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Abstract  14 

Wastewater-based epidemiology (WBE) is a powerful tool for monitoring community disease occurrence, 15 

but current methods for bacterial detection suffer from limited scalability, the need for a priori knowledge 16 

of the target organism, and the high degree of genetic similarity between different strains of the same  17 

species. Here, we show that surface-enhanced Raman spectroscopy (SERS) can be a scalable, label-free  18 

method for detection of bacteria in wastewater. We preferentially enhance Raman signal from bacteria in 19 

wastewater using positively-charged plasmonic gold nanorods (AuNRs) that electrostatically bind to the  20 

bacterial surface. Transmission cryoelectron microscopy (cryoEM) confirms that AuNRs bind selectively 21 

to bacteria in this wastewater matrix. We spike the bacterial species Staphylococcus epidermidis,  22 

Staphylococcus aureus, Serratia marcescens, and Escerichia coli and AuNRs into filter-sterilized 23 

wastewater, varying the AuNR concentration to achieve maximum signal across all pathogens. We then 24 

collect 540 spectra from each species, and train a machine learning (ML) model to identify bacterial  25 

species in wastewater. For bacterial concentrations of 109 cells/mL, we achieve an accuracy exceeding  26 

85%. We also demonstrate that this system is effective at environmentally-realistic bacterial 27 

concentrations, with a limit of bacterial detection of 104 cells/mL. These results are a key first step toward 28 

a label-free, high-throughput platform for bacterial WBE.  29 
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2 Figure 1  

3 (a) Raman spectra are collected from liquid samples in 

microfluidic wells. (b) Electron micrograph of  

4 AuNRs used for SERS. (c) In the liquid wells, AuNRs 

selectively enhance scattered signals from bacteria  

5 over a complex mixture of background components, such as 

colloids, proteins, and nucleic acids. (d)  

6 Cryoelectron micrograph of electrostatic binding of AuNRs 

to E. coli surface. (e) SERS spectra of four 7  model species 
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collected in formalin and wastewater. Grey lines indicate 

negative control without AuNRs.  

8 SERS spectra are averaged over a minimum of 216 samples and unenhanced spectra are 

averaged over a  

9 minimum of 36 samples. Shaded regions indicate 1 standard deviation error  

10    

11    
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Wastewater based epidemiology (WBE) is an important tool for surveilling infectious disease 1 

occurrence in a community.[1] WBE has previously been used to monitor the spread of typhoid and 2 

polio;[2, 3] within the last four years, its use has expanded globally for tracking COVID-19,  MPOX, and 3 

other important diseases including measles, HIV, influenza, and RSV.[4–9] Successful use cases of WBE 4 

mostly focus on viral diseases. Expanded use of WBE to monitor bacterial infections would greatly 5 

benefit public health. An estimated 7.7 million people died of bacterial infections in 2019, accounting for 6 

13.6% of all deaths that year.[10] Bacterial infections are currently the second leading cause of death 7 

worldwide, and this mortality rate is expected to increase with the rise of antimicrobial resistance.[11] 8 

Recently, WBE has been extended for tracking selected bacterial (Salmonella) and fungal (Candida auris) 9 

infections,[12, 13] as well as to track the emergence and spread of antimicrobial-resistant (AMR) bacteria 10 

within communities.[14–16] The ability to broadly and accurately monitor bacterial pathogens at a 11 

population level and to address outbreaks before they rise to the level of pandemics could be critical to 12 

public health.   13 

State-of-the-art WBE methods use nucleic-acid detection methods to quantify pathogen-specific 14 

nucleic-acids. The most commonly-used approach is digital polymerase chain reaction (PCR) owing to its 15 

high sensitivity and specificity, reduced potential for inhibition of the reactions, and high potential for 16 

multiplexing assays in the same reaction.[17] However, PCR requires the identification of a unique, 17 

pathogen-specific nucleic-acid sequence for assay design. This requirement is challenging to scale to the 18 

many hundreds to thousands of possible bacterial species and strains and their associated antibiotic 19 

susceptibility. Further, virulence of a pathogen can be determined by phenotypic signatures (such as 20 

protein expression levels and post-translational modifications) which are not accessible from genomic or 21 

transcriptomic analysis alone.[18] Finally, a priori knowledge of pathogen genomic sequences also means 22 

that new, emerging antibiotic resistant strains could be challenging to identify with PCR.   23 

Vibrational spectroscopy, including Raman and infrared (IR) spectroscopy, offers a label-free 24 

route towards sensitive, specific, and scalable identification of broad ranges of pathogenic bacteria in 25 

wastewater. Because these techniques directly measure molecular vibrations, they do not require targeted 26 

probes or a priori knowledge of the target species.[19] Raman spectroscopy, which uses a monochromatic 27 

light source to measure vibrational energy levels based on the redshift of inelastically-scattered photons, is 28 

particularly suitable for wastewater analysis. Raman spectroscopy experiences less absorption in aqueous 29 

samples when compared to IR spectroscopy. Raman spectroscopy is also generally more fielddeployable 30 

and less expensive, owing to its visible excitation and detection wavelengths.[20, 21]  Different species and 31 

strains of bacteria have been shown to possess unique Raman “fingerprints”, allowing Raman 32 

identification of clinically-relevant information at the species and subspecies level.[22] Based on our and 33 

others’ libraries of pathogen Raman spectra in water, sputum, blood, and other clinical samples, we 34 

propose that Raman can be used for bacterial WBE by measuring light scattered off wastewater in a liquid 35 

well (Fig. 1a).[22–26]  36 

Machine learning (ML) techniques can be used to interpret bacterial Raman spectra. Several 37 

previous studies have used ML models including random forest classifiers and neural networks to identify 38 

bacterial species from Raman spectra, achieving high accuracies (currently up to >99%) across many 39 

dozens of pathogens.[22, 25, 27, 28] ML has been used to identify clinically relevant properties of bacteria at 40 

the subspecies level, including antibiotic susceptibility.[22, 24, 29, 30] Additionally, ML techniques have been 41 

used to identify spectral features that account for differences between species, providing insight into the 42 

biochemical pathways and processes underlying Raman classification.[25]   43 
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Combined with ML, surface-enhanced Raman spectroscopy (SERS) with plasmonic gold 44 

nanorods (AuNRs) has significant potential to identify pathogens in complex samples. In this method, the  45 

AuNRs focus the incident field onto the analytes, with reported enhancement factors ranging from 103- 46 

109.[31–33] This technique enables rapid, sensitive characterization of analytes through Raman 47 

spectroscopy.[34–39] For example, in wastewater, Liu et al. developed a SERS system to measure estrogen 48 

concentrations, wherein Raman signal from a secondary reporter increased in wastewaters with higher 49 

estrogen concentrations.[40] To achieve reporter-free detection of bacteria in wastewater, we utilize the 50 

electrostatic interaction between bacteria (which are generally negatively-charged) and AuNRs (which 51 

can be synthesized with positively-charged ligands such as cetrimonium bromide (CTAB)) (Fig. 1b-c). 52 

We have previously shown in deionized (DI) water and in blood that electrostatic interactions will allow 53 

AuNRs to bind selectively to the cell surface of almost any bacteria (including gram positive and gram 54 

negative species), to enhance bacterial Raman over the background medium’s Raman signature.[23, 25] We 55 

hypothesize that even in a sample as complex as wastewater, which contains a mixture of a variety of 56 

biomolecules and waste products, AuNRs can enhance bacterial Raman signal over the background, 57 

enabling label-free identification of bacteria in wastewater (Fig. 1d).  58 

Here, we establish the feasibility of WBE using SERS and ML. As a proof of concept, we 59 

consider four bacterial species, Staphylococcus epidermidis (S. epidermidis), Staphylococcus aureus (S. 60 

aureus), Serratia marcescens (S. marcescens), and Escherichia coli (E. coli) spiked into filter-sterilized 61 

wastewater with CTAB-functionalized AuNRs, and demonstrate SERS from this spiked wastewater with 62 

an acquisition time of only 10 seconds. Additionally, we use transmission cryoelectron microscopy 63 

(cryoEM) to confirm AuNR binding to the cell surface through strong electrostatic interactions. We 64 

investigate the relationship between AuNR concentration and bacterial Raman signal in wastewater, and 65 

demonstrate that the AuNRs have a primarily enhancing, rather than quenching effect among the tested 66 

concentrations. Additionally, we show that bacterial SERS spectra collected in wastewater can be used to 67 

accurately predict bacterial species: we train a convolutional neural network (CNN) to classify them with  68 

>85% accuracy. Finally, we demonstrate that this method can detect the presence of bacteria in 69 

wastewater at environmentally-relevant concentrations as low as 104 cells/mL.   70 

  71 

Results and Discussion  72 

SERS Enhancement of Bacterial Signal in Wastewater  73 

AuNRs were synthesized using a seed growth method using CTAB.[41] The cylindricity of CTAB 74 

micelles gives the nanoparticles a rod shape, and the trimethylammonium group on the ligand gives the 75 

AuNRs a positive surface charge, which we have previously shown to enable electrostatic interactions 76 

with negative charges on the bacterial surface.[23]  77 

AuNRs were designed to have a longitudinal surface plasmon resonance (LSPR) at approximately 78 

700 nm and dimensions of approximately 75 nm by 30 nm, to optimize the balance between enhancement 79 

and quenching for SERS with a 785 nm laser (Fig. 1b).[23, 42, 43] All AuNRs used for these experiments had 80 

resonances of 700-720 nm, lengths of 73.5-79.4 nm, and widths of 28.1-29.1 nm. Moreover, the two 81 

AuNRs batches used for SERS experiments had resonances of 700 nm, lengths of 75.3 nm and 73.5 nm, 82 

and widths of 28.1 nm and 29.1 nm (Fig. S1).  83 

We used clinically-relevant pathogens S. epidermidis, S. aureus, S. marcescens, and E. coli as 84 

model organisms to determine the effects of wastewater on AuNR enhancement of bacterial Raman 85 

spectra. S. marcescens, S. aureus, and S. epidermidis have respective surface charge densities 4, 29, and 86 

102 times greater than E. coli and have stronger electrostatic binding to AuNRs in deionized water.[23, 44] 87 

Here we tested bacterial SERS in a wastewater matrix, which was prepared from the liquid portion of 88 
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wastewater from a local wastewater treatment plant. We filter-sterilized the wastewater through a 0.22 μm 89 

pore-size filter to remove endogenous bacteria, in addition to other cells and particles, while preserving 90 

the colloids, dissolved ions, biomolecules, and various dissolved molecules in wastewater. Samples were 91 

then formalin treated for biosafety. For each experiment, this wastewater matrix was spiked with one of 92 

the model species and mixed 1:1 with AuNRs for a final concentration of 150 μg/mL AuNRs and 109 93 

cells/mL, which is approximately equal to the total bacterial concentration in untreated wastewater.[45, 46] 94 

As a control, samples were also prepared in formalin-treated DI water.   95 

Samples were transferred to a liquid well for Raman analysis (Fig. 1a). Raman spectra were 96 

collected from each species of bacteria with and without AuNRs in formalin and filter-sterilized 97 

wastewater, acquired over 10 seconds with a 785 nm laser at a power of 11 mW and a laser spot size of 2 98 

μm. A minimum of 216 spectra per species werecollected with AuNRs (and 36 spectra were collected 99 

without AuNRs). In samples without AuNRs, no bacterial Raman peaks were observed (Fig. 1e), 100 

consistent with our previous liquid Raman results with similarly low exposure times and power 101 

densities.[23] In samples with cells and AuNRs in formalin, strong Raman peaks are visible (Fig. 1e). 102 

These peaks overlap strongly with dozens of wavenumbers known to be associated with biomolecules on 103 

the bacterial surface. These features include particularly strong peaks at 760 cm-1, which is associated 104 

with adenine; 851 cm-1, which is associated with thymine; 1,040 cm-1, which is associated with aryl; 1,125 105 

cm-1, which is associated with phosphate; and 1,599 cm-1, which is associated with carboxyl.[25] All of 106 

these major peaks are conserved across the four species, which is expected: differences between the  107 

Raman spectra of different bacterial species tend to be subtle and difficult to discern by eye.[22]  108 

In samples with bacteria and AuNRs in a filtered wastewater matrix, strong peaks are still present. 109 

There are, however, some differences between these spectra and those collected in formalin. The most 110 

obvious difference is a peak at 670 cm-1 that is only present in bacterial spectra collected in wastewater. 111 

This band is characteristic of the C-S stretching vibration of the thiol group in cysteine, which is known to 112 

covalently bond to noble metal nanoparticles. We therefore hypothesize that this peak is the result of fecal 113 

proteins bonding to the AuNRs through their cysteine residues. Despite this new thiol peak, spectra 114 

collected in wastewater are otherwise qualitatively similar to those collected in formalin. All major peaks 115 

are conserved, including the biological peaks at 760 cm-1, 851 cm-1, 1,040 cm-1, 1,125 cm-1, and 1,599 cm-116 
1 that were previously highlighted.  117 

Despite these qualitative similarities, the spectra collected in filtered wastewater are not identical 118 

to those collected in formalin; the intensities of individual peaks vary between the two matrices. Some, 119 

but not all, of these peaks decrease in intensity in wastewater compared to formalin. The greatest decrease 120 

was observed for the 760 cm-1 peak, which decreases by 76.0-88.4% depending on species. The 1,040 cm1 121 

peak also decreases across all species by 51.0-77.8%. The 851 cm-1, 1,125 cm-1, and 1,599 cm-1 peaks, 122 

however, do not display a statistically-significant change in intensity in formalin compared to wastewater, 123 

indicating that wastewater does not strongly affect the intensities of these peaks (Fig. S2).Thus, the 124 

complex environment of wastewater does not inherently decrease SERS enhancement of bacterial surface 125 

molecules. While it has a weakening effect with some compounds, it does not affect the enhancement of 126 

others. Moreover, the peaks that do decrease in intensity are still clearly observable. Overall, SERS is 127 

achievable from bacteria in a wastewater matrix.  128 

  129 
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  130 
Figure 2  131 

Cryoelectron micrographs of AuNRs bound to (a) S. epidermidis in formalin, (b) S. epidermidis in wastewater, (c) S.  132 

aureus in formalin, (d) S. aureus in wastewater, (e) S. marcescens in formalin, (f) S. marcescens in wastewater, (g) E. 133 

coli in formalin, and (h) E. coli in wastewater.  134 

  135 

  136 
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Characterization of Nanorod Binding to Selected Bacterial Species  137 

CryoEM was used to further validate that bacterial Raman signal in wastewater was the result of 138 

AuNR binding to cells in this matrix. Samples were drop-cast onto glow-discharged lacey carbon grids, 139 

plunge frozen, then imaged using a transmission cryoEM. In samples in formalin, strong AuNR binding to 140 

bacteria was observed. Across all four model species, multiple dozens of AuNRs are bound to the surface 141 

of the average cell (Figs 2a,c,e,g). In formalin-treated wastewater, cryoEM images still show AuNR 142 

binding to all four species (Figs. 2b,d,f,h). For S. epidermidis and E. coli, the wastewater matrix does not 143 

decrease binding at all: the typical cell in wastewater has at least as many AuNRs bound to it as the 144 

typical cell in formalin (Figs. 2a,b,g,h, S3). For S. aureus and S. marcescens, a decrease in AuNR binding 145 

was observed in wastewater compared to formalin, but it does not entirely eliminate binding. In the case 146 

of S. aureus, tens of AuNRs are still bound to the surface of the typical cell (Figs. 2c,d, S3). And while S. 147 

marcescens has the greatest decrease in binding in wastewater relative to formalin, the typical cell still has 148 

multiple AuNRs bound to it (Figs. 2e,f, S3).  149 

S. epidermidis has greater surface charge density than S. aureus, which, in turn, has greater 150 

surface charge density than S. marcescens. Thus, for these three species, we observed a relationship in 151 

which lower charge density leads to a greater decrease in AuNR binding in a wastewater matrix. This 152 

result is likely because weaker electrostatic interactions can be more easily disrupted by changes in the 153 

ionic strength of their environment. Interestingly, E. coli has the lowest surface charge density of the four 154 

species, but does not display any decrease in AuNR binding in wastewater compared to formalin. We 155 

therefore hypothesize that wastewater is a more favorable environment for AuNR binding in cases where 156 

the electrostatic interaction is very weak.  157 

Thus, wastewater can decrease AuNR binding to the cell surface, but AuNR binding is never 158 

eliminated. Bacterial SERS has previously been achieved from samples with very few AuNRs directly 159 

bound to the cell surface, indicating that even low amounts of AuNR binding can produce SERS.[23] It can 160 

therefore be concluded that AuNR binding to all four species in wastewater generates the enhanced 161 

Raman signal we observe from bacteria in wastewater.  162 

   163 

Assessment of Plasmonic Nanoparticle Concentration: Enhancement vs. Quenching  164 

Due to the inherently absorbing nature of plasmonic nanoparticles, excess substrate can be 165 

detrimental to SERS, quenching the incident field more strongly than it enhances it. Therefore, a threshold 166 

nanoparticle concentration can exist, above which signal decreases.[43] To ensure that the 150 μg/mL 167 

AuNR concentration used in this system is below this threshold, bacterial samples of each selected species 168 

were prepared in filtered wastewater with AuNRs at concentrations of 10 μg/mL, 50 μg/mL, and 100 169 

μg/mL, in addition to the previous spectra collected at 150 μg/mL. A minimum of 144 Raman spectra 170 

were collected from each species at each concentration, and the mean intensities of the 760 cm-1, 851 cm1, 171 

1,040 cm-1, 1,125 cm-1, and 1,599 cm-1 peaks (which respectively correspond to adenine, thymine, aryl, 172 

phosphate, and carboxyl) for each species were compared (Fig. 3).  173 

Across all species, the greatest signal was generally observed at 150 μg/mL. We note that there is 174 

a local maximum at AuNR concentrations of 50 μg/mL, compared to concentrations of 100 μg/mL. In 175 

these intermediate concentration regimes, it is possible that quenching outcompetes enhancement. 176 

Alternatively, it could be that nanorod electrostatic interactions are more stable with certain relative 177 

concentrations of bacteria and AuNRs. It is also possible that AuNRs are more likely to aggregate in 178 

certain concentration regimes, which can decrease enhancement. Overall, we determine that a 179 

concentration of 150 μg/mL AuNRs enhances Raman signal more than it quenches it, making it suitable 180 

for bacterial SERS in wastewater systems.  181 
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 182 
Figure 3  183 

Stacked area chart depicting the intensities of selected bacterial peaks in wastewater depending on AuNR 184 

concentration. Each colored band indicates the intensity of one peak, and the total height of the chart indicates the 185 

sum of all five peak intensities. Error bars indicate standard deviation of 1599 cm-1 peak, which is representative of 186 

standard deviation for all peaks.  187 

  188 

Machine Learning Classification of Bacteria  189 

As numerous biological molecules present Raman peaks in the fingerprint region, we applied ML 190 

to classify the Raman spectra and assess the utility of SERS for bacterial identification in wastewater. 540 191 

spectra from each bacterial species were collected in wastewater with 150 μg/mL AuNRs and analyzed 192 

using a one-dimensional CNN consisting of a convolutional layer followed by seven fully-connected 193 

residual layers. The CNN can account for peak shape and has previously successfully classified bacterial 194 

Raman spectra.[22]  195 

This model was trained on the bacterial Raman spectra collected in wastewater from 725 cm-1 to 196 

1800 cm-1. This range was selected because it excludes the non-bacterial 670 cm-1 thiol peak from 197 

wastewater, which could lead to overfitting. The model was validated using k-folds cross-validation. In 198 

this process, the spectra from each species were split 4:1 into a training set and a test set. The model was 199 

then trained on the training set, and validated using the test set. This process was repeated using 500 200 

different train-test splits. This model identified S. epidermidis with 86.4% accuracy, S. aureus with 77.0% 201 

accuracy, S. marcescens with 86.5% accuracy, and E. coli with 91.0% accuracy (Fig. 4a). As CNNs are 202 
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typically trained using, at minimum, several thousand objects per class in the training set, which is far 203 

greater than the 540 here, we expect that this accuracy will increase in future research with larger datasets. 204 

Additionally, overall accuracy is decreased by an S. aureus classification accuracy that is markedly lower 205 

than that for the other organisms. A majority of this S. aureus misclassification is the result of the model 206 

misidentifying this organism as S. marcescens. Thus, much of this model’s inaccuracy stems from 207 

misclassification between S. aureus and S. marcescens, which we hypothesize can be overcome by 208 

generating a larger dataset of spectra from those two specific species.  209 

To ensure that this accurate ML classification was based on biologically relevant Raman peaks, 210 

relevant wavenumbers were identified using an iterative perturbation method. For each train-test split, all 211 

spectra in the test set would be perturbed by adding an artificial peak at a specific wavenumber. The effect 212 

on classification accuracy of perturbation at this wavenumber would be recorded. This process was 213 

iteratively repeated for all wavenumbers in the spectra. Perturbation of a wavenumber relevant to 214 

classification can be expected to cause a strong decrease in accuracy, so this method can identify these 215 

relevant wavenumbers.[25] We observed that wavenumbers relevant to classification strongly overlapped 216 

with known bacterial Raman peaks. For example, perturbation at 760 cm-1 (which corresponds to adenine) 217 

decreases accuracy by 11.8%, perturbation at 851 cm-1 (which corresponds to thymine) decreases 218 

accuracy by 11.2%, perturbation at 1,040 cm-1 (which corresponds to aryl) decrease accuracy by 6.4%, 219 

perturbation at 1,125 cm-1 (which corresponds to phosphate) decreases accuracy by 8.0%, and 220 

perturbation at 1,599 cm-1 (which corresponds to carboxyl) decreases accuracy by 9.2% (Fig. 4b). Thus, 221 

the >85% classification accuracy is based on differences between the Raman spectra of different bacterial 222 

species in wastewater stemming from the different chemical compositions of these species.   223 

  224 

  225 
Figure 4  226 

(a) Confusion matrix showing >85% accuracy of bacterial classification using a CNN trained on bacterial SERS 227 

spectra collected in wastewater. (b) Graph of accuracy of CNN when the test set is perturbed at various 228 

wavenumbers. Sharp decreases can be seen with perturbation at bands associated with (i) adenine, (ii) thymine, (iii) 229 

aryl, (iv) phosphate, and (v) carboxyl.  230 

  231 

Limit of Bacterial Detection  232 

The concentrations of clinically relevant species in raw wastewater span many orders of 233 

magnitude. While the total concentration of bacteria in wastewater has been reported on the order of 109 234 

cells/mL, the concentrations of individual species tend to be far lower.[45] E. coli, for example, has 235 

reported concentrations ranging from the order of 102-105 cells/mL.[47] To identify individual bacterial 236 
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species, it is therefore necessary to be able to detect bacteria at concentrations several orders of magnitude 237 

below 109 cells/mL. To assess the limit of detection (LoD) for bacterial SERS in wastewater, samples 238 

were prepared in a wastewater matrix with 150 μg/mL AuNRs and bacteria at concentrations of 0 239 

cells/mL, 104 cells/mL, 105 cells/mL, 106 cells/mL, 107 cells/mL, 108 cells/mL, and 109 cells/mL. At each 240 

concentration, 756 Raman spectra were collected, including a minimum of 108 spectra from each species 241 

(Fig. 5a). At these lower concentrations, biological peaks are still present in the spectra. This result is 242 

likely the result of the wastewater matrix containing biomolecules similar to those on the bacterial cell 243 

surface. However, the intensities of many of these peaks decrease at low bacterial concentration, 244 

indicating a strong contribution to these peaks from the bacterial surface (Fig. S4).  245 

To test the limit of detection, ML techniques were used to classify between spectra from samples 246 

containing bacteria at each concentration, and samples without bacteria. For example, Fig. 5b shows a 247 

uniform manifold approximation and projection (UMAP) plotting a two-dimensional projection of a set of 248 

spectra with bacteria at 108 cells/mL, and a set of spectra containing no bacteria. While this projection 249 

does not show wholly separate clusters, spectra with and without bacteria are generally localized to 250 

different regions of the two-dimensional vector space, indicating noticeable differences between spectra 251 

from wells with and without bacteria at this concentration.  252 

For a more robust comparison of spectra from samples with bacteria at each concentration against 253 

spectra with no bacteria, a k-nearest neighbors (KNN) classifier was used. In this process, principal 254 

component analysis (PCA) was performed on a dataset containing all the spectra with 109 cells/mL and all 255 

the spectra with no bacteria. The top 3 eigenvectors from this PCA were then used to project all of the 256 

spectra at all bacterial concentrations into 3 dimensions while preserving important information. A KNN 257 

classifier was then trained on the projected spectra at each concentration to classify between spectra from 258 

wells containing that concentration of bacteria, and wells containing no bacteria. The accuracy of each 259 

model was tested across 500 train-test splits using the same methods used to validate the CNN.  260 

At concentrations of 104-107 cells/mL, sensitivity, selectivity, and accuracy are approximately 261 

constant, all falling in the 55-70% range. At 108 cells/mL, sensitivity, selectivity, and accuracy 262 

respectively increase to 80.6±3.1%, 75.4±3.4%, and 77.1±2.2%. At 109 cells/mL, sensitivity, selectivity, 263 

and accuracy respectively reach 90.2±2.3%, 90.0±2.4%, and 90.1±1.7%. (Fig. 5c). The threshold 264 

concentration is around 107 cells/mL, above which accuracy increases significantly (Fig. S5). This 265 

threshold matches the concentration above which a dense layer of cells forms on the bottom of the well 266 

Fig. S6). Above the threshold concentration, we hypothesize that cells are present in the laser spot for 267 

most spectral acquisitions, so the spectra contain information on the cell surface itself; below the 268 

threshold, molecules are exchanged between the cells and the surrounding medium to give rise to Raman 269 

peaks.  270 

It is notable that the presence of bacteria could be detected with >50% accuracy, even at low 271 

concentrations at which bacteria were not in the laser spot. This result indicates that bacteria release 272 

enough molecules into the wastewater matrix to be detected by Raman. There is therefore potential for 273 

future Raman-based bacterial detection systems that do not require direct irradiation of the cells 274 

themselves. Together, these results suggest that SERS is capable of detecting bacteria at 275 

environmentallyrelevant concentrations. We note, however, that for this system to be implemented in a 276 

real wastewater system, we will need methods to identify signals from individual species in raw 277 

wastewater rather than filter-sterilized wastewater; the former will contain broad classes of bacteria, as 278 

well as protozoa and other organic and inorganic particles.  279 

  280 
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  281 
Figure 5  282 

(a) SERS spectra of four model species collected in wastewater at varying bacterial concentrations. (b) UMAP 283 

showing clustering of wells without bacteria vs wells with 108 cells/mL. (c) Sensitivity, selectivity, and accuracy of  284 

KNN classifiers trained to detect presence of bacteria at varying concentrations. Shaded regions indicate 285 

concentrations reported in literature for total bacteria in wastewater and E. coli in wastewater.  286 

  287 

Conclusions  288 

We have established that bacterial SERS can be achieved in a filter-sterilized wastewater matrix, 289 

en-route to bacterial WBE. We demonstrate that bacterial SERS in wastewater generates Raman peaks 290 

comparable to those observed in formalin. Additionally, cryoEM images show that AuNRs bind to the 291 

bacterial surface in this complex matrix, indicating that the various dissolved substances in wastewater do 292 

not adversely affect this interaction, and indicating that SERS enhancements in wastewater are the result 293 

of a bacteria-AuNR interaction. We demonstrate that a high AuNR concentration of 150 μg/mL is suitable 294 

for SERS, enhancing signal rather than quenching it. We also demonstrate that bacterial SERS spectra 295 

collected in filtered wastewater are sufficiently robust for species identification: an ML model trained on 296 
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spectra from four clinically relevant bacterial species in wastewater could distinguish between these 297 

species with >85% accuracy. Combined with ML, this platform can detect bacteria in wastewater at 298 

concentrations as low as 104 cells/mL.  299 

Our proof-of-concept work marks a critical first step toward scalable wastewater monitoring of 300 

bacterial pathogens. Future work remains to bring this technology to practice. First, it would be crucial to 301 

expand the CNN training dataset to include a larger number of species and tens of thousands of spectra 302 

per species. This expanded dataset would enable SERS monitoring of a fuller breadth of the bacterial 303 

pathogens present in wastewater and have sufficient data per class for optimal CNN performance. 304 

Additionally, work is needed to diversify the wastewater background training data (eg, from a variety of 305 

geographic locations), as well as the bacterial Raman cataloging. Future datasets would ideally contain 306 

various strains of each species cultured under a range of conditions and spiked into wastewater from 307 

various sources. There is also potential for synthetic data augmentation techniques to diversify data. Such 308 

diversity would prevent potential overfitting to a specific set of conditions.  309 

Improvements in identification accuracy could be further improved with a platform to collect 310 

spectra from few-to-single cells in wastewater, allowing characterization of wastewater on a cell-by-cell 311 

basis. In recent years, systems have emerged integrating bioprinting and microfluidics with Raman 312 

spectroscopy, which have potential for single cell isolation.[25, 48] Additionally, there is promise for 313 

enrichment techniques, such as dielectrophoresis, for concentrating bacteria near electrodes, to maximize 314 

their Raman signal, even at low bacterial concentrations. We anticipate that a Raman system that 315 

combines bioprinting or microfluidics with enrichments could be powerful as a means of sensitively 316 

generating single-cell spectra.  317 

In summary, SERS has significant potential as a tool for wastewater monitoring, and these results 318 

lay the groundwork for the implementation of this epidemiological tool. In the future, we hope that this 319 

rapid, label-free technique will allow bacterial outbreaks to be detected and addressed before they rise to 320 

the level of crises.              321 

Methods  322 

Wastewater preparation  323 

Raw, untreated wastewater influent was collected on 19 April 2022 as an eight-hour composite 324 

sample using a composite automated sampler from a large wastewater treatment plant located in the Bay 325 

Area of California, USA. This wastewater sample is likely representative of wastewater from large urban 326 

areas in the USA. Wastewater was stored for a period of several weeks at 4℃, during which solid 327 

components separated from liquid components through gravitational setting. The liquid portion of this 328 

wastewater was recovered using a sterile pipetter and subsequently filtered through a 0.22 μm pore size 329 

syringe filter (09-720-3, Fisher) to remove particles including bacteria and protozoa. Filter-sterilized 330 

wastewater was then mixed 1:1 by volume with 10% formalin for biosafety. Filtered, formalin-treated 331 

wastewater samples were stored at 4°C for up to two years.  332 

   333 

Nanorod synthesis and Characterization  334 

To achieve our target LSPR and AuNR width, AuNRs were synthesized using a modified version 335 

of the recipe described in subfigure 3a of the 2013 manuscript by Ye et al.[41] The scale of this synthesis 336 

was decreased by a factor of 10 from the scale described in the manuscript, and hydrochloric acid and 337 

seed concentrations were sometimes modified to correct for effects of seasonal changes in humidity on 338 

AuNR growth. The nanorods were washed once, which is sufficient to prevent cytotoxicity from CTAB, 339 

while leaving sufficient CTAB on the AuNR surface to maintain a positive surface charge and prevent 340 

aggregation.[23] AuNRs were washed by centrifuging the synthesis for 20 minutes at 5,400 g, removing the 341 
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supernatant, resuspending in 50 mL DI water, centrifuging a second time with the same parameters, 342 

removing supernatant, and resuspending in 5 mL DI water. AuNR resonance was measured by collecting 343 

their extinction spectrum from 400-900 nm using a Cary 6000i UV-Vis-NIR spectrometer. AuNR 344 

concentration was determined by using a Thermo Scientific ICAP 6300 Duo View Optical Emission 345 

Spectrometer to measure the concentration of gold in a sample containing the washed AuNRs diluted  346 

1:200 in 5% nitric acid. To analyze individual AuNRs, images of fifty AuNRs were recorded with an FEI 347 

Tecnai G2 F20 X-TWIN Transmission Electron Microscope. Each AuNR in these images was measured 348 

using the line tool in ImageJ.  349 

 Three batches of AuNRs were synthesized for the experiments discussed in this paper. The 350 

AuNRs for the experiments in Figs. 1, 3, and 4 had an LSPR at 700 nm, an average length of 75.3 nm 351 

with 9.6% standard deviation, and an average width of 28.1 nm with 8.9% standard deviation.  The 352 

AuNRs for the experiments in Fig. 2 had an LSPR at 720 nm, an average length of 79.4 nm with 10.8% 353 

standard deviation, and an average width of 28.9 nm with 9.0% standard deviation. The AuNRs for the 354 

experiments in Fig. 5 had an LSPR at 700 nm, an average length of 73.5 nm with 21.5% standard 355 

deviation, and an average width of 29.1 nm with 24.1% standard deviation.  356 

   357 

Cell Culture  358 

S. epidermidis (ATCC 12228), S. aureus (which was a clinical sample obtained from the Stanford  359 

Hospital), S. marcescens (ATCC 13880), and E. coli (ATCC 25922) were cultured on Trypticase Soy Agar 360 

5% Sheep Blood plates (221239, BD) at 37°C for 16 hours. Colonies from these plates were then cultured 361 

in 12.5 mL Lysogeny broth culture medium (10-855-021, Fisher) in 50 mL bio-reaction tubes (229476, 362 

CellTreat) at 37°C with 120 rpm shaking for 16 hours. All cultures were incubated in a Thermo Scientific 363 

MaxQ 4450 incubator. Cultures were stored at 4°C, and experiments were not performed with solid 364 

cultures more than 14 days old or liquid cultures more than 5 days old.  365 

   366 

Preparation of Cell/AuNR Mixtures  367 

Cell concentration was measured by diluting an aliquot of liquid culture 1:1,000 and counting on 368 

a Bright-Line Hemacytometer. Cell aliquots were washed 3 times by centrifuging for 4 minutes in a 369 

mySPINTM 6 Mini Centrifuge, removing supernatant and resuspending in DI water between 370 

centrifugations. After the washes, the cells were resuspended in either 5% formalin or filtered and 371 

formalin-treated wastewater at double their desired concentration. Additionally, aliquots of AuNRs were 372 

diluted in DI water to double the desired final concentration. A cell aliquot and an AuNR aliquot were 373 

then mixed in a 1:1 ratio by volume.  374 

   375 

Liquid Well Preparation  376 

A 0.5 mm silicon chip and a 0.5 mm JGS2 grade, double-side polished fused silica chip 377 

(WA1001, MSE Supplies) were plasma cleaned for 5 minutes at 100 W with an 85 mTorr base pressure 378 

and a 2 SCCM oxygen flow rate in a March Instruments PX-250 Plasma Asher to decrease  379 

hydrophobicity and remove residual adhesive from previous experiments. 4 layers of double-sided scotch 380 

tape (6137H-2PC-MP, 3M) were stacked on each other for a final thickness of approximately 0.1 mm,[32] 381 

and a hole was punched in the middle of this stack using a Bostitch Office EZ Squeeze One-Hole Punch.  382 

This tape was then placed on the plasma-cleaned silicon. A 10 μL sample was pipetted into the hole in the 383 

tape, and the top was sealed with the plasma-cleaned silica. After experiments, wells were disassembled 384 

by dissolving tape adhesive in 10% isopropyl alcohol (IPA). Silicon and silica substrates were then wiped 385 

down with IPA and reused in subsequent experiments.  386 
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   387 

CryoEM  388 

To prepare cryoEM samples, 300 mesh molybdenum lacey carbon grids (LC300-MO, Electron 389 

Microscopy Sciences) were glow discharged for 10 seconds in a PELCO easiGlow Glow Discharge  390 

Cleaning System at 15 mA and 0.40 mbar. 3 μL of cell/AuNR mixture was subsequently drop-cast onto 391 

each grid, which was then back-blotted for 3 seconds and frozen using a Vitrobot Mark IV automatic 392 

plunge freezer, with blot force set to 3. Cells were imaged using a Glacios 2 Cryo-Transmission Electron 393 

Microscope.  394 

   395 

Raman Spectroscopy  396 

Raman spectra were collected using a Horiba Xplora+ Confocal Raman microscope with a 600 397 

gr/mm grating, a 300 μm pinhole, and a 785 nm laser with 11 mW power output. Spectra were collected 398 

through an Olympus Plan N 10x objective (N1215800, Olympus), with a spot size of approximately 2 μm. 399 

Each spectrum was collected through two 5-second acquisitions. Spectra were collected from 5501800 400 

cm-1, with a multiple accumulation spike filter and an intensity correction system (ICS). Spectra were 401 

collected in batches of 36 by collecting a 6×6 map over a 200×200 μm area. Between 1 and 3 maps were 402 

collected from each well. For each species and concentration, Raman was performed on a minimum of 403 

two wells containing cells from separate liquid cultures, aside from negative controls without AuNRs and 404 

S. aureus samples in Figure 5, which were collected from a single well for each sample.  405 

   406 

Data Processing  407 

Spectra were processed using Python. Each spectrum was truncated to only include wavenumbers 408 

from 550-1800 cm-1. To avoid overfitting to the 670 cm-1 thiol peak, whose intensity varied significantly 409 

between spectra, spectra being processed for ML were truncated to a range of 725-1800 cm-1. To remove 410 

the fluorescent background, a fifth-order polynomial fit was subtracted from each spectrum using 411 

peakutils.baseline. To remove background from silicon in the wells, the baseline-subtracted spectrum of a 412 

well containing DI water was subtracted from each baseline-subtracted spectrum. For normalization, each 413 

spectrum then had its mean value subtracted and then was divided by its standard deviation, to achieve a 414 

mean of 0 and a standard deviation of 1.  415 

   416 

Machine Learning  417 

All ML was performed using Python. PCA was performed on processed and normalized spectra 418 

using sklearn.decomposition.PCA. UMAP was performed using umap.UMAP with min_dist=1 and 419 

n_neighbors=1500. The CNN was built using pytorch_lightning with the architecture and parameters we 420 

previously described in the 2019 manuscript by Ho et al.[22] The KNN classifier used sklearn.neighbors. 421 

KNeighborsClassifier, with n_neighbors=40. Each classifier was validated using k-folds cross validation, 422 

with each class randomly divided into five folds using sklearn.model_selection.KFold. The model iterated 423 

through the five folds, using each one as the test set, while using the other four as the training set. This 424 

process was repeated with a new set of folds 100 times, for a total of 500 training and test sets.  425 

For the CNN, iterative perturbation was performed for each of the 500 test sets. This process was 426 

repeated for all wavenumbers in the spectra. For each spectrum, a Lorentzian curve was generated using 427 

the equation: 𝑓(𝜈) = 𝑎/𝜋
2 2, where ν is a wavenumber in cm-1, ν0 is the perturbed 428 

wavenumber in cm- 429 

(𝜈−𝜈0) +𝑏 430 
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1, a is a value randomly selected from an even distribution from 0-250 using random.random, and b=5. A 431 

Lorentzian centered at a specific wavenumber would be added to a spectrum to perturb it at that 432 

wavenumber. For each of the 500 train-test splits, each spectrum in the test set was perturbed at each 433 

wavenumber.  434 

  435 
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