


Blurred and Noisy MPR-Net [42] Sanghvi et. al [30] Ours Ground-Truth

Figure 1. The proposed Kernel Trajectory Network (KTN) on real noisy blurred image from Photon-Limited Deblurring Dataset

(PLDD) [29] The result corresponding to MPR-Net was generated by retraining the network with GoPro dataset [24] corrupted by Poisson

noise. The inset images for ºSanghvi et. alº and ºOursº represent the estimated kernel and the inset image for ºGround-Truthº represents

the kernel captured using a point source, as provided in PLDD.

proves the regularity of the kernel estimation problem. This

leads to substantially better blur kernel estimates in photon-

limited regimes where existing methods fail.

2. Related Work

Traditional Blind Deconvolution: Classical approaches

to the (noiseless) blind deconvolution problem [6, 7, 22, 32,

40] use a joint optimization framework in which both the

kernel and image are updated in an alternating fashion in

order to minimize a cost function with kernel and image

priors. For high noise regimes, a combination of ℓ1+TV

prior has been used in [2]. Levin et. al [16] pointed out

that this joint optimization framework for the blind decon-

volution problem favours the no-blur degenerate solution

i.e. (x∗,h∗) = (y, I) where I is the identity operator. Some

methods model the blur kernel in terms of the camera trajec-

tory and then recover both the trajectory and the clean im-

age using optimization [12, 38, 39] and supervised-learning

techniques [11, 33, 46].

For the non-blind case, i.e., when the blur kernel is as-

sumed to be known, the Poisson deconvolution problem

has been studied for decades starting from Richardson-Lucy

algorithm [21, 26]. More contemporary methods include

Plug-and-Play [28, 29], PURE-LET [18], and MAP-based

optimization methods [10, 13].

Deep Learning Methods. Recent years, many deep

learning-based methods [5, 31] have been proposed for the

blind image deblurring task. The most common strategy is

to train a network end-to-end on large-scale datasets, such

as the GoPro [24] and the RealBlur [27] datasets. No-

tably, many recent works [8, 24, 34, 42, 43] improve the

performance of deblurring networks by adopting the multi-

scale strategies, where the training follows a coarse-to-

fine setting that resembles the iterative approach. Gener-

ative Adversarial Network (GAN) based deblurring meth-

ods [3,14,15,44] are also shown to produce visually appeal-

ing images. Zamir et al. [41] and Wang et al. [37] adapt the

popular vision transformers to the image restoration prob-

lems and demonstrate competitive performance on the de-

blurring task.

Neural Networks and Iterative Methods: While neu-

ral networks have shown state-of-the-art performance on the

deblurring task, another class of methods incorporating iter-

ative methods with deep learning have shown promising re-

sults. Algorithm unrolling [23], where an iterative method

is unrolled for fixed iterations and trained end-to-end has

been applied to image deblurring [1,19]. In SelfDeblur [25],

authors use Deep-Image-Prior [35] to represent the image

and blur kernel and obtain state-of-the-art blind deconvolu-

tion performance.

3. Method

3.1. Kernel as Structured Motion Estimation

Camera motion blur can be modeled as a latent clean im-

age x convolved with a blur kernel h. If we assume the blur

kernel lies in a window of size 32 × 32, then h ∈ R
1024.

However, in this high dimensional space, only few entries

of the blur kernel h are non-zero. Additionally, the kernel

is generated from a two-dimensional trajectory which sug-

gests that a simple sparsity prior is not sufficient. Given the

difficulty of the photon-limited deconvolution problem, we

need to impose a stronger prior on the kernel. To this end,

we propose a differentiable and low-dimensional represen-

tation of the blur kernel, which we will use as the search

space in our kernel estimation algorithm.

We take the two-dimensional trajectory of the camera

during the exposure time and divide it into K ºkey pointsº.

Each key point represents either the start, the end or a

change in direction of the camera trajectory as seen in Fig-

ure 2. Given the K key points as points mapped out in x-y

space, we can interpolate them using cubic splines to form

a continuous trajectory in 2D. To convert this continuous

trajectory to an equivalent blur kernel, we assume a point

source image and move it through the given trajectory. The
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F (.) and G(.) are trained using synthetic data as fol-

lows. We take clean images from Flickr2K dataset [20]

and the blur kernels from the code in Boracchi and Foi [4].

The blurred images are also corrupted using Poisson shot

noise with photon levels α uniformly sampled from [1, 60].
The non-blind solver F (.) is trained using kernel and noisy

blurred image as input, and clean image as the target. The

denoiser G(.) is trained with similar procedure but with

blurred-noisy image as the only input blur-only images as

the target. The training processes, along with other ex-

periments described in this paper are implemented using

PyTorch on a NVIDIA Titan Xp GPU.

For quantitative comparison of the method presented, we

retrain the following state-of-the-art networks for Poisson

Noise: Scale Recurrent Network (SRN) [34], Deep-Deblur

[24], DHMPN [43], MPR-Net [42], and MIMO-UNet+ [8].

We perform this retraining in the following two different

ways. First, we use synthetic data training as described for

F (.) and G(.). Second, for testing on realistic blur, we re-

train the networks using the GoPro dataset [24] as it is often

used to train neural networks in contemporary deblurring

literature. We add the Poisson noise with the same distribu-

tion as the synthetic datasets to the blurred images. While

retraining the networks, we use the respective loss functions

from the original papers for sake of a fair comparison.

4.2. Quantitative Comparison

We quantitatively evaluate the proposed method on

three different datasets, and compare it with state-of-the-

art deblurring methods. In addition to the end-to-end

trained methods described previously, we also compare

our approach to the following Poisson deblurring methods:

Poisson-Plug-and-Play [28], and PURE-LET [18]. Even

though these methods assume the blur kernel to be known,

we include them in the quantitative comparison since they

are specifically designed for Poisson noise. For all of the

methods described above, we compare the restored image’s

quality using PSNR, SSIM, and Learned Perceptual Image

Patch Similarity (LPIPS-Alex, LPIPS-VGG) [45]. We in-

clude the latter as another metric in our evaluation since

failure of MSE/SSIM to assess image quality has been well

documented in [36, 45]

BSD100: First, we evaluate our method on synthetic

blur as follows. We collect 100 random images from the

BSD-500 dataset, blur them synthetically with motion ker-

nels from the Levin dataset [17] followed by adding Poisson

noise at photon-levels α = 10, 20, and 40. The results of the

quantitative evaluation are provided in Table 1. Since the

blur is synthetic, ground-truth kernel is known and hence,

can be used to simultaneously evaluate Poisson non-blind

deblurring methods i.e, Poisson Plug-and-Play, PURE-LET,

and PhD-Net. The last method is the non-blind solver F (.)
and serves as an upper bound on the deconvolution perfor-

mance.

Levin Dataset: Next, we evaluate our method on the

Levin dataset [17] which contains 32 real blurred images

along with the ground truth kernels, as measured through a

point source. We evaluate our method on this dataset with

addition of Poisson noise at photon levels α = 10, 20 and 40
and the results are shown in Table 2. For a fair comparison,

end-to-end trained methods are retrained using synthetically

blurred data (as described in Section IV-A) for evaluation on

BSD100 and Levin dataset.

RealBlur-J [27]: To demonstrate that our method is able

to handle realistic blur, we evaluate our performance on

randomly selected 50 patches of size 256 × 256 from the

Real-Blur-J [27] dataset. Note that we reduce the size of the

tested image because our method is based on a single-blur

convolutional model. Such model may not be applicable for

a large image with spatially varying blur and local motion of

objects. However, for a smaller patch of a larger image, the

single-blur-kernel model of deconvolution is a much more

valid assumption.

To ensure a fair comparison, we evaluate end-to-end net-

works by retraining on both the synthetic and GoPro dat-

set. As shown in Table 3, we find that end-to-end networks

perform consistently better on the RealBlur dataset when

trained using the GoPro dataset instead of synthetic blur.

This can be explained by the fact both GoPro and RealBlur

have realistic blur which is not necessarily captured by a

single blur convolutional model.

4.3. Qualitative Comparison

Color Reconstruction We show reconstructions on ex-

amples from the real-blur dataset in Figure 4. While our

method is grayscale, we perform colour reconstruction by

estimating the kernel from the luminance-channel. Given

the estimated kernel, we deblur each channel of the image

using the non-blind solver and then combine the different

channels into a single RGB-image. Note that all qualita-

tive examples in this paper for end-to-end trained networks

are trained using the GoPro dataset, since they provide the

better visual result.

Photon-Limited Deblurring Dataset We also show

qualitative examples from photon-limited deblurring

dataset [29] which contains 30 images’ raw sensor data,

blurred by camera shake and taken in extremely low-

illumination. For reconstructing these images, we take the

average of the R, G, B channels of the Bayer patter image,

average it and then reconstruct it using the given method.

The qualitative results for this dataset can be found in

Figure 5. We also show the estimated kernels, along with

estimated kernels from [30, 40], in Figure 6.

However, instead of using the reblurring loss directly, we

find the scheme is more numerically stable if we take the

gradients of the image first and then estimate the reblurring
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Method

Photon Level, Metric

SRN

[34]

DHMPN

[43]

Deep-

Deblur [24]

MIMO-

UNet+ [8]

MPRNet

[42]
Ours

P4IP

[28]

PURE-LET

[18]

PhD-Net

[29]

α = 10

PSNR ↑ 20.71 20.89 21.17 21.04 21.09 21.57 19.26 22.49 23.00

SSIM ↑ 0.386 0.391 0.401 0.356 0.393 0.471 0.348 0.485 0.500

LPIPS-Alex ↓ 0.681 0.702 0.656 0.733 0.678 0.560 0.733 0.588 0.544

LPIPS-VGG ↓ 0.646 0.652 0.627 0.683 0.641 0.587 0.674 0.607 0.567

α = 20

PSNR ↑ 20.79 21.03 21.30 21.36 21.25 21.93 19.45 22.94 23.63

SSIM ↑ 0.392 0.401 0.410 0.396 0.405 0.483 0.353 0.516 0.540

LPIPS-Alex ↓ 0.683 0.688 0.666 0.660 0.667 0.542 0.726 0.526 0.500

LPIPS-VGG ↓ 0.639 0.640 0.621 0.663 0.631 0.578 0.668 0.584 0.539

α = 40

PSNR ↑ 20.89 21.15 21.43 21.63 21.41 21.62 20.18 23.48 24.38

SSIM ↑ 0.409 0.418 0.425 0.441 0.428 0.527 0.372 0.561 0.593

LPIPS-Alex ↓ 0.677 0.673 0.673 0.586 0.647 0.488 0.706 0.467 0.446

LPIPS-VGG ↓ 0.629 0.626 0.612 0.639 0.613 0.549 0.660 0.557 0.503

Blind? ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕

End-To-End Trained? ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✓

Table 1. Performance on BSD100 Dataset with Synthetic Blur. ↑ represents metrics where higher means better and vice versa for ↓.

LPIPS-Alex and LPIPS-VGG represent the perceptual measures from [45]. The best performing blind deconvolution method for each

metric and photon level is shown in bold. The non-blind deconvolution methods are shown for reference in grey columns.

Method

Photon Level, Metric

SRN

[34]

DHMPN

[43]

Deep-

Deblur [24]

MIMO-

UNet+ [8]

MPRNet

[42]
Ours

P4IP

[28]

PURE-LET

[18]

PhD-Net

[29]

α = 10

PSNR ↑ 20.26 20.50 20.93 21.25 21.04 22.01 19.92 21.63 22.41

SSIM ↑ 0.510 0.509 0.524 0.516 0.533 0.611 0.463 0.590 0.638

LPIPS-Alex ↓ 0.507 0.521 0.496 0.594 0.479 0.340 0.546 0.371 0.341

LPIPS-VGG ↓ 0.531 0.526 0.518 0.661 0.511 0.477 0.555 0.522 0.466

α = 20

PSNR ↑ 20.49 20.39 21.11 21.64 21.33 22.72 19.53 21.79 22.78

SSIM ↑ 0.523 0.521 0.536 0.554 0.551 0.641 0.442 0.607 0.667

LPIPS-Alex ↓ 0.496 0.502 0.492 0.485 0.459 0.304 0.533 0.339 0.304

LPIPS-VGG ↓ 0.515 0.514 0.501 0.610 0.493 0.448 0.554 0.510 0.447

α = 40

PSNR ↑ 20.59 20.50 21.20 21.88 21.54 22.32 17.32 21.78 22.96

SSIM ↑ 0.535 0.532 0.545 0.583 0.567 0.647 0.362 0.614 0.687

LPIPS-Alex ↓ 0.491 0.494 0.494 0.428 0.447 0.273 0.487 0.324 0.263

LPIPS-VGG ↓ 0.506 0.506 0.493 0.557 0.479 0.444 0.560 0.507 0.432

Table 2. Performance on Levin dataset with realistic camera shake blur [16]. The best performing blind deconvolution method for

each metric and photon level is shown in bold and non-blind deconvolution methods are shown for reference in grey columns.

loss. This can be explained by the fact that unlike simulated

data, the photon level is not known exactly and is estimated

using the sensor data itself by a simple heuristic. For further

details on how to use the sensor data, we refer the reader

to [29].

4.4. Ablation Study

In Table 4, we provide an ablation study by running the

scheme for different number of key points i.e. K = 4, 6,
and 8 and without KTN (K = 0) on RealBlur dataset.

Through this study, we demonstrate the effect of the Ker-

nel Trajectory Network has on the iterative scheme. As ex-

pected, changing the search space for kernel estimation im-

proves the performance significantly across all metrics. In-

creasing the number of key points used for representing ker-

nels also steadily improves the performance of the scheme,

which can be explained by the fact there are larger degrees

of freedom.

5. Conclusion

In this paper, we use an iterative framework for the

photon-limited blind deconvolution problem. More specif-

ically, we use a non-blind solver which can deconvolve

Poisson corrupted and blurred images given a blur kernel.

To mitigate ill-posedness of the kernel estimation in such
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Method → SRN [34] DHMPN [43] Deep-Deblur [24] MIMO-UNet+ [8] MPRNet [42] Ours

Training →

Photon lvl, Metric
Synth. GoPro Synth. GoPro Synth. GoPro Synth. GoPro Synth. GoPro Synth.

α = 10

PSNR ↑ 25.72 27.64 25.72 27.58 25.98 27.57 26.20 26.78 26.26 28.16 26.61

SSIM ↑ 0.612 0.706 0.603 0.696 0.577 0.719 0.531 0.571 0.641 0.729 0.738

LPIPS-Alex ↓ 0.438 0.310 0.454 0.329 0.441 0.297 0.484 0.396 0.401 0.288 0.277

LPIPS-VGG ↓ 0.508 0.454 0.509 0.472 0.496 0.440 0.549 0.508 0.496 0.427 0.416

α = 20

PSNR ↑ 25.37 27.91 25.46 28.02 25.95 27.81 26.69 27.53 26.51 28.29 27.23

SSIM ↑ 0.658 0.775 0.655 0.764 0.636 0.778 0.630 0.678 0.715 0.793 0.793

LPIPS-Alex ↓ 0.426 0.275 0.429 0.288 0.427 0.265 0.401 0.313 0.360 0.256 0.241

LPIPS-VGG ↓ 0.492 0.421 0.496 0.437 0.485 0.410 0.495 0.446 0.466 0.402 0.382

α = 40

PSNR ↑ 25.67 28.34 25.72 28.27 26.22 28.13 27.24 28.14 26.85 28.72 27.11

SSIM ↑ 0.665 0.768 0.653 0.760 0.626 0.771 0.675 0.712 0.716 0.788 0.782

LPIPS-Alex ↓ 0.415 0.268 0.418 0.268 0.418 0.258 0.347 0.267 0.343 0.245 0.221

LPIPS-VGG ↓ 0.482 0.405 0.481 0.413 0.470 0.396 0.457 0.404 0.444 0.386 0.360

Table 3. Performance on RealBlur-J Dataset with realistic blur [27]: Bold and underline refer to overall best performing method and

best synthetic performance method. It should be noted that methods that are not trained end-to-end are usually at disadvantage when

comparing on metrics like PSNR. However, it can be seen that our reconstruction is generally preferred by other perceptual metrics.

Input

SRN DHMPN MPR-Net

MIMO-UNet+ Ours Ground-Truth

Figure 4. Qualitative example on the Real-Blur Dataset: For a more extensive set of results, we refer the reader to the supplementary

document.

high noise regimes, we propose a novel low-dimensional

representation to represent the motion blur. By using this

novel low-dimensional and differentiable representation as

a search space, we show state-of-the-art deconvolution per-

formance and outperform end-to-end trained image restora-

tion networks by a significant margin.

We believe this is a promising direction of research for

both deblurring and general blind inverse problems i.e.,

inverse problems where the forward operator is not fully

known. Future work could involve a supervised version

of this scheme which does not involve backpropagation

through a network as it would greatly reduce the compu-

tational cost. Another research direction could be to apply

this framework to the problem of spatially varying blur.
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Input

SRN DHMPN MPR-Net

Ours Non-Blind Ground-Truth

Figure 5. Visual comparisons on Photon-Limited Deblurring Dataset. Qualitative results on realistic blurred and photon-limited images

from the Photon-Limited Deblurring dataset [29].The inset image for ºOursº and ºNon-Blindº represent the estimated and ground-truth

kernel respectively. For a more extensive set of qualitative results, we refer the reader to the supplementary document.

Two-Phase

[40]

Sanghvi

et. al [30]
Ours

Ground-

Truth

Figure 6. Estimated Kernels for different methods: We show

the estimated kernels from two examples from the PLDD dataset.

Two-Phase [40] uses blur-only image G(y) as input, and ground-

truth kernel is estimated using a point-source.
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