIHAR, 93.3% for GTSRB, 84.9% for Fashion-
MNIST and 40% for CIFAR100, An observed trend is that
error resilience increases with higher HDC performance. This
is due to the error correction technique (removing erroneous
hypervector indices) artificially reducing the dimensionality
of the class hypervectors (dropping dimensions). As seen in
Figure 6(b), this dimensionality reduction has a greater effect
on complex datasets, reducing accuracy faster as hypervector
indices are set to zero.

In Figure 6(b), the 5% of accuracy loss corresponding
to failure error rate is attained with a lower proportion of
cross-class vectors suppressed dimensions when the nominal
accuracy is low (CIFAR100 and FashionMNIST datasets).
Figure 6(a) further shows that CHE exhibits superior error
resilience when nominal accuracy is low (CIFAR100 and
Fashion-MNIST cases), while CHC is more robust to errors
when the nominal accuracy is high (UCIHAR and GTSRB
cases). In the CHC scheme, error resilience is affected by
two parameters: the number of clusters and the detection
threshold. Enhancing error resilience requires lowering the
detection threshold to identify erroneous outlier cross-class
vectors. However, a lower threshold may trigger false alarms,
thereby increasing the cross-class vectors suppression rate
as shown in figure 6(b), and consequently the accuracy
loss, particularly for datasets with low nominal accuracy.
Apart from the CIFAR100 scenario, which lowers the error
resilience of CHE, the resilience of CHE remains unchanged.

The CHC technique is seen to over-suppress cross-class
vectors. This approach proves effective only when the clas-
sification task can tolerate aggressive cross-class vectors
pruning, which is typically evident in high-accuracy clas-
sification tasks. By contrast, the CHE technique enhances
error resilience by selectively suppressing only the erroneous
cross-class vectors. However, errors within the reference
checksum vector can impair error detection in CHE.

Table II shows the relative memory overhead of CHC
compared to CHE. We observe that for datasets with a lower
number of classes (i.e, Fashion-MNIST and UCIHAR) CHC
has lower memory overhead than the CHE. CHC has higher
overhead for datasets with a higher number of classes (i.e,
GTSRB and CIFAR100). This is because the memory overhead
of the clustering technique is proportional to the number
of the dataset classes. Conversely, the overhead from the
checksum remains constant across a range of datasets or class
numbers, necessitating only a single checksum hypervector
of fixed dimension.

GTSRB | CIFAR100 | Fashion-MNIST | UCIHAR

3.78 6.79 0.45 0.29

Relative Overhead of CHC
(CHE=1X)

TABLE II: Relative Memory Overhead of CHC to CHE (CHE=30KB)

C. Accuracy Results

In this experiment we assess the error resilience of check-
sum hypervector encoding (CHE) and cross hypervector
clustering (CHC), and compare them to an HDC system
with no error resilience systems (no-resilience baseline)
and Scale+Clip [11] using three different encoding systems
(Ngram-based encoding [23], record-based encoding [23] and
kernel based encoding [18], discussed in Section III). The
resilience to errors of a system is defined in relation to the
baseline model as follows: If the error rate of model failure,
as previously defined, is 107%, and the error rate of failure
for the baseline model is 107, then the error resilience

102 10°~®. We also compare the

can be expressed as ;j—5 =
proposed schemes against the Scale+clip prior work of [11].

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 17:10:10 UTC from IEEE Xplore. Restrictions apply.

°
®

R Reszz=k -k > —
ek % *
0.8 NN \ 0.8 Sl
. NN % . NS x
N - NS v \ N
go-s Q' x| goe \\\'\ 3 30.6 * ‘\ *
e \ s LR \ © IR
: fo.a LAY LN
Zoa \ go. N\ \ Soa O\
N \ A
A\ N \
0.2 \\! 0.2 \ % 0.2 \
- \ %
S >
0.0 b, J 0.0 om0 4, & ——-M----0
710" 1077 10° 105 104 10°3% 1072 10 1077 10° 105 10* 10~* 1072 710" 1077 10-° 105 10* 103 1072
Error Rate Error Rate Error Rate
(a) GTSRB-Kernel-Encoder (b) GTSRB-Record-based-Encoder (c) GTSRB-Ngram-based-Encoder
0.8
0.8 0.7 *“""*\
0.7 0.6 N\
\
506 Zo.5 \
g 4
505 3o.a N\ %
£0.4 < N 5\
< 0.3 \ \
0.3 AN A\
\
*
0.2 0.2 .
0.1 0.1 §-——- = @@
10-% 10-7 10-° 105 10~¢ 10-% 102 10® 1077 10°° 105 10™* 103 1072 10~ 107 10-¢ 105 10~* 103 102
Error Rate Error Rate Error Rate
(d) Fashion-MNIST-Kernel-Encoder (e) Fashion-MNIST-Record-based-Encoder (f) Fashion-MNIST-Ngram-based-Encoder
0.9 M- R-=cco g Resoo k| 0.9] R-——— -k *o----k | o.9f ®----@ezeadeonzoAoooo- ek
0.8 . Tx 0.8 e N Y 0.8 e S LY
\ N, N, S
0.7/ \ oy 0.7 kN LY 0.7 \ - \
> \ NN > N ™ 3 z ™ N A
§9-€| S LR goe \ go.6 . \ \
30.5 \ N H N . \ 5 X \ \
E Y RN go.5 N ~ \ $0.5 \ Ay \
< N < N\ \.
0.4 \ N 0.4 ® w._ \ | Yoa N e A
\, . <o N
0.3 . Y 0.3 e L 0.3 ‘\\ ‘\\‘\’
0.2 - e 0.2 o---®-—g 02 e
10® 1077 10° 105 104 103 1072 10~% 10~7 10°¢ 105 10* 103 1072 10® 1077 10° 105 10* 103 102
Error Rate Error Rate Error Rate
(g) UCIHAR-Kernel-Encoder (h) UCIHAR-Record-based-Encoder (i) UCIHAR-Ngram-based-Encoder
[T L R e EEEr SELTE [e -Gl CE bty . SIS
*\\ &\ * \ :3\ *\ e B
0.8 -« e 0.8 \ -~ . 0.8 "\ WK
. . w \ Y
\
0.6 N RNS 20.6 \ LN 20.6 N
o \\ \, \\\ E ‘\ \ N, E \ \. \‘
g A \ \ | E N N
g0.4 ™Y * £0.4 \ \‘ v | 2 0.4 .\ \ W
. \ \ \ N
N\, A N\, \
0.2 S 0.2 L LY 0.2 N N
“ ~ . N .
»>----@----@ 0.0 [P | 0.0 | & ----0----@
107 1077 10° 105 10* 103 1072 710" 107 10 105 104 103 1072 107 1077 10¢ 105 10% 103 1072
Error Rate Error Rate Error Rate
(j) ISOLET-Kernel-Encoder

(k) ISOLET-Record-based-Encoder

(I) ISOLET-Ngram-based-Encoder
- @ -Faulty Model - -#-Scale+Clip Clustering - - - Checksum

Fig. 4: Error resilience in HDC test cases using CHC, CHE, Scale+Clip [11] and the case of no resilience method used (Faulty Model). The 100X in Fig. (a)
indicates the extent of improvement in error resilience (two orders of magnitude increase in error rate before performance drop).

As an overall observation the CHE and CHC based method Figures 4(j), 4(k) and 4(l) the HDC model with CHC provides
outperforms the state-of-the-art (i.e, the Scale+Clip [11]) in
terms of error resilience for all three encoding systems for

up to three orders of magnitude more error resilience than
increasing error rates from 107 to 1072,

Scale+Clip [11] when assessed on ISOLET. When assessed on
Fashion-MNIST, CHC achieves one order of magnitude more
error resilience than Scale+Clip [11] regardless of the type
of encoder. In this scenario, CHE is at least three orders of
magnitude more error resilient than the state-of-the-art. The
clustering based method achieves better error resilience than

the checksum based method when assessed on UCIHAR and
ISOLET and GTSRB and less robustness to errors when tested
on Fashion-MNIST. We thus see that improvements in error

For example in Figure 4(g), the accuracy of HDC on
UCIHAR using the kernel-based encoder and Scale+Clip [11]

drops at 10~ while the same accuracy of CHC and the CHE
based methods drop after 10~3. A similar dynamic is seen for
Figure 4(h) and Figure 4(i) where the checksum and clustering
assessed on UCIHAR are at least three orders of magnitude
more robust to errors than Scale+Clip [11] (i.e, the error re-
silience of the proposed technique is at least 1000 higher than
Scale+Clip [11]). From Figures4(a), 4(c) and 4(b) we observe
higher error resilience using the clustering (CHC) technique
than the checksum (CHE) technique, and both methods
provide greater error resilience than the baselines. From

resilience depend on dataset complexity and the HDC encoder
used.

D. Hardware Validation

We compare the CHE and CHC methods to the state of the
art [11] on an FPGA test platform. The reference checksum

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 17:10:10 UTC from IEEE Xplore. Restrictions apply.

Q""-*'"--’----*:::-*::--:\ 0.9 Q----Q----ﬂ----ﬁ-:;;:‘“"*-~--*
- g . s \
\ > AN \
0.8 \\\ \\ \ 0.8 \\\:\' \\‘
\ N NN \
\ \ \ \
20.6 \ W g07 b \
g \ N g N
3 \ \
H 3 50.6 N \
%04 LY \ g R
<0 N RN <0.5 N \\
\ Ve L ¥ \
0.2 AY \ 0.4 o\
. S \ \
| .Y]
» 0.3 1)

10-% 1077 107® 105 10% 10~ 10°% 107!
Error Rate

(a) ISOLET

- @ - Faulty Model

- - -Scale+Clip

107% 1077 10°¢ 10~ 107* 1073 10°% 10!
Error Rate

(b) UCIHAR

Clustering

- % - Checksum

Fig. 5: Accuracy of different error resilience methods on FPGA platform (i.e, Xilinx ZCU104)

Utilization Overhead Inference Time | Power | Energy Exrror resilience
FF LUT DSP BRAM (ms) (W) (m))
Baseline model 27022 51317 63 261 30.7 0.921 28.27
ISOLET Scale+clip 27437 52033 65 309 31.2 0.951 2967 | 1X
Checksum (CHE) 33458 55664 67 311 30.9 1.026 31.7 10X
Clustering (CHC) | 29457 55213 63 333 31 0.997 30.9 100X
Baseline model 27004 51302 62 175 24.3 0.884 21.48
UCIHAR Scale+clip 27403 52002 64 187 24.4 0.899 2193 | 1X
Checksum (CHE) 29060 52930 66 189 24.3 0.92 22.37 100X
Clustering (CHC) | 28816 53273 62 194 24.3 0.920 22.37 100X
TABLE III: Hardware Overhead: CHC & CHE Vs state-of-the-art error resilience methods
- explanation is that individual clusters (i.e, mean and variance)
@ 102 CHC is better - ; K L. K
= o cne will take individual BRAM cells (each BRAM is able to store
5 107 N up to 18 kb of data). A large number of low dimension vectors
= CHE is better . .
ui Z (i.e, CHC means and variances) need more BRAM cells than
i a single high dimensional vector (reference checksum hyper-
G~
[N

“UCIHAR "GTSRB Fashion-MNIST CIFAR100

(a) Error Resilience of CHC and CHE

50%

CIFAR-100
Fashion-MNIST
UCIHAR
GTSRB

40%

N W
g 3
2R

Accuracy Loss

10%
[R s

0%

,,,,,,,,,,,,,,, PO

0% 20% 40% 60%

Column Suppression Proportion

80%
(b) Cross-vector-removal effect on HDC Accuracy

Fig. 6: Error Resilience of CHC and CHE and Cross-vector-removal effect
on HDC

hypervector for CHE, and the mean and variance clustering
vectors for CHC were stored using BRAMs. The checksum
and clustering vectors as well as the class hypervector were
subjected to multiple bit flip error injection (See Section
IV-A). The indices of the bit flips are randomly selected. Table
III summarizes the overhead (resource utilization, inference
time and power consumption) of each method. In terms of
resource utilization, CHE and CHC have higher overhead
than Scale+Clip [11] and the baseline model. CHE incurs less
memory overhead than CHC. As such, the relative overhead
figures are as expected (when referring to Section V-B) for
ISOLET (due to its higher number of classes) but unexpected
for UCIHAR (which has a lower number of classes). One

vector). However, the checksum technique uses more DSPs
than the clustering method since it involves an additional
operation (adding the class hypervectors together).

Both CHC and CHE have comparable inference time (less
than 1% difference), higher than the baseline model and
Scale+Clip. CHE consumes more energy than CHC. Figure 5
shows the error resilience of the checksum (CHE) and cluster-
ing (CHC) based method the ISOLET and UCIHAR datasets.
For ISOLET, CHC provides two orders of magnitude more
error resilience than Scale+Clip [11] while CHE provided
10X more error resilience than the baseline. For UCIHAR, the
checksum and the clustering methods provide two orders of
magnitude more error resilience than the state-of-the-art.

VI. CoNCLUSION

This work presented two error resilience methods: the
checksum hypervector encoding (CHE) and the cross-
hypervector clustering (CHC). Both methods enable up to
three orders of magnitudes of improvement in error resilience
compared to the state-of-the-art. CHE provides an almost
constant level of error resilience with low memory overhead,
while CHC enhances error resilience depending on the clas-
sification performance of the hyperdimensional computing
with higher memory overhead.

ACKNOWLEDGMENT

This research was supported by NSF Grant No. 2128149 and
by the School of ECE at Georgia Institute of Technology.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 17:10:10 UTC from IEEE Xplore. Restrictions apply.

(10]

(11]

(12]

(13]

(16]

(17]

REFERENCES

Fatemeh Asgarinejad, Anthony Thomas, and Tajana Rosing. Detec-
tion of epileptic seizures from surface eeg using hyperdimensional
computing. In 2020 42nd Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (EMBC), pages 536-540. IEEE,
2020.

Peer Neubert, Stefan Schubert, and Peter Protzel. An introduction
to hyperdimensional computing for robotics. KI-Kiinstliche Intelligenz,
33:319-330, 2019.

Manuel Schmuck, Luca Benini, and Abbas Rahimi. Hardware optimiza-
tions of dense binary hyperdimensional computing: Rematerialization
of hypervectors, binarized bundling, and combinational associative
memory. ACM Journal on Emerging Technologies in Computing Systems
(JETC), 15(4):1-25, 2019.

Alfio Di Mauro, Francesco Conti, Pasquale Davide Schiavone, Davide
Rossi, and Luca Benini. Pushing on-chip memories beyond reliability
boundaries in micropower machine learning applications. In 2019 IEEE
International Electron Devices Meeting (IEDM), pages 30—-4. IEEE, 2019.
Alejandro Hernandez-Cane, Namiko Matsumoto, Eric Ping, and
Mohsen Imani. Onlinehd: Robust, efficient, and single-pass online
learning using hyperdimensional system. In 2021 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 56—61. IEEE,
2021.

Sizhe Zhang, Ruixuan Wang, Jeff Jun Zhang, Abbas Rahimi, and Xun
Jiao. Assessing robustness of hyperdimensional computing against
errors in associative memory. In 2021 IEEE 32nd International Confer-
ence on Application-specific Systems, Architectures and Processors (ASAP),
pages 211-217. IEEE, 2021.

Barry W Johnson. An introduction to the design and analysis of fault-
tolerant systems. Fault-tolerant computer system design, 1:1-84, 1996.
Kuang-Hua Huang and Jacob A Abraham. Algorithm-based fault
tolerance for matrix operations. IEEE transactions on computers,
100(6):518-528, 1984.

Chandramouli Amarnath, Mohamed Mejri, Kwondo Ma, and Abhijit
Chatterjee. Soft error resilient deep learning systems using neuron
gradient statistics. In 2022 IEEE 28th International Symposium on On-
Line Testing and Robust System Design (IOLTS), pages 1-7. IEEE, 2022.
Cynthia J. Anfinson and Franklin T. Luk. A linear algebraic model
of algorithm-based fault tolerance. IEEE Transactions on Computers,
37(12):1599-1604, 1988.

Sizhe Zhang, Mohsen Imani, and Xun Jiao. Scalehd: robust brain-
inspired hyperdimensional computing via adapative scaling. In Proceed-
ings of the 41st IEEE/ACM International Conference on Computer-Aided
Design, pages 1-9, 2022.

Pentti Kanerva. Hyperdimensional computing: An introduction to
computing in distributed representation with high-dimensional random
vectors. Cognitive computation, 1:139-159, 2009.

Mohsen Imani, Samuel Bosch, Sohum Datta, Sharadhi Ramakrishna,
Sahand Salamat, Jan M Rabaey, and Tajana Rosing. Quanthd: A
quantization framework for hyperdimensional computing. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
39(10):2268-2278, 2019.

Elbruz Ozen and Alex Orailoglu. Just say zero: Containing critical bit-
error propagation in deep neural networks with anomalous feature
suppression. In Proceedings of the 39th International Conference on
Computer-Aided Design, pages 1-9, 2020.

Sujay Pandey, Suvadeep Banerjee, and Abhijit Chatterjee. Error
resilient neuromorphic networks using checker neurons. In 2018 IEEE
24th International Symposium on On-Line Testing And Robust System
Design (IOLTS), pages 135-138. IEEE, 2018.

Dongning Ma, Sizhe Zhang, and Xun Jiao. Robust hyperdimensional
computing against cyber attacks and hardware errors: A survey. In
Proceedings of the 28th Asia and South Pacific Design Automation
Conference, pages 598—605, 2023.

Brandon Reagen, Udit Gupta, Lillian Pentecost, Paul Whatmough,
Sae Kyu Lee, Niamh Mulholland, David Brooks, and Gu-Yeon Wei. Ares:
A framework for quantifying the resilience of deep neural networks.
In Proceedings of the 55th Annual Design Automation Conference, pages
1-6, 2018.

Yang Ni, Nicholas Lesica, Fan-Gang Zeng, and Mohsen Imani. Neurally-
inspired hyperdimensional classification for efficient and robust biosig-
nal processing. In Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design, pages 1-9, 2022.

[19] Jose Maiz, Scott Hareland, Kevin Zhang, and Patrick Armstrong.

[20]

[21]

[22]

[23]

Characterization of multi-bit soft error events in advanced srams. In
IEEE International Electron Devices Meeting 2003, pages 21-4. IEEE, 2003.
Balkaran Gill, Michael Nicolaidis, and Chris Papachristou. Radiation
induced single-word multiple-bit upsets correction in sram. In 1Ith
IEEE International on-line testing symposium, pages 266—271. IEEE, 2005.
Weiwei Shan, Longxing Shi, and Jun Yang. In-situ timing monitor-
based adaptive voltage scaling system for wide-voltage-range applica-
tions. IEEE Access, 5:15831-15838, 2017.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In kdd, volume 96, pages 226-231, 1996.
Mohsen Imani, Chenyu Huang, Degian Kong, and Tajana Rosing. Hier-
archical hyperdimensional computing for energy efficient classification.
In Proceedings of the 55th Annual Design Automation Conference, pages
1-6, 2018.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 15,2024 at 17:10:10 UTC from IEEE Xplore. Restrictions apply.

