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Abstract
Wastewater-based epidemiology (WBE) is a powerful tool for monitoring community disease occurrence,
but current methods for bacterial detection suffer from limited scalability, the need for a priori knowledge
of the target organism, and the high degree of genetic similarity between different strains of the same
species. Here, we show that surface-enhanced Raman spectroscopy (SERS) can be a scalable, label-free
method for detection of bacteria in wastewater. We preferentially enhance Raman signal from bacteria in
wastewater using positively-charged plasmonic gold nanorods (AuNRs) that electrostatically bind to the
bacterial surface. Transmission cryoelectron microscopy (cryoEM) confirms that AuNRs bind selectively
to bacteria in this wastewater matrix. We spike the bacterial species Staphylococcus epidermidis,
Staphylococcus aureus, Serratia marcescens, and Escerichia coli and AuNRs into filter-sterilized
wastewater, varying the AuNR concentration to achieve maximum signal across all pathogens. We then
collect 540 spectra from each species, and train a machine learning (ML) model to identify bacterial
species in wastewater. For bacterial concentrations of 10° cells/mL, we achieve an accuracy exceeding
85%. We also demonstrate that this system is effective at environmentally-realistic bacterial
concentrations, with a limit of bacterial detection of 10* cells/mL. These results are a key first step toward
a label-free, high-throughput platform for bacterial WBE.
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(a) Raman spectra are collected from liquid samples in
microfluidic wells. (b) Electron micrograph of

AuNRs used for SERS. (c) In the liquid wells, AuNRs
selectively enhance scattered signals from bacteria

over a complex mixture of background components, such as
colloids, proteins, and nucleic acids. (d)

Cryoelectron micrograph of electrostatic binding of AuNRs
to E. coli surface. (€) SERS spectra of four 7 model species
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collected in formalin and wastewater. Grey lines indicate
negative control without AuNRs.

8 SERS spectra are averaged over a minimum of 216 samples and unenhanced spectra are
averaged over a
9 minimum of 36 samples. Shaded regions indicate 1 standard deviation error
10
11
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Wastewater based epidemiology (WBE) is an important tool for surveilling infectious disease
occurrence in a community.l'! WBE has previously been used to monitor the spread of typhoid and
polio;* 3! within the last four years, its use has expanded globally for tracking COVID-19, MPOX, and
other important diseases including measles, HIV, influenza, and RSV.**! Successful use cases of WBE
mostly focus on viral diseases. Expanded use of WBE to monitor bacterial infections would greatly
benefit public health. An estimated 7.7 million people died of bacterial infections in 2019, accounting for
13.6% of all deaths that year.!'! Bacterial infections are currently the second leading cause of death
worldwide, and this mortality rate is expected to increase with the rise of antimicrobial resistance.!!!
Recently, WBE has been extended for tracking selected bacterial (Salmonella) and fungal (Candida auris)
infections,!'> 13 as well as to track the emergence and spread of antimicrobial-resistant (AMR) bacteria
within communities.!'*'® The ability to broadly and accurately monitor bacterial pathogens at a
population level and to address outbreaks before they rise to the level of pandemics could be critical to
public health.

State-of-the-art WBE methods use nucleic-acid detection methods to quantify pathogen-specific
nucleic-acids. The most commonly-used approach is digital polymerase chain reaction (PCR) owing to its
high sensitivity and specificity, reduced potential for inhibition of the reactions, and high potential for
multiplexing assays in the same reaction.!'”? However, PCR requires the identification of a unique,
pathogen-specific nucleic-acid sequence for assay design. This requirement is challenging to scale to the
many hundreds to thousands of possible bacterial species and strains and their associated antibiotic
susceptibility. Further, virulence of a pathogen can be determined by phenotypic signatures (such as
protein expression levels and post-translational modifications) which are not accessible from genomic or
transcriptomic analysis alone.!'"®! Finally, a priori knowledge of pathogen genomic sequences also means
that new, emerging antibiotic resistant strains could be challenging to identify with PCR.

Vibrational spectroscopy, including Raman and infrared (IR) spectroscopy, offers a label-free
route towards sensitive, specific, and scalable identification of broad ranges of pathogenic bacteria in
wastewater. Because these techniques directly measure molecular vibrations, they do not require targeted
probes or a priori knowledge of the target species.!'”) Raman spectroscopy, which uses a monochromatic
light source to measure vibrational energy levels based on the redshift of inelastically-scattered photons, is
particularly suitable for wastewater analysis. Raman spectroscopy experiences less absorption in aqueous
samples when compared to IR spectroscopy. Raman spectroscopy is also generally more fielddeployable
and less expensive, owing to its visible excitation and detection wavelengths.?% 2!l Different species and
strains of bacteria have been shown to possess unique Raman “fingerprints”, allowing Raman
identification of clinically-relevant information at the species and subspecies level.??! Based on our and
others’ libraries of pathogen Raman spectra in water, sputum, blood, and other clinical samples, we
propose that Raman can be used for bacterial WBE by measuring light scattered off wastewater in a liquid
well (Fig. 1a).122-26]

Machine learning (ML) techniques can be used to interpret bacterial Raman spectra. Several
previous studies have used ML models including random forest classifiers and neural networks to identify
bacterial species from Raman spectra, achieving high accuracies (currently up to >99%) across many
dozens of pathogens.?> 2% 27 28] ML has been used to identify clinically relevant properties of bacteria at
the subspecies level, including antibiotic susceptibility.l?> 2+ 2 3% Additionally, ML techniques have been
used to identify spectral features that account for differences between species, providing insight into the
biochemical pathways and processes underlying Raman classification.**!
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Combined with ML, surface-enhanced Raman spectroscopy (SERS) with plasmonic gold
nanorods (AuNRs) has significant potential to identify pathogens in complex samples. In this method, the
AuNRs focus the incident field onto the analytes, with reported enhancement factors ranging from 10°-
10°.B33 This technique enables rapid, sensitive characterization of analytes through Raman
spectroscopy.**3° For example, in wastewater, Liu et al. developed a SERS system to measure estrogen
concentrations, wherein Raman signal from a secondary reporter increased in wastewaters with higher
estrogen concentrations.*”) To achieve reporter-free detection of bacteria in wastewater, we utilize the
electrostatic interaction between bacteria (which are generally negatively-charged) and AuNRs (which
can be synthesized with positively-charged ligands such as cetrimonium bromide (CTAB)) (Fig. 1b-c).
We have previously shown in deionized (DI) water and in blood that electrostatic interactions will allow
AuNRs to bind selectively to the cell surface of almost any bacteria (including gram positive and gram
negative species), to enhance bacterial Raman over the background medium’s Raman signature.?* 25 We
hypothesize that even in a sample as complex as wastewater, which contains a mixture of a variety of
biomolecules and waste products, AuNRs can enhance bacterial Raman signal over the background,
enabling label-free identification of bacteria in wastewater (Fig. 1d).

Here, we establish the feasibility of WBE using SERS and ML. As a proof of concept, we
consider four bacterial species, Staphylococcus epidermidis (S. epidermidis), Staphylococcus aureus (S.
aureus), Serratia marcescens (S. marcescens), and Escherichia coli (E. coli) spiked into filter-sterilized
wastewater with CTAB-functionalized AuNRs, and demonstrate SERS from this spiked wastewater with
an acquisition time of only 10 seconds. Additionally, we use transmission cryoelectron microscopy
(cryoEM) to confirm AuNR binding to the cell surface through strong electrostatic interactions. We
investigate the relationship between AuNR concentration and bacterial Raman signal in wastewater, and
demonstrate that the AuNRs have a primarily enhancing, rather than quenching effect among the tested
concentrations. Additionally, we show that bacterial SERS spectra collected in wastewater can be used to
accurately predict bacterial species: we train a convolutional neural network (CNN) to classify them with
>85% accuracy. Finally, we demonstrate that this method can detect the presence of bacteria in
wastewater at environmentally-relevant concentrations as low as 10* cells/mL.

Results and Discussion
SERS Enhancement of Bacterial Signal in Wastewater

AuNRs were synthesized using a seed growth method using CTAB.!*!! The cylindricity of CTAB
micelles gives the nanoparticles a rod shape, and the trimethylammonium group on the ligand gives the
AuNRs a positive surface charge, which we have previously shown to enable electrostatic interactions
with negative charges on the bacterial surface.!*!

AuNRs were designed to have a longitudinal surface plasmon resonance (LSPR) at approximately
700 nm and dimensions of approximately 75 nm by 30 nm, to optimize the balance between enhancement
and quenching for SERS with a 785 nm laser (Fig. 1b).[* %% %1 All AuNRs used for these experiments had
resonances of 700-720 nm, lengths of 73.5-79.4 nm, and widths of 28.1-29.1 nm. Moreover, the two
AuNRs batches used for SERS experiments had resonances of 700 nm, lengths of 75.3 nm and 73.5 nm,
and widths of 28.1 nm and 29.1 nm (Fig. S1).

We used clinically-relevant pathogens S. epidermidis, S. aureus, S. marcescens, and E. coli as
model organisms to determine the effects of wastewater on AuNR enhancement of bacterial Raman
spectra. S. marcescens, S. aureus, and S. epidermidis have respective surface charge densities 4, 29, and
102 times greater than E. coli and have stronger electrostatic binding to AuNRs in deionized water.!?* 44
Here we tested bacterial SERS in a wastewater matrix, which was prepared from the liquid portion of
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wastewater from a local wastewater treatment plant. We filter-sterilized the wastewater through a 0.22 pm
pore-size filter to remove endogenous bacteria, in addition to other cells and particles, while preserving
the colloids, dissolved ions, biomolecules, and various dissolved molecules in wastewater. Samples were
then formalin treated for biosafety. For each experiment, this wastewater matrix was spiked with one of
the model species and mixed 1:1 with AuNRs for a final concentration of 150 ug/mL AuNRs and 10°
cells/mL, which is approximately equal to the total bacterial concentration in untreated wastewater. 4> 46!
As a control, samples were also prepared in formalin-treated DI water.

Samples were transferred to a liquid well for Raman analysis (Fig. 1a). Raman spectra were
collected from each species of bacteria with and without AuNRs in formalin and filter-sterilized
wastewater, acquired over 10 seconds with a 785 nm laser at a power of 11 mW and a laser spot size of 2
pum. A minimum of 216 spectra per species werecollected with AuNRs (and 36 spectra were collected
without AuNRs). In samples without AuNRs, no bacterial Raman peaks were observed (Fig. le),
consistent with our previous liquid Raman results with similarly low exposure times and power
densities.!*!) In samples with cells and AuNRs in formalin, strong Raman peaks are visible (Fig. le).
These peaks overlap strongly with dozens of wavenumbers known to be associated with biomolecules on
the bacterial surface. These features include particularly strong peaks at 760 cm™!, which is associated
with adenine; 851 cm™!, which is associated with thymine; 1,040 cm™, which is associated with aryl; 1,125
cm!, which is associated with phosphate; and 1,599 cm™!, which is associated with carboxyl.!**) All of
these major peaks are conserved across the four species, which is expected: differences between the
Raman spectra of different bacterial species tend to be subtle and difficult to discern by eye.??

In samples with bacteria and AuNRs in a filtered wastewater matrix, strong peaks are still present.
There are, however, some differences between these spectra and those collected in formalin. The most
obvious difference is a peak at 670 cm™! that is only present in bacterial spectra collected in wastewater.
This band is characteristic of the C-S stretching vibration of the thiol group in cysteine, which is known to
covalently bond to noble metal nanoparticles. We therefore hypothesize that this peak is the result of fecal
proteins bonding to the AuNRs through their cysteine residues. Despite this new thiol peak, spectra
collected in wastewater are otherwise qualitatively similar to those collected in formalin. All major peaks
are conserved, including the biological peaks at 760 cm™!, 851 cm™, 1,040 cm!, 1,125 em™, and 1,599 cm-
! that were previously highlighted.

Despite these qualitative similarities, the spectra collected in filtered wastewater are not identical
to those collected in formalin; the intensities of individual peaks vary between the two matrices. Some,
but not all, of these peaks decrease in intensity in wastewater compared to formalin. The greatest decrease
was observed for the 760 cm™ peak, which decreases by 76.0-88.4% depending on species. The 1,040 cm'
peak also decreases across all species by 51.0-77.8%. The 851 cm™, 1,125 cm’!, and 1,599 cm! peaks,
however, do not display a statistically-significant change in intensity in formalin compared to wastewater,
indicating that wastewater does not strongly affect the intensities of these peaks (Fig. S2).Thus, the
complex environment of wastewater does not inherently decrease SERS enhancement of bacterial surface
molecules. While it has a weakening effect with some compounds, it does not affect the enhancement of
others. Moreover, the peaks that do decrease in intensity are still clearly observable. Overall, SERS is
achievable from bacteria in a wastewater matrix.
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132 Cryoelectron micrographs of AuNRs bound to (a) S. epidermidis in formalin, (b) S. epidermidis in wastewater, (c) S.
133  aureus in formalin, (d) S. aureus in wastewater, (¢) S. marcescens in formalin, (f) S. marcescens in wastewater, (g) E.
134 coli in formalin, and (h) E. coli in wastewater.
135
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Characterization of Nanorod Binding to Selected Bacterial Species

CryoEM was used to further validate that bacterial Raman signal in wastewater was the result of
AuNR binding to cells in this matrix. Samples were drop-cast onto glow-discharged lacey carbon grids,
plunge frozen, then imaged using a transmission cryoEM. In samples in formalin, strong AuNR binding to
bacteria was observed. Across all four model species, multiple dozens of AuNRs are bound to the surface
of the average cell (Figs 2a,c,e,g). In formalin-treated wastewater, cryoEM images still show AuNR
binding to all four species (Figs. 2b,d,f,h). For S. epidermidis and E. coli, the wastewater matrix does not
decrease binding at all: the typical cell in wastewater has at least as many AuNRs bound to it as the
typical cell in formalin (Figs. 2a,b,g,h, S3). For S. aureus and S. marcescens, a decrease in AuNR binding
was observed in wastewater compared to formalin, but it does not entirely eliminate binding. In the case
of S. aureus, tens of AuNRs are still bound to the surface of the typical cell (Figs. 2c,d, S3). And while S.
marcescens has the greatest decrease in binding in wastewater relative to formalin, the typical cell still has
multiple AuNRs bound to it (Figs. 2e,f, S3).

S. epidermidis has greater surface charge density than S. aureus, which, in turn, has greater
surface charge density than S. marcescens. Thus, for these three species, we observed a relationship in
which lower charge density leads to a greater decrease in AuNR binding in a wastewater matrix. This
result is likely because weaker electrostatic interactions can be more easily disrupted by changes in the
ionic strength of their environment. Interestingly, £. coli has the lowest surface charge density of the four
species, but does not display any decrease in AuNR binding in wastewater compared to formalin. We
therefore hypothesize that wastewater is a more favorable environment for AuNR binding in cases where
the electrostatic interaction is very weak.

Thus, wastewater can decrease AuNR binding to the cell surface, but AuNR binding is never
eliminated. Bacterial SERS has previously been achieved from samples with very few AuNRs directly
bound to the cell surface, indicating that even low amounts of AuNR binding can produce SERS.**! It can
therefore be concluded that AuNR binding to all four species in wastewater generates the enhanced
Raman signal we observe from bacteria in wastewater.

Assessment of Plasmonic Nanoparticle Concentration: Enhancement vs. Quenching

Due to the inherently absorbing nature of plasmonic nanoparticles, excess substrate can be
detrimental to SERS, quenching the incident field more strongly than it enhances it. Therefore, a threshold
nanoparticle concentration can exist, above which signal decreases.!*! To ensure that the 150 ug/mL
AuNR concentration used in this system is below this threshold, bacterial samples of each selected species
were prepared in filtered wastewater with AuNRs at concentrations of 10 ug/mL, 50 pg/mL, and 100
pg/mL, in addition to the previous spectra collected at 150 pg/mL. A minimum of 144 Raman spectra
were collected from each species at each concentration, and the mean intensities of the 760 cm™!, 851 ¢cm!,
1,040 cm™, 1,125 cm™!, and 1,599 cm™' peaks (which respectively correspond to adenine, thymine, aryl,
phosphate, and carboxyl) for each species were compared (Fig. 3).

Across all species, the greatest signal was generally observed at 150 pug/mL. We note that there is
a local maximum at AuNR concentrations of 50 pg/mL, compared to concentrations of 100 ug/mL. In
these intermediate concentration regimes, it is possible that quenching outcompetes enhancement.
Alternatively, it could be that nanorod electrostatic interactions are more stable with certain relative
concentrations of bacteria and AuNRs. It is also possible that AuNRs are more likely to aggregate in
certain concentration regimes, which can decrease enhancement. Overall, we determine that a
concentration of 150 pg/mL AuNRs enhances Raman signal more than it quenches it, making it suitable
for bacterial SERS in wastewater systems.



bioRxiv preprint doi: https://doi.org/10.1101/2024.07.22.604506; this version posted July 23, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

S. epidermidis b S. aureus
B 760 cm B 760 cm
600 [M851cm goo M 851 cm
B 1041 cm? B 1041 cm-
. 1125 cm _ 1125 cm™?
5 1599 cm! 3 1599 cm-!
£ 400 £.400
= =
Z Z
c c
2 X}
£ £
200 200
0 0
0 50 100 150 0 50 100 150
AuNR Concentration (pg/mL) AuNR Concentration (pg/mL)
S. marcescens E. coli
d
¢ B 760 cm l 760 cm”
W51 cm? coo M851cm?
%0 M 1041 cm B 1041 cm!
B 1125 cm”’ B 1125 cm
5 B 1599 cm- 5 |1 1599 cm-!
8 400 Z400
= =y
g :
£ E
=500 200
0 0
0 50 100 150 0 50 100 150
AuNR Concentration (ug/mL) AuNR Concentration (ug/mL)
182
183 Figure 3
184 Stacked area chart depicting the intensities of selected bacterial peaks in wastewater depending on AuNR
185 concentration. Each colored band indicates the intensity of one peak, and the total height of the chart indicates the
186 sum of all five peak intensities. Error bars indicate standard deviation of 1599 cm™! peak, which is representative of
187 standard deviation for all peaks.
188
189  Machine Learning Classification of Bacteria
190 As numerous biological molecules present Raman peaks in the fingerprint region, we applied ML

191  to classify the Raman spectra and assess the utility of SERS for bacterial identification in wastewater. 540
192  spectra from each bacterial species were collected in wastewater with 150 png/mL AuNRs and analyzed
193  using a one-dimensional CNN consisting of a convolutional layer followed by seven fully-connected

194  residual layers. The CNN can account for peak shape and has previously successfully classified bacterial
195  Raman spectra.*?)

196 This model was trained on the bacterial Raman spectra collected in wastewater from 725 cm™! to
197 1800 cm’'. This range was selected because it excludes the non-bacterial 670 cm™ thiol peak from

198  wastewater, which could lead to overfitting. The model was validated using k-folds cross-validation. In
199  this process, the spectra from each species were split 4:1 into a training set and a test set. The model was
200 then trained on the training set, and validated using the test set. This process was repeated using 500

201  different train-test splits. This model identified S. epidermidis with 86.4% accuracy, S. aureus with 77.0%
202  accuracy, S. marcescens with 86.5% accuracy, and E. coli with 91.0% accuracy (Fig. 4a). As CNNs are
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203 typically trained using, at minimum, several thousand objects per class in the training set, which is far
204  greater than the 540 here, we expect that this accuracy will increase in future research with larger datasets.
205  Additionally, overall accuracy is decreased by an S. aureus classification accuracy that is markedly lower
206  than that for the other organisms. A majority of this S. aureus misclassification is the result of the model
207  misidentifying this organism as S. marcescens. Thus, much of this model’s inaccuracy stems from

208  misclassification between S. aureus and S. marcescens, which we hypothesize can be overcome by

209  generating a larger dataset of spectra from those two specific species.

210 To ensure that this accurate ML classification was based on biologically relevant Raman peaks,
211 relevant wavenumbers were identified using an iterative perturbation method. For each train-test split, all
212 spectra in the test set would be perturbed by adding an artificial peak at a specific wavenumber. The effect
213  on classification accuracy of perturbation at this wavenumber would be recorded. This process was

214 iteratively repeated for all wavenumbers in the spectra. Perturbation of a wavenumber relevant to

215  classification can be expected to cause a strong decrease in accuracy, so this method can identify these
216  relevant wavenumbers.**! We observed that wavenumbers relevant to classification strongly overlapped
217  with known bacterial Raman peaks. For example, perturbation at 760 cm™ (which corresponds to adenine)
218  decreases accuracy by 11.8%, perturbation at 851 cm™ (which corresponds to thymine) decreases

219  accuracy by 11.2%, perturbation at 1,040 cm™ (which corresponds to aryl) decrease accuracy by 6.4%,
220  perturbation at 1,125 cm™ (which corresponds to phosphate) decreases accuracy by 8.0%, and

221  perturbation at 1,599 cm™ (which corresponds to carboxyl) decreases accuracy by 9.2% (Fig. 4b). Thus,
222  the >85% classification accuracy is based on differences between the Raman spectra of different bacterial
223  species in wastewater stemming from the different chemical compositions of these species.

224
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227 (a) Confusion matrix showing >85% accuracy of bacterial classification using a CNN trained on bacterial SERS
228 spectra collected in wastewater. (b) Graph of accuracy of CNN when the test set is perturbed at various
229 wavenumbers. Sharp decreases can be seen with perturbation at bands associated with (i) adenine, (ii) thymine, (iii)
230 aryl, (iv) phosphate, and (v) carboxyl.
231
232  Limit of Bacterial Detection
233 The concentrations of clinically relevant species in raw wastewater span many orders of

234  magnitude. While the total concentration of bacteria in wastewater has been reported on the order of 10°
235  cells/mL, the concentrations of individual species tend to be far lower.*3 E. coli, for example, has
236  reported concentrations ranging from the order of 102-10° cells/mL.*”! To identify individual bacterial

10
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237  species, it is therefore necessary to be able to detect bacteria at concentrations several orders of magnitude
238  below 10? cells/mL. To assess the limit of detection (LoD) for bacterial SERS in wastewater, samples
239  were prepared in a wastewater matrix with 150 pg/mL AuNRs and bacteria at concentrations of 0

240  cells/mL, 10* cells/mL, 10° cells/mL, 10° cells/mL, 107 cells/mL, 10® cells/mL, and 10° cells/mL. At each
241  concentration, 756 Raman spectra were collected, including a minimum of 108 spectra from each species
242  (Fig. 5a). At these lower concentrations, biological peaks are still present in the spectra. This result is
243  likely the result of the wastewater matrix containing biomolecules similar to those on the bacterial cell
244  surface. However, the intensities of many of these peaks decrease at low bacterial concentration,

245  indicating a strong contribution to these peaks from the bacterial surface (Fig. S4).

246 To test the limit of detection, ML techniques were used to classify between spectra from samples
247  containing bacteria at each concentration, and samples without bacteria. For example, Fig. 5b shows a
248  uniform manifold approximation and projection (UMAP) plotting a two-dimensional projection of a set of
249  spectra with bacteria at 10® cells/mL, and a set of spectra containing no bacteria. While this projection
250  does not show wholly separate clusters, spectra with and without bacteria are generally localized to

251  different regions of the two-dimensional vector space, indicating noticeable differences between spectra
252  from wells with and without bacteria at this concentration.

253 For a more robust comparison of spectra from samples with bacteria at each concentration against
254  spectra with no bacteria, a k-nearest neighbors (KNN) classifier was used. In this process, principal

255  component analysis (PCA) was performed on a dataset containing all the spectra with 10° cells/mL and all
256  the spectra with no bacteria. The top 3 eigenvectors from this PCA were then used to project all of the
257  spectra at all bacterial concentrations into 3 dimensions while preserving important information. A KNN
258  classifier was then trained on the projected spectra at each concentration to classify between spectra from
259  wells containing that concentration of bacteria, and wells containing no bacteria. The accuracy of each
260  model was tested across 500 train-test splits using the same methods used to validate the CNN.

261 At concentrations of 10%-107 cells/mL, sensitivity, selectivity, and accuracy are approximately
262  constant, all falling in the 55-70% range. At 108 cells/mL, sensitivity, selectivity, and accuracy

263  respectively increase to 80.6+3.1%, 75.44+3.4%, and 77.142.2%. At 10° cells/mL, sensitivity, selectivity,
264  and accuracy respectively reach 90.2+2.3%, 90.0+2.4%, and 90.1+1.7%. (Fig. 5c). The threshold

265  concentration is around 107 cells/mL, above which accuracy increases significantly (Fig. S5). This

266  threshold matches the concentration above which a dense layer of cells forms on the bottom of the well
267  Fig. S6). Above the threshold concentration, we hypothesize that cells are present in the laser spot for
268  most spectral acquisitions, so the spectra contain information on the cell surface itself; below the

269  threshold, molecules are exchanged between the cells and the surrounding medium to give rise to Raman
270  peaks.

271 It is notable that the presence of bacteria could be detected with >50% accuracy, even at low

272  concentrations at which bacteria were not in the laser spot. This result indicates that bacteria release

273  enough molecules into the wastewater matrix to be detected by Raman. There is therefore potential for
274  future Raman-based bacterial detection systems that do not require direct irradiation of the cells

275  themselves. Together, these results suggest that SERS is capable of detecting bacteria at

276  environmentallyrelevant concentrations. We note, however, that for this system to be implemented in a
277  real wastewater system, we will need methods to identify signals from individual species in raw

278  wastewater rather than filter-sterilized wastewater; the former will contain broad classes of bacteria, as
279  well as protozoa and other organic and inorganic particles.

280
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Figure 5

(a) SERS spectra of four model species collected in wastewater at varying bacterial concentrations. (b) UMAP
showing clustering of wells without bacteria vs wells with 108 cells/mL. (c¢) Sensitivity, selectivity, and accuracy of
KNN classifiers trained to detect presence of bacteria at varying concentrations. Shaded regions indicate
concentrations reported in literature for total bacteria in wastewater and E. coli in wastewater.

Conclusions

We have established that bacterial SERS can be achieved in a filter-sterilized wastewater matrix,
en-route to bacterial WBE. We demonstrate that bacterial SERS in wastewater generates Raman peaks
comparable to those observed in formalin. Additionally, cryoEM images show that AuNRs bind to the
bacterial surface in this complex matrix, indicating that the various dissolved substances in wastewater do
not adversely affect this interaction, and indicating that SERS enhancements in wastewater are the result
of a bacteria-AuNR interaction. We demonstrate that a high AuNR concentration of 150 pg/mL is suitable
for SERS, enhancing signal rather than quenching it. We also demonstrate that bacterial SERS spectra
collected in filtered wastewater are sufficiently robust for species identification: an ML model trained on
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spectra from four clinically relevant bacterial species in wastewater could distinguish between these
species with >85% accuracy. Combined with ML, this platform can detect bacteria in wastewater at
concentrations as low as 10* cells/mL.

Our proof-of-concept work marks a critical first step toward scalable wastewater monitoring of
bacterial pathogens. Future work remains to bring this technology to practice. First, it would be crucial to
expand the CNN training dataset to include a larger number of species and tens of thousands of spectra
per species. This expanded dataset would enable SERS monitoring of a fuller breadth of the bacterial
pathogens present in wastewater and have sufficient data per class for optimal CNN performance.
Additionally, work is needed to diversify the wastewater background training data (eg, from a variety of
geographic locations), as well as the bacterial Raman cataloging. Future datasets would ideally contain
various strains of each species cultured under a range of conditions and spiked into wastewater from
various sources. There is also potential for synthetic data augmentation techniques to diversify data. Such
diversity would prevent potential overfitting to a specific set of conditions.

Improvements in identification accuracy could be further improved with a platform to collect
spectra from few-to-single cells in wastewater, allowing characterization of wastewater on a cell-by-cell
basis. In recent years, systems have emerged integrating bioprinting and microfluidics with Raman
spectroscopy, which have potential for single cell isolation.!*> **! Additionally, there is promise for
enrichment techniques, such as dielectrophoresis, for concentrating bacteria near electrodes, to maximize
their Raman signal, even at low bacterial concentrations. We anticipate that a Raman system that
combines bioprinting or microfluidics with enrichments could be powerful as a means of sensitively
generating single-cell spectra.

In summary, SERS has significant potential as a tool for wastewater monitoring, and these results
lay the groundwork for the implementation of this epidemiological tool. In the future, we hope that this
rapid, label-free technique will allow bacterial outbreaks to be detected and addressed before they rise to
the level of crises.

Methods
Wastewater preparation

Raw, untreated wastewater influent was collected on 19 April 2022 as an eight-hour composite
sample using a composite automated sampler from a large wastewater treatment plant located in the Bay
Area of California, USA. This wastewater sample is likely representative of wastewater from large urban
areas in the USA. Wastewater was stored for a period of several weeks at 4°C, during which solid
components separated from liquid components through gravitational setting. The liquid portion of this
wastewater was recovered using a sterile pipetter and subsequently filtered through a 0.22 pm pore size
syringe filter (09-720-3, Fisher) to remove particles including bacteria and protozoa. Filter-sterilized
wastewater was then mixed 1:1 by volume with 10% formalin for biosafety. Filtered, formalin-treated
wastewater samples were stored at 4°C for up to two years.

Nanorod synthesis and Characterization

To achieve our target LSPR and AuNR width, AuNRs were synthesized using a modified version
of the recipe described in subfigure 3a of the 2013 manuscript by Ye et al.*!l The scale of this synthesis
was decreased by a factor of 10 from the scale described in the manuscript, and hydrochloric acid and
seed concentrations were sometimes modified to correct for effects of seasonal changes in humidity on
AuNR growth. The nanorods were washed once, which is sufficient to prevent cytotoxicity from CTAB,
while leaving sufficient CTAB on the AuNR surface to maintain a positive surface charge and prevent
aggregation.[*! AuNRs were washed by centrifuging the synthesis for 20 minutes at 5,400 g, removing the
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supernatant, resuspending in 50 mL DI water, centrifuging a second time with the same parameters,
removing supernatant, and resuspending in 5 mL DI water. AuNR resonance was measured by collecting
their extinction spectrum from 400-900 nm using a Cary 60001 UV-Vis-NIR spectrometer. AuNR
concentration was determined by using a Thermo Scientific ICAP 6300 Duo View Optical Emission
Spectrometer to measure the concentration of gold in a sample containing the washed AuNRs diluted
1:200 in 5% nitric acid. To analyze individual AuNRs, images of fifty AuNRs were recorded with an FEI
Tecnai G2 F20 X-TWIN Transmission Electron Microscope. Each AuNR in these images was measured
using the line tool in ImageJ.

Three batches of AuNRs were synthesized for the experiments discussed in this paper. The
AuNRs for the experiments in Figs. 1, 3, and 4 had an LSPR at 700 nm, an average length of 75.3 nm
with 9.6% standard deviation, and an average width of 28.1 nm with 8.9% standard deviation. The
AuNRs for the experiments in Fig. 2 had an LSPR at 720 nm, an average length of 79.4 nm with 10.8%
standard deviation, and an average width of 28.9 nm with 9.0% standard deviation. The AuNRs for the
experiments in Fig. 5 had an LSPR at 700 nm, an average length of 73.5 nm with 21.5% standard
deviation, and an average width of 29.1 nm with 24.1% standard deviation.

Cell Culture

S. epidermidis (ATCC 12228), S. aureus (which was a clinical sample obtained from the Stanford
Hospital), S. marcescens (ATCC 13880), and E. coli (ATCC 25922) were cultured on Trypticase Soy Agar
5% Sheep Blood plates (221239, BD) at 37°C for 16 hours. Colonies from these plates were then cultured
in 12.5 mL Lysogeny broth culture medium (10-855-021, Fisher) in 50 mL bio-reaction tubes (229476,
CellTreat) at 37°C with 120 rpm shaking for 16 hours. All cultures were incubated in a Thermo Scientific
MaxQ 4450 incubator. Cultures were stored at 4°C, and experiments were not performed with solid
cultures more than 14 days old or liquid cultures more than 5 days old.

Preparation of Cell/AuNR Mixtures

Cell concentration was measured by diluting an aliquot of liquid culture 1:1,000 and counting on
a Bright-Line Hemacytometer. Cell aliquots were washed 3 times by centrifuging for 4 minutes in a
mySPINTM 6 Mini Centrifuge, removing supernatant and resuspending in DI water between
centrifugations. After the washes, the cells were resuspended in either 5% formalin or filtered and
formalin-treated wastewater at double their desired concentration. Additionally, aliquots of AuNRs were
diluted in DI water to double the desired final concentration. A cell aliquot and an AuNR aliquot were
then mixed in a 1:1 ratio by volume.

Liquid Well Preparation

A 0.5 mm silicon chip and a 0.5 mm JGS2 grade, double-side polished fused silica chip
(WA1001, MSE Supplies) were plasma cleaned for 5 minutes at 100 W with an 85 mTorr base pressure
and a 2 SCCM oxygen flow rate in a March Instruments PX-250 Plasma Asher to decrease

hydrophobicity and remove residual adhesive from previous experiments. 4 layers of double-sided scotch
tape (6137H-2PC-MP, 3M) were stacked on each other for a final thickness of approximately 0.1 mm,?
and a hole was punched in the middle of this stack using a Bostitch Office EZ Squeeze One-Hole Punch.
This tape was then placed on the plasma-cleaned silicon. A 10 pL sample was pipetted into the hole in the
tape, and the top was sealed with the plasma-cleaned silica. After experiments, wells were disassembled
by dissolving tape adhesive in 10% isopropyl alcohol (IPA). Silicon and silica substrates were then wiped
down with IPA and reused in subsequent experiments.
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CryoEM
To prepare cryoEM samples, 300 mesh molybdenum lacey carbon grids (LC300-MO, Electron

Microscopy Sciences) were glow discharged for 10 seconds in a PELCO easiGlow Glow Discharge

Cleaning System at 15 mA and 0.40 mbar. 3 pL of cell/AuNR mixture was subsequently drop-cast onto
each grid, which was then back-blotted for 3 seconds and frozen using a Vitrobot Mark IV automatic
plunge freezer, with blot force set to 3. Cells were imaged using a Glacios 2 Cryo-Transmission Electron
Microscope.

Raman Spectroscopy

Raman spectra were collected using a Horiba Xplora+ Confocal Raman microscope with a 600
gr/mm grating, a 300 um pinhole, and a 785 nm laser with 11 mW power output. Spectra were collected
through an Olympus Plan N 10x objective (N1215800, Olympus), with a spot size of approximately 2 pum.
Each spectrum was collected through two 5-second acquisitions. Spectra were collected from 5501800
cm!, with a multiple accumulation spike filter and an intensity correction system (ICS). Spectra were
collected in batches of 36 by collecting a 6x6 map over a 200x200 um area. Between 1 and 3 maps were
collected from each well. For each species and concentration, Raman was performed on a minimum of
two wells containing cells from separate liquid cultures, aside from negative controls without AuNRs and
S. aureus samples in Figure 5, which were collected from a single well for each sample.

Data Processing
Spectra were processed using Python. Each spectrum was truncated to only include wavenumbers

from 550-1800 cm™'. To avoid overfitting to the 670 cm™! thiol peak, whose intensity varied significantly
between spectra, spectra being processed for ML were truncated to a range of 725-1800 cm'. To remove
the fluorescent background, a fifth-order polynomial fit was subtracted from each spectrum using
peakutils.baseline. To remove background from silicon in the wells, the baseline-subtracted spectrum of a
well containing DI water was subtracted from each baseline-subtracted spectrum. For normalization, each
spectrum then had its mean value subtracted and then was divided by its standard deviation, to achieve a
mean of 0 and a standard deviation of 1.

Machine [earning

All ML was performed using Python. PCA was performed on processed and normalized spectra
using sklearn.decomposition.PCA. UMAP was performed using umap.UMAP with min_dist=1 and
n_neighbors=1500. The CNN was built using pytorch_lightning with the architecture and parameters we
previously described in the 2019 manuscript by Ho ef al.**! The KNN classifier used sklearn.neighbors.
KNeighborsClassifier, with n_neighbors=40. Each classifier was validated using k-folds cross validation,
with each class randomly divided into five folds using sklearn.model selection.KFold. The model iterated
through the five folds, using each one as the test set, while using the other four as the training set. This
process was repeated with a new set of folds 100 times, for a total of 500 training and test sets.

For the CNN, iterative perturbation was performed for each of the 500 test sets. This process was

repeated for all wavenumbers in the spectra. For each spectrum, a Lorentzian curve was generated using
the equation: f(v)= ____ a/m, , where v is a wavenumber in cm™', v is the perturbed
wavenumber in cm

(v=vp) +b
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431 !, ais avalue randomly selected from an even distribution from 0-250 using random.random, and b=5. A
432  Lorentzian centered at a specific wavenumber would be added to a spectrum to perturb it at that

433  wavenumber. For each of the 500 train-test splits, each spectrum in the test set was perturbed at each

434  wavenumber.
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